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In this paper, we address the linear stability analysis of a confined potential
vortex with a free surface. This particular flow has been recently used by Tophøj
et al. (Phys. Rev. Lett., vol. 110(19), 2013, article 194502) as a model for the
swirling flow of fluid in an open cylindrical container, driven by rotating the
bottom plate (the rotating bottom experiment) to explain the so-called rotating
polygons instability (Vatistas J. Fluid Mech., vol. 217, 1990, pp. 241–248; Jansson
et al., Phys. Rev. Lett., vol. 96, 2006, article 174502) in terms of surface wave
interactions leading to resonance. Global linear stability results are complemented by
a Wentzel–Kramers–Brillouin–Jeffreys (WKBJ) analysis in the shallow-water limit as
well as new experimental observations. It is found that global stability results predict
additional resonances that cannot be captured by the simple wave coupling model
presented in Tophøj et al. (2013). Both the main resonances (thought to be at the root
of the rotating polygons) and these secondary resonances are interpreted in terms of
over-reflection phenomena by the WKBJ analysis. Finally, we provide experimental
evidence for a secondary resonance supporting the numerical and theoretical analysis
presented. These different methods and observations allow to support the unstable
wave coupling mechanism as the physical process at the origin of the polygonal
patterns observed in free-surface rotating flows.

Key words: surface gravity waves, vortex instability, waves in rotating fluids

1. Introduction
Rotating free-surface flows are known to offer rich dynamics which can lead to

spectacular symmetry breaking of the free surface. A well-known example of such a
behaviour can be seen in a simple experiment consisting of a cylindrical container
with a rotating bottom, where spontaneous symmetry breaking, leading to rotating
polygonal shapes, takes place (Vatistas 1990; Jansson et al. 2006). Recently, Tophøj
et al. (2013) have proposed a general mechanism for the emergence of the rotating
polygons in terms of surface wave interactions. In their study, the flow in the rotating
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bottom experiment is modelled by an axisymmetric potential vortex (purely azimuthal
velocity profile proportional to 1/r) following experiments and theoretical arguments
by Bergmann et al. (2011) and Tophøj & Bohr (2013). Based on the potential flow
assumption, an instability mechanism associated with the coupling of centrifugal
modes (near the centre of the cylinder) and gravitational modes (near the lateral
walls) was developed into a simple theory for rotating polygons, which we shall refer
to as the Tophøj model.

In addition such set-ups can show symmetry breaking of the free surface in the
form of switching and sloshing. The switching phenomenon corresponds to a temporal
alternation between a polygonal state (only the elliptical case has been reported) and
an axisymmetric state (Suzuki, Iima & Hayase 2006; Iima & Tasaka 2016). The
Tophøj model has recently been shown by Iima & Tasaka (2016) to be relevant for
the rotating bottom experiment in terms of frequencies and mode structure predictions,
which confirms that the potential model captures the essence of the instability leading
also to the switching phenomenon. In the case of sloshing, as reported by Iga
et al. (2014), the free surface also breaks axial symmetry intermittently, but the
non-symmetric state has strong deformations close to the outer wall in contrast with
the rotating polygons where free-surface deformations are located close to the vortex
centre. An explanation of the sloshing phenomenon is proposed by Fabre & Mougel
(2014) using an extension of the Tophøj model to the Rankine vortex.

The Tophøj model only selects specific layers of the flow and thus does not give an
accurate description of the shape of the unstable surface. The global stability problem,
taking into account the whole free-surface shape, was briefly mentioned in Tophøj
et al. (2013) and in Mougel, Fabre & Lacaze (2014) but not explored in detail. In the
present paper, we study the global stability problem presented in § 2 and show that,
in addition to the modes taken into account in the Tophøj model, modes involving
more complex wave structures appear. We show this by giving a detailed report of
the instability maps and the associated global mode structures (§ 3), a new theoretical
interpretation of the instability mechanism which holds for both the rotating polygons
and the higher-order shapes by means of Wentzel–Kramers–Brillouin–Jeffreys (WKBJ)
analysis in the shallow-water limit (§ 4) and we finally report the first experimental
observation of a free-surface polygonal structure with a more complex shape (§ 5).

2. Global stability approach
Let us consider a cylindrical tank of radius R partially filled with water. At rest, the

free surface is horizontal due to the effect of gravity g. The associated filling height
is denoted by H. We are interested here in instabilities observed in experiments when
the bottom plate of the tank is set into rotation (Vatistas 1990; Jansson et al. 2006).
As observed by Bergmann et al. (2011), the underlying flow generated by such an
apparatus can be well described by a potential vortex in the case of strong rotations
of the bottom plate.

2.1. General equations for free-surface potential flows
In this section, we derive the general equations governing the motion of an inviscid
fluid in the case of a potential flow with a free surface. The problem is solved in a
cylindrical coordinate system (r, θ, z). Denoting by Φ the velocity potential which is
defined by U = ∇Φ, Laplace’s and Bernoulli’s equations apply in the fluid volume
and read,

∂2Φ

∂r2
+

1
r
∂Φ

∂r
+

1
r2

∂2Φ

∂θ 2
+
∂2Φ

∂z2
= 0, (2.1a)
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FIGURE 1. Typical free-surface shapes (2.4c) obtained for a given fluid volume and
increasing values of ξ/R from left to right: ξ/R→ 0, ξ/R= 0.1, ξ/R= 0.3, ξ/R= 0.5.

∂Φ

∂t
+

1
2
∇Φ · ∇Φ +

P
ρ
+ gz= const, (2.1b)

with P the pressure (relative to atmospheric pressure) and ρ the density of the fluid.
We now define the free-surface position by the zero level of the implicit function
H(r, θ, z, t)= h(r, θ, t)− z with h the vertical height of the free surface and z= 0 at
the bottom of the tank. The kinematic and dynamic boundary conditions on the free
surface can therefore be written as

∂H
∂t
+∇Φ · ∇H= 0, at H(r, θ, z, t)= 0, (2.2a)

P= γC, at H(r, θ, z, t)= 0, (2.2b)

with γ the surface tension and C the curvature of the free surface. In the following,
the surface tension will be omitted based upon experimental results by Jansson et al.
(2006) which indicate that surface tension does not play a crucial role in the formation
of the polygonal shape (at least for a set-up with R∼ 15–20 cm).

2.2. Base flow
As discussed previously, we suppose that the base flow is entirely azimuthal,
corresponding to a steady and axisymmetric potential vortex, for which the velocity
field can be written as

U = Γ /(2πr)eθ , (2.3)

where Γ is the circulation of the flow. The singularity at r = 0 induces a strong
decrease of the pressure near the centre of the tank which leads to the formation of
a dry area close to the axis of symmetry (see figure 1). The velocity potential of the
base flow and the associated pressure and free-surface height then take the form

Φ0(θ)=
Γ

2π
θ, (2.4a)

P0(r, z)
ρ
=

1
2

(
Γ

2πR

)2

(R2/ξ 2
− R2/r2)− gz, (2.4b)

h0(r)=
1
2g

(
Γ

2πR

)2 (R2

ξ 2
−

R2

r2

)
, (2.4c)

with ξ the size of the inner dry area, meaning that solution (2.4) is only valid for r>ξ .
For a given volume of fluid, examples of free-surface shapes are shown in figure 1 for

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

34
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.341
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various values of ξ/R, and where ζ = h0(R). The conservation of the volume between
the state at rest and the base flow can be written as πR2H=

∫ R
ξ

2πh0(r)r dr. This leads
to the following expressions for ζ and Γ

ζ

R
=

H
R

1− 2
ξ 2 ln

R
ξ

R2 − ξ 2


−1

, (2.5a)

Γ

2π
√

gR3
=

ξ
√

2H/R√
R2 − ξ 2 − 2ξ 2 ln

R
ξ

, (2.5b)

parametrized by the normalized radius of the dry area ξ/R and the aspect ratio

a=H/R. (2.6)

Note that ζ/R and Γ /(2π
√

gR3) are both growing functions of ξ/R, hence any of
these parameters could be used to characterize the intensity of the vortex. In practice
we will present all results in terms of ξ/R as this parameter has a clear geometrical
significance, and was already used in Tophøj et al. (2013). Note that for application to
the rotating bottom experiment, the dimension of the dry radius ξ/R is controlled by
the angular frequency of the rotating bottom. A simple model based on conservation
of angular momentum was proposed in Tophøj et al. (2013) and extended in Fabre &
Mougel (2014) to relate these two parameters. We do not develop this argument here,
as our goal is not to stick to the specific rotating bottom experiment but to consider
the potential vortex model as a more general model which may be relevant to other
situations as well.

2.3. Perturbation equations
In order to investigate the stability properties of the potential vortex with a free
surface, we introduce infinitesimal perturbations of magnitude ε with eigenmode form

Φ(r, θ, z, t)=Φ0(θ)+ ε(φ(r, z)ei(mθ−ωt)
+ c.c.), (2.7a)

P(r, θ, z, t)= P0(r, z)+ ε(ρp(r, z)ei(mθ−ωt)
+ c.c.), (2.7b)

h(r, θ, t)= h0(r)+ ε(η(r)ei(mθ−ωt)
+ c.c.). (2.7c)

Note that for the sake of simplicity, the perturbation p has been chosen to have the
dimension of a pressure over density to remove ρ in the following which would only
appear with the pressure term. Here, m corresponds to the azimuthal wavenumber
and ω is the complex frequency. Any instability of the base flow is then associated
with a positive imaginary part of the frequency, denoted in the following ωi = Im(ω).
If at least one mode has a positive growth rate for given values of (a, ξ/R, m), the
base flow is unstable and a pattern having azimuthal shape m is expected to emerge
with growth rate ωi and rotation frequency ωr =Re(ω).

The perturbation equations are obtained by linearizing the set of equations (2.1)
around the base state defined in the previous section, subject to the boundary
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conditions (2.2) together with free slip conditions at the wall of the tank. This
leads to the following set of equations

1φ ≡

(
∂2

∂r2
+

1
r
∂

∂r
−

m2

r2
+
∂2

∂z2

)
φ = 0, in S, (2.8a)

i(ω−mΩ(r)) φ = p, in S, (2.8b)

i(ω−mΩ(r))η=−
√

1+ h′20∇φ · n, on ∂S0, (2.8c)

p= gη, on ∂S0, (2.8d)
∇φ · n= 0, on ∂S1 and ∂S2, (2.8e)

with h′0 the local slope of the unperturbed free-surface shape, which reads h′0=gc(r)/g,
where gc(r) = Γ 2/(4π2r3) corresponds to the centrifugal acceleration. Here Ω(r) =
Γ /(2πr2), S is the resolution domain i.e. (r, z) ∈ [ξ, R] × [0, h0(r)] and ∂S is its
border composed of the mean free surface ∂S0, the bottom wall ∂S1 and the lateral
wall ∂S2. In addition, n is defined as the outward normal to the fluid domain S and
the ∇ operator is now defined as ∇= [∂/∂r, im/r, ∂/∂z].

2.4. Numerical method
The set of differential equations (2.8) is solved by means of a finite element method.
For this purpose, we introduce test functions φ∗ and p∗ associated with φ and p
respectively. The variational formulation of the problem is obtained from (2.8a) and
(2.8b) under the form∫

S
[1φφ∗ − pp∗ + i(ω−mΩ(r))φp∗]r dr dz= 0, (2.9)

and should be valid for any set of test functions [φ∗, p∗]. The contribution∫
S 1φφ

∗r dr dz is then integrated by parts leading to
∫
∂S [∇φ · n]r ds −

∫
S ∇φ ·

∇φ∗r dr dz with s the curvilinear abscissa along the free surface and ∇ the complex
conjugate of ∇. Border terms are obtained using boundary conditions on ∂S0, ∂S1
and ∂S2 which are given by (2.8c)–(2.8e). From the impermeability condition on the
walls, contributions corresponding to ∂S1 and ∂S2 must be zero. Hence, only the
border term associated with the free surface is to be retained. Defining two bilinear
operators A and B as

A([φ∗, p∗], [φ, p]) =
∫
S
[∇φ ·∇φ∗ + pp∗ + imΩ(r)φp∗]r dr dz

−

∫
∂S0

imΩ(r)

g
√

1+ h′0
2
pφ∗r ds, (2.10a)

B([φ∗, p∗], [φ, p]) = i
∫
S
φp∗r dr dz− i

∫
∂S0

1

g
√

1+ h′0
2
pφ∗r ds, (2.10b)

the variational formulation can be written as the generalized eigenvalue problem

A([φ∗, p∗], [φ, p])=ωB([φ∗, p∗], [φ, p]), (2.11)
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with eigenvector [φ, p] and corresponding eigenfrequency ω=ωr + iωi, which should
be valid for any set of test functions [φ∗, p∗]. It therefore allows us to obtain a
dispersion relation in the form ω=F(ξ/R, a,m).

Looking at the symmetries of the problem, we see that if [φ, p; ω] is a solution
then so is [φ̄, p̄; ω̄], where the bar denotes the complex conjugate. This implies that
the eigenvalues will be either pure real (waves) or pairs of complex conjugates (an
amplified and a damped mode). This property results from the time-reversal symmetry
of the inviscid modelling of the flow used here.

In practice, the problem is discretized by first building a mesh by triangulation of
the domain S , and then projecting the unknowns [φ, p] and the test functions [φ∗, p∗]
onto a basis of P1 elements (linear interpolation between the nodes). The resulting
matricial eigenvalue problem is eventually solved using a shift-and-invert method. All
these operations are performed using the finite element software FreeFEM++ (see
Hecht 2012).

3. Global stability results
3.1. General stability maps

Figure 2 displays an important result of our work, namely the mapping of the
instability regions in the parameter space (ξ/R, a, m) with 2 6 m 6 5. White areas
correspond to parameter regions in which the potential flow is stable and only neutral
waves (with real eigenvalues ω) are found. Coloured areas correspond to regions
where the flow is unstable, with grey levels indicating the corresponding amplification
rate. For all values of the azimuthal wavenumber m considered, it is observed that
instability occurs in a number of bands. The band with the higher position in the
figures, labelled (0, 0), is often the one with the largest instability region and highest
values of the growth rates. These larger bands will be referred as main resonances in
the following. Note that in this paper the term resonance denotes a linear instability
resulting from interaction between two waves with the same frequency. In addition
to these main resonances, a number of secondary resonances are observed for each
value of m. The latter consist of thinner bands with lower amplification rates, and
are always located at lower values of ξ/R (hence lower values of the vortex intensity
Γ ) than the main ones. In the figures the secondary resonances are labelled with
two integers (nc, ng). As will be explained in the next subsections, these two integers
refer to the numbering of the two waves whose interaction is responsible for the
resonance.

For wavenumbers m > 6, similar results are obtained, but with instability bands
becoming narrower and amplification rates becoming weaker. On the other hand the
cases m= 0 and m= 1 are found to be stable in the parameter range investigated in
figure 2 (see appendix A for a description of the waves existing in these cases).

Figure 3 shows a superposition of all the instability regions obtained for m = 2
to 4. Considering only the main resonances, the figure shows the same trends as
already presented in Tophøj et al. (2013) (see their figure 4b), where instability bands
with increasing values of m are successively crossed as the parameter ξ/R (hence the
circulation of the vortex) is increased. This trend is also consistent with the fact that,
in the rotating bottom experiment, polygonal patterns with an increasing number of
corners are successively encountered as the angular velocity of the bottom plate is
increased.

Note that in the strictly inviscid case, the number of secondary resonances is
theoretically infinite and the corresponding bands get thinner and closer to each
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FIGURE 2. Stability maps in the parameter space (a, ξ/R) for different values of m.
Grey levels correspond to normalized growth rate contours (ωi

√
g/R). A small amount

of viscous dissipation is introduced with C = 10−4 to filter out high-order secondary
resonances (see appendix B).

other as ξ/R approaches zero. For visual clarity of the results displayed in figures 2
and 3, an ad hoc procedure was employed to filter out these higher-order resonances.
This procedure corresponds to the introduction of a small amount of viscosity. It
is explained in appendix B, where it is shown that it has a limited effect on the
main resonances and the lowest-order secondary resonances for the value of viscosity
considered, while it damps the higher-order, less significant secondary resonances.
Note that only figures 2 and 3 (and results shown in appendix B) correspond to
potential viscous results, all the other results presented in this paper are purely
inviscid.

3.2. Wave families
As already stated, the white regions in figure 2 are occupied (in the purely inviscid
case) by stable modes with purely real frequencies ω. These modes actually consist of
two families of waves whose interaction is at the origin of the instability mechanism.
We first document the structure of these waves.

Figure 4 displays the dimensionless frequencies ωr
√

R/g of the eigenmodes as a
function of the dimensionless radius of the dry area ξ/R for the particular case a=0.3
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a
0.6 0.8 1.0

0.2

0.3

0.4

0.5

FIGURE 3. (Colour online) Stability map in the parameter space (a, ξ/R) for m = 2
(plain lines), m = 3 (dotted lines) and m = 4 (no lines). Coloured areas correspond to
positive growth rate. The main resonances are shown in blue. A small amount of viscous
dissipation is introduced with C= 10−4 to filter out high-order secondary resonances (see
appendix B).

–2
0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

2

4

FIGURE 4. Normalized frequencies ωr
√

R/g as a function of ξ/R for a= 0.3 and m= 3.
Squares at ξ/R= 0.25 correspond to mode structures shown in figure 5 (filled symbols)
and figure 6 (empty symbols).

and m = 3. The frequencies are clearly organized along two sets of branches with
different trends.

The first kind of branches are characterized by an increase of the frequency with
increasing ξ/R. The spatial structure of three different eigenmodes associated with this
wave family is shown in figure 5 for the parameters corresponding to the three filled
squares in figure 4. As can be seen on the views in a meridional plane, the structure of
these modes is mostly concentrated in the region close to the lateral wall of the tank,
where the free surface of the base flow is the flattest (see figure 1) as the restoring
force acting on the free surface is mostly induced by gravity. These modes are thus
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0 0.5 1.0

0.5

(a)

0 0.5 1.0

0.5

0 0.5 1.0

0.5

(b) (c)

FIGURE 5. Example of gravity modes obtained for a= 0.3, m= 3 and ξ/R= 0.25 (filled
squares in figure 4). Velocity potential contours (real part of φei(mθ−ωt)) on the free surface
as seen from a top view representation in the r–θ plane (top row) and in a meridional
cross-section in the r–z plane (bottom row) where the meridional cut corresponds to the
thin radial line in the corresponding top view figure. Levels are uniformly distributed
and dashed lines correspond to negative values. All the displayed structures correspond
to neutral waves (ωi

√
R/g= 0).

0 0.5 1.0

0.5

(a)

0 0.5 1.0

0.5

0 0.5 1.0

0.5

(b) (c)

FIGURE 6. Example of centrifugal modes for a = 0.3, m = 3 and ξ/R = 0.25 (empty
squares in figure 4). Contours and conventions are the same as in figure 5. All the
displayed structures correspond to neutral waves (ωi

√
R/g= 0).

recognized as gravity waves. Moreover, figure 5 shows that, at a given ξ/R, the higher
the mode frequency is the more complex its spatial structure is, with in particular an
increasing number of nodes in the radial direction. In the following, the corresponding
branches will be called Gn with n the number of nodes along the free surface in the
outer region. G0 therefore corresponds to the simplest gravity wave structure without
clear nodes (figure 5a).

The second kind of branches are characterized by a decrease of the frequency with
ξ/R. The spatial structures of three eigenmodes located along the three first branches
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FIGURE 7. (Colour online) Normalized frequencies ωr
√

R/g and growth rates ωi
√

R/g
from global stability as a function of ξ/R for a= 0.7 and m= 3. Along G0 branch which
is highlighted, black squares correspond to mode structures reported in figure 8.

of this family, for parameters corresponding to the empty squares in figure 4, are
displayed in figure 6. These modes have a rather different structure, as they are now
localized close to the dry area, where the free surface is almost vertical, i.e. where
the restoring force acting on the free surface is mostly induced by the centrifugal
acceleration. These modes are thus recognized as centrifugal waves. Similar to the
gravity waves, branches are associated with a different mode structure and differ
by the number of nodes on the free surface. In this case however, more complex
structures are found to correspond to smaller frequencies, a trend which can be
understood in the shallow-water limit (see appendix C, equation (C 29)). Centrifugal
wave branches will be denoted as Cn with n the number of nodes along the free
surface in the inner region (see figure 6).

3.3. Wave interaction
As could be observed in figure 4, at the locations where branches of gravity and
centrifugal waves cross, there is a small interval of ξ/R where one can observe wave
frequency merging. In such intervals, the waves which have otherwise real frequencies
interact. Such interactions result in the formation of a couple of complex conjugate
eigenvalues, and therefore to an instability. In this paragraph, we investigate the details
of these interactions and the structure of the resulting eigenmodes.

Let us first consider a rather deep-water case corresponding to a = 0.7 and m =
3. Figure 7 displays the frequencies as function of ξ/R. In this case, the real parts
(upper plot) shows the same trends as already described in figure 4, with two sets of
branches interacting as they cross each other. The imaginary parts (lower plot) confirm
the existence of an unstable mode in each of the intervals where the waves interact.
As already explained these unstable modes are always associated with their stable
counterparts with complex conjugate frequencies, but the latter are not considered any
longer. Note that in the upper plot, the crossings leading to instabilities are labelled by
two indexes (nc, ng) corresponding respectively to the numbering of the corresponding
branches of centrifugal and gravity waves, respectively.
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FIGURE 8. Evolution of the structure of G0 when ξ/R increases for a= 0.7 and m= 3.
The corresponding frequency evolution is highlighted in figure 7 and the structures shown
here correspond to the black squares on figure 7. Contours and colour conventions are the
same as in figure 5.
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To investigate how the interaction takes place, let us follow the branch associated
with the primary gravity wave G0, which is highlighted in figure 7. Figure 8 displays
the structure of the eigenmode at four points along this branch, which corresponds
to the square symbols in figure 7. Starting from ξ/R= 0.5 (figure 8d) is recognized
as the pure G0 mode as described in § 3.2, with a structure localized near the upper
part of the free surface and zero nodes along the free surface. Progressing backwards
along this branch, an interaction with the C0 branch is observed for ξ/R ≈ 0.417.
At this point the structure of the eigenmode (figure 8c) clearly shows the presence
of both a gravity wave with the same structure as in the previous plot, and of
a centrifugal wave localized around the lower part of the free surface, with the
characteristic structure of the C0 branch already displayed, i.e. without any nodes
along the free surface. This instability is the one related to the rotating polygons
(here a triangle) according to Tophøj et al. (2013). Note that the gravity wave and
centrifugal wave component display a phase shift of a quarter of wavelength in the
azimuthal direction, a characteristic of the instability which will be investigated in
more detail in the following. Progressing further towards lower values of ξ/R, the
structure reverts to that of the pure G0 wave (figure 8b) until an interaction with
the C1 branch arises for ξ/R ≈ 0.278. At this point, the structure of the eigenmode
(figure 8a) is composed of both the gravity wave G0 and the centrifugal wave C1
characterized by the existence of one node in the lower part of the free surface.

It is noteworthy that for the rather deep case with a = 0.7 considered here, the
amplification rate associated with the secondary resonance (ng, nc)= (0, 1) is slightly
larger than that associated with the main resonance (ng,nc)= (0,0). This indicates that
some secondary resonances may be strong enough to be observed in the experimental
set-up for these rather deep-water cases. For a = 0.7, an experimental evidence of
secondary resonance (ng, nc) = (0, 1) corresponding to m = 3 (triangular pattern)
will indeed be discussed in § 5. Note however that for a given value of m and a
secondary resonances do not necessarily need to overcome the main instability to be
experimentally relevant as they appear for different values of parameter ξ/R.

As a second illustration, we now consider a shallow-water case corresponding to
a= 0.3 and illustrate the resonance mechanism for the wavenumber m= 2. Figure 9
depicts the real and imaginary parts of the frequency as function of ξ/R in the same
fashion as in figure 7. In this case, the most powerful secondary resonances occur
along the primary branch of centrifugal wave C0, which is highlighted in the figure.
Figure 10 illustrates the evolution of the eigenmode structure as one moves along
this branch. For ξ/R = 0.25 (figure 10f ) we observe the typical shape of the C0
centrifugal mode. When decreasing ξ/R to 0.19, a first resonance is encountered with
the G0 mode, leading to the structure illustrated in figure 10(e). As in figure 8(c),
this structure is the superposition of the G0 and C0 waves, with again a phase shift
of a quarter of wavelength in the azimuthal direction between the two components.
Moving again downwards along the branch, the structure of the C0 wave is recovered
(figure 10d) until a resonance occurs with the G1 branch (figure 10c). The same
scenario repeats as C0 is recovered again when ξ/R is further increased (figure 10b)
up to a resonance with the G2 branch (figure 10a).

To complete the description of the wave interaction process, figure 11 illustrates
the structure of the primary unstable mode for three values of ξ/R corresponding to
the lower bound (ξ/R = 0.17), centre (ξ/R = 0.19) and upper bound (ξ/R = 0.21)
of the instability interval (as identified by stars in figure 9). This figure allows us
to highlight two important features of the wave interaction process. First, as best
observed on the evolution of the free-surface displacements at r = ξ and r = R as
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FIGURE 9. (Colour online) Normalized frequencies ωr
√

R/g and growth rates ωi
√

R/g
from global stability as a function of ξ/R for a= 0.3 and m= 2. Along C0 branch which
is highlighted, empty squares (respectively stars), correspond to mode structures reported
in figure 10 (respectively figure 11).

function of θ (lower row), the phase shift ψ (defined in figure 11) between the
centrifugal wave and gravity wave components of the mode varies with ξ/R. At the
lower bound (figure 11a) the two components are nearly in phase (ψ ≈ 0). At the
centre of the unstable range corresponding to the maximum amplification, (figure 11b),
both waves are in quadrature (ψ ≈ π/(2m)) with the gravity wave leading. At the
upper bound just before restabilization (figure 11c), the two components end up out
of phase (ψ ≈ π/m). In figure 11 (bottom row), the free-surface displacement at
r= R is multiplied by 10 for visual clarity. This gives an order of magnitude of the
amplitude ratio between both waves and means that the amplitude of the centrifugal
wave is more than ten times larger than that of the gravity wave.

The second important feature illustrated in figure 11 is the existence of a critical
radius, defined as the location where the angular velocity of the mode ωr/m equals
that of the base flow Ω(r)= Γ /(2πr2), i.e.

rc =

√
mΓ

2πωr
. (3.1)

This location is displayed by a white circle in the lower plots of figure 11, and is
superposed on isocontours of the vertical displacement η at the free surface.

The critical radius is found to be located in an intermediate radial region in between
radial regions corresponding to gravity and centrifugal waves. In the present case of
potential base flow with azimuthal velocity evolving in 1/r (and z-independent), the
presence of the critical radius in the range [ξ,R] means that the global mode is slower
than the base flow at r= ξ and faster at r= R.

The fact that instabilities are only possible if gravity and centrifugal waves have
nearly the same frequency and have relative velocities with respect to the base
flow of opposite sign was already predicted by the Tophøj model which captures
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(a) (b)

(c) (d)

(e) ( f )

FIGURE 10. Evolution of the structure of C0 when ξ/R increases for a= 0.3 and m= 2.
The corresponding frequency evolution is highlighted in figure 9 and the structures shown
here correspond to the black empty squares on figure 9. Only velocity potential contours
from the top view representation are shown here. Conventions are identical to figure 5.

only the main resonances. This property actually turns out to be also a necessary
condition for secondary resonances. To illustrate this, we display in figure 12 the
region in the (ξ − ωr) plane for which a critical radius is present in the range [ξ, R]
(grey region), superposed on the dispersion relations for the case a= 0.3 and m= 3.
This figure confirms that all resonances (main and secondary) effectively occur in
a range of frequency where a critical radius is present. Note that outside of this
range, interactions between two families of waves are also possible but lead to stable
near resonances, meaning that the two branches of neutral waves repel and avoid
each other instead of merging and giving rise to an unstable mode. This feature
is observed in the lower left corner of figure 12 where the irregular behaviour of
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FIGURE 11. Evolution of the structure through the instability (0, 0) for m = 2 and
a = 0.3 (empty stars in figure 9). First row: top view representation for the velocity
contours (contours and colour conventions are the same as in figure 5). Second row:
free-surface displacement contours (real part of ηei(mθ−ωt)), white circles indicate the
position of the critical radius defined by rc =

√
mΓ /(2πωr). Third row: free-surface

displacements at r= ξ (plain line) and r= R (dashed line) as function of θ .

several branches can be explained as a series of near resonances between an almost
horizontal gravity wave branch and a number of centrifugal wave branches. Note that
these features where already captured by the simple Tophøj model. It is indeed a
characteristic feature of instability processes resulting from wave interactions (see. e.g.
Cairns (1979)). Such events become more salient in the shallow-water limit presented
in the following section.

4. Asymptotic study in the shallow-water limit
The instability mechanism is now discussed in the light of the shallow-water limit,

an asymptotic expansion allowing a simplification of the linear system. Here it is thus
assumed that horizontal scales are much larger than vertical scales, i.e. a is small
enough. The aim of this section is to take advantage of the simple shallow-water
framework to provide more insight of the instability mechanisms obtained from the
global results, namely main and secondary resonances. For that purpose, a WKBJ
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FIGURE 12. Normalized frequencies ωr
√

R/g as a function of ξ/R for a= 0.3 and m= 3.
The shaded area between dashed lines shows the region where a critical radius is present
in the fluid domain, i.e. ξ < rc<R. Upper dashed line corresponds to ωr=mΩ(ξ) (critical
radius at r= ξ ), lower dashed line corresponds to ωr =mΩ(R) (critical radius at r= R).

approach is derived in the limit of large m, allowing an analytic derivation of
approximate dispersion relations thanks to matched asymptotic methods. Details of
the WKBJ method are postponed to appendix C.

4.1. Shallow-water approximation
In the shallow-water approximation, the flow is supposed to be vertically confined and
the flow properties are weakly dependent upon the vertical coordinate. Thus, we can
infer an expression for the potential flow with the form

φ(r, z)≈ φ̂(r)
(

1+
K(r)

2
z2

)
. (4.1)

If K(r) is an order-one function, since z is assumed small with respect to the other
dimensions of the problem, the last term in (4.1) is effectively a small correction to an
otherwise two-dimensional flow. This ansatz also automatically satisfies the boundary
condition (2.8e) at the bottom. Inserting this expression into (2.8a) leads at leading
order to

12φ̂(r)+K(r)φ̂(r)= 0, (4.2)

where 12 ≡ (∂
2/∂r2

+ 1/r∂/∂r − m2/r2) is the two-dimensional Laplacian operator.

Recognizing that
√

1+ h′0
2
∇φ · n= ∂φ/∂z− h′0∂φ/∂r, where h0(r) is the unperturbed

free surface given by (2.4c), and using (4.1), (2.8d) and (2.8b), the kinematic boundary
condition (2.8c) leads at leading order to

h0K(r)φ̂(r)= h′0
dφ̂
dr
+
(ω−mΩ(r))2

g
φ̂(r). (4.3)

Inserting this latter expression into (4.2) eventually leads to a single ordinary
differential equation of the form

d2φ̂

dr2
+

(
1
r
+

h′0
h0

)
dφ̂
dr
−m2Λ(r)φ̂ = 0, (4.4)
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FIGURE 13. (Colour online) Instability map for the main resonance (0, 0) and for
m = 2, 3, 4 and 5. Comparison between the numerical solution of the shallow-water
equation, (4.4), (contours of normalized growth rate are shown in grey scales) and the
instability map obtained from the global stability approach detailed in § 2 (blue zones).

with

h0(r)=
1

2g

(
Γ

2πR

)2 (R2

ξ 2
−

R2

r2

)
, (4.5)

and

Λ(r)=
1
r2
−

1
gh0

(ω
m
−Ω(r)

)2
. (4.6)

The shallow-water equation, (4.4), can be solved numerically by means of a
shooting method and the instability map in the parameter space (a, ξ/R) is shown
in figure 13 for m ranging from 2 to 5. Here, only the main unstable interactions
are considered and compared to the global stability results. As can be observed
in figure 13, the shallow-water model captures the main features of the instability
map. In particular, the instability appears as successive bands in the parameter space
with an important influence of ξ/R. While the global stability highlights a clear
dependence of a on unstable regions, the shallow-water approximation only shows
a dependence of the growth rate of the instability. However, the obtained unstable
regions and growth rates predicted by the shallow-water model perfectly match the
global stability results for small a (see figure 13). The shallow-water limit therefore
appears as a good candidate to highlight some features of the instability.

4.2. WKBJ approximation for the shallow-water equation
The fact that the last term of the shallow-water equation, (4.4), is proportional to
m2 makes it well suited for a WKBJ approach for large m as explained in the
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FIGURE 14. Epicyclic frequencies obtained for a = 0.01 and ξ/R = 0.1. Thick lines
correspond to the normalized epicyclic frequencies (ω±/m)

√
R/g given by (4.7), dashed

line corresponds to the normalized critical frequency (ωc/m)
√

R/g. Grey area corresponds
to Λ> 0 (evanescent behaviour), white areas to Λ< 0 (oscillatory behaviour). The inset
shows a magnification near r= ξ .

appendix C. This kind of large m WKBJ approach has already been used by Ford
(1994) to study other velocity profiles of a shallow-water vortex with a free surface.
The WKBJ approach allows us to discuss the nature of the solutions of (4.4) based
upon the sign of Λ. For this discussion, ω is assumed to be real.

For a given ω/m, radial positions where Λ(ω/m, r) < 0 correspond to oscillatory
solutions while solutions are evanescent where Λ(ω/m, r) > 0. This leads us to
introduce the epicyclic frequencies ω±(r) (Le Dizès & Lacaze 2005) defined such as
Λ(ω±/m, r) = 0 for r ∈ [ξ, R], along which the WKBJ approximation breaks down.
From (4.6), one can obtain

ω±(r)
m
=Ω(r)

(
1±

√
1
2

(
r2

ξ 2
− 1
))

. (4.7)

Conversely, for a given ω/m, radial solutions corresponding to Λ(ω/m, r) = 0 are
the so-called turning points rti (with i = 1 or 2 in the present case) of the WKBJ
approximation. Moreover, one can define a critical frequency ωc(r)=mΩ(r) for which
the associated mode exhibits a critical radius at location r. For a given solution, the
critical radius rc=

√
mΓ /(2πω) delineates two radial regions where waves travel faster

and slower than the base flow as mentioned in the previous section.
Figure 14 shows the epicyclic frequencies together with the critical frequency as a

function of r/R for a= 0.01 and ξ/R= 0.1. In this figure, oscillatory and evanescent
behaviours of the solution correspond to white and grey zones respectively. Note
that the ωc curve lies in the evanescent region. Depending on the value of ω/m for
the mode considered, different radial configurations can be anticipated. In particular,
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FIGURE 15. (Colour online) (a) Epicyclic frequencies obtained for a = 0.01 and
ξ/R = 0.1 (same as figure 14) where the different possible configurations depending
upon the frequency values are shown in colours. The horizontal lines from top to
bottom respectively correspond to max(ω+(r)) (dotted), ωc(ξ) (dashed), ω+(R) (plain),
ωc(R) (dashed), ω−(R) (plain) and min(ω−(r)) (dotted). (b–e) Sketches of the obtained
configurations.

a horizontal line in figure 15(a), which corresponds to a given solution ω/m, may
cross (or not) epicyclic and critical frequency curves. This would indicate a change in
the behaviour of the solution (oscillatory versus evanescent) and a change in relative
velocity sign between the wave and the base flow respectively. Different configurations
of radial structures are obtained here, which are highlighted in figure 15(a) where
each configuration is identified by a colour (configurations I, II, III, IV). A sketch of
the radial structure of the solution for the different configurations (configurations I, II,
III, IV) is shown in figure 15(b–e). These different configurations are now described
in more details.

(i) Configuration I: Λ< 0 for all radial positions and no critical radius. The spatial
structure of the associated mode corresponds to the one shown in 15(b). For this
purely oscillatory configuration, we do not expect to find two well-separated wave
families.

(ii) Configuration II: Λ changes sign twice along the radial direction and no critical
radius. In this case, two oscillatory zones are present and separated by an
evanescent zone. This corresponds to figure 15(c). The oscillatory area in the
neighbourhood of ξ is associated with centrifugal waves while the oscillatory
area close to the external cylinder corresponds to gravity waves. As will be seen
these two wave families can be clearly distinguished due to the existence of the
evanescent spacial separation.

(iii) Configuration III: Λ changes sign twice along the radial direction and a critical
radius is present. In this case, two oscillatory zones are present and separated
by an evanescent zone which now includes a critical radius (figure 15d). This
configuration will be of main importance in the following discussion.

(iv) Configuration IV: Λ changes sign once along the radial direction and a critical
radius can be present. In this case, an oscillatory zone is present close to the
inner contact line, while the area enclosing the external cylinder is evanescent
(figure 15e). Note that this configuration could include or not a critical radius.
The distinction has not been performed in this paper for simplicity.

The location of these different configurations are now reported in figure 16 in
which non-dimensional frequencies are plotted as a function of ξ/R in the case
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FIGURE 16. (Colour online) Normalized frequencies ωr
√

R/g as function of ξ/R for
m= 5 and a= 0.01. Superposition of global stability results (black thick lines) and areas
corresponding to the different configurations presented in figure 15. Legends and colours
conventions are identical to figure 15.

m= 5 and a= 0.01. These values of a and m have been chosen to satisfy both the
shallow-water approximation and the WKBJ approximation, respectively. In figure 16,
black lines correspond to the solutions obtained with the linear stability analysis, and
the different zones discussed previously from the WKBJ analysis are delimited thanks
to ω±(R), min (ω−(r)), max (ω+(r)) and ωc(ξ). Eigenmodes exhibit a critical radius
if their dimensionless frequency lies in the interval [ωc(R), ωc(ξ)], a region delimited
by the dashed lines in figure 16. The general picture of the frequency branches
from the global stability in this shallow case (a = 0.01) is found to be qualitatively
similar to the one discussed in § 3 (a = 0.3). In particular, we recover gravity and
centrifugal wave branches, as well as resonances and near resonances. It has been
verified in figure 16 that wave crossings in region III indeed correspond to resonance
leading to instability (at ξ/R≈ 0.37, ω

√
R/g≈ 1.2 for instance), while features where

branches seem to cross in region II correspond to near resonances without instability
(at ξ/R≈ 0.14, ω

√
R/g≈−0.5 for instance). It is worth mentioning that the regions

were gravity waves and centrifugal waves coexist and are clearly distinguished,
correspond to region II and region III (see figure 16). This is in accordance with the
spatial structure obtained from the WKBJ analysis and shown in figure 15(c,d). In
region IV, only centrifugal branches are found in agreement with the WKBJ structure
shown in figure 15(e). In addition, it can be seen in figure 16 that wave families
(gravity and centrifugal) do not coexist in region I.

Once focusing only on regions II and III, it is interesting to note that the nature of
the wave interaction, leading to a resonance or a near resonance, respectively, depends
on the presence or not of a critical radius in the evanescent region of the mode.
We therefore recover the importance of the critical radius introduced in the previous
section (see figure 12 for instance).

We conclude that the predicted WKBJ structures are strongly correlated to the
global stability results and more precisely to the possible occurrence of instability.

In order to investigate the instability mechanisms in more depth, we now focus
on configuration III (corresponding to two wavy regions separated by an evanescent
region which includes a critical radius), and use asymptotic matching techniques
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FIGURE 17. (Colour online) Normalized frequencies ωr
√

R/g and growth rate ωi
√

R/g
in the case m= 5 and a= 0.01. Comparison between global stability (thick black lines),
numerical solution of the shallow-water equation (thin dotted line approximately on top of
the global results), WKBJ results (thick blue line) and the simplified dispersion relations
for the first centrifugal wave: ω = mΩ(ξ) −

√
mgc/ξ (open squares) and gravity waves:

mW2R(ω)=π/4+ ngπ with ng = 0, 1, 2 (filled squares).

for m � 1 to obtain approximate dispersion relations. Technical details associated
with the WKBJ method are reported in appendix C and the obtained dispersion
relation corresponds to (C 29). Only the case corresponding to the first centrifugal
wave (e.g. nc = 0) is discussed here. In this case (C 29) leads to

Dc(ω)Dg(ω)=

√
gc(ξ)

m
ξ

e−2mW12(ω), (4.8)

with

Dg(ω)= 1/ tan(mW2R(ω)+π/4), (4.9)

Dc(ω)=ω−mΩ(ξ)+
√

gc(ξ)
m
ξ
. (4.10)

and

W2R(ω)=

∫ R

rt2

√
−Λ(r) dr and W12(ω)=

∫ rt2

rt1

√
Λ(r) dr, (4.11a,b)

where W12(ω) characterizes the potential barrier separating the oscillatory regions
delimited by the two turning points rt1 and rt2, and W2R(ω) corresponds to the
external oscillatory region associated with gravity waves.

Solutions of (4.8) are compared to the numerical solutions of (4.4) and global
stability results for a= 0.01 and m= 5 in figure 17. From this figure, it can be seen
that the main features of the instability are well captured by the WKBJ approach
although the position of unstable resonances and associated growth rates are not
perfectly reproduced. In addition, figure 17 also shows the solutions corresponding
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FIGURE 18. (Colour online) Reflection coefficient R and normalized growth rate
ωi
√

R/g as function of ξ/R for m= 5 and a= 0.01. WKBJ results.

to Dc(ω) = 0 and Dg(ω) = 0, which fall on top of the solutions of the complete
dispersion relation (4.8) except close to resonances, and are recognized to correspond
to centrifugal and gravity waves respectively. Dispersion relation (4.8) therefore
describes two wave families which can interact if there natural frequencies are close.
The intensity of the coupling is found to be proportional to e−2mW12(ω) and vanishes
if the evanescent region is large or for large m. This latter trend is in qualitative
agreement with results shown in figures 3 and 13 where both the growth rate and
the size of the unstable bands are found to decrease with m.

In addition, the WKBJ theory allows us to compute the reflection coefficient of
a wave at a turning point rti, delimiting an oscillatory solution with an evanescent
region (see Billant & Le Dizès 2009; Park & Billant 2013, for instance). In the present
case for configuration III, the reflection coefficient of the gravity wave at rt2 can be
obtained and is shown in appendix C to read

R= |exp(i4mW2R(ω))|. (4.12)

This expression shows that R= 1 if ω is purely real, but may be different from one
otherwise. This can be seen in figure 18, which shows that the reflection coefficient is
unity where ωi = 0, and larger than unity for ωi > 0, i.e. for solutions corresponding
to either main or secondary unstable resonances. The instability mechanism for both
main and secondary resonances is therefore associated with wave over-reflection. This
process has already been described in several cases (see Acheson 1976; Lindzen &
Barker 1985; Takehiro & Hayashi 1992; Billant & Le Dizès 2009; Park & Billant
2013, for instance). The role of the critical radius on the reflection mechanism has
been highlighted in these studies and is also found to be crucial in the present
case. In addition the link between over-reflected waves and instability is discussed
by Takehiro & Hayashi (1992) and more recently by Billant & Le Dizès (2009). It
requires configuration of type III, i.e. two wavy regions separated by an evanescent
area, as well as an additional boundary (the wall at r = R or the contact line at
r = ξ in our case) to reflect back the over-reflected wave and therefore allowing for
multiple over-reflections.

This point of view of the instability mechanism in terms of over-reflection comes
as a complement of the interpretation of Tophøj et al. (2013) in terms of wave
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FIGURE 19. (Colour online) Experimental evidence for a secondary resonance in an
experiment with rotating bottom. Polygonal state m = 3, ng = 0 and nc = 1 obtained
for a = 0.7 and bottom plate rotation rate fb = 4.41 Hz. (a–e) Meridional cuts during a
period T=0.27 s where the green curve (respectively red) corresponds to the instantaneous
free surface position (respectively the free-surface position averaged over 23 periods). ( f )
Normalized radial displacement η̃r along the free surface as a function of z̃ = z/ζ .
η̃r is defined as the difference between instantaneous and mean free-surface positions
normalized by the maximum value. Thin lines depict instantaneous values corresponding
to (a–e), thick lines show the envelope obtained by averaging over 23 periods. (g)
Normalized radial displacement of the contact line on the bottom plate as function of
time.

interactions involving negative energy waves (Cairns 1979). In both theory the key
ingredients consist of two surface waves radially separated by a critical radius.

5. Secondary resonance: experimental evidence
As we have discussed above, the main resonance (ng, nc)= (0, 0) is typically found

to have the largest growth rate and would therefore be the best candidate for an
experimentally realizable state. Thus, the system would, at least qualitatively, be well
described by the simple interacting waves system introduced in Tophøj et al. (2013).
However, it was noted in § 3.3 that the scenario corresponding to the Tophøj model
does not capture all the instabilities of the system. For instance, figure 7 shows that
the secondary resonance (0, 1) is important for a deep-water example aspect ratio a=
0.7 and an appropriate range of ξ/R. This result indicates that secondary resonances
may be relevant experimentally, and in the following we shall show evidence that this
is indeed the case.

We used an experimental set-up consisting of a cylindrical tank of radius
R = 14.5 cm whose bottom can rotate at a controlled frequency. A more detailed
description of this experimental set-up can be found in Bach et al. (2014). In
figure 19, we show experimental results for the case a = 0.7 which is larger than
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the aspect ratios previously reported for such a large cylinder radius (Jansson et al.
2006; Bach et al. 2014). As will be evidenced in the following, figure 19 corresponds
to a secondary resonance (0, 1) for a triangular structure, i.e. m = 3. To reach this
state shown in figure 19 with a dry central core, we slowly increase the frequency
fb of the bottom plate up to a value fb = 4.41 Hz, with fixed cylinder wall and fixed
volume (corresponding to a = 0.7). Other procedures can lead to different states as
emphasized in Bach et al. (2014) and, indeed, proceeding e.g. by decreasing the
frequency from a large initial value, leads to a ‘wet’ state, where no part of the free
surface touches the bottom plate.

In the meridional view in figure 19(a–e) we see that the shape of the free surface
nearly repeats after a period T = 0.27 s corresponding to the rotation of the triangle
from one corner to the next, and we recognize, at least qualitatively, the concave
free-surface shapes given by (2.4c) and figure 1. In figure 19, beyond the observed
T-periodic signal, a 3T-periodic signature of the radial displacement of the contact
line is observed as a slightly larger amplitude of the signal every three periods. This
3T-periodic response of the signal, induced by a slight asymmetry of the free-surface
pattern, is associated with the triangular shape of the pattern in the azimuthal direction
observed in this case.

The data corresponding to figure 19(a–e) allow us to track the free-surface evolution
(green) and compare it to the averaged free-surface position (red). The flow is
turbulent, but the free-surface structure is nearly periodic as shown in figure 19(g),
which displays the temporal evolution of the radius of the contact line on the
bottom plate (r = ξ in the symmetrical case). The differences between instantaneous
free-surface positions and mean value are shown in figure 19( f ) where the envelope,
shown by the thick lines, is obtained by averaging over several periods. Interestingly,
we find a node in the radial structure in contrast with the classical polygonal shapes
obtained in e.g. Vatistas (1990) or Jansson et al. (2006). The state can therefore
be related to a secondary resonance (ng, nc) = (0, 1) which is associated with the
fundamental gravity wave G0 and the first centrifugal wave harmonic C1, which
has a node in the nearly vertical part of the free surface, i.e. close to the contact
line on the bottom plate. A comparison between the experimental state and the
resonance (ng, nc) = (0, 1), obtained for m = 3 in the global stability and shown in
figure 7, is made in figure 20. Figure 20(b,d) displays a free surface whose structure
is close to the experimental observation described above, with in particular the node
corresponding to the centrifugal wave C1 which can be clearly identified. In addition,
comparison between figure 20(c,d) shows that this node is approximatively located at
the same position z/ζ ≈ 0.12 in the experiment and in the theory.

For a more quantitative comparison, the frequency of the triangular pattern found
experimentally can be extracted from figure 19( f ) and compared to the frequency of
the resonance found by the global stability analysis. This is done in table 1 where
the theoretical frequencies for the main resonances are also compared with recent
experimental results of Bach et al. (2014). It can be seen that for both the secondary
resonance (ng, nc)= (0, 1) and the main resonances, good agreement is found between
the linear stability predictions and the experiments. In particular, this comparison
supports the results by Tophøj et al. (2013) that the main resonance is closely related
to the appearance of the rotating polygons, and that the new observed pattern indeed
corresponds to a secondary resonance. The fact that secondary resonances have not
been seen in earlier experiments may be associated with their narrow unstable ranges
and small growth rates found in the theory (see, e.g. figure 3).
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FIGURE 20. (Colour online) Surface shape and structure of a secondary resonance from
experiment (a,c) and theory (b,d). Panels (a) and (c) are identical to figure 19(b, f )
respectively. Panels (b,d) correspond to the secondary resonance (0,1) from global stability
theory with m= 3, a= 0.7 and ξ/R= 0.28; (b) shows a 3-D free-surface reconstruction;
(d) depicts the structure of the mode by displaying Re(ηe−i(mθ−ωt)) for various values of
θ and a given value of t. The reconstructions are obtained from the pressure field and
(2.8d) using an arbitrary amplitude.

m (ng, nc) a Experiment Theory

3 (0, 1) 0.7 2.8 3.47
2 (0, 0) 0.34 ∼1.3–1.6 2.06
3 (0, 0) 0.34 ∼2.6–2.9 3.26
4 (0, 0) 0.34 ∼4.4–4.6 4.69

TABLE 1. Comparison between experiment and theory for the frequencies of a set of
polygonal states. The values given are the normalized frequencies (ω

√
R/g). For the

theoretical values, computed by global linear analysis, we use the real part ωr, taken at the
point of maximal growth rate in the instability range. Experimental value for the bold line
corresponds to results shown in figure 19, other lines correspond to experimental results
from Bach et al. (2014) evaluated from their Figure 15. Note that the experimental values
are obtained from the fully developed polygons, which might differ from those obtained
from linear analysis. Note also that the instability locus cannot be compared directly
between potential theory and experiments as the associated controlled parameters (ξ/R and
fb respectively) are not related a priori and an additional model should be introduced (see
Tophøj et al. 2013; Fabre & Mougel 2014).
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6. Conclusion and perspectives

In this paper, a detailed analysis of the linear stability of the potential vortex
with a free surface is presented. The global stability analysis shows that a potential
vortex with a free surface may become unstable in particular ranges of the parameter
ξ/R for m > 2 due to resonance between two surface wave families: gravity waves
propagating where the free surface is nearly flat (close to the cylinder wall) and
centrifugal waves propagating on the more strongly deformed free surface near the
dry central vortex core. Beyond a full description of the wave families and their
interaction, we provide new light on the instability mechanism by a WKBJ analysis
conducted in the shallow-water limit. This analysis allows us to interpret the instability
mechanism of the obtained instabilities in terms of wave over-reflection.

In the global stability map, the strongest unstable modes are often associated
with what we have called the main resonances between gravity and centrifugal
waves. They correspond to the resonances found in the Tophøj model (Tophøj et al.
2013) and argued to be closely related to the emergence of rotating polygons in the
rotating bottom experiment. But in the present analysis we generalize this instability
mechanism, i.e. a resonance between two wave types, by experimentally reporting
the occurrence of a new polygonal pattern (triangle, i.e. m= 3) with a more complex
radial structure which presents an additional node on the free surface. This pattern
appears to correspond to the resonance between a gravity wave with the simplest
structure and a more complex centrifugal wave in the stability analysis.

In the same kind of experimental set-up as used in the present study, states with
broken rotation symmetry of the free surface can also be found in wet cases for
which the liquid covers the entire plate (Jansson et al. 2006). The flow in those cases
cannot be modelled by a simple potential flow and the azimuthal velocity is believed
to approach a Rankine like profile (Bergmann et al. 2011) containing a central core
in solid body rotation. This model has been first considered by Vatistas, Wang & Lin
(1994) and the extension of the Tophøj model to the case of a Rankine vortex is
provided in Fabre & Mougel (2014) and gives an interpretation of the mechanisms of
the sloshing phenomena (Iga et al. 2014) in terms of wave interactions. However, the
central core in solid body rotation corresponds to a Newton’s bucket flow which has
been analysed in Mougel, Fabre & Lacaze (2015), where it was shown that inertial
waves and Rossby waves play an important role. These waves are not captured by the
extended Tophøj model from Fabre & Mougel (2014) and might lead to additional
resonances in the Rankine vortex case. The global stability of a Rankine vortex (or a
smoothed Rankine vortex) with a free surface therefore deserves to be studied more
carefully to complement preliminary results presented in Mougel et al. (2014). In
addition, more realistic base flows corresponding to the rotating bottom experiment
have been computed numerically by Kahouadji & Witkowski (2014) in wet cases
and global stability of those flows remains to be investigated in strong free-surface
deformation regimes.

The present linear stability results predict instability in thin regions of the parameter
space (a, ξ/R). This is in contrast with the experimental observations where polygonal
patterns have been observed over large ranges of parameters (see Tophøj et al. 2013,
figure 4). However, evidence of hysteresis phenomenon has been found experimentally
by Tasaka & Iima (2009) when upward and downward variations of the bottom
frequency are performed. This feature is presumably associated with subcritical
bifurcations, and may explain the discrepancy between linear stability thresholds and
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experimental observations. In further investigations, considering weakly nonlinear
analysis of the present potential vortex could be an attractive way to investigate the
above discrepancy in more depth.

To conclude, we stress the strong connection between the present study and
geophysical investigations e.g. by Schecter & Montgomery (2004, 2006). In these
studies devoted to understanding geophysical vortices, such as hurricanes or the
polar vortex, features such as a critical radius and interacting wave families are also
reported (see e.g. the works by Schecter & Montgomery (2004) and Billant & Le
Dizès (2009)). In addition, broken axial rotation symmetry occurs spectacularly for
geophysical vortices such as the polygonal eye walls of hurricanes observed by Lewis
& Hawkins (1982). Simplified laboratory experiments, such as the rotating bottom
experiment, may therefore give valuable insights into complex geophysical flows with
rotation combined with a free surface or stratification.
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Appendix A. Global stability results for m= 0 and m= 1

For m = 0 and m = 1, instabilities have not been observed from the global
stability approach in the investigated range of parameters. Additional information
corresponding to these cases are given in this appendix. In the case a= 0.3, results for
the frequencies as a function of ξ/R are reported in figure 21 and the corresponding
growth rate is zero. The obtained mode branches therefore correspond to neutral
waves. Compared to the case m > 2 whose typical result can be seen in figure 12,
the two wave families, i.e. gravity and centrifugal, are not easily discernible in
figure 21(a,b).

The axisymmetric case m = 0 is similar to sloshing modes in a U-shape tube in
which the free-surface motion at one end of the tube is simply linked to the other
by conservation of the volume. In this sense, pure gravity wave and pure centrifugal
waves are more unlikely to appear for m= 0 as confirmed from the mode structures
shown in figure 22 where it can be seen that free-surface deformations are neither
located only close to r = ξ nor only close to r = R contrary to the case m > 2 (see
figures 5 and 6). For m > 2, we have found that the area of coexistence of these
two wave families is closely related with the presence of a critical radius in the fluid
domain (see figure 12). The absence of critical radius in the range [ξ,R] for m= 0 (as
rc=
√

mΓ /(2πωr)) can therefore explain why the two wave families are not obtained
and hence no crossing leading to instability occurs.

In the case m= 1, mode structures shown in figure 23 resemble the first centrifugal
wave (figure 23a) and the two first gravity waves (figure 23b,c respectively), but no
mode crossing leading to instability is found in the investigated range of parameters
in spite of the fact that a critical radius may be present as shown in figure 21(b) (grey
area). However, the size of this area where a critical radius is present is found to be
really small compared to figure 12 for instance, and is restricted to small values of
ξ/R. This may explain why instabilities are not obtained here, but we cannot exclude
instabilities for m= 1 may be found for small values of ξ/R.
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(a) (b)

FIGURE 21. Normalized frequencies ωr
√

R/g as a function of ξ/R for a = 0.3 and
m = 0 (a) and m = 1 (b). The shaded area between the dashed lines shows the region
where a critical radius is present in the fluid domain, i.e. ξ < rc < R. Upper dashed line
corresponds to ωr = mΓ /(2πξ 2) (critical radius at r = ξ ), lower dashed line corresponds
to ωr = mΓ /(2πR2) (critical radius at r = R). Black dots correspond to mode structures
shown in figures 22 and 23.

(a) (b) (c)

FIGURE 22. Mode structures for a= 0.3, ξ/R= 0.2 and m= 0.

(a) (b) (c)

FIGURE 23. Mode structures for a= 0.3, ξ/R= 0.2 and m= 1.

Appendix B. Details on viscous potential results

Details on the viscous and potential stability analysis are provided in this appendix.
Viscosity is introduced here in order to filter out the numerous weak resonances
appearing for small values of ξ/R in the inviscid case (see figure 9 for instance).
This method therefore allows us to construct more comprehensible stability maps
where only the strongest resonances are shown (figures 2 and 3).
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0.1
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FIGURE 24. Influence of C on the normalized growth rates from global stability as a
function of ξ/R for a= 0.3 and m= 2. Inviscid i.e. C= 0 (black line); C= 1× 10−4 (dark
grey); C= 5× 10−4 (light grey).

Following Funada & Joseph (2001), viscous effects can be introduced in the velocity
potential formulation given by the set of (2.8) via the dynamic boundary condition on
the free surface (2.8d) which can be re-written as

p− 2ν
∂2φ

∂n2
= gη, (B 1)

with ν the kinematic viscosity of the fluid.
This leads us to introduce the normalized viscosity,

C=
ν

R
√

gR
, (B 2)

whose inverse may be regarded as a Reynolds number based on gravity.
Figure 24 displays the instability growth rate of both main and secondary

instabilities for three values of C. For C = 0 we obtain the purely inviscid results
detailed in the present paper (except for figures 2 and 3). In this case, either neutral
waves (i.e. ωi = 0) or couples of complex conjugate solutions (ωr ± iωi) are found.
In figure 24, this means that the black line corresponding to inviscid results has
an exactly symmetric counterpart for negative growth rate. For non-zero values of
C, the dissipation introduced breaks this symmetry. As illustrated in figure 24 for
C= 1× 10−4 and C= 5× 10−4, the introduced viscosity reduces the maximal growth
rate of each resonance. More precisely, this effect is more important for the weakest
resonances which may disappear for high enough values of C. In addition, some
unstable bands are found to be larger for non-zero values of C e.g. in figure 24 for
the main resonance.

Finally, results shown in figure 24 reveal that for C= 1× 10−4, viscosity allows us
to filter out the smallest resonances without having a strong effect on the location and
width of the largest unstable bands. This value of C has therefore been considered
to compute the instability maps displayed in figures 2 and 3. All the other results
presented in this paper are purely inviscid. Note that the full description of the role
played by viscosity in the present system falls outside the scope of this study, and
may include non-intuitive phenomena as pointed out by Cairns (1979) in a simpler
configuration.

Appendix C. WKBJ large m analysis in the shallow-water limit
In this appendix, we provide details regarding the WKBJ approach to obtain

approximate dispersion relations of the shallow-water equation

d2φ̂

dr2
+

(
1
r
+

h′0
h0

)
dφ̂
dr
−m2Λ(r)φ̂ = 0, (C 1)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

34
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.341


On the instabilities of a potential vortex with a free surface 259

with

h0(r)=
1

2g

(
Γ

2πR

)2 (R2

ξ 2
−

R2

r2

)
(C 2)

and

Λ(r)=
1
r2
−

1
gh0

(
ω

m
−

Γ

2πr2

)2

, (C 3)

in the large m limit.
Looking for a solution of the form

φ̂(r)∼ em(ψ0+ψ1/m+···), (C 4)

equation (C 1) can then be expanded in orders of m. The two first orders (m2 and m)
give the equations (

dψ0

dr

)2

−Λ(r)= 0, (C 5)

d2ψ0

dr2
+ 2

dψ0

dr
dψ1

dr
+

(
1
r
+

h′0
h0

)
dψ0

dr
= 0, (C 6)

whose solutions lead to the rapidly varying phase

mψ0 =±m
∫

r

√
Λ(r) dr if Λ(r) > 0, (C 7)

mψ0 =±im
∫

r

√
−Λ(r) dr if Λ(r) < 0, (C 8)

and the slowly varying amplitude

eψ1 = |Λ|−(1/4)r−(1/2)h−(1/2)0 . (C 9)

Equations (C 4), (C 7) and (C 8) provide two leading-order solutions for (C 1) which
will be referred to as the WKBJ solutions. From (C 7) and (C 8) it can be seen that
these solutions are locally evanescent (if Λ(r) > 0) or oscillatory (if Λ(r) < 0) in
the radial direction. In addition, these WKBJ solutions break down at radial locations
corresponding to Λ(r) = 0 (the so-called turning points) or h0(r) = 0 (r = ξ ). In
both cases, one has to look at the local solution of the shallow-water equation, (C 1),
around these special points and match these solutions to the WBKJ solutions. This
allows us to obtain an approximate dispersion relation.

We now restrict our attention to configuration III, that is two oscillatory regions
separated by an evanescent region which includes a critical radius (see figure 15d).
There are therefore two turning points rt1 and rt2 nearby which the WKBJ approx-
imation breaks down. The evanescent region and the outer oscillatory region will be
treated using WKBJ approximation while the inner oscillatory region, whose size is
very small in the large m limit, will be included in the treatment of the equation close
to ξ . WKBJ solutions read

φ̂ =
1

|Λ|1/4r1/2h1/2
0

[
A exp

(
im
∫ r

rt2

√
−Λ

)
+ B exp

(
−im

∫ r

rt2

√
−Λ

)]
, (C 10)
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for rt2 < r< R, and

φ̂ =
1

|Λ|1/4r1/2h1/2
0

[
C exp

(
m
∫ rt2

r

√
Λ

)
+D exp

(
−m

∫ rt2

r

√
Λ

)]
, (C 11)

for rt1 < r< rt2.
At r = R, the no-penetration boundary condition dφ̂/dr = 0 leads, at leading

order, to

B
A
= e2imW2R(ω), (C 12)

where

W2R(ω)=

∫ R

rt2

√
−Λ(r) dr. (C 13)

We now focus on the behaviour of the solutions close to the turning point rt2.
Introducing the rescaled variable r̃ = (r − rt2)[−Λ

′(rt2)m2
]

1/3 with Λ′ = dΛ/dr,
equation (C 1) leads, at leading order, to

d2φ̂

dr̃2
+ r̃φ̂ = 0. (C 14)

Solutions of (C 14) read

φ̂ = A1Ai(−r̃)+ A2Bi(−r̃), (C 15)

with Ai and Bi Airy functions and A1, A2 two constants. Behaviour of Airy functions
when r̃→∞ and r̃→−∞ allows us respectively to match with WKBJ solutions in
the oscillatory zone ((C 10) for r̃→∞) and evanescent zone ((C 11) for r̃→−∞).
This leads to the conditions

B
A
= i

1− iA2/A1

1+ iA2/A1
and

D
C
=

A1

2A2
. (C 16a,b)

This analysis around a turning point is classical and we refer the interested reader to
Bender & Orszag (1999) (for instance) for additional details. The combination of the
two obtained conditions, along with (C 12) finally lead to the relation

D
C
=

i
2

(
1− iB/A
1+ iB/A

)
=

1
2

tan(mW2R(ω)+π/4). (C 17)

The behaviour close to the contact line at r= ξ is not classical due to the fact that
h0 vanishes at that radial location. Assuming that ω−mΩ(ξ)=O(

√
m), the leading-

order equation in the neighbourhood of r= ξ reads

d2φ̂

dr̄2
+

1
r̄

dφ̂
dr̄
+

[
C1

r̄
−C2

]
φ̂ = 0, (C 18)

with r̄ = (r − ξ)m a rescaled variable, C1 = m−1(ω − mΩ(ξ))2/gc(ξ) and C2 = 1/ξ 2.
Solutions of this equation can be obtained in the form

φ̂(r̄)= A1M(α, 1, 2r̄/ξ)e−r̄/ξ
+ A2U(α, 1, 2r̄/ξ)e−r̄/ξ , (C 19)
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with M and U being the Kummer functions (see Abramowitz & Stegun (1964), p. 502)
and α= 1/2(1−C1/

√
C2). From the behaviour of Kummer functions when r̄→ 0, we

must have A2= 0 to ensure finite values of the velocity potential. In the limit r̄→∞,
the asymptotic behaviour of the Kummer function M in this limit (see Abramowitz &
Stegun (1964), p. 508) leads to solutions of (C 18) of the form

φ̂(r̄)∼

[
eiπα2−αC−(α/2)2

Γ (1− α)

]
r̄−αe−

√
C2 r̄
+

[
2α−1C(α−1)/2

2

Γ (α)

]
r̄α−1e

√
C2 r̄, (C 20)

with Γ the gamma function. This solution should be matched with WKBJ solutions
given by (C 11) and taken in the limit r̄→∞, that is

φ̂(r̄)∼C
[
emW12(ω)C(1−2α)/4

2

]
r̄−αe−

√
C2 r̄
+D

[
e−mW12(ω)C(2α−1)/4

2

]
r̄α−1e

√
C2 r̄, (C 21)

where

W12(ω)=

∫ rt2

rt1

√
Λ(r) dr. (C 22)

It should be noted that the same radial evolution is obtained in (C 20) and (C 21),
which allows for a proper matching leading to the condition

Γ (1− α)
Γ (α)

= [21−2αeiπαe−2mW12(ω)]
D
C
. (C 23)

Note that the inner wavy region vanishes in the large m limit as rt1 tends to ξ ,
this region is described within the range of validity of solution (C 19), and this is
the reason why we directly match solutions near r = ξ to WKBJ solutions in the
evanescent region.

WKBJ solutions in the evanescent and oscillatory area have been matched to
the obtained solutions close to r = ξ and r = rt2, and the no-penetration boundary
condition has been applied at r=R. This procedure leads to (C 17) and (C 23), whose
combination give the approximate dispersion relation[

Γ (1− α)
Γ (α)

] [
1

tan(mW2R(ω)+π/4)

]
= 2−2αeiπαe−2mW12(ω). (C 24)

It should be noted that the left-hand side of this dispersion relation vanishes at
the singularities of the gamma function or those of the tangent function. These
singularities respectively correspond to α = −nc and mW2R(ω) + π/4 = π/2 + ngπ
with nc and ng two integers, and those discretizations lead to the following conditions
which may be regarded as dispersion relations

(ω−mΩ(ξ))2 = gc(ξ)
m
ξ
(1+ 2nc), (C 25)

mW2R(ω)=π/4+ ngπ. (C 26)

Dispersion relation (C 25) corresponds to the so-called centrifugal waves evolving in
the inner oscillatory region, and can be interpreted as edge waves in this shallow
limit (see Ursell 1952; Mougel et al. 2015). Dispersion relation (C 26) corresponds
to gravity waves that propagate in the outer oscillatory region.
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In addition, the right-hand side of (C 24) goes to zero in the large m limit and
the complete dispersion relation given by (C 24) can therefore be interpreted as two
uncoupled dispersion relations (corresponding to pure centrifugal and pure gravity
waves) which equals a small coupling term. This is reminiscent of the dispersion
relation describing the main resonances in the Tophøj model (Tophøj et al. 2013),
but the present formalism also includes secondary resonances.

The aim is now to explore (C 24) in order to find more explicit solutions for the
frequencies. The right-hand side of equation (C 24) is small in the large m limit,
which makes the relation possible only near the singularities of the gamma and
tangent function discussed above. From the behaviour of the gamma function around
its singularities (zero and negative integer values), which are described by the relation

Γ (ε − n)=
(−1)n

Γ (n+ 1)ε
for ε→ 0 and with n ∈N, (C 27)

and using in addition the relation Γ (n+ 1)= n!, the dispersion relation (C 24) can be
written at leading order in the form

(ω−mΩ(ξ))2 = gc(ξ)
m
ξ
(1+ 2nc)− gc(ξ)

m
ξ

22nc+1

(nc!)2
tan(mW2R(ω)+π/4)e−2mW12(ω).

(C 28)

Equation (C 28) can be seen as a generalization of dispersion relation (C 25) for the
centrifugal waves. Consequently the integer n has been noted nc in equation (C 28).
Note however that (C 28) now includes coupling with gravity waves which are
hidden in the term with the tangent function. When solving (C 28), only the solution
corresponding to a centrifugal wave slower than the base flow (ω − mΩ(ξ) < 0) is
relevant as the other solution falls outside of the range of frequency corresponding
to area III in which the present analysis is valid. We obtain at leading order

ω = mΩ(ξ)−
√

gc(ξ)
m
ξ

√
1+ 2nc

+

√
gc(ξ)

m
ξ

22nc

√
1+ 2nc(nc!)2

tan(mW2R(ω)+π/4)e−2mW12(ω). (C 29)

In the particular case nc = 0, (C 29) finally leads to (4.8) whose solutions correspond
to the first centrifugal wave with possible interaction with gravity waves.

We now look at the way gravity waves are reflected back when they encounter the
evanescent region. The reflection coefficient of a gravity wave on the potential barrier
can be defined as R ≡ |B2/A2

|. This definition is built in analogy with the work of
Billant & Le Dizès (2009). From (C 12) the reflection coefficient reads

R= |exp(i4mW2R(ω))|, (C 30)

and is found to be larger than unity for solutions of (C 29) corresponding to unstable
modes (see figure 18). The instability mechanism is therefore associated with over-
reflections on the evanescent area.

An interesting limit corresponds to the case of an unbounded vortex (R → ∞).
In this limit tan(mW2R(ω) + π/4) = i and (C 29) therefore shows that the potential
solution is always unstable in this case. This result can also be obtained considering
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a radiation condition for the waves in the outer oscillatory zone, i.e. B = 0. This
latter instability therefore corresponds to a radiative instability where the vortex
becomes unstable due to emission of gravity waves towards infinity. Interestingly, the
unbounded shallow-water vortex studied by Ford (1994) for more general azimuthal
velocity profiles are also found to be always unstable due to gravity wave radiation.
In addition, a more detailed discussion between wave resonances in the bounded case
and radiative instability in the unbounded case can be found in Le Dizès & Riedinger
(2010) for a stratified vortex.
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