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LEVEL THEORY, PART 1: AXIOMATIZING THE BARE IDEA
OF A CUMULATIVE HIERARCHY OF SETS

TIM BUTTON

Abstract. The following bare-bones story introduces the idea of a cumulative hierarchy of
pure sets: ‘Sets are arranged in stages. Every set is found at some stage. At any stage S: for any
sets found before S, we find a set whose members are exactly those sets. We find nothing else at
S’. Surprisingly, this story already guarantees that the sets are arranged in well-ordered levels,
and suffices for quasi-categoricity. I show this by presenting Level Theory, a simplification of
set theories due to Scott, Montague, Derrick, and Potter.

What we shall try to do here is
to axiomatize the types in as
simple a way as possible so that
everyone can agree that the
idea is natural.

Scott (1974, p. 208)

The following bare-bones story introduces the idea of a cumulative hierarchy
of pure sets:1

The Basic Story. Sets are arranged in stages. Every set is found at some
stage. At any stage s: for any sets found before s, we find a set whose
members are exactly those sets. We find nothing else at s.

This story says nothing at all about the height of any hierarchy, and
apparently says almost nothing about the order-type of the stages. It lays
down nothing more than the bare idea of a pure cumulative hierarchy.
Surprisingly, though, this bare idea already guarantees that the sets are
arranged in well-ordered levels. Indeed, this bare idea is quasi-categorical.
Otherwise put: the Basic Story pins down any cumulative hierarchy

2020 Mathematics Subject Classification. 03A05, 03E30.
Keywords. set theory, level theory, rank, ordinal.
1See, e.g., Shoenfield (1977, p. 323). I have modified Shoenfield’s story in two ways. First:

Shoenfield speaks of sets as ‘formed’ at stages; I avoid this way of speaking, to avoid begging
the question against platonists. Second: Shoenfield speaks of forming ‘collections consisting
of sets’ into sets; I simply speak plurally. Note that the Basic Story takes no stance on whether
sets ‘depend’ upon their members in anything other than an heuristic sense (cf. Incurvati,
2012 and 2020, pp. 51–69).
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LEVEL THEORY, PART 1 437

completely, modulo that hierarchy’s height, on which the Story takes no
stance. The aim of this paper is to show all of this.

I begin by axiomatizing the Basic Story in the most obvious way possible,
obtaining Stage Theory, ST. It is clear that any pure cumulative hierarchy
satisfies ST. Unfortunately, ST has multiple primitives. To overcome this, I
develop Level Theory, LT. Its only primitive is ∈, but LT and ST say exactly
the same things about sets (see Sections 1–4). As such, any cumulative
hierarchy satisfies LT. Moreover, LT proves that the levels are well-ordered,
and LT is quasi-categorical (see Sections 5 and 6).

My theory LT builds on work by Dana Scott, Richard Montague, John
Derrick, and Michael Potter. I discuss their theories in Section 8, but I wish
to be very clear at the outset: LT is significantly technically simpler than its
predecessors, but it owes everything to them.

This paper is the first in a triptych. In Part 2, I explore potentialism, by
considering a tensed variation of the Basic Story. In Part 3, I modify the
Story again, to provide every set with a complement. Part 2 presupposes
Part 1, but Parts 1 and 3 can be read in isolation.

§0. Preliminaries. I use second-order logic throughout. Mostly, though,
my use of second-order logic is just for convenience. Except when discussing
quasi-categoricity (see Section 6), any second-order claim can be replaced
with a first-order schema in the obvious way. In using second-order logic,
I assume the Comprehension scheme, ∃F ∀x(F (x) ↔ φ), for any φ not
containing ‘F ’.

For readability, I concatenate infix conjunctions, writing things like a ⊆
r ∈ s ∈ t for a ⊆ r ∧ r ∈ s ∧ s ∈ t. I also use some simple abbreviations
(where Ψ can be any predicate whose only free variable is x, and � can be
any infix predicate):

(∀x : Ψ)φ := ∀x(Ψ(x) → φ), (∀x � y)φ := ∀x(x � y → φ),

(∃x : Ψ)φ := ∃x(Ψ(x) ∧ φ), (∃x � y)φ := ∃x(x � y ∧ φ).

When I announce a result or definition, I list in brackets the axioms I am
assuming.

§1. Stage Theory. The Basic Story, which introduces the bare idea of a
cumulative hierarchy, mentions sets and stages. To begin, then, I will present
a theory which quantifies distinctly over both sorts of entities. (It is a simple
modification of Boolos’s 1989 theory; see Sections 8.1 and 8.2.)

Stage Theory, ST, has two distinct sorts of variables, for sets (lower-case
italic) and for stages (lower-case bold). It has three primitive predicates:

∈: a relation between sets; read ‘a ∈ b’ as ‘a is in b’,
<: a relation between stages; read ‘r < s’ as ‘r is before s’,
	: a relation between a set and a stage; read ‘a 	 s’ as ‘a is found at s’.
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438 TIM BUTTON

For brevity, I write a ≺ s for ∃r(a 	 r < s), i.e., a is found before s. Then ST
has five axioms:2

Extensionality ∀a∀b(∀x(x ∈ a ↔ x ∈ b) → a = b),
Order ∀r∀s∀t(r < s < t → r < t),

Staging ∀a∃s a 	 s,
Priority ∀s(∀a 	 s)(∀x ∈ a)x ≺ s,

Specification ∀F ∀s((∀x : F )x ≺ s → (∃a 	 s)∀x(F (x) ↔ x ∈ a)).

The first two axioms make implicit assumptions explicit: whilst I did not
mention Extensionality in the Basic Story of a cumulative hierarchy, I take
it as analytic that sets are extensional;3 similarly, Order records the analytic
fact that ‘before’ is a transitive relation. The remaining three axioms can
then be read off the Basic Story directly: Staging says that every set is found
at some stage; Priority says that a set’s members are found before it; and
Specification says that, if we find every F before s, then we find the set of Fs
at s. So all of ST’s axioms are obviously true of the Basic Story. Otherwise
put: any cumulative hierarchy obviously satisfies ST.4

This is ST’s chief virtue. Its chief drawback is that it contains multiple
primitives. To see why this is a defect, suppose that we were forced to
axiomatize the bare idea of a cumulative hierarchy using something like
ST’s two-sorted logic. In that case, our grasp of the (cumulative iterative)
notion of set would unavoidably depend upon a concept which we had
not rendered set-theoretically, namely, stage of a hierarchy. And that would
somewhat undercut the commonplace ambition, that our notion of set might
serve as a certain kind of autonomous foundation for mathematics.

§2. Level Theory. To overcome this problem, I present Level Theory, LT.
This theory’s only primitive is ∈, but it makes exactly the same claims about
sets as ST does. I begin with a definition, due to Scott and Montague (see
Section 8.3), which forms the linchpin of this paper:5

Definition 2.1 For any a, let a’s potentiation be ¶a := {x : ∃c(x ⊆ c ∈
a)}, if it exists.6

2Classical logic yields a ‘cheap’ proof of the existence of a stage and an empty set: by
classical logic, there is some object, a; by Staging we have some s such that a � s; and with
F (x) given by x �= x, Specification yields a set, ∅, such that ∀x x /∈ ∅. Those who find such
proofs too cheap can adopt a free logic and then add explicit existence axioms; I will retain
classical logic.

3For brevity, I am considering hierarchies of pure sets; I revisit this in Appendixes A
and B.

4Or, given footnote 2: any non-null hierarchy satisfies ST. I will not repeat this caveat.
5Montague et al. (unpublished, Definition 22.4, p. 161) and Scott (1974, p. 214). They

used the ‘¶’ symbol, but not the name ‘potentiation’.
6By the notational conventions, ¶a = {x : (∃c ∈ a)x ⊆ c} = {x : ∃c(x ⊆ c ∧ c ∈ a)}.

We do not initially assume that ¶a exists for every a; instead, we initially treat every expression
of the form ‘b = ¶a’ as shorthand for ‘∀x(x ∈ b ↔ ∃c(x ⊆ c ∈ a))’, and must double-check
whether ¶a exists. Ultimately, though, LT proves that ¶a exists for every a (Lemma 3.12.1).
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The name potentiation emphasises the conceptual connection with power-
sets; note that ¶{a} = ℘a.7 The next two definitions employ this notion of
potentiation (and thereby simplify definitions due to Derrick and Potter; see
Section 8.4):8

Definition 2.2 Say that h is a history, written Hist(h), iff (∀x ∈ h)x =
¶(x ∩ h). Say that s is a level, written Lev(s), iff (∃h : Hist)s = ¶h.

The intuitive idea behind this definition is that a history is an initial sequence
of levels, and that the levels go proxy for stages. It is not obvious that this will
work as described; indeed, the next two sections are dedicated to establishing
this fact. But, using the notion of a level, LT has just three axioms:9

Extensionality ∀a∀b(∀x(x ∈ a ↔ x ∈ b) → a = b),
Separation ∀F ∀a∃b∀x(x ∈ b ↔ (F (x) ∧ x ∈ a)),

Stratification ∀a(∃s : Lev)a ⊆ s .

§3. The well-ordering of the levels. In Section 4, I will show that LT makes
exactly the same claims about sets as ST does. First, I must develop the
elements of set theory within LT. To do so, I need some more definitions:

Definition 3.1 Say that a is transitive iff (∀x ∈ a)x ⊆ a. Say that a is
potent iff ∀x(∃c(x ⊆ c ∈ a) → x ∈ a).

Transitivity is completely familiar. Potency is discussed in a few places, albeit
with no standard name.10 As my choice of name suggests, though, there is
a tight link between the operation of potentiation (see Definition 2.1) and
the property of potency:

Lemma 3.2 If ¶a exists, then ¶a is potent.

Lemma 3.3 (Extensionality). a is potent iff a = ¶a.

Recall the conventions: Lemma 3.2 follows from the definitions alone,
but Lemma 3.3 requires Extensionality. I leave the trivial proofs to the
reader.

7NB: by design, LT does not prove that every set has a powerset; for that, we have LT +
Endless (see Section 7).

8Potter (2004, p. 41).
9For ultra-economy, we can replace Separation+Stratification with ∀F (∃a∀x(F (x) ↔

x ∈ a) ↔ (∃s : Lev)(∀x : F )x ∈ s). We can read this as: a property determines a set iff its
instances are all in some level (cf. Button and Walsh, 2018, Definition 8.9). As in footnote 2,
above, the use of classical logic offers a ‘cheap’ proof of the existence of ∅. Moreover, LT has
a model whose only denizen is ∅.

10Potter (1990, p. 19) uses ‘hereditary’; Doets (1999, p. 78) and Button and Walsh
(2018, p. 193) use ‘supertransitive’. Mathias (2001, p. 487) and Burgess (2004, p. 208) use
‘supertransitive’ for sets which are both transitive and potent; Lévy and Vaught (1961, p.
1046) use ‘supercomplete’ for such sets.
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440 TIM BUTTON

My aim now is to prove several results about levels, in the sense of
Definition 2.2.11 These results do not need LT’s Stratification axiom, since
any sets which were not subsets of levels would be irrelevant.12

Lemma 3.4 Every level is potent and transitive.

Proof. Fix a level, s, so s = ¶h, for some history h. Potency follows by
Lemma 3.2. For transitivity, fix a ∈ s = ¶h; so a ⊆ c ∈ h for some c, and
c = ¶(c ∩ h) as h is a history; so a ⊆ ¶(c ∩ h) ⊆ ¶h = s . �

Lemma 3.5 (Extensionality, Separation). If every F is potent and some-
thing is F, then there is an ∈-minimal F. Formally: ∀F ((∃xF (x) ∧ (∀x :
F )x is potent) → (∃a : F )(∀x : F )x /∈ a).

Proof. Let F be as described and let u be an F. Using Separation twice,
let:

c = {x ∈ u : (∀y : F )x ∈ y} = {x : (∀y : F )x ∈ y},
d = {x ∈ c : x /∈ x}.

Clearly d /∈ c, since otherwise d ∈ d ↔ d /∈ d ; so there is some a which is
F with d /∈ a. Now if x is F, then d ⊆ c ⊆ x, but d /∈ a and a is potent, so
x /∈ a. �

Lemma 3.6 (Extensionality, Separation). If some level is F, then there
is an ∈-minimal level which is F. Formally: ∀F ((∃s : Lev)F (s) → (∃s :
Lev)(F (s) ∧ (∀r : Lev)(F (r) → r /∈ s))).

Proof. All levels are potent, by Lemma 3.4; now use Lemma 3.5. �
Lemma 3.7 (Extensionality, Separation). Every member of a history is a

level.

Proof. For reductio, let h be a history with some non-level in it. Since
c = ¶(c ∩ h) for all c ∈ h, every member of h is potent by Lemma 3.2.
Using Lemma 3.5, let a be an ∈-minimal non-level in h. Now a = ¶(a ∩ h),
and a ∩ h = {x ∈ a : x ∈ h} exists by Separation. So, to obtain our desired
contradiction, it suffices to show that a ∩ h is a history. Fix b ∈ a ∩ h. So b
is a level, by choice of a, and b = ¶(b ∩ h) as b ∈ h. If x ∈ b, then x ⊆ b,
since b is transitive by Lemma 3.4; so x ∈ a, since a is potent as above;
hence, b ⊆ a. So b = ¶(b ∩ h) = ¶(b ∩ (a ∩ h)). Generalising, a ∩ h is a
history. �

Lemma 3.8 (Extensionality, Separation). s = ¶{r ∈ s : Lev(r)}, for any
level s.

Proof. Let s be a level. If a ⊆ r ∈ s , then a ∈ s , as s is potent by Lemma
3.4. If a ∈ s , then as s = ¶h for some history h, we have a ⊆ r ∈ h ⊆ ¶h = s
for some r, and r is a level by Lemma 3.7. �

11The next few results simplify Potter (2004, pp. 41–6). Lemma 3.5 is inspired by
Potter’s Proposition 3.6.4; Lemma 3.7 by Potter’s Proposition 3.4.1; Lemma 3.8 by Potter’s
Proposition 3.6.8; and Lemma 3.9 by Potter’s Proposition 3.6.11.

12Cf. Scott (1974, 211n.1).
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Lemma 3.9 (Extensionality, Separation). All levels are comparable.13

Formally: (∀s : Lev)(∀t : Lev)(s ∈ t ∨ s = t ∨ t ∈ s).

Proof. For reductio, suppose that some levels are incomparable. By
Lemma 3.6, there is an ∈-minimal level, s, which is incomparable with
some level; and by Lemma 3.6 again, there is an ∈-minimal level, t, which is
incomparable with s. To complete the reductio, I will show that s = t.

To show that s ⊆ t, fix a ∈ s . So a ⊆ r ∈ s for some level r, by Lemma
3.8. Now r is comparable with t, by choice of s. But if either r = t or t ∈ r,
then t ∈ s as s is transitive, contradicting our assumption; so r ∈ t. Now
a ⊆ r ∈ t, so that a ∈ t as t is potent. Generalising, s ⊆ t.

Exactly similar reasoning, based on the choice of t, shows that t ⊆ s . So
t = s . �
Rolling Lemmas 3.6 and 3.9 together, we obtain the fundamental theorem
of level theory:

Theorem 3.10 (Extensionality, Separation). The levels are well-ordered by
membership.

Combining this result with Stratification, we obtain a powerful tool, which
intuitively allows us to consider the level at which a set is first found:

Definition 3.11 (LT). Let �a be the ∈-least level with a as a subset; i.e.,
a ⊆ �a and ¬(∃s : Lev)a ⊆ s ∈ �a.

Lemma 3.12 (LT). For all sets a, b, and all levels r, s :

(1) �a and ¶a both exist, and ¶a ⊆ �a,
(2) a /∈ �a,
(3) r ⊆ s iff s /∈ r,
(4) s = �s ,
(5) if b ⊆ a, then �b ⊆ �a,
(6) if b ∈ a, then �b ∈ �a
(7) �a = ¶{�x : x ∈ a},
(8) if every member of a is a level, then ¶a = �a.

Proof. (1) �a exists by Stratification and Theorem 3.10. Now if x ⊆ c ∈
a ⊆ �a, then x ∈ �a since �a is potent; so ¶a ⊆ �a exists by Separation.

(2) There is no level t with a ⊆ t ∈ �a, so a /∈ �a by Lemma 3.8.
(3) If r ⊆ s then s /∈ r by the well-ordering of levels. Conversely, if s /∈ r,

then either r ∈ s or r = s by comparability; and r ⊆ s either way, as s is
transitive.

(4) By (2), s /∈ �s . By (3), �s /∈ s . So s = �s , by comparability.
(5) If b ⊆ a then b ⊆ �a. So �a /∈ �b, by definition of �b, so �b ⊆ �a by (3).
(6) If b ∈ a then b ∈ �a. By (2), b /∈ �b; so �a � �b, and hence �b ∈ �a

by (3).
(7) Let k = {�x : x ∈ a}. If c ∈ ¶k then c ⊆ �x for some x ∈ a; now
�x ∈ �a by (6), so c ∈ �a. Conversely, if c ∈ �a then c ⊆ r ∈ �a for some

13Say that x is comparable with y iff x ∈ y ∨ x = y ∨ y ∈ x.
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level r by Lemma 3.8; since a � r by definition of �a, there is some x ∈ a \ r;
now �x /∈ r as r is potent, so that r ⊆ �x by (3) and hence c ⊆ �x; so c ∈ ¶k.

(8) In this case, a = {�x : x ∈ a} by (4), so �a = ¶a by (7). �

§4. The set-theoretic equivalence of ST and LT. Having explained how to
work within LT, I will now make good on my earlier promise, and show that
LT and ST make exactly the same claims about sets. More precisely, I will
prove the following:

Theorem 4.1 ST � φ iff LT � φ, for any LT-sentence φ.

To show that ST says no more about sets than LT does, I define a translation,
∗, from ST-formulas into LT-formulas. In effect, ∗ treats stages as levels,
ordered by membership. Specifically, its non-trivial actions are as follows:14

(s < t)∗ := s ∈ t, (x 	 s)∗ := x ⊆ s, (∀sφ)∗ := (∀s : Lev)(φ∗).

After translation, we treat all first-order variables—whether bold or italic—
as being of the same sort. Fairly trivially, for any LT-sentence φ, if ST �
φ then ST∗ � φ. The left-to-right half of Theorem 4.1 now follows from
this simple observation, together with the fact that ∗ : ST −→ LT is an
interpretation:

Lemma 4.2 (LT). ST∗ holds.

Proof. Extensionality∗ is Extensionality. Staging∗ is Stratification.
Order∗ holds by Lemma 3.4. Note that Lemma 3.8 allows us to simplify
(x ≺ s)∗, i.e., (∃r(x 	 r < s))∗, to (x ∈ s). Now Priority∗ holds trivially.
And Specification∗ holds as if (∀x : F )x ∈ s, then {x : F (x)} ⊆ s by
Separation.15 �
To obtain the right-to-left half of Theorem 4.1, I must first prove some quick
results in ST:

Lemma 4.3 (ST). Separation holds.

Proof. By Staging, a 	 s for some s. By Priority, (∀x ∈ a)x ≺ s. Now
use Specification. �

Lemma 4.4 (ST). ∀s∀a(a 	 s ↔ (∀x ∈ a)x ≺ s).

Proof. Left-to-right is Priority. For right-to-left, suppose (∀x ∈ a)x ≺ s;
then {x : x ∈ a} = a 	 s by Extensionality and Specification. �
I next introduce slices. These will turn out to be levels, in the sense of
Definition 2.2. Here is the definition of a slice, and some elementary results
concerning slices:

14So the other clauses are: (¬φ)∗ := ¬φ∗; (φ ∧ �)∗ := (φ∗ ∧ �∗); (∀xφ)∗ := ∀xφ∗;
(∀Fφ)∗ := ∀Fφ∗; and α∗ := α for all atomic formulas α which are not of the forms
mentioned in the main text.

15Note that the ∗-translation of any ST-Comprehension instance is an LT-Comprehension
instance.
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Definition 4.5 For each s, let š = {x : x ≺ s}, if it exists. Say that a is a
slice iff a = š for some s.

Lemma 4.6 (ST). For any s:

(1) š exists,
(2) ∀r∀a(a 	 r ≤ s → a 	 s),
(3) ∀a(a ⊆ š ↔ a 	 s),
(4) š is transitive,
(5) š = ¶{ř : ř ∈ š}.

Proof. (1) By Specification and Extensionality.
(2) Let a 	 r ≤ s. Now (∀x ∈ a)x ≺ r by Priority, so (∀x ∈ a)x ≺ s by

Order, and a 	 s by Lemma 4.4.
(3) a ⊆ š iff (∀x ∈ a)x ∈ š iff (∀x ∈ a)x ≺ s iff a 	 s by Lemma 4.4.
(4) If a ∈ š, then a 	 r < s for some r; hence a 	 s and a ⊆ š by (2)

and (3).
(5) If a ∈ š, then a 	 r < s for some r; hence a ⊆ ř 	 r < s by (3), so
a ⊆ ř ∈ š. If a ⊆ ř ∈ š, then a ⊆ ř 	 t < s for some t; now a ⊆ ř ⊆ ť by (3),
so a 	 t by (3), i.e., a ∈ š. �
It is now easy to show that ∈ well-orders the slices: just transcribe the proofs
of Lemmas 3.6 and 3.9 within ST, replacing ‘levels’ with ‘slices’, noting that
ST proves Separation (see Lemma 4.3), and replacing appeal to Lemmas
3.4 and 3.8 with Lemmas 4.6.4 and 4.6.5. We can then go on to prove that
the levels are the slices.

Lemma 4.7 (ST). s is a level iff s is a slice.

Proof. For induction on slices, suppose: (∀q̌ ∈ š)(∀a ⊆ q̌)(a is a slice ↔
Lev(a)). I will show that (∀a ⊆ š)(a is a slice ↔ Lev(a)). The result will
follow by Staging and Lemma 4.6.3.

First, fix a level r ⊆ š. Let h = {q ∈ r : Lev(q)}; so r = ¶h by Lemma
3.8. (Note that ST proves all of Lemmas 3.2–3.9, verbatim, since ST proves
Separation.) Fix a ∈ r; so a ∈ š, so a ⊆ q̌ ∈ š for some q̌ by Lemma 4.6.5;
hence, by the induction hypothesis, a is a slice iff a is a level. So h = {q̌ :
q̌ ∈ r}. Noting that h ⊆ š, let ť be the ∈-least slice such that h ⊆ ť. Since r is
transitive and the slices are well-ordered, h = {q̌ : q̌ ∈ ť}. So r = ¶h = ť by
Lemma 4.6.5, i.e., r is a slice.

Next, fix ř ⊆ š. Let h = {q̌ : q̌ ∈ ř}; so ř = ¶h by Lemma 4.6.5; and h =
{q ∈ ř : Lev(q)} by the induction hypothesis. Fix q ∈ h; since ř is transitive,
q ∩ h = {p ∈ q : Lev(p)}, so that q = ¶(q ∩ h) by Lemma 3.8. So h is a
history and ř = ¶h is a level. �
This allows us to prove the last axiom of LT within ST:

Lemma 4.8 (ST). Stratification holds.

Proof. Fix a; by Staging, a 	 s for some s, i.e., a ⊆ š by Lemma 4.6.3,
and š is a level by Lemma 4.7. �
So ST � LT, completing the proof of Theorem 4.1.
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§5. The inevitability of well-ordering. A simple argument now establishes
that LT axiomatizes the bare idea of a cumulative hierarchy of sets:

(a) Any cumulative hierarchy of sets satisfies ST (see Section 1).
(b) LT is set-theoretically equivalent to ST (see Theorem 4.1).
(c) So: any cumulative hierarchy of sets satisfies LT (from (a) and (b)).

Otherwise put: LT is true of the Basic Story I told at the start of this paper,
and which I repeat here for ease of reference:

The Basic Story. Sets are arranged in stages. Every set is found at some
stage. At any stage s: for any sets found before s, we find a set whose
members are exactly those sets. We find nothing else at s.

In fact, (c) takes on an even deeper significance when we reflect on just how
bare-bones this Basic Story is. The Story says that some stages are ‘before’
others, and we can safely assume that ‘before’ is a transitive relation on
stages (hence ST’s Order axiom).16 But it is not obvious, for example, that it
would be inconsistent to augment the Story by saying for every stage there is
an earlier stage, or between any two stages there is another stage. This might
prompt us to start entertaining cumulative hierarchies which are ordered
like the integers, or the rationals, or more exotically still. A very simple
argument, however, puts an abrupt end to such speculation:

(d) LT proves the well-ordering of the levels (see Theorem 3.10).
(e) So: any cumulative hierarchy of sets has well-ordered levels (from (c)

and (d)).

Scott was the first to prove a well-ordering result from a similarly spartan
starting point (see Section 8.3), and he put the point beautifully: ‘This
at first surprising result shows how little choice there is in setting up the
type hierarchy’.17 Scott’s deep observation deserves to be much more widely
known.

The connection between ST and LT also helps to demystify the definition
of level. Working in ST, suppose that h is an initial sequence of slices; if
š ∈ h, then š ∩ h is the set of all slices less than š, so that š = ¶(š ∩ h) by
Lemma 4.6.5. These observations motivate Definition 2.2. We say that h is a
history iff (∀x ∈ h)x = ¶(x ∩ h), in the hope that, so defined, a history will
be an initial sequence of slices; if it is, then the next slice in the sequence is
the potentiation of that history, by Lemma 4.6.5; and this is how we define
levels.

16In similar spirit, Shoenfield (1977, p. 323) says: ‘We should certainly expect before to be
a partial ordering of the stages; and this is the only fact about this relation which we need for
our axioms’. But Shoenfield obtains well-ordering by arguing for Foundation using a proof
due to Scott (see Section 8.1) and then using Replacement to define the Vαs; LT, of course,
does not include Replacement (see Section 7).

17Scott (1974, p. 210).
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§6. The quasi-categoricity of LT. We just saw that every cumulative
hierarchy of sets has well-ordered levels. In fact, we can push this point
further. By design, LT says nothing about the height of any hierarchy. But,
as I will show in this section, LT is quasi-categorical. Informally, we can
spell out LT’s quasi-categoricity as follows:

(f) Any two hierarchies satisfying LT are structurally identical for so far
as they both run, but one may be taller than the other.

Since every cumulative hierarchy satisfies LT, we obtain:

(g) Any two cumulative hierarchies are structurally identical for so far as
they both run, but one may be taller than the other (from (c) and (f)).

So, echoing Scott: when we set up a cumulative hierarchy, our only choice is
how tall to make it.

It just remains to establish (f), i.e., to show that LT is quasi-categorical.
In fact, there are at least two ways to explicate the informal idea of
quasi-categoricity, and LT is quasi-categorical on both explications. (Note
that both ways make essential use of second-order logic; this is the only
section of the paper where my use of second-order logic is not merely for
convenience.)

The first notion of quasi-categoricity is familiar from Zermelo. Working
in some (set-theoretic) model theory, we define the Vαs as usual:

V0 = ∅; Vα+1 = ℘Vα ; Vα =
⋃

�∈α
V� when α is a limit.

Each Vα then naturally yields a set-theoretic structure, Vα, whose domain is
Vα, and which interprets ‘∈’ as membership-restricted-to- Vα, i.e., {〈x, y〉 ∈
Vα × Vα : x ∈ y}. We then have the following result, using full second-order
logic: M � ZF iff M ∼= Vα for some strongly inaccessible α.18 There is an
analogous quasi-categoricity result for LT:19

Theorem 6.1 (In full second-order logic). M � LT iff M ∼= Vα for some
ordinal α > 0.

This shows that any two hierarchies satisfying LT (read that phrase as
‘any models of LT’) are structurally identical (read that phrase as ‘are
isomorphic’) for so far as they both run (read that phrase in the light of
the well-ordering of the Vαs, established in the model theory). In short, LT
is quasi-categorical, on a model-theoretic (‘external’) way of understanding
quasi-categoricity.

18Zermelo (1930). For an accessible proof, see Button and Walsh (2018, §8.A).
19Button and Walsh (2018, §8.C) prove this for Potter’s theory (see Section 8.4); the same

proof works for LT. The same remark applies to the other results mentioned in this section.
We could obtain external categoricity using only first-order logic, if we augmented LT with
some axiom of the form ‘there are exactly n levels’.
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There is also, though, an object-language (‘internal’) way to understand
quasi-categoricity.20 Since this idea is less familiar, I will spend some time
unpacking it.

In embracing Extensionality, LT assumes that everything is a pure set.
There is a quick-and-dirty way to avoid this assumption. First, introduce
a new predicate, Pure; intuitively, this should apply to the pure sets. Next,
relativise LT to Pure, via the following formula:21

LT(Pure, ε) := (∀a : Pure)(∀b : Pure)(∀x(x ε a ↔ x ε b) → a = b) ∧
∀F (∀a : Pure)(∃b : Pure)∀x(x ε b ↔ (F (x) ∧ x ε a)) ∧
(∀a : Pure)(∃s : Lev)a ⊆ s ∧
∀x∀y(x ε y → (Pure(x) ∧ Pure(y))).

The first three conjuncts tell us that the pure sets satisfy LT;22 the last says
that, when we use ‘ε’, we restrict our attention to membership facts between
pure sets. Using this formula, I can now state the internal quasi-categoricity
result (I have labelled the lines to facilitate its explanation):

Theorem 6.2 This is a deductive theorem of impredicative second-order
logic:

(LT(Pure1, ε1) ∧ LT(Pure2, ε2)) →
∃R(∀v∀y(R(v, y) → (Pure1(v) ∧ Pure2(y))) ∧ (1)

((∀v : Pure1)∃yR(v, y) ∨ (∀y : Pure2)∃vR(v, y)) ∧ (2)

∀v∀y∀x∀z((R(v, y) ∧R(x, z)) → (v ε1 x ↔ y ε2 z)) ∧ (3)

∀v∀y∀z((R(v, y) ∧R(v, z)) → y = z) ∧ (4)

∀y∀v∀x((R(v, y) ∧R(x, y)) → v = x) ∧ (5)

∀v(∃yR(v, y) → (∀x ⊆1 �1v)∃zR(x, z)) ∧ (6)

∀y(∃vR(v, y) → (∀z ⊆2 �2y)∃xR(x, z))). (7)

Intuitively, the point is this. Suppose two people are using their versions of
LT, subscripted with ‘1’ and ‘2’ respectively. Then there is some second-order
entity, a relation R, which takes us between their sets (1), exhausting the sets
of one or the other person (2); which preserves membership (3); which is
functional (4) and injective (5); and whose domain is an initial segment
of one (6) or the other’s (7) hierarchy. Otherwise put: LT is (internally)
quasi-categorical.

20This has been brought out by Parsons (1990, 2008), McGee (1997), and Väänänen and
Wang (2015). The remainder of this section presents specific elements of Button and Walsh
(2018, Chapter 11).

21Here, ‘⊆’ and ‘Lev’ should be defined in terms of ‘ε’ rather than ‘∈’; similarly for ‘�’ in
Theorem 6.2. For now, we can treat ‘Pure’ as a primitive; but see Definition B.1.

22With one insignificant caveat (see footnotes 2 and 4): whereas classical logic guarantees
that any model of LT contains an empty set, LT(Pure, ε) allows that there may be no pure
sets.
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As a bonus, this internal quasi-categoricity result can be lifted into an
internal total-categoricity result. To explain how, consider this abbreviation
(where ‘P’ is a second-order function-variable):

∃∞xΦ(x) := ∃P(∀xΦ(P(x)) ∧ (∀y : Φ)∃!x P(x) = y).

This formalizes the idea that there are as many Φs as there are objects
simpliciter, i.e., that there is a bijection between the Φs and the universe. We
can use this notation to state our internal total-categoricity result:

Theorem 6.3 This is a deductive theorem of impredicative second-order
logic:

(LT(Pure1, ε1) ∧ ∃∞x Pure1(x) ∧ LT(Pure2, ε2) ∧ ∃∞x Pure2(x)) →
∃R(∀v∀y(R(v, y) → (Pure1(v) ∧ Pure2(y))) ∧

(∀v : Pure1)∃!yR(v, y) ∧ (∀y : Pure2)∃!vR(v, y) ∧
∀v∀y∀x∀z((R(v, y) ∧R(x, z)) → (v ε1 x ↔ y ε2 z))).

Intuitively, if both LT-like hierarchies are as large as the universe, then there
is a structure-preserving bijection between them. To see the significance of
this result, note that it is common to claim that there are absolutely infinitely
many pure sets. Whatever exactly this is meant to mean, it must surely entail
that ∃∞x Pure(x). So Theorem 6.3 tells us that absolutely infinite LT-like
hierarchies are (internally) isomorphic.

§7. LT as a subtheory of ZF. I have shown that any cumulative hierarchy
satisfies LT, so that, in setting up a cumulative hierarchy, our only freedom
of choice concerns its height. To make all of this more familiar, though, it
is worth commenting on LT’s relationship to ZF, the ‘industry standard’ set
theory.

Unsurprisingly, ZF proves LT. In more detail: working in ZF, define the
Vαs as usual; we can then show that theVαs are the levels;23 so Stratification
holds as every set is a subset of some Vα.

Of course, ZF is much stronger than LT, since LT deliberately says nothing
about the height of the cumulative hierarchy. If we want to set up a tall
hierarchy, then three axioms naturally suggest themselves (where ‘P’ is a
second-order function-variable in the statement of Unbounded):24

Endless (∀s : Lev)(∃t : Lev)s ∈ t,
Infinity (∃s : Lev)((∃q : Lev)q ∈ s ∧

(∀q : Lev)(q ∈ s → (∃r : Lev)q ∈ r ∈ s)),
Unbounded ∀P∀a(∃s : Lev)(∀x ∈ a)P(x) ∈ s .

23Proof sketch. Working in ZF, fix α, and suppose for induction that (∀� <
α)(∀x ⊆ V� )(Lev(x) ↔ ∃	 x = V	). Fix V
 ⊆ Vα ; then V
 = ¶{V	 : V	 ∈ V
} =
¶{s ∈ V
 : Lev(s)} by the induction hypothesis, which is a level by Lemma 3.8. Similarly, if
s ⊆ Vα is a level, then ∃	 s = V	 .

24For Endless, cf. Montague (1965, p. 142), Scott (1974, p. 212), Potter (1990, pp. 20–1,
and 2004, pp. 61–2). For Infinity, see Potter (2004, pp. 68–70) and Boolos’s (1989, p. 8) axiom
Inf, which I discuss in Section 8.2.
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Endless says there is no last level. Infinity says that there is an infinite
level, i.e., a level with no immediate predecessor. Unbounded states that the
hierarchy of levels is so tall that no set can be mapped unboundedly into it.
We now have some nice facts, whose proofs I leave to the reader:25

Proposition 7.1

(1) LT proves Separation, Union, and Foundation.
(2) LT + Endless proves Pairing and Powersets.
(3) LT + Endless + Infinity proves Zermelo’s axiom of infinity.26

(4) LT + Endless + ¬Infinity is equivalent to ZFfin.27

(5) LT + Infinity + Unbounded proves Endless.
(6) LT + Infinity + Unbounded is equivalent to ZF.

Facts (1)–(3) show that LT + Endless + Infinity extends Zermelo’s Z. This
extension is strict, since Stratification is independent from Z.28 Fact (6) then
offers a neat way to conceive of ZF, as extending the theory which holds of
any cumulative hierarchy, i.e., LT, with specific claims about the hierarchy’s
height.

§8. Conclusion, and LT’s predecessors. The theory LT holds of every
cumulative hierarchy. Since LT is also quasi-categorical, the only choice
we have, in setting up a cumulative hierarchy, is over the hierarchy’s height.

I will close this paper by discussing LT’s predecessors, in roughly
chronological order.

8.1. Scott. At a talk in 1957, Scott presented what seems to have been the
first theory of stages. This was an axiomatic theory of ranks, in the sense
of the Vαs. Writing ‘a < b’ for ‘a has lesser rank than b’, Scott’s suggested
axioms were Extensionality and:29

∀a∀b(a < b ↔ (∃x < b)x ≮ a),
∀F (∀a((∀x < a)F (x) → F (a)) → ∀aF (a)),
∀F ∀a∃b∀x(x ∈ b ↔ (F (x) ∧ x < a)).

This 1957 theory is clearly satisfied in any Vα with α > 0, when ∈ and < are
given the obvious interpretations. However, it has some unintended models.

25Cf. Scott (1974, p. 212), Potter (1990, pp. 20–4, and 2004, pp. 47–9, 61–2).
26That is, (∃w  ∅)(∀x ∈ w)x ∪ {x} ∈ w.
27The latter is the theory with all of ZF’s axioms except that: (i) Zermelo’s axiom of infinity

is replaced with its negation; and (ii) it has a new axiom, ∀a(∃t ⊇ a)(t is transitive).
28Potter (2004, p. 293ff) makes a similar point. The independence is immediate from

the fact that there are models of (even second-order) Z which fail to satisfy ∀a(∃c ⊇
a)(c is transitive); see Drake (1974, p. 111). For detailed discussions of Z’s weaknesses, as
either a first- or second-order theory, see Mathias (2001). (As mentioned in the introduction,
although I have formulated LT as a second-order theory, it has a natural first-orderization.
Read uniformly as either first-order or second-order theories, and closing under provability,
the point is: Z � LT + Endless + Infinity � ZF.)

29Scott (1960); I have tweaked the presentation slightly.
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Example 8.1 Let the domain have two sets : ∅ and a Quine atom a = {a}.
Let a < ∅. This is a model of the 1957 theory, since< is trivially a well-order,
and since the only sets given by the third axiom are ∅ and {a} = a.

Example 8.2 Let the domain have four sets : ∅, {∅}, {{∅}}, and {∅, {∅}}.
Permute the usual rank relation, so that {∅} < ∅ < {{∅}}, {∅, {∅}}, with
{{∅}} and {∅, {∅}} incomparable.

At a talk in 1967, Scott provided a vastly improved theory of stages. I will
present the 1967 theory in a slightly simplified form, starting with a definition
given later by Potter (see Section 8.4):

Definition 8.3 For each set a, let Acca = {x : (∃c ∈ a)(x ∈ c ∨ x ⊆ c)},
if it exists.

Scott’s 1967 theory treats the notion of level as a primitive, which applies to
certain sets. Temporarily using bold-face letters to range over these levels,
the 1967 theory comprises just Extensionality, Separation, and two further
axioms:30

Accumulation ∀s s = Acc{r : r ∈ s},
Restriction ∀a∃s a ⊆ s.

Scott’s 1967 theory (unlike his 1957 theory) does not explicitly state that the
levels are well-ordered; instead, the 1967 theory proves the well-ordering of
the levels (cf. Section 5).31 We have Scott to thank for a truly remarkable bit
of mathematics-cum-conceptual-analysis.

Scott’s 1967 theory obviously inspires ST: compare his Restriction axiom
with my Staging (and Stratification), and his Accumulation axiom with
my Lemma 4.6.5 (and Lemma 3.8). Moreover, Scott’s 1967 theory and ST
make exactly the same claims about sets (cf. Theorem 4.1). But I used ST
in Section 1, rather than Scott’s 1967 theory, since ST is easier to motivate.
In particular, Scott simply instructs us to write ‘s ∈ t’ for ‘s is before t’, and
his justification of Accumulation amounts to stipulating that ‘a given level
is nothing more than the accumulation of all the members and subsets of all
the earlier levels’.32 Both claims are very natural, and they are true in LT;
but it is not immediately obvious that they are true of the Basic Story I told
in the introduction. (In fairness to Scott, he does not start with that story,
but with a related justificatory tale.)

8.2. Boolos and Shoenfield. The second source of inspiration for ST is
Boolos. He first presented a theory of stages in 1971, which included explicit
axioms stating that the stages are well-ordered;33 this theory has several

30Scott (1974, pp. 208–9). Scott allowed urelements, which I am ignoring for ease of
presentation (though see Appendix A).

31Scott’s (1974, pp. 211–2) proof uses the idea of a grounded set, introduced by Montague
(1955).

32Both quotes from Scott (1974, p. 209); his emphasis; variables adjusted to match
surrounding text.

33See Boolos’s (1971, pp. 223–4) I–IV and Induction Axioms.
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similarities with Shoenfield’s 1967 theory.34 Boolos then presented a better
theory of stages in 1989, explicitly drawing from Scott’s 1967 theory to
prove (rather than assume) a principle of induction for stages.35 My theory
ST tweaks Boolos’s 1989 theory in three ways.

First. Boolos has qualms about how to justify Extensionality;36 I have no
such qualms.

Second. Boolos aims to vindicate the traditional Zermelian axioms of
Foundation, Union, Pairing, Separation, Powersets, and Infinity. To secure
these last two axioms, his 1989 theory contains:

Inf ∃t(∃r r < t ∧ (∀r < t)∃s(r < s < t)),
Net ∀r∀s∃t(r < t ∧ s < t).

Boolos’s Inf guarantees there is a stage with infinitely many predecessors,
and his Net guarantees that there is no last stage. Since ST is deliberately
silent on the height of any cumulative hierarchy, it has no similar axioms.
However, if I had wanted to augment ST with the claim that there is no last
stage, I would have offered ∀s∃t s < t (cf. Endless, from Section 7). Boolos’s
Net says more than this; it guarantees that stages are directed. Boolos’s proof
of Pairing relies upon this directedness,37 but I cannot see why Boolos felt
independently entitled to adopt Net rather than the weaker principle.

Third. The remainder of Boolos’s 1989 theory comprises Order, Staging,
and these two axioms:38

When ∀s∀a(a 	 s ↔ (∀x ∈ a)x ≺ s),
Spec ∀F ∀s((∀x : F )x ≺ s → ∃a∀x(F (x) ↔ x ∈ a)).

In the presence of Extensionality, the axioms When+Spec are equivalent to
ST’s Priority+Specification; but we need Extensionality to prove the right-
to-left direction of When from Priority+Specification (see Lemma 4.4).
Moreover, given Boolos’s qualms about Extensionality, he cannot provide an
intuitive justification for the right-to-left direction of When. If (∀x ∈ a)x ≺
s, then there should certainly be some b 	 s such that ∀x(x ∈ b ↔ x ∈ a);
but only Extensionality can justify the assertion that b = a. Crucially for
Boolos’s aims, though, Powersets can fail if we replace When+Spec with
Priority+Specification in Boolos’s theory: without Extensionality or the
right-to-left direction of When, we might keep finding new empty sets at
every stage in the hierarchy; there will then be no stage by which every
subset of a set has been found, and hence no stage at which any powerset
can be found.

34Shoenfield (1967, pp. 238–40).
35Scott (1974, pp. 211–2) and Boolos (1989, pp. 11–12); Boolos cites Shoenfield’s (1977,

p. 327) presentation of Scott.
36Boolos (1989, pp. 10–11).
37Boolos’s (1989, p. 19) proof is as follows. Fix a and b; by Staging, there are r and s with

a � r and b � s. By Net, there is some t after both r and s. So by Spec there is a set whose
members are exactly a and b.

38Boolos (1989, p. 8) formulates Spec as a first-order scheme, but considers the second-
order axiom on the next page.
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8.3. Scott and Montague. I now want to return to Scott’s 1967 theory.
As mentioned in Section 8.1, this theory initially takes the notion
of level as primitive. However, Scott notes that the primitive can be
eliminated, by proving within the 1967 theory that s is a level iff ¶s ⊆ s ∧
(∀a ∈ s)(∃h ∈ s)(∀k ⊆ h)(¶k ∈ s ∧ (¶k ∈ h ∨ a ⊆ ¶k)). Scott developed
this ideologically-spartan theory in joint work with Montague; they
described their theory as ‘rank free’, so I will call it RF.39 It has just three
axioms: Extensionality, Separation, and

Hierarchy ∀a∃h(∀k ⊆ h)(∃s = ¶k)(s ∈ h ∨ a ⊆ s).

The point of calling it ‘rank free’ was to highlight that RF takes no stance on
the number of ranks in the hierarchy. More precisely, we have the external
quasi-categoricity result thatM � RF iffM ∼= Vα for someα > 0 (assuming
full second-order logic; cf. Theorem 6.1). To establish this, Montague and
Scott first say that h is a hierarchy iff (∀k ⊆ h)(h ⊆ ¶k ∨ ¶k =

⋂
(h \ ¶k)).

They then let Ra :=
⋂
{¶h : h is a hierarchy ∧ a ⊆ ¶h} for each a, and show

that Ra serves the role of a’s ‘rank’ (cf. LT’s notion of �a, as laid down in
Definition 3.11).

Unfortunately, as Scott himself put it, the deductions from these axioms
and definitions ‘are quite lengthy’.40 This led Scott to dismiss the significance
of RF, writing: ‘there seems to be no technical or conceptual advantage in
reducing the number of primitive notions to the minimum’.41

Still, these lengthy deductions were intended to form a section of
a monograph on axiomatic set theory. A complete manuscript of this
monograph exists, Montague et al. (unpublished), containing very minor
markups, handwritten notes to the printers, and an accompanying list
of ‘Things to be Done’ which amounts to nothing more than writing
an Introduction and dealing with the mundane logistics of publication.
Everything, in short, was almost ready to print.

Sadly, it was never printed. This was a serious loss. As explained in
Section 1, there are good philosophical reasons for ‘reducing the number
of primitive notions to the minimum’. Moreover, whilst Montague’s and
Scott’s deductions were ‘quite lengthy’, the axioms of RF are quite elegant.
The lengthiness of the deductions from RF is down to the awkwardness
of the definitions of hierarchy and Ra. If Montague and Scott had been
aware of the definition of history and level, as given in Definition 2.2, they
could have given some much briefer deductions. Indeed, these definitions
make it easy to prove that RF and LT are equivalent. One direction of this
equivalence is easy:

Proposition 8.4 (LT). RF holds.

39Montague (1965, p. 139), Montague et al. (unpublished, pp. 161–2), and Scott (1974,
p. 214).

40Scott (1974, p. 214). Indeed, it occupies 13 dense sides of Montague et al. (unpublished,
pp. 161–74).

41Scott (1974, p. 214).

https://doi.org/10.1017/bsl.2021.13 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2021.13


452 TIM BUTTON

Proof. It suffices to prove Hierarchy. Fix a, let h = {s ∈ �a : Lev(s)} and
fix k ⊆ h. Now ¶k = �k by Lemma 3.12.8; so if ¶k = �k /∈ h, then �k /∈ �a,
so a ⊆ �a ⊆ �k = ¶k by Lemma 3.12.3. �
For the other direction of the equivalence, I must first prove some quick
facts in RF:

Lemma 8.5 (RF). For all a:

(1) if ¶a exists, then ¶a /∈ a,
(2) ¶a exists,
(3) if every member of a is a level, then ¶a is a level.

Proof. (1) If ¶a ∈ a, then (∀c ⊆ ¶a)c ∈ ¶a. But this is impossible: by
Separation, let d = {x ∈ ¶a : x /∈ x}; then d /∈ ¶a.

(2) Fix a, and let h witness Hierarchy. Let k = h, so that ¶h exists and
¶h ∈ h ∨ a ⊆ ¶h, i.e., a ⊆ ¶h by (1). Since ¶h is potent by Lemma 3.2,
¶a ⊆ ¶h exists by Separation on ¶h.

(3) Using Separation and (2), let h = {s ∈ ¶a : Lev(s)}. I will first prove
that ¶h = ¶a, and then that h is a history, so that ¶h = ¶a is a level.

To see that ¶a = ¶h: since h ⊆ ¶a, we have ¶h ⊆ ¶¶a = ¶a by Lemmas
3.2 and 3.3; and if x ∈ ¶a then x ⊆ r ∈ a for some level r, so r ∈ h, and
hence x ∈ ¶h.

To see that h is a history, fix s ∈ h; it suffices to show that s = ¶(s ∩ h).
Since s is a level, ¶(s ∩ h) ⊆ ¶s = s by Lemmas 3.3 and 3.4. To see that
s ⊆ ¶(s ∩ h), fix x ∈ s ; now x ⊆ r ∈ s for some level r by Lemma 3.8; and
r ⊆ s ∈ ¶a by Lemma 3.4, so r ∈ ¶a by Lemma 3.2 and hence r ∈ h; so
x ⊆ r ∈ (s ∩ h), i.e., x ∈ ¶(s ∩ h). �

Proposition 8.6 (RF). LT holds.

Proof. It suffices to prove Stratification. Fix a, and let h witness
Hierarchy, i.e., (∀k ⊆ h)(¶k ∈ h ∨ a ⊆ ¶k). Let k = {s ∈ h : Lev(s)}. By
Lemma 8.5.3, ¶k is a level. Now if ¶k ∈ h, then ¶k ∈ k, contradicting
Lemma 8.5.1; so a ⊆ ¶k. �
This last proof helps to explain the intuitive idea behind RF’s axiom
Hierarchy.42 Roughly, the h guaranteed to exist by Hierarchy has this
property: for any initial sequence of levels k ⊆ h, the next level after all
of them is ¶k; and if a is not a subset of ¶k, then ¶k is in h; and hence (but
here I invoke a transfinite induction) the members of h are all the levels up
to the first level including a. In short, the fundamental idea behind RF is
quite elegant.

8.4. Derrick and Potter. As mentioned in Section 2, my definition of level
is inspired by Derrick and Potter,43 but I have simplified it. Here is a little
more detail about that simplification. In his 1990 book, Potter explicitly built
on Scott’s 1967 theory and also on Derrick’s unpublished lecture notes.44

42Cf. Montague et al. (unpublished: 162).
43See especially Potter (1990, pp. 16–20 and 2004, pp. 41–7).
44Potter (1993, pp. 183–4, 1990, p. 22, and 2004, p. vii, 54).
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Now, Scott’s Accumulation axiom (see Section 8.1) formalizes the claim that
‘a given level is nothing more than the accumulation of all the members and
subsets of all the earlier levels’.45 This suggests the use of the Acc-operator,
and so Potter offers Definition 8.3.46 Potter then supplies the definition of
history and level given in Definition 2.2, but using Acc rather than ¶. So,
Potter stipulates that h is a history iff (∀x ∈ h)x = Acc(x ∩ h), and that s is
a level iff s = Acch for some history h. Potter then proves that, so defined,
the levels are well-ordered. And his own theory of levels is, in effect, just
LT, with this slightly different explicit definition of ‘Lev’.47 But the use of ¶,
rather than Acc, simplifies things significantly, as illustrated by the brevity
of Section 3.

Appendix A. Adding urelements In this paper, I restricted my attention to
pure sets.48 This was only for ease of exposition; in this appendix and the
next, I will remove this simplifying assumption.

To accommodate urelements, we must tweak the Basic Story. The easiest
way to do this (which I revisit in Appendix B) is to assume that the urelements
are ‘always’ available to be collected into sets:

The Urelemental Story. Sets are arranged in stages. Every set is found at
some stage. At any stage s: for any things, each of which is either a set
found before s or an urelement, we find a set whose members are exactly
those things. We find nothing else at s.

To formalize this Story, we need a new primitive predicate, enabling us
to distinguish sets from urelements: we take Set as primitive, and define
Ur(x) := ¬Set(x). Stage Theory with Urelements, STU, now has six
axioms:49

Empty-U (∀u : Ur)∀x x /∈ u,
Ext-U (∀a : Set)(∀b : Set)(∀x(x ∈ a ↔ x ∈ b) → a = b),
Order ∀r∀s∀t(r < s < t → r < t),

Staging-U (∀a : Set)∃s a 	 s,
Priority-U ∀s(∀a : Set)(a 	 s → (∀x ∈ a)(Ur(x) ∨ x ≺ s)),

Spec-U ∀F ∀s((∀x : F )(Ur(x) ∨ x ≺ s) →
(∃a : Set)(a 	 s ∧ ∀x(F (x) ↔ x ∈ a))).

45Scott (1974, p. 209).
46Potter (1990, p. 16 and 2004, p. 41, 50).
47There are three other small differences: (1) Potter allows urelements; (2) he provides a

first-order theory; and (3) he offers a slightly more restricted version of Separation, whose
second-order formulation is ∀F (∀s : Lev)∃b∀x(x ∈ b ↔ (F (x) ∧ x ∈ s)), but this trivially
entails the unrestricted version of Separation given (Potter’s version of) Stratification.

48Montague (1965, p. 139), Scott (1974, p. 214), and Potter (1990, 2004) accommodate
urelements from the outset.

49As in footnote 2: STU gives us a stage s ‘for free’, so that {x : Ur(x)} exists by Spec-U.
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Empty-U says that no urelement has any members; the other axioms
relativise ST to sets. As in Section 1, any cumulative hierarchy obviously
satisfies STU, on the assumption that the urelements are all ‘always’ available
to be arbitrarily collected into sets.

We obtain Level Theory with Urelements, LTU, by tweaking LT’s key
definitions. Specifically, I offer the following re-definition:50

Definition A.1 (For Appendix A only). Say that a is potent iff
∀x((Ur(x) ∨ (∃c : Set)x ⊆ c ∈ a) → x ∈ a). Let ¶a := {x : Ur(x) ∨ (∃c :
Set)x ⊆ c ∈ a}, if it exists. Say that Hist(h) iff (∀x ∈ h)x = ¶(x ∩ h). Say
that Lev(s) iff (∃h : Hist)s = ¶h.

The axioms of LTU are then Empty-U, Ext-U, Stratification (with ‘Lev’ as
redefined), and:51

Sep-U ∀F ∀a(∃b : Set)∀x(x ∈ b ↔ (F (x) ∧ x ∈ a)).

The proofs of Sections 3 and 4 go now through with trivial changes.
Specifically, the (redefined) levels are well-ordered, and STU and LTU make
exactly the same demands on sets and urelements.

The (quasi-)categoricity results of Section 6 also carry over to LTU. Let
A and B be models of LTU in full second-order logic, and suppose there is a
bijection between their respective collections of urelements, UrA and UrB.
This bijection can be lifted to a quasi-isomorphism: A and B are isomorphic
‘so far as they go’, but the levels of one may outrun the other. This external
result can also be ‘internalised’, yielding results analogous to Theorems 6.2
and 6.3.

Note that LTU, like LT before it, takes no stance on the height of
the hierarchy. In particular, it has no version of Replacement. In this
regard, LTU differs sharply from ZF(C)U, which is something like the
‘industry standard’ for iterative set theory with urelements. It is particularly
noteworthy that LTU allows that the set of urelements may be larger than any
pure set.52 (For a trivial example, suppose there are exactly three urelements
and exactly two levels; for a less trivial example, suppose there are exactly
��+1 urelements but only an � + � sequence of levels.)

Appendix B. Adding absolutely infinitely many urelements The Urele-
mental Story accommodates urelements in a humdrum way. However,
there has been recent interest in a less humdrum approach, according
to which there are absolutely infinitely many urelements. Here is a brisk,

50The first level is therefore {x : Ur(x)}. This follows Montague (1965, p. 139), Potter
(1990, p. 16, and 2004, p. 41). By contrast, Scott’s (1974, p. 214 first level is ∅, and the
urelements are members of every subsequent level.

51Together, Stratification and Sep-U deliver the existence of {x : Ur(x)}; see the previous
two footnotes.

52LTU could therefore be used in place of, e.g., Menzel’s ZFCU′ (2014, pp. 67–71), which
is designed to accommodate the claim that the set of urelements is not equinumerous with
any pure set.
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three-premise argument in favour of that approach, inspired by Christopher
Menzel:53

(a) There are absolutely infinitely many levels in the cumulative hierarchy.
(b) There are at least as many ordinals as there are levels in the cumulative

hierarchy.
(c) Ordinals are not really sets; they are urelements.

Each premise is not implausible,54 and they jointly entail that there are
absolutely infinitely many urelements. In this appendix, I will explore that
idea (without endorsing it).

B.1. Preliminary motivations and observations. There is an immediate
technical issue: in this kind of cumulative setting, no set has absolutely
infinitely many members.55 This follows from a simple version of Cantor’s
Theorem. For reductio, suppose that some set, a, has absolutely infinitely
many members. As discussed in Section 6, this entails that ∃∞x x ∈ a, i.e.,
there is a map, P, such that ∀x P(x) ∈ a and (∀y ∈ a)∃!x P(x) = y. By P’s
injectivity and Separation,56 there is some d = {x ∈ a : x /∈ P–1(x)}. Since
P(d ) ∈ a, contradiction follows familiarly.

So: if there are absolutely infinitely many urelements, then there is no set
of all urelements.57 But the existence of such a set is a trivial consequence
of Spec-U, as laid down in Appendix A. So, those who think that there
are absolutely infinitely many urelements must reject Spec-U. Furthermore,
since Spec-U follows from the third sentence of the Urelemental Story of
Appendix A, they must change their story.

Many alternative stories are possible, but the simplest approach is simply
to bolt a Limitation of Size principle onto the Urelemental Story, insisting
that the Basic Story remains correct of the pure sets, whilst denying that any
set is absolutely infinite. This leads to the following:58

53Menzel (1986, p. 41ff); cf. Rumfitt (2015, pp. 271–5). Menzel (2014, p. 57) also offers a
second (very different) argument to the same conclusion.

54Claim (a) can be motivated by a principle of plenitude concerning sets. Claim (b) can be
motivated by combining the fact that the levels of any (pure) cumulative hierarchy are well-
ordered (see Section 5) with the idea that any system of well-ordered objects exemplifies an
ordinal (provided that the objects are all members of some set). Claim (c) can be motivated
by a kind of platonistic structuralism, according to which ordinals are indeed objects, but
not sets, since sets have structure which is not purely order-theoretic. For the record, I do not
subscribe to this kind of platonistic structuralism.

55Pace Menzel (1986, pp. 44–51, 2014, pp. 71–9). Note that my argument does not involve
Powersets (which Menzel ultimately rejects). Menzel escapes formal inconsistency, whilst
retaining (a first-order version of) Separation, only because his set-theoretic object language
has no way to pick out a suitable map, P, which witnesses the absolute infinity of his set
{x : Ur(x)}.

56I take it that rejecting Separation is not an option in this setting; though see Level Theory,
Part 3 for an approach which rejects Separation.

57Uzquiano (2015, pp. 330–1) also suggests the use of a set theory with urelements but no
set of urelements, though for somewhat different reasons.

58Cf. Uzquiano (2015, p. 331).
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The U∞relemental Story. Sets are arranged in stages. Every set is found at
some stage. At any stage s: for any things—provided both that (i) there
are not absolutely infinitely many of them, and that (ii) each of them is
either a set found before s or an urelement—we find a set whose members
are exactly those things. We find nothing else at s. (NB: since the Basic
Story is correct of the pure sets, we do not find absolutely infinitely many
pure sets before s.)

In the remainder of this appendix, I will briefly sketch (equivalent) stage-
theoretic and level-theoretic formalizations of this Story. For readability, I
leave all proofs to the reader, with hints in footnotes.

B.2. The stage-theoretic approach. To axiomatize the U∞relemental Story,
we need a predicate, ‘Pure’, to pick out the pure sets (cf. Section 6). Since
we have assumed that the Basic Story holds of the pure sets, we can define
‘Pure’ explicitly:

Definition B.1 Say that a is pure, Pure(a), iff both Set(a) and there is
some transitive c ⊇ a whose members are all sets.

To axiomatize the U∞relemental Story, we also need a way to formalize ‘there
are absolutely infinitely many Φs’. There are familiar concerns about the
possibility of formalizing this idea.59 Nonetheless, if there are absolutely
infinitely many Φs, then certainly ∃∞xΦ(x) (cf. Section 6). Conversely, if
∃∞xΦ(x), then no property can have more instances than Φ. So, ‘∃∞xΦ(x)’
will serve as our proxy for ‘there are absolutely infinitely many Φs’.60

I can now lay down the theory STU∞ . Its axioms are Empty-U, Ext-U,
Order, Staging-U, Priority-U, and the following:

Spec-U∞ ∀F ∀s((¬∃∞xF (x) ∧ (∀x : F )(Ur(x) ∨ x ≺ s)) →
(∃a : Set)(a 	 s ∧ ∀x(F (x) ↔ x ∈ a))),

LoS-U∞ (∀a : Set)¬∃∞x x ∈ a,
Pure-U∞ ∀F ∀s((∀x : F )(Pure(x) ∧ x ≺ s) → ¬∃∞xF (x)),

Many-U∞ ∃∞xUr(x).

In brief: Spec-U∞ restricts Spec-U to capture conditions (i) and (ii) of the
U∞relemental Story; LoS-U∞ enshrines Limitation of Size, which follows from
condition (i) plus the fact that ‘we find nothing else’ at any stage; Pure-U∞
formalizes the parenthetical ‘NB’ of the Story; and Many-U∞ formalizes the
claim that there are absolutely infinitely many urelements.

B.3. The level-theoretic approach. STU∞ is a multi-sorted, stage-theoretic,
formalization of the U∞relemental Story. That Story can instead be given a
single-sorted formalization, LTU∞ . To do this, I start by tweaking LT’s key
definitions:

59See, e.g., McGee (1992, p. 279).
60Very little of what I say depends upon this particular choice of proxy. In particular, I rely

upon its logical properties only when claiming that both STU∞ and LTU∞ prove Sep-U, and in
my remarks on the quasi-categoricity of LTU∞.
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Definition B.2 (For Appendix B only). Say that a is potent iff (∀x :
Set)(∃c(x ⊆ c ∈ a) → x ∈ a). Let ¶a = {x : Set(x) ∧ ∃c(x ⊆ c ∈ a)}, if
it exists. Say that Hist(h) iff (∀x ∈ h)x = ¶(x ∩ h). Say that Lev(s) iff (∃h :
Hist)s = ¶h.

Using these redefinitions, we can prove analogues of Lemmas 3.4–3.9 from
Section 3. Specifically, given Ext-U and Sep-U, we can prove that the levels
(so defined) are potent, transitive, pure,61 and well-ordered by ∈.

I can now lay down LTU∞ . It uses a primitive one-place function symbol, L,
where ‘La’ should be read as a’s level-index. (I discuss the use of this primitive
in Section B.4, below.) Then LTU∞ has six axioms: Empty-U, Ext-U, LoS-U∞ ,
Many-U∞ , and two axioms governing L:

Leveller (∀a : Set)((∃s : Lev)La = s ∧
(∀x : Set)(x ∈ a → Lx ∈ La) ∧
(∀s : Lev)(s ∈ La→(∃x : Set)
(x∈a ∧ s⊆Lx))),

Consolidation ∀F ((¬∃∞xF (x) ∧ ∃a(∀x : F )(Ur(x) ∨ Lx ∈ a)) →
(∃b : Set)∀x(F (x) ↔ x ∈ b)).

To understand these axioms, note that LTU∞ guarantees that the (pure)
levels are well-ordered by membership.62 Now, Leveller ensures that the
levels index the sets; intuitively, a’s level-index is the least level greater than
the level-index of every set in a. Consolidation then allows us to find all the
impure sets we would want to find ‘at’ any given level. Finally, note that
LTU∞ proves a pure-analogue of Stratification:63

Lemma B.3 (LTU∞). If a is pure, then a ⊆ La.

Consequently, LTU∞ ’s pure sets can be thought of as satisfying LT. Indeed, if
we define ‘x ε y’ as ‘Pure(x) ∧ Pure(y) ∧ x ∈ y’, then LTU∞ � LT(Pure, ε),
as defined in Section 6. It follows that LTU∞ is externally and internally
(quasi-)categorical: any two hierarchies satisfying LTU∞ have quasi-
categorical pure sets; moreover, if there is a bijection between the hierarchies’
urelemental bases, their impure sets are quasi-categorical. (However, LTU∞ ’s
analogue of Theorem 6.1 is more restricted: if M is a standard, set-sized,
model of LTU∞ , then |UrM| is regular.)64

In fact, LTU∞ and STU∞ are provably equivalent, concerning sets and
urelements. To prove that LTU∞ interprets STU∞ , tweak the ∗-translation

61Since they are transitive, they witness their own purity.
62To see this, note LTU∞ proves Sep-U, and combine this with the remarks after Definition

B.2.
63Use induction on levels, together with the second conjunct of Leveller.
64Assuming Choice. Proof. Letκ = |UrM|. By Consolidation, every smaller-than-κ subset

of UrM is in SetM. So κ is infinite, by Many-U∞. For each  < κ, there are κ subsets of
UrM with cardinality , so that κ ≤ |SetM|. So if cf(κ) < κ, then by König’s Theorem κ <
κcf(κ) ≤ |SetM|, contradicting Many-U∞; hence cf(κ) = κ. (Thanks to Gabriel Uzquiano for
suggesting I consider how LTU∞ interacts with regular cardinals.)
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of Section 4, so that (x 	 s)∗ := Lx ⊆ s.65 It is then easy to show that
LTU∞ � STU∞

∗ (cf. Lemma 4.2).
To show that STU∞ interprets LTU∞ , first note that STU∞ proves Sep-U and

the converse of Priority-U (cf. Lemmas 4.3 and 4.4). Then tweak Definition
4.5 (cf. Definition B.2):

Definition B.4 (For Appendix B only). Let š := {x ≺ s : Pure(x)}. Say
that a is a slice iff a = š for some s.

It follows that the slices are the levels (in the senses of Definitions B.2 and
B.4; cf. Lemma 4.7).66 We can then interpret LTU∞ ’s unique primitive, L, via
�, defined as follows:67

Definition B.5. For each set a, let �a :=
⋂
{š : a 	 s ∧ ¬∃r(a 	 r < s)}.

Theorem B.6 STU∞ � φ� iff LTU∞ � φ, for any LTU∞ -sentence φ, where φ�

is the formula which results from φ by replacing each instance of L with �.

The upshot is that no information about sets or urelements is lost or gained
in moving from STU∞ to LTU∞ . Since any hierarchy which is described by the
U∞relemental Story satisfies STU∞ , it also satisfies LTU∞ . And LTU∞ is quasi-
categorical. Our work on the U∞relemental Story is complete.

B.4. Eliminating primitives. Or rather: almost complete. Given the dis-
cussion of Section 1, we may want to eliminate LTU∞ ’s unique primitive,
L. This is easily done within second-order logic: just conjoin Leveller and
Consolidation, and bind L with a (second-order) existential quantifier. But
if we are willing to make some further assumptions, then we can eliminate
L using certain first-order functions.68

Roughly, a ranking-function: (1) has a transitive domain (setting aside
urelements); and (2) behaves like L where defined. More formally:

Definition B.7. Say that a function f is a ranking-function iff, for all
a ∈ dom(f), both:

(1) Set(a) and (∀x : Set)(x ∈ a → x ∈ dom(f)); and
(2) Lev (f(a)) and (∀x : Set)(x ∈ a → f(x) ∈ f(a)) and (∀s : Lev)(s ∈
f(a) → (∃x ∈ a)s ⊆ f(x)).

65Stipulate that (Set(x))∗ := Set(x).
66For the analogue of Lemma 4.6: Ext-U, Pure-U∞, and Spec-U∞ guarantee that š exists for

each stage s; in clauses (2) and (3), the quantifier ‘∀a’ becomes ‘(∀a : Pure)’; and note that
each slice witnesses its own purity.

67Since STU∞ does not prove that all stages are comparable (cf. the discussion of Boolos’s
Net from Section 8.2), it takes several steps to vindicate Definition B.5. First: show that
stages obey <-induction. Second: show that if a � s and ¬∃r(a � r < s) and a � t and
¬∃r(a � r < t) then š = ť; it follows that �a is a slice. Third: combine this with the fact that
the slices are levels, to show that � behaves like L.

68Lévy and Vaught (1961, p. 1047) and Uzquiano (1999, p. 299) present a somewhat
similar method for defining the rank of a set (via functions on ordinals). Here I treat first-
order functions as sets of ordered pairs in the normal way, and x ∈ dom(f) abbreviates
∃y 〈x, y〉 ∈ f. Of course, a fully first-order version of LTU∞ would need to define ‘∃∞xF (x)’
differently (cf. footnote 60).
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Say that Ranks(f, a) iff f is a ranking-function with a ∈ dom(f).

It is easy to show that ranking-functions agree wherever they are defined,
i.e.:

Lemma B.8 (Ext-U, Sep-U). If Ranks(f, a) and Ranks(g, a), then f(a) =
g(a).

We can now replace Leveller, in LTU∞ , with (∀a : Set)∃f Ranks(f, a).
Note that this claim is independent of LTU∞ : it guarantees that every set
is a member of some set, and so guarantees that the hierarchy has no
final stage (cf. Endless from Section 7). Still, this allows us to define
La :=

⋂
{f(a) : Ranks(f, a)}. We can use this definition in Consolidation,

and prove Leveller via Definition B.7.
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