
TLP 13 (4–5): Online Supplement, July 2013. C© 2013 [ESRA ERDEM, VOLKAN PATOGLU,
ZEYNEP G. SARIBATUR, PETER SCHÜLLER and TANSEL URAS]

URL: http://dx.doi.org/10.1017/S1471068413000525

831

Finding optimal plans for multiple teams of
robots through a mediator: A logic-based

approach

ESRA ERDEM1, VOLKAN PATOGLU1,

ZEYNEP G. SARIBATUR1, PETER SCHÜLLER1

and TANSEL URAS2

1Faculty of Engineering and Natural Sciences, Sabancı University, İstanbul, Turkey
2Department of Computer Science, University of Southern California, Los Angeles, USA

submitted 10 April 2013; revised 23 June 2013; accepted 5 July 2013

Abstract

We study the problem of finding optimal plans for multiple teams of robots through a

mediator, where each team is given a task to complete in its workspace on its own and

where teams are allowed to transfer robots between each other, subject to the following

constraints: 1) teams (and the mediator) do not know about each other’s workspace or tasks

(e.g., for privacy purposes); 2) every team can lend or borrow robots, but not both (e.g.,

transportation/calibration of robots between/for different workspaces is usually costly). We

present a mathematical definition of this problem and analyze its computational complexity.

We introduce a novel, logic-based method to solve this problem, utilizing action languages

and answer set programming for representation, and the state-of-the-art ASP solvers for

reasoning. We show the applicability and usefulness of our approach by experiments on

various scenarios of responsive and energy-efficient cognitive factories.

KEYWORDS: answer set programming, decoupled planning, cognitive robotics

1 Introduction

As conventional manufacturing and assembly systems fall short of responding to

constantly rising market demands for customized and variant-rich products in a

cost effective manner within short delivery times, new approaches for automated

fabrication of customized products become crucial for enhancing productivity,

ensuring competitiveness and economic sustainability in the manufacturing sector.

Along these lines, reconfigurable and flexible manufacturing systems have been

deployed over the last decade. Cognitive factories (Beetz et al. 2007; Zaeh et al.

2009; Zaeh et al. 2012) are a further step in this direction aimed towards highly

flexible and typically small to medium size manufacturing plants that can produce a

very large variety of customized products even in low quantities. Rapidly responding

to changing customer needs and customization requests, cognitive factories can

https://doi.org/10.1017/S1471068413000525 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000525

832 E. Erdem et al.

demonstrate the flexibility of human workshops, while maintaining cost-effectiveness

of mass production systems.

Cognitive factories endow manufacturing system with high-level reasoning capa-

bilities in the style of cognitive robotics, such that these systems become capable

of planning their own actions. By utilizing sophisticated planning and decision-

making algorithms, cognitive factories can efficiently allocate their resources for

daily/weekly/monthly work load and ensure production of variant-rich products to

guarantee pressing delivery deadlines.

One of the key challenges in cognitive factories is the coordination between

multiple teams of robots to achieve overall shortest delivery time for a given

manufacturing order. Minimizing the delivery lead time for a customized order

not only leads to a more cost-effective process by reducing contribution of factory

overhead per order, but also preserves energy resources and decreases negative

environmental impacts by efficient use of facility infrastructure, such as HVAC

(heating, ventilation, and air conditioning) and lighting.

With this motivation, we consider multiple teams of robots, where each team is

given a feasible task to complete in its workspace on its own, and where teams are

allowed to transfer robots between each other. The goal is to find an optimal overall

plan for all teams so that all tasks can be completed as soon as possible, subject to

the following constraints:

C1 Teams do not know about each other’s workspace or tasks (e.g., for the purpose

of privacy in micro manufacturing plants that specialize on prototyping pre-

release products).

C2 Lending/borrowing robots between workspaces back and forth is not desired

(e.g., transportation of robots is usually costly, also, since tasks may be different

in workspaces, robots need some tuning). Also, for similar reasons, robots can

be transferred between two teams in a single batch.

Note that a lender can lend robots to more than one team; and a borrower can

borrow robots from more than one team. Note also that each team may have robots

that cannot be transferred; the above problem considers transferrable robots only

and assumes that capabilities of transferrable robots are indifferent.

We introduce a novel method to find an optimal global plan for all teams,

with at most k steps, subject to constraints C1 and C2, and the presence of a

mediator who does not belong to any team and who does not know anything about

teams’ workspaces, tasks and goals. Our method consists of two phases: finding a

coordination of the teams and then an optimal global plan.

In the first phase, for a nonnegative integer l � k denoting the length of a global

plan: 1) The mediator asks yes/no questions to every team (in any order), to identify

whether a team can complete its task in l steps, while lending/borrowing how

many robots to/from other teams and when. 2) Once answers to these questions

are collected, the mediator tries to find a coordination of the teams (i.e., which

team should lend how many robots to which other team, and when), subject to the

constraints C1 and C2 above. The optimal value for l can be found by a linear

search between 1 and k.

https://doi.org/10.1017/S1471068413000525 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000525

Finding optimal plans for multiple teams of robots through a mediator 833

In the second phase, after some coordination of teams is found for an optimal

value of l, the mediator informs each team how many robots it is expected to lend to

(or borrow from) which other team and when. Taking this information into account,

each team computes an optimal local plan (whose length is less than or equal to l)

to complete its task. An optimal global plan for all teams is the union of all optimal

local plans.

Note that the mediator cannot find a global plan on its own since it does not

know about teams’ workspace, tasks, plans, actions, goals, etc.. In fact, a centralized

approach to compute a global plan is in most cases not scalable due to large domain

description that formalizes all workspaces and teams. Also note that teams do not

communicate with each other. Otherwise, the number of queries (and the number

of rounds of exchanging messages) would increase substantially, leading to a more

time-consuming process to find an optimal global plan.

Both phases involve solving computational problems that are intractable, since

finding plans of length l possibly with temporal constraints is NP-complete (Turner

2002), and answering each query in the first phase is a planning problem with

temporal constraints, and thus NP-complete (Turner 2002). We prove that finding a

coordination of the teams for a global plan with at most l steps is also NP-complete

(see Proposition 1 in Section 3). In the first phase, each team answers queries that

are relevant to its workspace, task, goals only, and independently of other teams;

therefore, queries can be answered in parallel. In the second phase, each team

computes an optimal local plan on its own; therefore, optimal local plans can be

computed in parallel as well.

We propose to solve the planning problems with temporal constraints (and thus

answering queries posed by the mediator), and the coordination problem using

answer set programming (ASP) (Marek and Truszczyński 1999; Niemelä 1999;

Lifschitz 2002; Lifschitz 2008; Brewka et al. 2011). To solve planning problems,

first we represent action domains (i.e., workspaces) and planning problems (i.e.,

queries) in the input language of CCalc (McCain and Turner 1997), which allows

representation of dynamic domains in a subset of the expressive action description

language C+ (Giunchiglia et al. 2004), and allows teams to solve planning problems

with temporal constraints in a variation of the action query language Q (Gelfond

and Lifschitz 1998). Then CCalc’s input is transformed into ASP using the

tool cplus2asp (Casolary and Lee 2011). After that, we can use state-of-the-art

ASP solvers, like Clasp (Gebser et al. 2007), to compute plans. To solve the

coordination problem using ASP solvers, we formulate the coordination problem in

the representation language of ASP.

We show the usefulness and applicability of our approach by experiments on

various scenarios of responsive energy-efficient cognitive factories.

2 Automating reasoning for a team of robots

Our goal is to find an optimal global plan with at most k steps, where at most m

robots can be transferred between teams. To find a coordination of teams for an

https://doi.org/10.1017/S1471068413000525 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000525

834 E. Erdem et al.

optimal global plan, the mediator asks yes/no questions of the following three forms

to every team (in any order), for every l � k, l � l and m�m:

Q1 Can you complete your task in l steps?

Q2 Can you complete your task in l steps, if you lend m robots before step l?

Q3 Can you complete your task in l steps, if you borrow m robots after step l?

Once such a coordination is found from the answers of these queries, the mediator

informs each team how many robots it is expected to lend to (or borrow from) which

other team and when. Then each team computes an optimal local plan to complete its

own task, taking into account the relevant information of transfer of robots from/to

it. Therefore, each team of robots performs two kinds of reasoning tasks: answering

queries of form Q1, Q2 and Q3, and finding optimal plans with complex goals to

complete its tasks. Although optimal plans can be found by some existing classical

planners, queries mentioned above cannot be answered by them directly. Also in

many application scenarios for cognitive factories, actions of robots are concurrent

(e.g., several robots working on different parts of an order at the same time) and

there are ramifications and/or delayed effects of actions (e.g., after painting, a box

gets dried after a while).

Due to the representation challenges mentioned above (about concurrent actions,

ramifications, etc.), we represent workspaces (as action domains) and queries (as

planning problems) in the input language of CCalc (McCain and Turner 1997),

which allows representation of dynamic domains in a subset of the expressive action

description language C+ (Giunchiglia et al. 2004), and allows teams to answer

various sorts of queries in an elaboration tolerant way (without having to modify

the domain description) in a variation of the action query language Q (Gelfond and

Lifschitz 1998). Also that the language C+ has been used in various sophisticated

real-world robotic applications (Erdem and Patoglu 2012), where discrete high-level

reasoning is integrated tightly with continuous geometric reasoning and low-level

controls (Erdem et al. 2011; Aker et al. 2012; Havur et al. 2013), is advantageous

for multi-robot cognitive factory applications that have motivated our studies in this

paper. We refer the reader to (Giunchiglia et al. 2004) for the syntax and semantics

of C+, and some examples.

In the action query language of CCalc, an atomic query is one of the two forms,

F holds at t or A occurs at t, where F is a fluent formula, A is an action formula,

and t is a time step. A query is a propositional combination of atomic queries.

Suppose that F and G are fluent formulas denoting an initial state and goal

conditions respectively. We can express the question “can you complete the task

specified by the initial state F and the goal conditions G in k steps?”, with a query

of the form

F holds at 0 ∧ G holds at k.

Note that this query describes the problem of finding a plan of length k.

Suppose that the action formula giveRobot (w) describes that the team lends the

robot w. We can express the question “can you complete your task specified by the

initial state F and the goal conditions G in k steps, while also lending m robots

https://doi.org/10.1017/S1471068413000525 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000525

Finding optimal plans for multiple teams of robots through a mediator 835

before step k′?”, with a query of the form

F holds at 0 ∧ G holds at k ∧ ∃T ,W1, . . . ,Wm :

T <k′ ∧W1 <W2 < . . . <Wm ∧
∧m

i=1 giveRobot(Wi) occurs at T .

Given an action description and a query in the input language of CCalc, we can

use either state-of-the-art parallel SAT solvers (like manysat (Hamadi et al. 2009))

or state-of-the-art ASP solvers (like Clasp (Gebser et al. 2007)) to find an answer

the query. After some experimental evaluations comparing these two approaches

(summarized in Appendix A), we have decided to use the ASP solver Clasp (with

the grounder Gringo (Gebser et al. 2011)) to find answers to queries and planning

problems. CCalc’s input can be transformed into an ASP program in the input

language of Clasp, using the tool cplus2asp (Casolary and Lee 2011). If Clasp

finds an answer set (Gelfond and Lifschitz 1998) for the ASP program then the

query is answered affirmatively; otherwise, the query is answered negatively.

Note that since each team answers queries that are relevant to its workspace, task,

goals only, and independently of other teams, queries can be answered by the teams

in parallel.

3 Coordination of teams

From teams’ answers to yes/no questions (of the forms Q1–Q3) posed by the

mediator, the following can be inferred:

• If there is a team that answers “no” to every question, then there is no overall

plan of length l where every team completes its own tasks.

• Otherwise, we can identify a set Lenders of lender teams and a set Borrowers

of borrower teams (Lenders ,Borrowers ⊂ Teams): If a team answers “no” to

question Q1, and “yes” to question Q3 for some l and m, then it is a borrower.

If a team answers “yes” to question Q1 and answers “yes” to question Q2

for some l and m, then it is a lender. Otherwise, it is neither a lender nor a

borrower.

• For every lender (resp., borrower) team, from its answers to queries Q2 (resp.,

Q3), we can identify the earliest (resp., latest) time it can lend (resp., borrow)

robots, in order to complete its tasks in l steps.

For every l � k, these inferences can be used to decide whether lenders and

borrowers can collaborate with each other, so that every team completes its task in

l steps.

To precisely define this problem, let us introduce some notation. For every lender

team i∈Lenders , positive integer m�m and nonnegative integer l � l, we denote by

atoms of the form lend (i, m, l) that the lender team i can lend m robots before time

step l. Similarly, for every borrower team i∈Borrowers , we denote by atoms of the

form borrow (i, m, l) that the borrower team i needs m robots before time step l.

https://doi.org/10.1017/S1471068413000525 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000525

836 E. Erdem et al.

To identify the earliest lend times and latest borrow times, we introduce a collection

of partial functions for lenders and borrowers:

Lend earliestm : Lenders �→ {0, . . . , l}
Borrow latestm : Borrowers �→ {0, . . . , l}

where Lend earliestm returns the earliest step that a lender can lend m robots and

Borrow latestm returns the latest step that a borrower needs to borrow m robots:

Lend earliestm(i) = arg minl{lend (i, m, l) = 1}
Borrow latestm(j) = arg maxl{borrow(j, m, l) = 1}.

Usually transferring robots from one team to another team takes some time, not

only due to transportation but also due to calibration of the robots for a different

workspace. Such a delay time is defined by a function:

Delay : Lenders × Borrowers �→ {0, . . . , l}.

Now we can define when a set of lender teams can collaborate with a set of

borrower teams:

Definition 1 A ml-collaboration between Lenders and Borrowers with at most m robot

transfers and within at most l steps, relative to Delay, is a partial function

f : Lenders × Borrowers → {0, . . . , l} × {0, . . . , m}

(where f(i, j) = (l, u) denotes that team i lends u robots to team j at time step l) such

that the following hold:

(a) For every borrower team j ∈Borrowers, there are some lender teams

i1, . . . , is ∈Lenders where

• f(i1, j) = (l1, u1), . . . , f(is, j) = (ls, us) for some time steps l1, . . . , ls � l and some

positive integers u1, . . . , us �m, and

• Delay(i1, j) = t1, . . . ,Delay(is, j) = ts for some time steps t1, . . . , ts � l;

and there is a positive integer m�m such that

max{l1+t1, . . . , ls+ts}� Borrow latestm(j)

m�
∑s

k= 1 uk.

(b) For every lender team i∈Lenders, for all borrower teams j1, . . . , js ∈Borrowers

such that f(i, j1) = (l1, u1), . . . , f(i, js) = (ls, us) for some time steps l1, . . . , ls � l and

some positive integers u1, . . . , us �m, and there is a positive integer m�m such

that

Lend earliestm(i) � min{l1, . . . , ls}
m�

∑s
k=1 uk.

Condition (a) ensures that a borrower team does not borrow fewer robots than it

needs. Condition (b) ensures that a lender team does not lend more robots than it

https://doi.org/10.1017/S1471068413000525 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000525

Finding optimal plans for multiple teams of robots through a mediator 837

Fig. 1. A summary of teams’ answers to queries.

can. These two conditions entail the existence of a lender team that can lend robots

when a borrower team needs them.

Example 1 Consider four teams of robots, where Teams 1 and 2 are lenders and Teams

3 and 4 are borrowers. Take l = 8 and m= 4. The lenders’ answers to questions of the

form Q2 (“Can you complete your task in l steps, if you lend m robots before step

l?”) and the borrowers’ answers to questions of the form Q3 (“Can you complete your

task in l steps, if you borrow m robots after step l?”) are summarized in Figure 1.

The affirmative (resp., negative) answers to questions for time step l are denoted by

green/solid (resp., red/hatched); the number m of robots that can be lent or needs to

be borrowed are denoted above the rows. According to these answers, Team 1 can lend

2 robots after step 3 or 4 robots after step 7, Team 2 can lend 1 robot after step 2,

Team 3 needs to borrow 1 robot before step 5 or 3 robots before step 7, and Team 4

needs to borrow 2 robots before step 6.

Suppose the delay time is Delay(i, j) = |i−j|. We can show that a ml-collaboration f

exists: f(1, 3) = (3, 1), f(1, 4) = (3, 1), f(2, 4) = (2, 1). Indeed, f satisfies the conditions

stated in Def. 1. Condition (a): for Team 3, f(1, 3) = (3, 1), and there exists m= 1 � 1

s.t. Borrow latest1(3) = 5 � 3+2. So Team 3 can finish its task in 8 steps if it borrows 1

robot before step 5. Similarly, for Team 4, f(1, 4) = (3, 1) and f(2, 4) = (2, 1), and there

exists m= 2 � 1 + 1 such that Borrow latest2(4) = 6 � max{3 + 3, 2 + 2}. Condition

(b): for Team 1, f(1, 3) = (3, 1) and f(1, 4) = (3, 1), and there exists m= 2 � 1 + 1

s.t. Lend earliest2(1) = 3 � 3. Similarly, for Team 2, f(2, 4) = (2, 1), and there exists

m= 1 � 1 such that Lend earliest1(2) = 2 � 2.

https://doi.org/10.1017/S1471068413000525 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000525

838 E. Erdem et al.

Now we are ready to precisely describe the computational problem of finding a

coordination of multiple teams of robots, to complete all the tasks as soon as

possible in at most l steps where at most m robots can be relocated:

FindCollaboration

Input: For a set Lenders of lender teams, a set Borrowers of borrower teams,

positive integers l and m: a delay function Delay and a collection of functions

Lend earliestm and Borrow latestm for every positive integer m (m�m).

Output: A ml-collaboration between Lenders and Borrowers with at most m

robot transfers and within at most l steps, relative to Delay .

As expected, this problem is intractable:

Proposition 1 The decision version of FindCollaboration (i.e., existence of a ml-

collaboration) is NP-complete.

Intuitively the membership proof is established by guessing and checking f in

polynomial time. The hardness proof relies on a polynomial-time reduction from

a 3SAT instance F with a atoms and b clauses, to a FindCollaboration problem

instance with a lender teams and b borrower teams with l = 2a and m defined over

the number of occurrences of literals in F , and with no delays. Basically, we associate

each atom with two time steps (denoting true resp. false); for each clause we define

a borrower that can complete its work in 2a steps if it can borrow enough robots

for at least one time step corresponding to a literal in the clause. We create lenders

that can give the required numbers of robots either early (atom is true) or late (atom

is false). We configure the number of robots associated with each literal such that

a borrower’s requirements can only be satisfied by the correct literals. The detailed

proof is contained in Appendix B.

4 Finding a coordination of teams in ASP

Deciding whether a program in ASP has an answer set is NP-complete (Dantsin

et al. 2001); therefore, ASP is suitable for solving FindCollaboration problem. We

formalize FindCollaboration in ASP as follows.

The input is represented by a set of facts, using atoms of the forms delay(i, j, l),

lend earliest(i, m, l), and borrow latest(j, m, l) where i∈Lenders , j ∈Borrowers , m�m,

l � l.

To formalize conditions (a) and (b) of Def. 1, we introduce atoms of the forms

condition borrower(j) and condition lender(i). Condition (a) is defined as follows:

condition borrower(j)← sum〈{u : f(i, j, l2, u), i∈Lenders , l2 � l}〉�m,

max〈{l1+t : f(i, j, l1, u), delay(i, j, t), i∈Lenders , u�m}〉� l,

borrow latest(j, m, l).

where j ∈Borrowers , l � l,m�m. The second line of the rule above computes the

number m of robots lent to the borrower team j; the third line computes the latest

time step l that team j borrows a robot; and the last line describes that team j

needs m robots by step l. Similarly, we define condition (b).

https://doi.org/10.1017/S1471068413000525 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000525

Finding optimal plans for multiple teams of robots through a mediator 839

Next, we introduce atoms of the form f(i, j, l, u) (describing f(i, j) = (l, u)). We

define an ml-collaboration f, by first “generating” partial functions f:

{f(i, j, l, u) : l � l, u�m}1← (i∈Lenders , j ∈Borrowers)

and then “eliminating” the ones that do not satisfy conditions (a) and (b) of Def. 1:

← not condition borrower(j) (j ∈Borrowers),

← not condition lender(i) (i∈Lenders).

With the ASP formulation of FindCollaboration above, an ASP solver can find

an ml-collaboration.

5 Finding an optimal plan for multiple teams

Once a coordination of teams is found using an ASP solver for an optimal global

plan with l � k steps, the mediator informs each team how many robots it is expected

to lend/borrow to/from which team and when, along with the optimal plan length

l. Taking this information into account, each team computes an optimal local plan

with at most l steps using an ASP solver, to complete its task, as described in

Section 2. The union of these optimal local plans gives us an optimal global plan.

In a naive approach, every team answers O
(
m·k2

)
queries, within this overall

algorithm. We can improve it by applying binary search between 1 and l to find

the earliest lend times and the latest borrow times, and between 1 and k to find

the optimal value for l. With this improvement, every team answers O
(
m·log(k)2

)

queries.

On the other hand, the computation time to answer a query drastically increases

as the plan length increases (due to inherent hardness of planning (Erol et al.

1995; Turner 2002)). In such cases, as suggested by Trejo et al. (Trejo et al. 2001),

it is not a good idea to apply binary search to find the optimal value l for a

global plan. Therefore, a better approach might be to use linear search to find

the optimal value l for a global plan, and binary search to find optimal values

for lending/borrowing times. This approach leads to more number of queries (i.e.,

every team answers O
(
m·k·log(k)

)
queries) but less amount of computation times as

verified by experiments (Table A2 in Appendix A).

Note that since each team computes an optimal local plan on its own, optimal

local plans can be computed in parallel as well.

6 Experimental evaluation

We investigated the scalability and usefulness of the proposed planning approach

(e.g., in terms of quality of solutions) by means of some experiments.

We performed some experiments in a variation of the Painting Factory domain

described in Erdem et al. (2012). In this domain, a set of boxes must be manufactured

within a given time. To manufacture a box it has to undergo various stages of

painting, waxing, and stamping, obeying certain time constraints. There are two

types of robots: worker robots operate on boxes, they can configure themselves

https://doi.org/10.1017/S1471068413000525 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000525

840 E. Erdem et al.

Table 1. Experimental results for six scenarios

Sc
en

ar
io

Te
am

s

W
or
ks
pa

ce
(g
rid

ce
lls
)

W
or
ke

r
R
ob

ot
s

To
ta
l R

ob
ot
s

O
rd
er

(b
ox

es
)

Q
ue

st
io
ns

(to
ta
l)

A
ns
w
er
in
g
Q
ue

st
io
ns

(a
ve
ra
ge

tim
e)

Fi
nd

in
g
C
ol
la
bo

ra
tio

n

(a
ve
ra
ge

tim
e)

O
pt
im

al
G
lo
ba

l P
la
n

(w
ith

co
lla

bo
ra
tio

n)

O
pt
im

al
G
lo
ba

l P
la
n

(w
ith

ou
t c

ol
la
bo

ra
tio

n)

sec sec length length

1 2 15 1,2 5 6 212 3.96 < 0.1 30 34

2 3 15 1,2,3 9 9 437 3.92 < 0.1 25 34

3 4 15 1,2,3,4 15 12 525 1.82 < 0.1 21 34

4 2 24 2,4 8 8 127 4.76 < 0.1 20 29

5 3 24 2,4,6 18 12 171 5.37 < 0.1 18 29

6 4 24 2,4,6,8 30 16 293 79.96 < 0.1 18 29

for different stages of process, and they can be exchanged between teams; charger

robots maintain the batteries of workers and monitor team’s plan, and cannot be

exchanged between teams. We assembled teams of different sizes in this domain, so

that exchanging worker robots between teams can reduce the time that is necessary

to produce the requested amount of boxes.

For our experimental scenarios (see Table 1), we considered team workspaces of

5×3 = 15 (resp., 8×3= 24) grid cells. We varied the number of teams, the number of

robots in each team, and the number of boxes that must be manufactured by each

team. In each team, for every two worker robots, there is one charger robot. As an

example we discuss Scenario 5: three teams must manufacture 12 boxes. Each has a

8×3= 24 workspace. The teams consist of 2, 4, resp., 6 worker robots. Accordingly,

the teams have 1, 2, resp., 3 charger robots; this yields a total of 18 robots in

Scenario 5. The sizes of the workspaces in these instances are reasonable considering

real manufacturing processes, since every work cell in a real factory typically is

of modest size with 3–12 operators (in our case 2–9 robots per workspace). The

number of work cells in a factory ranges drastically from micro factories to large

manufacturing plants; with the utilization of parallelization to answer queries, the

number of workspaces can be increased further.

We performed experiments on a Linux server with 32 Intel R© E5-2665 CPU cores

with 2.4GHz and 64GB memory (note that our experiments never use more than

300MB). The overall algorithm described in Section 5 is implemented in python. The

ASP solver Clasp version 2.1.3 (with Gringo version 3.0.5) is used for answering

queries (Section 2) and to solve the collaboration problem (Section 4).

Table 1 shows the results for six scenarios of varying size, averaged over three

runs. For each scenario, we report the total number of questions answered by the

teams, the average CPU time to answer a query and to find a coordination of teams,

the length of an optimal global plan with/without collaborations of teams. For

instance, for Scenario 5, a total of 171 queries are answered by the teams; average

time to answer a query is 5.37 seconds; and finding a coordination of teams takes

https://doi.org/10.1017/S1471068413000525 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000525

Finding optimal plans for multiple teams of robots through a mediator 841

less than a second. An optimal global plan with such a coordination has 18 steps;

whereas an optimal global plan without any collaborations has 29 steps.

We can observe from the table that finding a coordination function by the mediator

takes a negligible amount of time. The majority of the total computation time is

spent for the teams to answer questions. As the problem size increases, the size of

the ASP program gets larger, making it hard for Clasp to find an answer. Since

teams’ query answering can be parallelized, scalability of the approach to factories

with many workspaces seems plausible.

We can also observe the tradeoff between the optimal global plan length and

the total computation time, with and without team collaborations. For instance,

for Scenario 2, if we allow collaborations of teams, then we can find an optimal

global plan of length 25, in about 33 minutes; otherwise, we can find an optimal

global plan of length 34 in about 5 minutes. This computational cost is negligible

compared to 27% decrease in process length resulting in large cost savings for the

manufacturing industry; time gains achieved by such a decrease in process length

will help economic sustainability under low quantity orders, and result also in better

customer satisfaction.

7 Related work

The most related work to ours is on decoupling plans of multiple agents to coordinate

their actions (M. M. de Weerdt 2009), and can be summarized in three parts:
Coordination before planning: These methods coordinate the agents before they even

begin to plan. Some of them introduce social laws the agents must follow (Shoham

and Tennenholtz 1995; ter Mors et al. 2004). These laws restrict the actions of agents

and can be used to reduce planning and coordination time (e.g., if everyone drives

on the right side of the road, no coordination with oncoming cars is required).
Coordination during planning: In these methods, agents find plans for themselves

while sharing information about them, and adapt their plans accordingly to avoid

conflicts. Partial Global Planning (PGP) framework (Durfee and Lesser 1987) and

its extension, Generalized PGP (Decker and Lesser 1994), are examples of these

sorts of methods. In these approaches, agents share their plans using a specialized

plan representation. Coordination is achieved as follows: if an agent informs a

second agent of its own plan, the second agent merges this information into its own

partial global plan. The second agent then tries to improve the global plan. If it

can, the improved plan is shown to the other agents who can accept/reject/modify

it. Another example of this approach is the Plan Merging Paradigm (Alami et al.

1998), where each robot incrementally builds and executes its own plan taking into

account the multi-robot context. There are also coordination methods where the

agents exchange subgoals with auctions (van der Krogt et al. 2005).
Coordination after planning: These methods use plan merging. Given the individual

plans of all agents, plan merging constructs a joint plan for all agents. Georgeff (1988)

proposes a plan-synchronization process starting with individual plans. Stuart (Stuart

1985) uses propositional temporal logic to guarantee that only feasible states of the

environment can be reached. Introducing restrictions on individual plans (as in

https://doi.org/10.1017/S1471068413000525 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000525

842 E. Erdem et al.

coordination before planning) can be used to ensure efficient merging (Foulser et al.

1992; Yang et al. 1992). Another approach to merging plans is to use A∗ search

with a smart cost-based heuristic (Ephrati and Rosenschein 1993). There are also

task allocation methods that assign the roles of agents for the execution of a given

plan (Hunsberger and Grosz 2000).

Our method is different from these related work in the following ways: 1) In our

approach, the teams do not communicate with each other, but with a mediator. 2)

The communication is not done by passing information about plans or durations of

actions: the teams answer the mediator’s yes/no questions, ensuring that the teams

do not have to share private information (e.g., workspace, tasks, goals) with the

mediator; once a coordination is found, then the mediator informs each team about

how many robots it should lend/borrow and when, so the teams do not know about

which other teams lend/borrow robots. 3) Like the related work, each team computes

its own an optimal local plan to complete its task taking into account some extra

information; but this extra information is not about other teams (e.g., their plans,

actions, tasks). 4) Our goal is not to find any coordination of teams that would

allow decoupling of their local plans, but to find a coordination of teams for an

optimal global plan. 5) Such a coordination is found iteratively where each iteration

involves individual teams’ solving various planning problems with complex goals to

answer mediator’s questions; so determining a feasible coordination goes hand-in-

hand with planning. 6) Our method assumes that a team cannot be both a lender

or borrower, to ensure a small number of costly transfers of robots between teams;

on the other hand, we do not assume that all teams are in the same workspace.

Note that once a coordination of teams is found, then an optimal global plan is

computed by combining the local plans (as in related work where coordination is

done before/after planning).

Our work is more about team work to find a (optimal) global plan, like the

related work discussed above, where teams are determined in advance (and in our

case costly transfers of robots are not desired), rather than team formation (to

decide how or when to join teams) (Nair et al. 2002; Gaston and desJardins 2008).

Our work is also different from the existing approaches on resource allocation in

a multi-agent time-constrained domain Sycara et al. (1991); Chevaleyre et al. (2006);

Lin (2011) due to the second item above, because in our method no information is

required about plans, ordering constraints on actions, or causal links.

It is important to note here that, the mediator in our approach is a neutral

coordinator like in Ehtamo et al. (1999), though it does not negotiate with the teams

but simply gathers information to achieve a optimal global solution. The mediator

does not know anything about the teams’s goals, tasks or workspaces, and the teams

do not know what the mediator is trying to optimize.

Distributed planning for multiple agents with the help of a supervisor, has been

studied using action languages (Dovier et al. 2013) and logic programming (Kowalski

and Sadri 2013) as well. There are essential differences between these works and the

proposed approach: differences in the expressivity of the languages (e.g., the action

language in (Dovier et al. 2013) does not allow representation of ramifications, but

on the other hand it includes formulas to represent communication messages); the

https://doi.org/10.1017/S1471068413000525 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000525

Finding optimal plans for multiple teams of robots through a mediator 843

role of the supervisor (in both of the related works, the role of the supervisor

is to resolve conflicts; in our work, it is to decide for efficient use of resources);

communication of teams and supervisor (in the related approaches, agents can

communicate and negotiate between each other, and the supervisor collects teams’

to-be-executed actions to check for conflicts);

8 Discussion

We have introduced a novel method to find an optimal global plan for multiple

teams of robots, by means of determining a coordination of teams based on their

answers to yes/no questions that do not convey private information about their

workspace, tasks, robots, plans, actions, goals, etc.. We have defined the problem

of determining a coordination, and proved its intractability. Using the state-of-the-

art ASP solvers, we have evaluated the usefulness of our approach in a cognitive

factory setting, and observed a promising decrease in the total process time, which is

important for larger cost savings and better customer satisfaction towards economic

sustainability.

Lessons learnt The generic nature of this method allows other reasoners and solvers

to be used for planning, query answering, or coordination finding. We have used

CCalc; because 1) workspaces we consider in a cognitive factory involve concurrency

and ramifications (which can be easily formalized in the input language of CCalc),

and require external computations in continuous space of robots’ configurations

(e.g., to check collisions) as in Erdem et al. (2011); Aker et al. (2012); Havur et al.

(2013); and 2) planning problems and queries we consider involve complex goals

and conditions. Also, CCalc can be used with a wide range of reasoners, like SAT

solvers and ASP solvers.

We have used ASP for finding a coordination of teams, since it provides a concise

provably correct description of the problem and the computation times with the

state-of-the-art ASP solvers are quite good.

The fact that in our approach each team performs its own computations about

completing its own task leads to a highly modular structure of computation and

allows computation of local plans and answering queries in parallel.

In addition to the strengths of using these logic-based formalisms from the point

of view of representation and efficient reasoning, it is also important that these

formalisms are actually being used for challenging robotic applications; making it

easier to apply our approach to robotic domains, like in cognitive factories (Erdem

et al. 2012).

Future work Our approach can be extended in several ways. If the mediator is

allowed to know about the basic tasks and the sorts of transferrable robots, then

it can ask questions like “Can your team complete its task in k steps, while also

lending a robot that can carry a heavy box, before step k′?”. Teams can answer such

queries because the background knowledge that associates tasks with robots can be

embedded in action descriptions and queries, as in Erdem and Patoglu (2012); Aker

https://doi.org/10.1017/S1471068413000525 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000525

844 E. Erdem et al.

et al. (2012; Erdem et al. (2012). The ASP formulation for finding a coordination

can be slightly modified by adding relevant constraints.

Our algorithm to find an optimal global plan can be embedded in an execution

monitoring framework. When the plan fails during execution, our algorithm can

be called to find an optimal global plan. For subsequent replans, we can reuse the

information (e.g., roles of teams and bounds for each team) from the previously

computed plan.

Acknowledgements

This work is partially supported by TUBITAK Grant 111E116. Peter Schueller is

supported by TUBITAK 2216 Fellowship. Tansel Uras’ work is carried out while

studying at Sabancı University.

References

Aker, E., Patoglu, V. and Erdem, E. 2012. Answer set programming for reasoning with

semantic knowledge in collaborative housekeeping robotics. In Proc. of IFAC SYROCO.

Alami, R., Ingrand, F. and Qutub, S. 1998. A scheme for coordinating multi-robots planning

activities and plans execution. In Proc. of ECAI, 617–621.

Beetz, M., Buss, M. and Wollherr, D. 2007. CTS - What is the role of artificial intelligence?

In Proc. of KI, 19–42.

Brewka, G., Eiter, T. and Truszczynski, M. 2011. Answer set programming at a glance.

Communications of the ACM 54, 12, 92–103.

Casolary, M. and Lee, J. 2011. Representing the language of the causal calculator in answer

set programming. In Proc. of ICLP (Technical Communications), 51–61.

Chevaleyre, Y., Dunne, P. E., Endriss, U., Lang, J., Lemaı̂tre, M., Maudet, N., Padget,

J. A., Phelps, S., Rodrı́guez-Aguilar, J. A. and Sousa, P. 2006. Issues in multiagent

resource allocation. Informatica 30, 1, 3–31.

Dantsin, E., Eiter, T., Gottlob, G. and Voronkov, A. 2001. Complexity and expressive

power of logic programming. ACM Computing Surveys 33, 3, 374–425.

Decker, K. and Lesser, V. 1994. Designing a family of coordination algorithms. In Proc. of

DAI, 65–84.

Dovier, A., Formisano, A. and Pontelli, E. 2013. Autonomous agents coordination: Action

languages meet clp() and linda. TPLP 13, 2, 149–173.

Durfee, E. H. and Lesser, V. R. 1987. Planning coordinated actions in dynamic domains. In

Proc. of the DARPA Knowledge-Based Planning Workshop, 18.1–18.10.

Ehtamo, H., Hamalainen, R. P., Heiskanen, P., Teich, J., Verkama, M. and Zionts, S.

1999. Generating pareto solutions in a two-party setting: Constraint proposal methods.

Management Science 45, 12, 1697–1709.

Ephrati, E. and Rosenschein, J. S. 1993. Multi-agent planning as the process of merging

distributed sub-plans. In Proc. of DAI, 115–129.

Erdem, E., Aker, E. and Patoglu, V. 2012. Answer set programming for collaborative

housekeeping robotics: Representation, reasoning, and execution. Intelligent Service

Robotics 5, 4, 275–291.

Erdem, E., Haspalamutgil, K., Palaz, C., Patoglu, V. and Uras, T. 2011. Combining high-

level causal reasoning with low-level geometric reasoning and motion planning for robotic

manipulation. In Proc. of ICRA.

https://doi.org/10.1017/S1471068413000525 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000525

Finding optimal plans for multiple teams of robots through a mediator 845

Erdem, E., Haspalamutgil, K., Patoglu, V. and Uras, T. 2012. Causality-based planning

and diagnostic reasoning for cognitive factories. In Proc. of IEEE International Conference

on Emerging Technologies and Factory Automation (ETFA).

Erdem, E. and Patoglu, V. 2012. Applications of action languages in cognitive robotics. In

Correct Reasoning 229–246.

Erol, K., Nau, D. S. and Subrahmanian, V. S. 1995. Complexity, decidability and

undecidability results for domain-independent planning. Artificial Intelligence 76, 1–2, 75–

88.

Foulser, D., Li, M. and Yang, Q. 1992. Theory and algorithms for plan merging. Artificial

Intelligence Journal 57, 143–182.

Gaston, M. E. and desJardins, M. 2008. The effect of network structure on dynamic team

formation in multi-agent systems. Computational Intelligence 24, 2, 122–157.

Gebser, M., Kaminski, R., König, A. and Schaub, T. 2011. Advances in gringo series 3. In

Proc. of LPNMR, 345–351.

Gebser, M., Kaufmann, B., Neumann, A. and Schaub, T. 2007. clasp: A conflict-driven

answer set solver. In Proc. of LPNMR, 260–265.

Gelfond, M. and Lifschitz, V. 1998. Action languages. Electronic Transactions on Artificial

Intelligence 2, 193–210.

Georgeff, M. P. 1988. Communication and interaction in multi-agent planning. In Readings

in Distributed AI, 200–204.

Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N. and Turner, H. 2004. Nonmonotonic

causal theories. AIJ 153, 49–104.

Hamadi, Y., Jabbour, S. and Sais, L. 2009. Control-based clause sharing in parallel sat

solving. In Proc. of IJCAI, 499–504.

Havur, G., Haspalamutgil, K., Palaz, C., Erdem, E. and Patoglu, V. 2013. A case study on

the tower of hanoi challenge: Representation, reasoning and execution. In Proc. of ICRA.

Hunsberger, L. and Grosz, B. J. 2000. A combinatorial auction for collaborative planning.

In Proc. of ICMAS, 151–158.

Kowalski, R. A. and Sadri, F. 2013. Towards a logic-based unifying framework for

computing. CoRR abs/1301.6905.

Lifschitz, V. 2002. Answer set programming and plan generation. Artificial Intelligence 138,

39–54.

Lifschitz, V. 2008. What is answer set programming? In Proc. of AAAI, MIT Press, 1594–

1597.

Lin, S.-H. 2011. Coordinating time-constrained multi-agent resource sharing with fault

detection. In Proc. of IEEM, 1000–1004.

M. M. de Weerdt, B. J. C. 2009. Introduction to planning in multiagent systems. Multiagent

and Grid Systems 5, 345–355.

Marek, V. and Truszczyński, M. 1999. Stable models and an alternative logic programming

paradigm. In The Logic Programming Paradigm: A 25-Year Perspective, Springer Verlag,

375–398.

McCain, N. and Turner, H. 1997. Causal theories of action and change. In Proc. of

AAAI/IAAI, 460–465.

Nair, R., Tambe, M. and Marsella, S. 2002. Team formation for reformation in multiagent

domains like robocuprescue. In Proc. of RoboCup, 150–161.

Niemelä, I. 1999. Logic programs with stable model semantics as a constraint programming

paradigm. Annals of Mathematics and Artificial Intelligence 25, 241–273.

Shoham, Y. and Tennenholtz, M. 1995. On social laws for artificial agent societies:off-line

design. Artificial Intelligence 73, 231–252.

https://doi.org/10.1017/S1471068413000525 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000525

846 E. Erdem et al.

Stuart, C. 1985. An implementation of a multi-agent plan synchronizer. In Proc. of IJCAI,

1031–1033.

Sycara, K. P., Roth, S. P., Sadeh, N. M. and Fox, M. S. 1991. Resource allocation in

distributed factory scheduling. IEEE Expert 6, 1, 29–40.

ter Mors, A., Valk, J. and Witteveen, C. 2004. Coordinating autonomous planners. In Proc.

of IC-AI, 795–801.

Trejo, R., Galloway, J., Sachar, C., Kreinovich, V., Baral, C. and Tuan, L.-C. 2001. From

planning to searching for the shortest plan: An optimal transition. International Journal of

Uncertainty, Fuzziness and Knowledge-Based Systems 9, 6, 827–837.

Turner, H. 2002. Polynomial-length planning spans the polynomial hierarchy. In Proc. of

JELIA, 111–124.

van der Krogt, R., Roos, N., de Weerdt, M. and Witteveen, C. 2005. Multiagent planning

through plan repair. In Proc. of AAMAS, 1337–1338.

Yang, Q., Nau, D. S. and Hendler, J. 1992. Merging separately generated plans with

restricted interactions. Computational Intelligence 8, 648–676.

Zaeh, M., Beetz, M., Shea, K., Reinhart, G., Bender, K., Lau, C., Ostgathe, M., Vogl, W.,

Wiesbeck, M., Engelhard, M., Ertelt, C., Rhr, T., Friedrich, M. and Herle, S. 2009.

The cognitive factory. In Changeable and Reconfigurable Manufacturing Systems, 355–371.

Zaeh, M., Ostgathe, M., Geiger, F. and Reinhart, G. 2012. Adaptive job control in the

cognitive factory. In Enabling Manufacturing Competitiveness and Economic Sustainability,

H. A. ElMaraghy, Ed. Springer, Berlin Heidelberg, 10–17.

https://doi.org/10.1017/S1471068413000525 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000525

