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Abstract
In this paper, we consider a two-stage call center staffing model. In the first stage, the interval staffing levels are set
under arrival rate uncertainty. In the second stage, these initial staffing levels are corrected to the right value based on
more precise arrival rate information. We show that this problem is of newsvendor type, where the costs are the initial
staffing costs plus the second stage adaptation costs. We show that we should initially staff according to a quantile of
the distributional forecast, rather than the mean. It is also shown that the errors in staffing are approximately linear in
the forecasting errors. This leads to the conclusion that the weighted sum of errors should be the error measurement
in call center forecasting, since minimizing, it minimizes the total staffing costs. In special cases where the costs
are symmetric for over- and understaffing, this is equivalent to minimizing the weighted absolute percentage error.

1. Introduction

In practice, call center forecasting and staffing are done in multiple stages. Usually, 4 weeks in advance,
the operational planning cycle is started by making a forecast. This forecast is used to determine the
initial staffing levels, for every 15- or 30-min interval, often using the Erlang C or Erlang A formula.
The staffing levels in their turn are input for making the agent schedules.

However, between the time, the schedule is made and its execution things change. Some factors are
still unknown by the time that the forecasts are made, such as the weather and the effect of advertisement
campaigns. Theory tells us that updated forecasts have a higher accuracy ([20]). Ideally, staffing levels
and schedules should be adapted every time new information becomes available. In practice, updates
are dealt with in an ad hoc manner. Rarely forecasts are updated, and schedules are mostly updated on
the basis of changes in the availability of agents. On the day itself, adaptations to the schedule are made
to make sure, to the extent possible, that service levels (SLs) are met, exploiting flexibility in agent
schedules and task assignments. This process is extremely hard to model but the outcome is surprisingly
often that the SL is met by the end of the day, meaning that somehow the right staffing levels were
attained.

For these reasons, we study the following two-stage model in this paper. In the first stage, for every
say 15-min interval, an initial forecast of the arrival rate is made on which the initial staffing level is
based. These staffing levels are later, during the second stage, corrected to the right value based on the
real rates. The goal is to minimize the total sum of initial staffing and intra-day adaptation costs. We
show two results. The first is that, if a distributional forecast of the arrival rate is made, then the first-
stage staffing problem is of newsvendor type, and the staffing level is the staffing belonging to the right
quantile of the arrival rate distribution.

As an example, suppose you expect an arrival rate of 100, with a normally distributed error with a
standard deviation of 20, leading to an expected absolute error of around 17%, which is not uncommon.
Assume the average handling time is 4, thus an expected load of 400. In this example, we use Erlang C
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with an SL of 80/20 (80% answered within 20 s) and a non-integer number of agents, calculated as a
simple linear interpolation between the integer staffing level just below and above 80%. If we schedule
according to the expected rate, then we schedule close to 411 agents, thus 11 more than the load. Suppose
that regular staffing costs are 10, adding flexible staff in the second step costs 15, sending agents home
has final costs 1. Because of the asymmetry of the costs, we have to overstaff with respect to the expected
arrival rate, according to Theorem 1 to the quantile of 5/(1 + 5), which is close to 119, leading to a
staffing level of 488.5.

Sampling from the arrival rate and averaging the results for the samples show the following. Under
full information, the costs are close to 4,107. By staffing according to the expected arrival rate, total
costs are 4,300, thus the intra-day adaptation costs are close to 4%. Staffing 77 more agents gives total
costs 4,228, which is a reduction by close to 2%. This is a relatively small reduction, but note that it
comes at no extra work, the staffing formula just needs to be replaced. And we should realize that for
different parameters, the reduction can be bigger. The R code of this example and other calculations can
be found in “minimal_WAPE” on [13].

The second result is that, if a point forecast is made, then the total costs are approximately linear
in the error with different coefficients for under- and overstaffing. Thus, the first result tells us how to
staff, the second gives an approximation of the costs under different staffing levels. This approximation
leads to the results that, when staffing multiple periods such as the quarters of a day, the point forecast
that minimizes a weighted form of the WAPE (the weighted absolute percentage error) also minimizes
the total staffing costs. In the case of equal under- and overstaffing costs, this reduces to the regular
WAPE. This tells us that the (weighted) WAPE is the preferred forecasting error measure in call centers,
which allows us to compare arbitrary point forecasts. Note that the weighted WAPE is minimized by the
forecast that consists of the quantiles used in the newsvendor.

The implications for practice are as follows. Ideally, a distributional forecast should be made with
staffing according to the quantile determined by the under- and overstaffing costs. However, hardly ever
distributional forecasts are made. A point forecasts should preferably minimize the weighted WAPE.
Then it can be used directly for staffing. If a forecast is made that minimizes the WAPE, then historical
forecasting errors can be used to turn it into a distributional forecast which can again be used for staffing.

The results just described will have lower costs than the methods described in the literature, which
are mostly based on expected arrival rates and error measurements such as the RMSE. For example,
Shen et al. [19] use the MSE as error measurement to update intra-day arrivals. Ibrahim and l’Ecuyer
[10] compare the MAPE, RMSE and MSE of different forecasting models. Aldor et al. [2] compare the
MAPE and RMSE of four fixed-effects models. Brown et al. [4] and also Aldor et al. [2] are examples of
papers that use the mean arrival load of the system to generate staffing levels, using queueing formulas,
such as the Erlang A formula or square-root staffing. Both choices are arguable and lead to sub-optimal
decisions.

For academic overviews on call center planning, see Aksin et al. [1] and Gans et al. [7]; for practitioner-
level texts, see Cleveland and Mayben [5] and Koole [14]. Ibrahim et al. [11] is a survey on call center
forecasting that also discusses arrival rate uncertainty extensively. Ideally, intra-day forecasts should be
updated in a Bayesian manner, as in Shen and Huang [19], instead of the currently used ad hoc manner.

Finally, we would like to mention a number of papers which are related to the ideas of asymmetric
staffing and/or intra-day management. The first is Bassamboo et al. [3] which considers a single-
stage staffing model with arrival rate uncertainty in which the expected costs of staffing, queueing and
abandonments are minimized. The optimal staffing level is a quantile of the arrival rate without safety
staffing, as long as the arrival rate uncertainty is high enough. Note that this means that there is no SL
guarantee, the SL depends on the realization.

Gurvich et al. [9] and Roubos et al. [18] combine single-stage staffing with change constraints,
guaranteeing that the SL is met with a certain probability.

A number of papers study two-stage staffing models, especially Gans et al. [8] and Mehrotra et al.
[17]. They formulate more involved mathematical programming models (e.g., modeling a whole day
including the dependencies in the arrival rate distribution) containing the two decisions and solve them
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numerically. Finally, Liao et al. [15] study a two-stage model with in and outbound calls in which
the flexibility consists of the possibility to schedule agents for handling outbound calls in overtime.
Solutions using stochastic and robust programming are compared.

2. Optimal staffing

We first describe our model. Arrivals in a certain interval can be seen as coming from a Poisson
distribution with parameter 𝜆. However, 𝜆 is unknown at the first moment staffing is done. In this
section, we assume that we have a distributional forecast in the form of a random variable Λ. The actual
arrival rate 𝜆 can be seen as a realization of Λ. On the basis of Λ, we decide on the initial staffing level 𝑠.

There is one moment at which we do intra-day management. As explained in the introduction, we
assume that at this moment, we know the actual arrival rate 𝜆. Based on this arrival rate, we adapt our
staffing level to the right staffing level 𝑆(𝜆), independent of the initial level 𝑠 ∈ N, where 𝑆 is a function
of 𝜆 that determines the minimal staffing level such that a certain SL requirement is met. Typically, 𝑆 is
determined using an Erlang formula, but depending on the type of service another function can be used
as well, as long as it is non-decreasing.

When, during a certain interval, an agent is scheduled in the first step and kept then the costs for this
agent are 𝑐. When an agent is scheduled but sent home or given another task to do at the second step,
at the beginning of the interval, then the costs are 𝑐o, where o stands for overstaffing. Finally, when an
agent is scheduled only at the second step then its costs are 𝑐 + 𝑐u, with u meaning understaffing. Thus
𝑐o and 𝑐u are the additional costs for flexibility. They are typically 10 or 20% of 𝑐, and any call center
has such a flexible layer for up- and downscaling.

Now, for initial staffing level 𝑠 and realization 𝜆, the total staffing costs 𝐶 (𝑠, 𝜆) are:

𝐶 (𝑠, 𝜆) = 𝑐𝑆(𝜆) + 𝑐o(𝑠 − 𝑆(𝜆))+ + 𝑐u(𝑆(𝜆) − 𝑠)+
= 𝑐𝑠 + (𝑐o − 𝑐)(𝑠 − 𝑆(𝜆))+ + (𝑐u + 𝑐)(𝑆(𝜆) − 𝑠)+,

where 𝑦+ := max{0, 𝑦}.
The total expected costs are

E𝐶 (𝑠,Λ) = 𝑐E𝑆(Λ) + 𝑐oE(𝑠 − 𝑆(Λ))+ + 𝑐uE(𝑆(Λ) − 𝑠)+. (1)

The cost-optimal staffing 𝑠∗ := arg min𝑠 E𝐶 (𝑠,Λ) can then be found by

𝑠∗ = arg min
𝑠
{𝑐oE(𝑠 − 𝑆(Λ))+ + 𝑐uE(𝑆(Λ) − 𝑠)+}. (2)

Eq. (2) has the form of the newsvendor problem, with the random demand replaced by 𝑆(Λ).
Therefore, if we denote with 𝐻 the cdf of the random variable 𝑆(Λ), then, by solving Eq. (2), we obtain

𝑠∗ = 𝐻−1
(
𝑐u

𝑐o + 𝑐u

)
,

where 𝐻−1 is the quantile function of 𝐻. For any cdf 𝐹, its quantile function is defined by 𝐹−1(𝑦) :=
inf{𝑥 ∈ 𝑅 : 𝐹 (𝑥) ≥ 𝑦}, 0 ≤ 𝑦 ≤ 1.

We assume that 𝑆 is a non-decreasing function. This is a natural assumption: when there are more
arrivals, then we need more agents to obtain the required SL. We can show that 𝑆 is non-decreasing for
a number of often-used models and performance measures, as is shown in the appendix.

Theorem 1. If 𝑆(·) is non-decreasing, then

𝑠∗ = 𝑆
(
𝐹−1
Λ

(
𝑐u

𝑐o + 𝑐u

))
,
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with 𝐹Λ the distribution function of Λ.

Proof. It suffices to show that 𝐻−1(𝑝) = 𝑆(𝐹−1
Λ (𝑝)) for any 0 ≤ 𝑝 ≤ 1. To this end, let 𝜆𝑝 := 𝐹−1

Λ (𝑝).
Due to the properties of the quantile function, we have

𝐹Λ (𝜆𝑝) ≥ 𝑝.

Furthermore, we have
P(𝑆(Λ) ≤ 𝑆(𝜆𝑝)) ≥ P(Λ ≤ 𝜆𝑝) ≥ 𝑝,

which leads to
𝐻 (𝑆(𝜆𝑝)) ≥ 𝑝,

from which it follows that 𝑆(𝜆𝑝) ∈ {𝑥 ∈ 𝑅 : 𝐻 (𝑥) ≥ 𝑝}. Due to the definition of 𝐻−1(𝑝), we have

𝐻−1(𝑝) ≤ 𝑆(𝐹−1
Λ (𝑝)).

Assume𝐻−1 (𝑝) < 𝑆(𝐹−1
Λ (𝑝)). Then, we can always find some 𝜖 > 0, such that 𝑆(𝐹−1

Λ (𝑝)) = 𝐻−1(𝑝) + 𝜖 .
Moreover, we define 𝐵 := {𝜆 ∈ 𝑅 : 𝑆(𝜆) = 𝐻−1(𝑝)}, and 𝜆′ := sup 𝐵. Clearly, 𝐵 ≠ ∅. Therefore, under
such assumptions, 𝜆′ < 𝐹−1

Λ (𝑝) would be true, due to the fact that 𝑆(𝐹−1
Λ (𝑝)) = 𝐻−1(𝑝) + 𝜖 > 𝑆(𝜆′)

and 𝑆 being a non-decreasing function.
𝐻 (𝐻−1(𝑝)) ≥ 𝑝 must hold, because 𝐻 is a cdf. Now we show that 𝐻 (𝐻−1(𝑝)) ≥ 𝑝 contradicts

𝜆′ < 𝐹−1
Λ (𝑝). If 𝐻 (𝐻−1(𝑝)) ≥ 𝑝, then due to the definition of 𝜆′, we must have

𝑝 ≤ P(𝑆(Λ) ≤ 𝐻−1(𝑝)) = P(Λ ≤ 𝜆′). (3)

Inequality (3) leads to 𝐹Λ (𝜆′) ≥ 𝑝, which contradicts the fact that 𝜆′ < 𝐹−1
Λ (𝑝). �

Theorem 1 proves that staffing according to the 𝑐u/(𝑐o + 𝑐u) quantile of the arrival rate distribution
minimizes the expected staffing costs. In the special case of 𝑐o = 𝑐u, staffing according to the median
of Λ is optimal. This means that staffing according to the mean, which is often done, is not optimal, not
even in the symmetric cost case, unless the mean is equal to the median.

In practice, it is often simpler to scale up than to scale down. Scaling up is often done by hiring
flexible workers, who are often available on a short notice, especially when they work at home. Scaling
down is sometimes not even possible, because of the unflexible contracts of the agents. In that case,
𝑐o = 𝑐 and at the first stage staffing should be done very conservatively. Furthermore, many call centers
have different layers of flexibility. First, flexibility is sought in the task assignment. If this is not sufficient
then the number of agents is changed. This leads to increasing costs of up- and downscaling, giving a
piece-wise linear costs function 𝐶 in 𝑠. In general, there is no closed-form solution for 𝑠∗. A solution
can be found numerically by calculating E𝐶 (𝑠,Λ) for various values of 𝑠. Vice versa, call centers try to
avoid high intra-day management costs by contracting enough flexible agents.

Next, we compare numerically staffing according to Theorem 1 and the usual staffing based on
the expected forecast. We use the Erlang A model with an 80% answered within 20 s SL requirement
based on the virtual waiting time (see Appendix for the definition). The average handling time is
4 min, the average patience is 5 min, 𝑐 = 1. The other parameters and results can be found in Table 1.
Define 𝑠𝑎 = 𝑆(EΛ) and 𝑠𝑛 = 𝑆(𝐹−1

Λ (𝑐u/(𝑐o + 𝑐u))). The expected costs are obtained by simulating Λ
and calculating the Erlang A values. We obtain non-integer values for the numbers of agents by linear
interpolation between neighboring integer values which have SL just above and below the required one.
The first case is a rather symmetric one, both in terms of demand as in costs. We see that the optimal
staffing is slightly higher than the usual staffing method, because overstaffing is slightly less expensive
than understaffing. The next two situations are more asymmetric: in the first, it is not possible to scale
down (𝑐o = 𝑐), in the second, it is not possible to scale up (𝑐o = 𝑐). We see the consequences in terms of

https://doi.org/10.1017/S0269964820000595 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964820000595


258 S. Ding and G. Koole

Table 1. Staffing based on newsvendor model vs. EΛ in the Erlang A model

Λ EΛ, 𝜎(Λ) 𝑐u, 𝑐o 𝑠𝑎 𝑠𝑛 E𝐶 (𝑠𝑎,Λ) E𝐶 (𝑠𝑛,Λ)
Normal 20, 2 0.2, 0.1 82.2 85.5 82.8 82.7
Lognormal 20, 4 0.1, 1 82.2 62.8 88.2 83.8
Lognormal 20, 4 1, 0.1 82.2 103.8 87.6 84.5

the staffing levels and costs. Evidently, for more extreme input values, the results will be more striking,
but these input values were chosen because they are realistic. Note that the values for the lognormal
distribution are those ofΛ, not those of the normal distribution from which the lognormal is constructed.

3. Staffing costs

In Section 2, we saw how to compute the optimal staffing level using the random arrival rate Λ. In this
section, we quantify the costs of the error we inevitably make. We do this for 𝜆 sufficiently big, and an
error that increasing proportionally with 𝜆. Theorem 2 states that the costs are approximately linear in
the error, with the coefficient depending on the sign of the error. This allows us to compare forecasts,
also if they are made for multiple time periods. We characterize the optimal forecast in Theorem 3 in
terms of the errors. It is the one minimizing the well-known WAPE in the case of symmetric costs.

We are interested in 𝐶 (𝑆(𝜆̂), 𝜆), in which 𝜆̂ is the forecast on which the initial staffing level is based.
This function is hard to characterize, therefore we will look at it for 𝜆 and 𝜆̂ large. To obtain a limiting
argument, we have to define how 𝜆̂ behaves as 𝜆→ ∞.

It is important to realize that call center actuals (the commonly used word for realizations) are best
modeled by multiplicative models. They consist of the base level (the trend) multiplied by factors for
the different seasonal components (intra-year, intra-week and intra-day) and special events (such as
marketing campaigns, public holidays and bill runs) that influence volume. Thus, for example, a 5%
error in the day-of-the-week factor results in a 5% error in the daily volume, but also a 5% error at the
interval level. If volumes grow, for example, because of an increasing trend or an end-of-year peak, we
do not expect forecasting errors to disappear; instead, we expect errors to grow in a multiplicative way.
The only term that scales sublinearly is the error coming from the Poisson distribution. However, this
term, in the order of

√
𝜆, is negligible for larger 𝜆. This leads to the following model for 𝜆̂: 𝜆̂ = ℎ𝜆, with

ℎ > 0 and likely to be close to 1, as it indicates the accuracy of the forecast. The factor ℎ is not explicitly
calculated: it is the product of the percentage errors of all the components of the forecast 𝜆̂. It can be
calculated once 𝜆 is observed.

For more details on multiplicative models, see Chapter 3 of [14]. Further evidence for the multiplica-
tivity comes from the small dataset of Figure 1. We see actuals from two different weeks, one with high
and one with low volume. We see that the intra-week pattern scales with the overall volume. A sim-
ple linear model with day and week as explanatory variables shows the same thing: an additive model
has a WAPE of 5.5%, a multiplicative model a WAPE of less than 1% (for a definition of the WAPE,
see below). The additive fit is shown as a dashed line in Figure 1, the multiplicative fit is dotted and
coincides almost exactly with the actuals.

In the next theorem, we formulate our approximation of 𝐶 (𝑆(𝜆̂), 𝜆). We use the following notation:
𝑓 (𝑥) = 𝑜(𝑔(𝑥)) if lim𝑥→∞ 𝑓 (𝑥)/𝑔(𝑥) = 0. Please note as that “+𝐺” is a by now common extension
of the Kendall notation indicating the distribution of the patience. In the next results, we study the
𝑀 |𝑀 |𝑠 +𝐺 queue, also known as the Erlang A model ([16]). Note that common performance measures
in call centers are the waiting time quantile (often called the SL), the expected waiting time (average
speed of answer (ASA)), and the abandonment rate. In the next theorem, we will use the fact that the
Erlang A model is monotone in these performance measures, which is shown in the appendix.
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Figure 1. Actuals and fits of multiplicative and additive models for 2 weeks.

Theorem 2. For the 𝑀 |𝑀 |𝑠 + 𝐺 model, given performance constraints based on SL, ASA or
abandonment ratio,

𝐶 (𝑆(𝜆̂), 𝜆) = 𝑐𝑆(𝜆) + (1 − 𝛾)(𝑐o (𝜆̂ − 𝜆)+ + 𝑐u(𝜆 − 𝜆̂)+)𝛽 + 𝑜(𝜆), (4)

for some 𝛾 ≥ 0 which depends on the performance constraint and 𝛽 the expected service time.

Proof. Consider first the case ℎ ≥ 1. Then 𝜆̂ ≥ 𝜆 and, according to Theorem A.1, 𝑆(𝜆̂) ≥ 𝑆(𝜆).
Therefore,

𝐶 (𝑆(𝜆̂), 𝜆) = 𝑐𝑆(𝜆) + 𝑐o(𝑆(𝜆̂) − 𝑆(𝜆)).

From [16], Section 2, we know that 𝑆(𝜆) = (1 − 𝛾)𝜆𝛽 + 𝑜(𝜆) and also 𝑆(𝜆̂) = (1 − 𝛾)𝜆̂𝛽 + 𝑜(𝜆̂) =
(1 − 𝛾)𝜆̂𝛽 + 𝑜(𝜆). Thus,

𝐶 (𝑆(𝜆̂), 𝜆) = 𝑐𝑆(𝜆) + 𝑐o((1 − 𝛾)𝜆̂𝛽 − (1 − 𝛾)𝜆𝛽 + 𝑜(𝜆))
= 𝑐𝑆(𝜆) + 𝑐o(1 − 𝛾)(𝜆̂ − 𝜆)𝛽 + 𝑜(𝜆).

Similarly for ℎ < 1. �

Remark 1. Depending on the performance objective, different operational regimes apply, with different
limiting behavior. All are 𝑜(𝜆), but in some cases, stronger results are obtained: for the SL objective,
the limiting behavior is 𝑂 (√𝜆) (with 𝑓 (𝑥) = 𝑂 (𝑔(𝑥)) if lim sup𝑥→∞ | 𝑓 (𝑥)/𝑔(𝑥) | < ∞). See Section 2
of [16] for details.

From Theorem 2, we conclude that the total costs are approximately linear in the (weighted) error in
the rate. We can interpret it as a weak version of Theorem 1. If we replace 𝜆 by Λ and take expectations
then we see that, in the limit, we should staff according to (1 − 𝛾)𝛽𝐹−1

Λ (𝑐u/(𝑐o + 𝑐u)). (1 − 𝛾)𝛽𝜆 is the
linear approximation of 𝑆(𝜆).

In our model, we assumed that we know 𝜆 in time to adapt the staffing level. In practice, we do not
observe 𝜆, we observe a realization of 𝑁𝜆 ∼ Poisson(𝜆). Due to the Central Limit Theorem, we have
𝑁𝜆 − 𝜆 = 𝑂 (

√
𝜆) a.s. Therefore,

𝐶 (𝑆(𝜆̂), 𝜆) = 𝑐𝑆(𝜆) + (1 − 𝛾)(𝑐o (𝜆̂ − 𝑁𝜆)+ + 𝑐u (𝑁𝜆 − 𝜆̂)+)𝛽 + 𝑜(𝜆) a.s.

Thus the costs are also, in the limit, linear in the error w.r.t. the actuals, that is, the observed call volume.
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Let us now consider 𝑇 measurements. Let, for 𝑡 = 1, . . . , 𝑇 , 𝜆𝑡 be the realizations and 𝜆̂𝑡 = ℎ𝑡𝜆𝑡
the forecast on which the initial staffing was based. Now we define a number of forecasting error
measurements:

MAPE =
1
𝑇

𝑇∑
𝑡=1

|𝜆̂𝑡 − 𝜆𝑡 |
𝜆𝑡

The MAPE, mean average percentage error, is an intuitive performance measure that is easy to interpret
by practitioners: “over the last week the forecast was on average 5% off.” However, the MAPE is prone to
small absolute errors for small volumes and gives an error when the actual is 0 in an interval. Therefore,
it is better to weigh the APEs with the relative volume, leading to a very simple formula:

WAPE =
𝑇∑
𝑡=1

𝜆𝑡∑𝑇
𝑠=1 𝜆𝑠

|𝜆̂𝑡 − 𝜆𝑡 |
𝜆𝑡

=

∑𝑇
𝑡=1 |𝜆̂𝑡 − 𝜆𝑡 |∑𝑇

𝑡=1 𝜆𝑡

In what follows it will appear to be useful to define a weighted version of the WAPE, the wWAPE, for
some 𝑤 ∈ [0, 1]:

wWAPE =
2
∑𝑇

𝑡=1 [𝑤(𝜆̂𝑡 − 𝜆𝑡 )+ + (1 − 𝑤)(𝜆𝑡 − 𝜆̂𝑡 )+]∑𝑇
𝑡=1 𝜆𝑡

Theorem 3. For 𝜆𝑡 large, the forecast with the lowest wWAPE, with 𝑤 = 𝑐o/(𝑐o + 𝑐u), minimizes the
total staffing costs.

Proof. The total costs 𝐶𝑇 (𝑆(𝜆̂), 𝜆), with 𝜆̂ and 𝜆 𝑇-dimensional vectors, are approximated by

𝐶𝑇 (𝑆(𝜆̂), 𝜆) ≈
𝑇∑
𝑡=1
𝑐𝑆(𝜆𝑡 ) + (1 − 𝛾)𝛽

𝑇∑
𝑡=1

(𝑐o(𝜆̂𝑡 − 𝜆𝑡 )+ + 𝑐u(𝜆𝑡 − 𝜆̂𝑡 )+).

This value is minimized by the forecast 𝜆̂ that minimizes
∑𝑇

𝑡=1(𝑐o(𝜆̂𝑡 −𝜆𝑡 )+ +𝑐u (𝜆𝑡 − 𝜆̂𝑡 )+), the weighted
sum of errors, which is equivalent to minimizing the wWAPE. �

Note that in the symmetric case 𝑐o = 𝑐u, this reduces to minimizing the WAPE. It is interesting to note
that the Poisson variability gives lower bounds to the achievable absolute percentage error (APE) per
interval, given by E|𝑁𝜆 − 𝜆) | with 𝑁𝜆 ≈ Poisson(𝜆). This fact is often ignored by call center managers:
they sometimes set forecast error targets that are impossible to achieve, simply because the variability is
the Poisson distribution is higher than the target. The APE of the Poisson distribution is given in Crow
[6], a simple approximation based on the normal distribution is

√
2/(𝜆𝜋). For example, for 𝜆 = 100, the

APE is 8%.
Theorem 3 can also be used with the actuals instead of the rates, as in the single-interval case.
So far, we looked at limiting behavior as 𝜆 → ∞, but we claim that the results can also be used

for smaller values of 𝜆, and thus that the (asymmetric) WAPE should be used under all circumstances.
To support this, we executed the following experiment. We sampled from Λ = (Λ1, . . . ,Λ20) with
Λ𝑡 ∼ 𝑁 (1, 0.1)𝑡. For 𝜆̂𝑡 = 𝑡, which is optimal for the symmetric case, and parameters 𝑐 = 0, 𝑐o = 𝑐u = 1,
𝛽 = 4, and an 80/20 target SL, we computed the staffing levels using Erlang C, and from that the total
costs. Making a scatter plot of WAPE and MAPE against the total costs leads to the left plot of Figure 2.
The relation between WAPE and the costs is perfectly linear, supporting the claim that Theorem 3 can
be used for all values of 𝜆.

We also considered the asymmetric case, with 𝑐o = 1 and 𝑐u = 5, keeping all other parameters equal.
We found again, as can be seen in the right plot of Figure 2, a linear relation, both for the optimal staffing
rule as for the one that staffs according to the median rate. As can be expected, the optimal staffing rule
has lower costs. Again, the R code can be downloaded from [13].

https://doi.org/10.1017/S0269964820000595 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964820000595


Probability in the Engineering and Informational Sciences 261

Figure 2. Left: Scatter plot of symmetric case, total costs (𝑥-axis) against MAPE and WAPE; Right:
Scatter plot of asymmetric case, total costs against median and optimal initial staffing.

4. Conclusion

In the context of a two-stage call center staffing problem, we have shown that the regular staffing method
is not theoretically justified and that considerable savings can be obtained by staffing according to the
newsvendor method described in this paper. Furthermore, we derived that, for the usual performance
models, the staffing costs are approximately linear in the absolute arrival rate error. This led to the
conclusion that the weighted sum of absolute errors is the asymptotical optimal forecasting error
measurement, since minimizing, it leads to minimizing costs. This is equivalent to minimizing WAPE
in case under- and overstaffing are equally expensive.
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Appendix. Monotonicity of the staffing function

For some yet unspecified call center model, we write the (expected) performance as 𝑃(𝑠, 𝜆). We assume
there is some maximal allowable performance level 𝜏. Then 𝑆 can be written as 𝑆(𝜆) = inf{𝑠 |𝑃(𝑠, 𝜆) ≤
𝜏}. Examples are the expected waiting time (ASA) and its tail probability (SL) in the Erlang C model. In
the case of ASA, we take 𝑃 equal to the expected waiting time; in the case of SL, we take 𝑃 = P(𝑊 > 𝑡)
with 𝑊 the stationary waiting time in the queue and 𝑡 the so-called waiting time limit or acceptable
waiting time. In the case of abandonments, we have to decide how abandonments are integrated into
the performance measures. The abandonment % or ratio now becomes important, but we also have to
decide how the abandonments are accounted for in the measures that are functions of the waiting time.
Two regular choices are the time in queue 𝑊 and the virtual or offered waiting time 𝑉 (the waiting
time of a test customer with ∞ patience), but other choices are possible (see [12]). The extension of the
Erlang C model to general patience distributions is written as 𝑀 |𝑀 |𝑠+𝐺 model. An overview of results
for this model can be found in Section 9 of Zeltyn and Mandelbaum [21]. The special case 𝑀 |𝑀 |𝑠 +𝑀
is known as the Erlang A model.

Theorem 4. The staffing function 𝑆 is non-decreasing for the 𝑀 |𝑀 |𝑠 +𝐺 model and any 𝜏 and 𝑃 given
by P(𝑊 > 𝑡), P(𝑉 > 𝑡), E𝑊 , E𝑉 , or the abandonment rate.

Proof. If 𝑃 is non-increasing in 𝑠 and non-decreasing in 𝜆 then 𝑆 is non-decreasing. That 𝑃 is non-
increasing in 𝑠 can be found for all performance measures in Section 2.1 of the online appendix of [21].
To show that 𝑃 is non-decreasing in 𝜆 for the different performance measures, it suffices to show it for
P(𝑉 > 𝑡): all other results follow directly from that.

We introduce the following notation, slightly adapted from [21]:

𝐻 (𝑥) =
∫ 𝑥

0
(1 − 𝐺 (𝑢)) 𝑑𝑢,

𝐽𝜆(𝑡) =
∫ ∞

𝑡

e𝜆𝐻 (𝑥)−𝑠𝜇𝑥 𝑑𝑥,

𝐽𝜆 = 𝐽𝜆 (0),

𝜀𝜆 =
∫ ∞

0
e−𝑡

(
1 + 𝑡𝜇

𝜆

) 𝑠−1
𝑑𝑡,

where 𝜇 is the service rate and 𝐺 is the cdf of patience time. Then, according to [21],

P𝜆(𝑉 > 𝑡) = 𝜆𝐽𝜆(𝑡)
𝜀 + 𝜆𝐽𝜆

.

https://doi.org/10.1017/S0269964820000595 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964820000595


Probability in the Engineering and Informational Sciences 263

We now show that for fixed 𝑠, if 𝜆1 > 𝜆2 > 0, then P𝜆1 (𝑉 > 𝑡) ≥ P𝜆2 (𝑉 > 𝑡), that is,

𝐽𝜆1 (𝑡)
𝜀𝜆1/𝜆1 + 𝐽𝜆1

− 𝐽𝜆2 (𝑡)
𝜀𝜆2/𝜆2 + 𝐽𝜆2

≥ 0,

which is equivalent to showing that

𝐽𝜆1 (𝑡)𝜀𝜆2/𝜆2 − 𝐽𝜆2 (𝑡)𝜀𝜆1/𝜆1 + 𝐽𝜆1 (𝑡)𝐽𝜆2 − 𝐽𝜆2 (𝑡)𝐽𝜆1

(𝜀𝜆1/𝜆1 + 𝐽𝜆1 )(𝜀𝜆2/𝜆2 + 𝐽𝜆2 )
≥ 0.

Because 𝐽𝜆(𝑡) is increasing and 𝜀𝜆 is decreasing in 𝜆 it is readily seen that 𝐽𝜆1 (𝑡)𝜀𝜆2/𝜆2−𝐽𝜆2 (𝑡)𝜀𝜆1/𝜆1 >
0. Because all its terms are ≥ 0 also (𝜀𝜆1/𝜆1 + 𝐽𝜆1)(𝜀𝜆2/𝜆2 + 𝐽𝜆2 ) > 0. Thus, we only need to show

𝐽𝜆1 (𝑡)𝐽𝜆2 − 𝐽𝜆2 (𝑡)𝐽𝜆1 ≥ 0.

Its proof is equivalent to that of Equation (2.4) in the online appendix of [21]. �

Note that the 𝑀 |𝑀 |𝑠 model is a special case of the 𝑀 |𝑀 |𝑠 + 𝐺 model (with ∞ patience). Thus
Theorem A.1 holds also for the often-used Erlang C model.
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