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Prediction of shear thickening of particle
suspensions in viscoelastic fluids by direct
numerical simulation
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To elucidate the key factor for the quantitative prediction of the shear thickening
in suspensions in viscoelastic fluids, direct numerical simulations of many-particle
suspensions in a multi-mode Oldroyd-B fluid are performed using the smoothed profile
method. Suspension flow under simple shear flow is solved under periodic boundary
conditions by using Lees–Edwards boundary conditions for particle dynamics and a
time-dependent oblique coordinate system that evolves with mean shear flow for fluid
dynamics. Semidilute many-particle suspensions up to a particle volume fraction of 0.1
are investigated. The presented numerical results regarding the bulk rheological properties
of the shear-thickening behaviour agree quantitatively with recent experimental results of
semidilute suspensions in a Boger fluid. The presented result clarifies that an accurate
estimation of the first normal stress difference of the matrix in the shear-rate range
where the shear thickening starts to occur is crucial for the quantitative prediction of the
suspension shear thickening in a Boger fluid matrix at around the Weissenberg number
Wi = 1 by an Oldroyd-B model. Additionally, the effect of suspension microstructures
on the suspension viscosity is examined. The paper concludes with a discussion on how
the flow pattern and the elastic stress development change with the volume fraction and
Weissenberg number.
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1. Introduction

Suspension systems consisting of solid particles and a polymeric host fluid are widely
used in industrial materials and products, such as inks, paints and polymer composites.
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In the manufacturing processes, such suspensions are subject to various types of flow;
hence understanding and controlling the rheological properties of them are crucial
for efficient productivity. In a polymeric fluid, including polymer solutions and melts,
viscoelasticity originates from the change in the conformation of polymer molecules
caused by flow history. Since the polymeric host fluid exhibits viscoelasticity, the
interaction between the particles and flow in suspensions in viscoelastic fluid flow is
elusive. For instance, unique behaviour not observed in Newtonian media has been
reported, such as shear thickening even in a dilute particle concentration under simple
shear flow (Shaqfeh 2019; Tanner 2019) and the formation of a string of particles under
shear flow (Michele, Pätzold & Donis 1977; Scirocco, Vermant & Mewis 2004).

To examine the medium’s elastic effects on the suspension rheology, suspensions
in Boger fluids have been used experimentally. Boger fluids show constant shear
viscosity and finite normal stress difference (NSD), which is preferable for separating
the effects of the medium’s elasticity from the nonlinear effects in the shear viscosity.
Experimentally measured shear thickening in suspensions in Boger fluids has been
reported, where the suspension viscosity increases with shear rate or shear stress,
even at dilute particle concentrations where the inter-particle interactions are negligible
(Zarraga, Hill & Leighton 2001; Scirocco, Vermant & Mewis 2005; Dai, Qi & Tanner
2014; Tanner 2015). The shear-thickening mechanism has been discussed theoretically
(Koch, Lee & Mustafa 2016; Einarsson, Yang & Shaqfeh 2018) and numerically (Yang,
Krishnan & Shaqfeh 2016; Yang & Shaqfeh 2018a; Shaqfeh 2019; Vázquez-Quesada
et al. 2019; Matsuoka, Nakayama & Kajiwara 2020). These theoretical and numerical
studies reveal that this shear thickening in dilute viscoelastic suspensions is mainly
originated by the development of polymeric stress around the particles. While the
qualitative shear-thickening mechanism has become progressively clearer, there are still
some discrepancies between numerical calculations and measurements in the quantitative
prediction of shear-thickening behaviours in viscoelastic suspensions.

To evaluate the complex responses of a viscoelastic suspension under different types
of flow, direct numerical simulations (DNS) are carried out, in which the fluid flow
around finite-volume solids rather than point masses is solved, to accurately treat
hydrodynamic interactions. A few computational studies have reported the dynamics
of many-particle systems in viscoelastic suspensions (Hwang, Hulsen & Meijer 2004;
Jaensson, Hulsen & Anderson 2015; Vázquez-Quesada & Ellero 2017; Yang & Shaqfeh
2018b; Vázquez-Quesada et al. 2019). Experimentally measured and DNS obtained shear
thickening in viscoelastic suspensions were compared. A scaling relation between the
shear-thickening part and the suspension stress up to semidilute particle volume fraction
φp � 0.1 has been discussed based on the results of immersed-boundary many-particle
DNS using a Giesekus fluid mimicking a Boger fluid from Dai et al. (2014) and Yang &
Shaqfeh (2018b). However, the relative suspension viscosity predicted by using the scaling
relation and the numerical result from a single-particle dilute suspension in an Oldroyd-B
medium resulted in an underestimation of the experimental shear thickening at φp � 0.1
(Yang & Shaqfeh 2018b). To explain the discrepancy, a lack of constitutive modelling of
the elongational response in the fluid was pointed out. Vázquez-Quesada et al. (2019)
performed a smoothed particle hydrodynamics simulation using an Oldroyd-B medium
up to φp � 0.3, and showed that the relative suspension viscosity from a many-particle
simulation is larger than that from a single-particle simulation even at a dilute particle
volume fraction, thus indicating that the interaction between particles is important even in
dilute suspensions. The corresponding numerical result for the suspension viscosity agrees
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quantitatively with experimental data for a dilute suspension (φp = 0.05) but was different
for semidilute conditions (φp = 0.1, 0.3). It is still unclear whether the Oldroyd-B model
can quantitatively predict shear thickening in semidilute suspensions in Boger fluids.

In this study, the smoothed profile method (SPM), which is a DNS method originally
developed for Newtonian suspension systems, is extended to study the bulk shear rheology
of a suspension in a viscoelastic medium in a three-dimensional (3-D) space. To impose
simple shear flow on a suspension under periodic boundary conditions rather than
wall-driven shear flow in a confined system, a time-dependent oblique coordinate system
is used for the fluid; its formulation conforms to Lees–Edwards boundary conditions for
particle dynamics and is preferred for examining the bulk stress as well as local stress in
suspensions without wall effects.

To elucidate the key factor for the quantitative prediction of the shear thickening
in suspensions in Boger fluids, DNS of many-particle suspensions in a multi-mode
Oldroyd-B fluid is performed using SPM. The suspension viscosity and the NSD
are compared with published experimental results (Yang & Shaqfeh 2018b) at dilute
to semidilute conditions. Additionally, the effect of suspension microstructures on
the suspension viscosity is examined by comparing a many-particle system with a
single-particle system which corresponds to a cubic array suspension in our DNS. Next,
the contribution of each polymer relaxation mode to the suspension shear thickening is
evaluated. The suspension stress decomposition into the stresslet and the particle-induced
fluid stress is conducted to discuss scaling relations for these contributions. Finally, the
change in the flow pattern and elastic stress development in many-particle suspensions is
discussed.

The paper is organized as follows. In § 2, our numerical method is explained. The
governing equations for a suspension in a viscoelastic medium based on a smoothed profile
of particles are described in § 2.1. The calculation of stress for the rheological evaluation
in SPM is described in § 2.2. The boundary conditions are explained in § 2.3. In § 3, the
numerical results are presented. First, our DNS method is validated by the rheological
evaluation for a single-particle system in a single-mode Oldroyd-B fluid in § 3.1. Next,
shear-thickening behaviours in dilute and semidilute viscoelastic suspensions are studied
by performing a many-particle calculation in a multi-mode Oldroyd-B fluid in § 3.2. The
results are summarized in § 4.

2. Numerical method

In SPM, the fluid–solid interaction is treated by applying the smoothed profile function
of a solid particle (Nakayama & Yamamoto 2005; Nakayama, Kim & Yamamoto 2008).
Since a regular mesh rather than a surface-conforming mesh can be used for continuum
calculations in SPM, the calculation cost of fluid fields, which is dominant in total
calculation costs, is nearly independent of the number of particles (Nakayama et al. 2008),
thus making the direct simulation of a many-particle system feasible. SPM has been
applied to suspensions in Newtonian fluids to evaluate the shear viscosity (Iwashita &
Yamamoto 2009; Kobayashi & Yamamoto 2011; Molina et al. 2016), complex modulus
(Iwashita, Kumagai & Yamamoto 2010) and particle coagulation rate (Matsuoka et al.
2012) of Brownian suspensions up to φp � 0.56. The application of SPM was extended
to complex host fluids, such as electrolyte solutions (Kim, Nakayama & Yamamoto
2006; Nakayama et al. 2008; Luo, Beskok & Karniadakis 2010), and to active swimmer
suspensions (Molina, Nakayama & Yamamoto 2013).
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2.1. Governing equations
Consider the suspension of N neutrally buoyant and non-Brownian spherical particles with
radius a, mass M and moment of inertia Ip = 2Ma2I/5 in a viscoelastic fluid, where I is
the unit tensor. In SPM, the velocity field u(r, t) at position r and time t is governed as
follows:

ρ

(
∂

∂t
+ u · ∇

)
u = ∇ · (σ n + σ p)+ ρφf p, (2.1)

∇ · u = 0, (2.2)

where ρ, σ n = −pI + 2ηsD, σ p, D = (∇u+∇uT)/2 and p are the fluid mass density,
Newtonian solvent stress, polymer stress, strain-rate tensor and pressure, respectively. In
this study, the polymer stress term is newly incorporated into the previous hydrodynamic
equation for a Newtonian fluid in SPM. In SPM, the particle profile field is introduced as
φ(r, t) ≡∑N

i=1 φi, where φi ∈ [0, 1] is the ith particle profile function having a continuous
diffuse interface domain with thickness ξ ; the inside and outside of the particles are
indicated by φ = 1 and φ = 0, respectively. Details on the specific definition and the
properties of the profile function were reported by Nakayama et al. (2008). The body
force ρφ f p in (2.1) enforces particle rigidity in the velocity field (Nakayama et al. 2008;
Molina et al. 2016). In SPM, the continuum velocity field is defined in the entire domain,
including the fluid and solids. The velocity field u is interpreted as

u(r, t) = (1− φ)uf + φup, (2.3)

where uf and up are the fluid and particle velocity fields, respectively. The specific
implementation of uf , up and φ f p is explained in appendix B.

For the time evolution of polymer stress σ p, any constitutive equations proposed to
reproduce the rheological behaviour of real viscoelastic fluids can be used. In this study,
the single- or multi-mode Oldroyd-B model, which is a minimal viscoelastic model for
Boger fluids, is applied:(

∂

∂t
+ u · ∇

)
C(k) = (∇u)T · C(k) + C(k) · (∇u)− C(k) − I

λ(k)
, (2.4)

σ p =
∑

k

σ (k)
p =

∑
k

η
(k)
p

λ(k)
(C(k) − I), (2.5)

where C(k)(r, t), λ(k) and η
(k)
p are the conformation tensor, relaxation time and polymer

viscosity of the kth relaxation mode, respectively. The conformation tensor of each
relaxation mode C(k) obeys an independent but same form of the constitutive equation
as expressed by (2.4). The total polymer stress is obtained by summing up the polymer
stress of each mode σ

(k)
p by using (2.5). In the single-mode Oldroyd-B model, the mode

index k is omitted for simplicity.
Microscopically, an Oldroyd-B fluid corresponds to a dilute suspension of dumbbells

with a linear elastic spring in a Newtonian solvent (Bird et al. 1987). The conformation
tensor is related to the average stretch and orientation of the dumbbells. The first and
second terms on the right-hand side of (2.4) represent the affine deformation of C(k), by
which C(k) is rotated and stretched, and the last term is the irreversible relaxation of C(k).
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At steady state in simple shear flow, the shear viscosity and the first and second NSDs
are η0 = ηs +

∑
k η

(k)
p , N1 = 2

∑
k η

(k)
p λ

(k)γ̇ 2 and zero, respectively, where γ̇ indicates
the applied shear rate. The steady-shear property of the Oldroyd-B model mimics that of
Boger fluids and is characterized by rate-independent viscosity and finite elasticity. Boger
fluids are often used to experimentally evaluate the effect of fluid elasticity separately from
that of viscosity (Boger 1977; James 2009).

The individual particles evolve by

Ṙi = V i, (2.6)

MiV̇ i = F H
i + F C

i , (2.7)

Ip,i · Ω̇ i = NH
i , (2.8)

where Ri, V i and Ω i are the position, velocity and angular velocity of the ith particle,
respectively, F H

i and NH
i are the hydrodynamic force and torque from the fluid (Nakayama

et al. 2008; Molina et al. 2016), respectively, and F C
i is the inter-particle potential force due

to the excluded volume that prevents particles from overlapping. The non-slip boundary
condition for the velocity field is assigned at particle surfaces. The specific implementation
of F H

i , NH
i and F C

i is explained in appendix B.
The governing equations can be non-dimensionalized by length unit a, velocity unit aγ̇

and stress unit η0γ̇ . In the following, a tilde ( ·̃ ) indicates a non-dimensional variable. For
the fluid momentum equation,

Re
(

∂

∂ t̃
+ ũ · ∇̃

)
ũ = ∇̃ · (σ̃ n + σ̃ p)+ Re φ f̃ p, (2.9)

where σ̃ n = −p̃I + 2βD̃ and the Reynolds number is defined as Re = ρa2γ̇ /η0. In this
study, Re is kept small to exclude inertial effects from the rheological evaluations. For the
single-mode Oldroyd-B constitutive equation,(

∂

∂ t̃
+ ũ · ∇̃

)
C = (∇̃ũ)T · C + C · (∇̃ũ)− C − I

Wi
, (2.10)

where σ̃ p = (1− β)(C − I)/Wi. A single-mode Oldroyd-B fluid is characterized by two
non-dimensional parameters: β and Wi. The viscosity ratio β = ηs/η0 = ηs/(ηs + ηp)
reflects the relative contribution of the solvent viscosity to the total zero-shear viscosity.
The Weissenberg number is defined as Wi = γ̇ λ and measures the relative shear rate to the
relaxation rate 1/λ.

2.2. Stress calculation
The momentum equation for the suspension is formally expressed as,

D
Dt

(ρu) = ∇ · Σ sus, (2.11)

where D/Dt is the material derivative and Σ sus represents the dispersion stress tensor,
including the pressure, stresslet and fluid (viscous and polymer) stress. To analyse the
effect of solid inclusion in the suspension rheology, the instantaneous volume-averaged
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stress of the suspension Σ sus is decomposed according to Yang et al. (2016) as follows:

σ sus = 1
V

∫
DV

Σ sus dr (2.12)

= σF0 + N
V

(Σ + S), (2.13)

Σ = 1
N

∫
DV

(σF − σF0) dr, (2.14)

S = 1
N

∫
Sp

(r(n · σF))sym dS. (2.15)

Here DV is the entire domain, V is the volume of DV and Sp is the surface of the particles;
σF is the stress in the fluid region and σF0 is the fluid stress without particles under
simple shear flow; (A)sym denotes the symmetric part of a tensor A; Σ represents the stress
induced by particle inclusion per particle in the fluid region; and S is the stresslet.

In the SPM formalism, by comparing (2.1) with (2.11), the following relation is obtained:

∇ · Σ sus = ∇ · (σ n + σ p)+ ρφf p. (2.16)

Therefore, σ sus is evaluated as (Nakayama et al. 2008; Iwashita & Yamamoto 2009; Molina
et al. 2016)

σ sus = 1
V

∫
DV

[σ n + σ p − rρφf p] dr, (2.17)

where an identity for a second-rank tensor, σ = [∇ · (rσ )]T − r∇ · σ is used for
the derivation. In this study, the Reynolds stress term is not considered due to the
small-Reynolds-number conditions. By assuming ergodicity, the ensemble average of the
stress 〈σ sus〉 is equated to the average over time.

Evaluation of (2.14) and (2.15) requires surface or volume integrals. To calculate these
integrals numerically using the immersed boundary method, the appropriate location of
the particle–fluid interface should be carefully examined (Yang & Shaqfeh 2018b). In
contrast, in SPM, due to the diffuse interface of the smoothed profile function, both Σ and
S are evaluated by the volume integral as follows. By comparing (2.17) and (2.13)–(2.15),
we have

Σ ≈ 1
N

∫
DV

[(1− �φ�)(σ n + σ p)
F − (σ n + σ p)

F0] dr, (2.18)

S ≈ − 1
N

∫
DV

rρφf p dr. (2.19)

Equation (2.19) indicates the relation between the stresslet and SPM body force ρφ f p.
Since the stresslet is originated from the stress within a particle, it is calculated with
ρφ f p that originates from the particle rigidity. Note that, in the particle region, there
is no viscous stress or polymer stress, i.e. σF = 0 in principle. In (2.18), this property
is explicitly accounted for with the prefactor (1− �φ�), where �·� is the floor function.
In practice, this prefactor is also effective in explicitly suppressing the accumulated
numerical error in the stress field in the particle region when calculating Σ . This method of
calculating the stress components in SPM was examined in our previous paper (Matsuoka
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x

L
L

L

y
z x

y
z

Ux = γ̇ry

Ux = γ̇L

Ux = –γ̇L

(a) (b)

Figure 1. Schematic diagrams of the simulation set-up: (a) single-particle system and (b) the sliding cell
interpretation of Lees–Edwards boundary conditions. Here Ux = γ̇ ry represents the velocity of the mean shear
flow; and L is the box length of the cubic domain. In (b), the image cells along the vorticity direction are not
shown for simplicity.

et al. 2020), and the results agreed with those determined by a surface-conforming mesh
method (Yang & Shaqfeh 2018a).

2.3. Boundary conditions
To explain the boundary conditions of the sheared system, the single-particle system that
is applied in § 3.1 is taken as an example. Figure 1 shows schematic diagrams of the
simulation system. One particle is located in the centre (rx = ry = rz = 0) of a cubic
domain of [−L/2, L/2]3, where L is the box length of the domain. Here x, y and z indicate
the flow, velocity-gradient and vorticity directions, respectively. Then, simple shear flow
U = γ̇ ryex is imposed by the time-dependent oblique coordinate system explained in
appendix A, where ei (i = x, y, z) is the Cartesian basis set. The corresponding velocity
boundary conditions at the faces of the system are naturally established by the periodicity
as follows:

u(L/2, ry, rz) = u(−L/2, ry, rz), (2.20)

u(rx, L/2, rz) = u(rx − γ L,−L/2, rz)− γ̇ Lex, (2.21)

u(rx, ry, L/2) = u(rx, ry,−L/2), (2.22)

where the simple periodic boundary conditions for the flow (2.20) and vorticity (2.22)
directions and the shear periodic boundary condition for the velocity-gradient (2.21)
direction are established. The periodic boundary conditions for the conformation tensor
are the same as (2.20)–(2.22) except that the last term in (2.21) is not included.

Lees–Edwards boundary conditions for particles can be interpreted as a sliding cell
expression, as shown in figure 1(b). Initially, the image cells are aligned along all directions
infinitely. Under simple shear flow, the upper and lower image cell layers stacked in
the velocity-gradient direction slide in the flow direction with velocity Ux = ±γ̇ L. The
position and velocity of the particle going across the top and bottom faces of the main
cell are modified as if the particle moved into the sliding image cell. These periodic
boundary conditions in our method are preferred in evaluating bulk suspension rheology
without the influence of the shear-driving walls. In our previous study, using this boundary
condition, 3-D steady shear simulations for a single-particle viscoelastic suspension

913 A38-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

5 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.5


Y. Matsuoka, Y. Nakayama and T. Kajiwara

system were conducted (Matsuoka et al. 2020). Similar periodic boundary conditions were
adopted for two-dimensional (2-D) steady shear flow simulations (Hwang et al. 2004;
Jaensson et al. 2015) and 3-D dynamic shear flow simulations (D’Avino et al. 2013)
of viscoelastic suspensions. In contrast to recent 3-D steady shear flow simulations for
many-particle systems which utilize walls to impose the shear flow (Yang & Shaqfeh
2018b; Vázquez-Quesada et al. 2019), this study presents for the first time wall-free 3-D
steady shear flow simulations for a many-particle viscoelastic suspension system. The
details of the numerical solution procedure are described in appendix B.

3. Results and discussion

In this section, the developed DNS method is applied to the rheological evaluations of
sheared viscoelastic suspensions. First, to show the validity of rheological evaluations by
our developed DNS method, the suspension viscosity of the single-particle dilute system is
evaluated and compared to previously reported numerical and theoretical results. Further
examinations of our DNS method are explained in appendix C. Next, detailed rheological
evaluation is conducted for a semidilute viscoelastic suspension, which contains many
particles immersed in a multi-mode Oldroyd-B fluid, and the results are compared with
previously reported experimental results.

3.1. Suspension rheology of single-particle system
A perturbation analysis of the suspension in a single-mode Oldroyd-B medium by
Einarsson et al. (2018) predicted the shear thinning in the stresslet and the shear thickening
in the particle-induced fluid stress at O(φpWi2):

ηr = 1+ 2.5φp + φp(1− β)(αstresslet
S + α

fluid
S ), (3.1)

where αstresslet
S = −1.43Wi2 − 0.06(1− β)Wi2 and α

fluid
S = 2.05Wi2 + 0.03(1− β)Wi2

are the contributions from the stresslet and particle-induced fluid stress (§ 2.2),
respectively. DNS of a single particle in an Oldroyd-B medium by Yang & Shaqfeh (2018a)
showed shear thickening in the particle-induced fluid stress around a particle. To confirm
that the method developed in this work can be applied for rheological evaluation, the
viscosity and the bulk stress of a single-particle suspension in an Oldroyd-B medium is
evaluated. The numerical set-up is the same as that explained in § 2.3 (figure 1a). The
system size is L = 128Δ and the particle radius and interfacial thickness are a = 8Δ and
ξ = 2Δ, respectively. This corresponds to φp = 0.001023. All calculations are conducted
with a small Reynolds number Re � 0.051, i.e. the effect of inertia is negligible.

Figure 2 shows the Wi dependence of the steady-state relative shear viscosity, ηr =
〈σ sus

xy 〉/(η0γ̇ ), of the single-mode Oldroyd-B suspension at β = 0.5. Shear thickening is
observed in the suspension viscosity for increasing Wi. In the Wi→ 0 limit, the relative
viscosity (ηr,0 = 1.002522, which is obtained from fitting the numerical results at low Wi
by using ηr = ηr,0 + bf Wi2) approaches Einstein’s theoretical value, ηr = 1+ 2.5φp =
1.002557. The small discrepancy from the theoretical value in ηr,0 is mostly attributed to
the stresslet contribution and is suggested to be due to the diffused interface of the particle
surface in SPM. The developed method reveals the Wi2 dependence as predicted by (3.1) at
roughly Wi < 1; the inset of figure 2 shows this clearer, where the thickening part ηr − ηr,0
in the relative viscosity is shown. However, at Wi � 1, shear thickening is slower than Wi2
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–

β
)

Figure 2. The Wi dependence of the relative viscosity of a dilute Oldroyd-B suspension at β = 0.5. The inset
shows the Wi dependence of the thickening part of ηr. Red open circles represent results from this work. The
black lines correspond to the theoretical prediction by Einarsson et al. (2018) using (3.1).

growth because the perturbation analysis is expected to be valid at Wi
 1. For a more
detailed comparison, αstresslet

S and α
fluid
S at β = 0.5 are evaluated separately as

αstresslet
S = N〈Sxy〉/V − η0γ̇ (ηr,0 − 1)

η0γ̇ φp(1− β)
, (3.2)

α
fluid
S = N〈Σxy〉/V − ηpγ̇

η0γ̇ φp(1− β)
, (3.3)

as shown in figure 3 with a previous DNS result obtained by using a surface-conforming
mesh (Einarsson et al. 2018); the results agree with the DNS by Einarsson et al. By
comparing with DNS results, the O(Wi2) prediction (solid line) is found to be valid at
Wi � 0.3 for αstresslet

S and Wi � 0.5 for α
fluid
S . At higher Wi values, the Wi dependence is

slower than Wi2 growth, which is observed both in |αstresslet
S | and in α

fluid
S .

The agreement between the obtained results and those from perturbation theory and
a previous DNS study verifies the capability of the developed SPM for the rheological
evaluation of suspensions in viscoelastic media. By using the presented numerical method,
the influence of β on the rheology of a dilute suspension in an Oldroyd-B medium has been
explored in detail (Matsuoka et al. 2020).

3.2. Suspension rheology of many-particle system
For dilute and semidilute particle concentrations, the rheology of many-particle systems
is studied in contrast to the single-particle system considered in § 3.1. The numerical
condition in this study is decided in accordance with the experimental conditions
previously reported by Yang & Shaqfeh (2018b). They have performed detailed rheological
measurements of a viscoelastic medium, including the elongation viscosity, in addition to
rheological measurements of a suspension system. Thus, their experimental results are
likely to be the most complete dataset available for quantitative rheological evaluation

913 A38-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

5 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.5


Y. Matsuoka, Y. Nakayama and T. Kajiwara

10–2 10–1 100
10–4

10–3

10–2

10–1

100

101

10–2 10–1 100
10–4

10–3

10–2

10–1

100

101

Wi Wi

–
α

Sst
re

ss
le

t

α
Sflu

id

(a) (b)

Figure 3. The Wi dependence of (a) stresslet αstresslet
S and (b) particle-induced fluid stress α

fluid
S contributions

to the suspension viscosity at β = 0.5. Red filled circles represent results from this work, and blue squares are
the DNS results by Einarsson et al. (2018). The black line is plotted according to the theory by Einarsson et al.
(2018).

by DNS. Furthermore, as mentioned in their paper, wall effects for the rheological
measurements are expected to be negligible in their experiments, which is suitable for
our shear periodic boundary condition explained in § 2.3.

3.2.1. Numerical conditions
The system and particle sizes are the same as in § 3.1, i.e. L = 128Δ, a = 8Δ and ξ = 2Δ.
Considering dilute to semidilute particle concentrations, one has φp = 0.001, 0.025, 0.05
and 0.1 by setting the number of particles to 1, 24, 49 and 98, respectively. The initial
positions of the particles are set to be randomly distributed and non-overlapping, with the
inter-surface distance set to at least 2Δ. For each φp except for φp = 0.001 (single-particle
system), at least three different realizations are calculated. An experimental result reported
by Yang & Shaqfeh (2018b) is considered where the rheology of a suspension in a
Boger fluid consisting of polybutene, polyisobutylene and kerosene was evaluated. For
the rheological characterization of the Boger fluid, both steady-shear and small-amplitude
oscillatory shear (SAOS) measurements were reported (Yang & Shaqfeh 2018b). In
principle, the parameters in the Oldroyd-B model can be estimated from either the
steady-shear or SAOS data; however, due to the limited range of the rate window, the
zero-shear first NSD was available only from the SAOS data. Furthermore, in their
experiment, the suspension viscosity begins to show shear thickening at γ̇ ≈ 0.2 s−1, a
shear rate that is below the rate window of steady-shear N1 data. Therefore, the parameters
estimated from the SAOS data listed in table 1 are used here to solve the corresponding
four-mode Oldroyd-B fluid as a suspending medium. Note that Yang & Shaqfeh (2018b)
also reported the DNS prediction with experimental data, where, in contrast to this
work, the single-mode Oldroyd-B model with parameters estimated from the steady-shear
property of the suspending Boger fluids resulted in an underestimation of the suspending
viscosity. The discrepancy between their simulation and experimental results is discussed
later (§ 3.2.3).

After the steady state is reached, the viscometric functions of the many-particle
suspension are time-averaged over at least γ̇ 
t = 10 from γ̇ t � 10 max{1, γ̇ λ(1)}. Finally,
the time-averaged values are ensemble-averaged over different realizations to obtain
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Mode k η
(k)
p (Pa s) λ(k) (s) η

(k)
p λ

(k) (Pa s2)

1 0.67 3.2 2.144
2 0.66 0.26 0.172
3 0.25 0.032 8.0× 10−3

4 0.44 0.002 8.8× 10−4

Solvent 1.46 — —

Table 1. Parameters for a four-mode Oldroyd-B fluid. The values are from table 1 of Yang & Shaqfeh
(2018b), which are estimated from the small-amplitude oscillatory shear measurement of a Boger fluid.

0 0.05 0.10 0.15

1.0

1.2

1.4

1.6

Einstein
Batchelor & Green
Haddadi & Morris
This work (Wi = 0.1)
This work (Wi = 0.5)
This work (Wi = 1.0)
This work (Wi = 2.0)

ηr

φp

Figure 4. The φp dependence of the relative viscosity of suspensions at Wi = 0.1 (blue circles), 0.5 (green
triangles), 1.0 (orange squares) and 2.0 (red diamonds). The short-dashed and long-dashed lines correspond
to the theoretical predictions for a Newtonian suspension by Einstein (1911) and Batchelor & Green (1972),
respectively. The empirical prediction from Haddadi & Morris (2014) is shown as a solid line.

the viscometric functions of bulk suspensions. The error bars in the following figures
correspond to three times the standard deviation from the sample mean. The Weissenberg
number is defined based on the longest relaxation time λ(1) = 3.2 s as Wi = γ̇ λ(1). All
calculations were conducted at a small Reynolds number Re � 0.018 where the effect of
inertia is not significant.

3.2.2. Suspension viscosity and first NSD coefficient
Figure 4 shows the steady-state suspension viscosity normalized by η0 for different Wi as
functions of φp; the theoretical trends for a Newtonian suspension in the creeping flow
regime are also shown. Here, ηr = 1+ 2.5φp + αφ2

p , where α = 0 for Einstein (1911)
theory (short-dashed line) and α = 5.2 for Batchelor & Green (1972) theory (long-dashed
line). In addition, the empirical Eilers fit for the numerical result of Newtonian suspensions
by Haddadi & Morris (2014), ηr = (1+ 1

2 [η]φp/(1− φp/φp,m))2, with [η] = 2.5 and
φp,m = 0.63, is also plotted (solid line). At Wi = 0.1, the suspension viscosity agrees well
with the predictions by Batchelor–Green and Eilers fit for Newtonian suspensions. This is
expected because the polymer stress is expected to fully relax at Wi
 1 to exhibit almost
Newtonian behaviour. In contrast, as Wi increases, the suspension viscosity increases to
be above the prediction for Newtonian suspensions.
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Figure 5. Viscometric functions of suspensions as functions of Wi and φp: (a) relative viscosity and (b) relative
first NSD coefficient of suspensions. The closed symbols are simulated results from this work, and the open
symbols are experimental results from Yang & Shaqfeh (2018b). The blue squares, green triangles and red
circles correspond to the results for φp = 0.025, 0.05 and 0.1, respectively. Experimental ηr and Ψ1,r are
calculated using η(φp, γ̇ ) and Ψ1(φp, γ̇ ) reported by Yang & Shaqfeh (2018b). The dashed lines in (a) are
values predicted by the Eilers fit (Haddadi & Morris 2014). Solid lines are guides to the eye. The insets in (a,b)
show the DNS results at φp = 0.1 by the multi-mode model (red circles) and the effective single-mode model
(black squares) explained in § 3.2.3.

In figure 5, the viscosity (figure 5a) and first NSD coefficient (figure 5b) as functions
of Wi are compared with the experimental result by Yang & Shaqfeh (2018b) for different
φp. The viscosity at the Wi→ 0 limit calculated by Eilers fit in figure 4 for each φp is
also shown in figure 5(a). The numerical results of this work agree quantitatively with
the experimental results up to a semidilute case of φp = 0.1. The first NSD coefficient
of the suspension, Ψ1 = 〈σ sus

xx − σ sus
yy 〉/γ̇ 2, normalized by that of the medium, is shown

in figure 5(b). As Wi increases, Ψ1,r also increases. Although the ranges of Wi of the
experimental and numerical results do not overlap, the numerical results of this work
smoothly connect with the experimental results.

Note that, while the DNS results agree with the experimental ηr, the DNS using
an Oldroyd-B model reported by Yang & Shaqfeh (2018b) underestimated it. The
main difference between this work and that of Yang & Shaqfeh is the estimation of
the zero-shear N1 of the suspending Boger fluid; N1 from the SAOS measurement is
approximately twice as large as that from the steady-shear measurement; the difference
occurs because the steady-shear measurement did not reach the terminal region and
showed a decreased N1. These results suggest that predicting suspension shear thickening
at around Wi = 1.0 requires an accurate estimation of N1 of the suspending medium in
the shear-rate range where the shear thickening starts to occur. For the Boger fluid used in
Yang & Shaqfeh (2018b), this range is supposed to be the terminal region, which cannot
be reached by the steady-shear measurement. The estimation of N1 directly affects the
level of polymer stress around the particles, because, as past studies on dilute systems
have revealed (Yang & Shaqfeh 2018a; Matsuoka et al. 2020), the elastic stress due to the
stretched conformation nearby upstream of the particles contributes to the macroscopic
shear stress. In Yang & Shaqfeh (2018b), their model’s underestimation of the medium’s
elongational property is argued to be one reason why their DNS prediction underestimates
the measured shear thickening of suspensions. Although our four-mode Oldroyd-B model
shows slightly higher elongational viscosity than that by the single-mode model used
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Figure 6. DNS results at φp = 0.025: (a) suspension viscosity for single-particle (red circles) and
many-particle (blue squares) systems; and (b) microstructure in a many-particle system at Wi = 2.0. In (a),
the black lines are predictions for Newtonian suspensions according to the theories of Batchelor & Green
(dashed) and Einstein (dot-dashed). Solid lines are guides to the eye.

in Yang & Shaqfeh (2018b), our multi-mode model still underestimates the measured
elongational viscosity of the medium. This result suggests that suspension shear thickening
in Boger fluids at around Wi = 1.0 can be predicted with the Oldroyd-B model without
additional modelling of the elongational response.

To demonstrate the difference between many-particle and single-particle systems at
dilute conditions, a single-particle simulation is conducted at φp ≈ 0.025 by setting
the particle radius a = 23Δ and system size L = 128Δ in the single-particle system
shown in figure 1(a); the Reynolds number is kept small (Re = 0.076). Because of the
periodic boundary conditions, this single-particle system corresponds to the sheared
cubic array system shown in figure 1(b). In figure 6(a), the suspension viscosity
between single-particle (cubic array structure) and many-particle (random structure)
systems is compared. The single-particle result indicates lower viscosity, whereas the
shear-thickening behaviour is almost the same as that of the many-particle system. At
Wi→ 0, the viscosity from the single-particle system agrees with the Einstein prediction.
This also agrees with the results of a cubic array system in a Newtonian medium (Nunan
& Keller 1984; Phan-Thien, Tran-Cong & Graham 1991). Correspondingly, 〈Sxy〉 for the
single-particle system agrees with the Einstein stresslet (the inset of figure 9a).

Figure 6(b) shows the microstructure of the many-particle system in a sheared steady
state at φp = 0.025 and Wi = 2. In many-particle systems, particles are randomly
dispersed and occasionally get very close to each other, which induces the large
stresslet contribution. On the other hand, in the single-particle system, the inter-particle
distance remains above a certain level as shown in figure 1(b). Therefore, the
viscosity shift between the two systems is attributed to the difference in the stresslet
contribution by microstructures. Note that particle alignment, which is sometimes
observed experimentally in suspensions with viscoelastic fluids (Michele et al. 1977;
Scirocco et al. 2004), is not observed at all φp and Wi in our study. This suggests that
our simulation conditions are out of range for an alignment critical condition predicted by
DNS using Oldroyd-B and Giesekus matrices (Hwang & Hulsen 2011; Jaensson, Hulsen
& Anderson 2016). The result from this work, showing that the suspension microstructure
affects the viscosity even at dilute conditions, is consistent with the results of a previous
study (Vázquez-Quesada et al. 2019). Furthermore, similar shear-thickening behaviour
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Figure 7. Proportions of each relaxation mode in the polymer stress contribution (for k = 1 (red circles), 2
(orange triangles), 3 (green squares) and 4 (blue diamonds), and the sum of the mode contributions (black
downward-pointing triangles)): (a) shear viscosity and (b) first NSD coefficient at φp = 0.1. The values of
〈η(k)

p 〉 and 〈Ψ (k)
1,p 〉 are normalized by η0 and Ψ1(φp = 0) = 2

∑4
k=1 η

(k)
p λ

(k), respectively. Note that the stresslet

contributions are not included in the figure. Lines are guides to the eye. By definition, the order of 〈η(k)
p 〉 and

〈Ψ (k)
1,p 〉 at Wi→ 0 corresponds to the order of η

(k)
p and η

(k)
p λ

(k) in table 1, respectively. That is why 〈η(4)
p 〉 >

〈η(3)
p 〉 in (a). In (b), 〈Ψ (4)

1,p 〉 is not shown because it is smaller than 〈Ψ (3)
1,p 〉.

independent of the microstructures suggests that the shear thickening at dilute conditions
is mainly originated from the polymer stress in the vicinity of a particle, which is consistent
with a previous study (Yang & Shaqfeh 2018a,b).

3.2.3. Relaxation mode decomposition of polymer stress
In the modelling of the suspensions in a Boger fluid, the four-mode Oldroyd-B model
is used for the suspending medium. The separate contributions from each relaxation
mode to the suspension shear thickening are discussed. The viscosity and the first NSD
coefficient from the kth mode are defined as 〈η(k)

p 〉 ≡ [
∫

DV
(1− �φ�)σ (k)

p,xy dr/V]/γ̇ and

〈Ψ (k)
1,p 〉 ≡ [

∫
DV

(1− �φ�)(σ (k)
p,xx − σ

(k)
p,yy) dr/V]/γ̇ 2 (k = 1, 2, 3, 4), respectively. Figure 7

shows the kth viscosity normalized by η0 and the kth first NSD coefficient normalized by
Ψ1 at φp = 0 as functions of Wi at φp = 0.1. Both for the viscosity (figure 7a) and for the
first NSD coefficient (figure 7b), only the first mode exhibits shear thickening, whereas the
other faster modes show a rate-independent contribution. This is expected, because the Wi
considered here is much smaller than λ(1)/λ(2) = 12.3; the elastic stress from the second
and subsequent modes fully relaxes to show a zero-shear response.

The results in figure 7 suggest that single-mode modelling for the suspending medium
is likely to be sufficient to predict the rheological response at the Wi � 2.5 considered
in the current simulation. If only the first mode is responsible for the polymer stress, the
effective parameters for a single-mode Oldroyd-B fluid are determined from table 1 to
be λeff = λ(1) = 3.2 s, η

eff
p = η

(1)
p = 0.67 Pa s and η

eff
s = ηs +

∑4
k=2 η

(k)
p = 2.81 Pa s,

resulting in βeff = η
eff
s /η0 = 0.807. This effective β value is smaller than the β = 0.9

used in DNS (Yang & Shaqfeh 2018b), which underpredicted the experimental suspension
rheology. In the inset of figure 5, the DNS result of the presented effective single-mode
model (black squares) is compared with that of the multi-mode model (red circles),
showing good agreement with the multi-mode results and thus experimental results

913 A38-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

5 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.5


Prediction of elastic shear thickening of suspensions

(Yang & Shaqfeh 2018b). This difference between the β values originates from the
difference in the estimation of the zero-shear NSD coefficient of the Boger fluid that
was mentioned in § 3.2.2. In the system considered in this work, only λ(1) is relevant to
the studied range of Wi. Whether single-mode modelling can be used for the quantitative
prediction of suspension rheology for other types of suspending media depends on both
the relaxation time distribution of the fluid and the distribution of the local shear rate in the
fluid, which is dependent on the fluid rheology as well as φp. In § 3.2.5, we study how the
local shear-rate distribution, flow pattern and the elastic stress development change with
φp and Wi.

3.2.4. Decomposition of the total suspension stress
The φp dependence of the shear thickening of the suspension in the Oldroyd-B medium is
discussed. The contributions from the stresslet, S, and the particle-induced fluid stress, Σ ,
to the suspension rheology are shown in figure 8, where the shear component is normalized
by η0γ̇ a3 to correspond to a non-dimensional viscosity, and the first NSD component is
normalized by η0λ

(1)γ̇ 2a3 to correspond to the non-dimensional NSD coefficient. For the
viscosity component in figure 8(a), as Wi increases, the stresslet viscosity, 〈Sxy〉/(η0γ̇ a3),
decreases, and the particle-induced fluid viscosity, 〈Σxy〉/(η0γ̇ a3), increases more than the
change in the stresslet viscosity. Specifically, at Wi = 2.0, the decrease in 〈Sxy〉/(η0γ̇ a3) is
less than two, but the increase in 〈Σxy〉/(η0γ̇ a3) is more than three for all φp considered.
This result clearly demonstrates that the shear thickening of the suspension viscosity
originates from an increase in 〈Σxy〉, which is consistent with what has been reported
in previous work (Yang & Shaqfeh 2018a,b; Matsuoka et al. 2020). As φp increases, the
increase in 〈Σxy〉/(η0γ̇ a3) with Wi is enhanced, whereas the decrease in 〈Sxy〉/(η0γ̇ a3)

with Wi remains slow, which explains the enhancement of the shear thickening with φp
shown in figure 5(a). For the first NSD component (figure 8b), the general trends with
respect to Wi and φp are similar to that of the viscosity component. These trends were
also reported in a previous numerical study up to Wi � 1.0 (Yang & Shaqfeh 2018b).
Because N1 is very small and N1 ∝ 〈Sxx−yy〉 at the Wi→ 0 limit, the numerical fluctuation
in calculating such a small value is large for 〈Sxx−yy〉/(η0λ

(1)γ̇ 2a3) at Wi � 0.5.
The reduction rate of the stresslet viscosity with Wi does not strongly depend on

φp. Therefore, 〈Sxy〉/(η0γ̇ a3) is mainly determined by that at the Wi→ 0 limit. This
reduction of 〈S〉/(η0γ̇ a3) with Wi indicates the reduced viscous traction on the particles
that originates from the increased fraction of the elastic energy dissipation with Wi, which
is also related to the slowdown of the particle rotation rate with Wi discussed in § 2.
The change of 〈Sxy〉 to that at the Wi→ 0 limit, 〈Sxy,0(φp)〉, is plotted in figure 9(a)
versus an effective Weissenberg number explained later; in figure 10(a), it is plotted
against the suspension shear stress 〈σ sus

xy 〉 normalized by η0/λ
(1). The numerical result

for 〈Sxy〉 at Wi = 0.1 depicted in the inset of figure 9(a) almost agrees with the theoretical
Batchelor–Green stresslet, 〈Sxy,0〉/(η0γ̇ a3) = (4π/3)(2.5+ αφp) for φp � 0.05, and with
the empirical Eilers stresslet fitted for numerical results by Haddadi & Morris (2014):

〈Sxy,0〉
η0γ̇ a3 =

4π

3φp

⎡⎣(1+
1
2 [η]φp

1− φp/φp,m

)2

− 1

⎤⎦ , (3.4)

for φp � 0.1. Based on this observation, 〈Sxy,0〉 in figure 9(a) is calculated with (3.4).
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Figure 8. Contributions to the total suspension stress from stresslet S (red) and particle-induced fluid stress Σ

(blue) at φp = 0.001 to 0.1 (from light to dark colour): (a) contributions to the total shear stress normalized by
η0γ̇ a3; and (b) contributions to the total first NSD normalized by η0λ

(1)γ̇ 2a3. Solid lines are guides to the eye.
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Figure 9. Viscoelastic contributions to the total suspension shear stress as a function of the effective
Weissenberg number at φp = 0.001 to 0.1 (from light to dark colour). (a) Stresslet contribution to shear stress.
The ordinate represents the polymeric part of 〈Sxy〉, i.e. 〈Sxy〉 − 〈Sxy,0〉, where 〈Sxy,0〉 is the Newtonian part of
〈Sxy〉 represented by (3.4). The inset shows the φp dependence of 〈Sxy〉 at Wi = 0.1 (red circles). The result from
single-particle simulation at φp = 0.025 is also shown (red square). The black lines are predictions according
to theories of Einstein (dotted), Batchelor & Green (dot-dashed) and Eilers fit by Haddadi & Morris (solid).
The contributions for the shear stress are normalized by η0γ̇ a3. (b) Particle-induced fluid stress contributions
for shear stress. The effective Weissenberg number W̃i is defined with the average strain rate in the fluid region
at each φp. In both panels, the red and blue solid lines are guides to the eye.

In the suspension, a local shear rate can be larger than the applied rate γ̇ . To take
this into account, the effective Weissenberg number W̃i = ˜̇γ λ(1) is defined by using the
average shear rate ˜̇γ (φp, Wi) = √〈2D : D〉f , where 〈A〉f =

∫
DV

(1− �φ
)A dr/[(1− φp)V]
represents the volume average of a local variable A over the fluid region and �·
 indicates
the ceiling function. For dilute cases (φp � 0.05), the changes of the stresslet viscosity as
a function of W̃i in figure 9(a) are nearly coincident. For a semidilute case (φp = 0.1), the
stresslet viscosity change agrees with the dilute cases for W̃i � 1.5. At higher W̃i � 1.5,
the negative slope of the stresslet viscosity becomes smaller than that in the dilute cases,
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Figure 10. Viscoelastic contributions to the total suspension shear stress as a function of the suspension
shear stress at φp = 0.001 to 0.1 (from light to dark colour): (a) stresslet, (b) particle-induced fluid stress,
(c) normalized polymer dissipation function of the first relaxation mode, and (d) the thickening portion of
the relative viscosity. The suspension shear stress in the abscissa in each panel is non-dimensionalized as
〈σ sus

xy 〉λ(1)/η0. Solid lines are guides to the eye.

though this change is not large compared to that at Sxy,0(φp)/(η0γ̇ a3). The change of
〈Sxy〉/(η0γ̇ a3) as a function of 〈σ sus

xy 〉λ(1)/η0 in figure 10(a) shows a similar trend to
that presented in figure 9(a). Although both Wi and φp increase W̃i and thus the elastic
contribution in the fluid, the stresslet changes with φp and W̃i at φp = 0.1 are in opposite
directions. This suggests the stresslet change due to microstructure at φp = 0.1 in addition
to the change induced by polymer stress around individual particles. For 〈Sxx−yy〉, the large
error at Wi = 0.1 makes it difficult to evaluate the analysis as it is done for 〈Sxy〉.

Next, the particle-induced fluid viscosity 〈Σxy〉/(η0γ̇ a3) which directly accounts for the
elastic stress is discussed. At W̃i � 1 in figure 9(b), the particle-induced fluid viscosity
does not depend on φp because the elastic stress almost relaxes at W̃i � 1. This region
of W̃i corresponds to the zero-shear plateau of the suspension viscosity. At W̃i > 1, the
increase of 〈Σxy〉/(η0γ̇ a3) with W̃i is enhanced as φp increases, indicating increased
elastic stress with φp. Since the elastic stress is dependent on flow history and is not a
simple function of the shear rate, the rate of increase of 〈Σxy〉/(η0γ̇ a3) with respect to W̃i
changes with φp.
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The plot of 〈Σxy〉/(η0γ̇ a3) as a function of 〈σ sus
xy 〉λ(1)/η0 in figure 10(b) does

not depend on φp for dilute conditions (φp � 0.05), which is consistent with the
previous work (Yang & Shaqfeh 2018b). At a semidilute condition (φp = 0.1),
〈Σxy〉/(η0γ̇ a3) is slightly lower than that in the dilute cases, but the rate of increase
is almost the same as that in the dilute condition. In figure 10(b), after a slow
increase at 〈σ sus

xy 〉λ(1)/η0 
 1, the particle-induced fluid viscosity increases linearly
to 〈σ sus

xy 〉λ(1)/η0 � 0.5. The purely elastic contribution is directly evaluated by the

polymer dissipation function, Φ
(k)
p = (η

(k)
p /(2(λ(k))2)){tr C(k) + tr C(k)−1 − 6}. By using

Φp, an extra elastic contribution compared to a pure Oldroyd-B fluid is discussed in
Vázquez-Quesada et al. (2019). By definition, the polymer dissipation function is a scalar
of C and thus independent of the direction of C; tr C − 3 and tr C−1 − 3 measure the
stretch and compression of C, respectively.

Figure 10(c) shows the normalized polymer dissipation function of the first mode,
2〈Φ(1)

p 〉f (λ(1))2/η
(1)
p , as a function of 〈σ sus

xy 〉λ(1)/η0. Figure 10(c) shows that the
normalized polymer dissipation function at different φp collapses onto a single master
curve, directly suggesting the similarity of the elastic contribution up to φp � 0.1.

Figure 10(d) shows the shear-thickening part per particle defined as ηr,t = [ηr(φp, Wi)−
ηr(φp, Wi→ 0)]/φp as a function of suspension shear stress, where ηr(φp, Wi→ 0) is
approximated by ηr(φp, Wi = 0.1) because ηr almost reaches the zero-shear plateau even
at Wi = 0.1. Up to semidilute cases (φp � 0.1), the increases in ηr,t with 〈σ sus

xy 〉 nearly
coincide. Previous work (Yang & Shaqfeh 2018b) reported that the variation of ηr,t with
〈σ sus

xy 〉 did not depend on φp for φp � 0.1, which is also confirmed in this work.

3.2.5. Flow characterization of viscoelastic suspension
The probability density functions (p.d.f.s) of the local shear rate γ̇local =

√
2D : D in the

fluid domain for different φp and Wi are presented in figure 11(a). To sample the different
particle configurations under flow for many-particle systems, the p.d.f. is calculated from
data over 25 snapshots per sample (in all, 75 snapshots) at the steady state by every
γ̇ 
t = 0.215 strain increment in three different initial particle configuration samples. Here
γ̇local /= γ̇ is from the inhomogeneous flow near the particles, whereas γ̇local = γ̇ is mainly
from the region far from the particles where the flow is close to homogeneous shear flow.
For the same Wi, as φp increases, the shape of the p.d.f. broadens and the peak position in
the p.d.f. gradually shifts towards large shear rate. This trend is clearly observed by the φp
dependence of the mean 〈γ̇local〉f and standard deviation σ(γ̇local) (the inset in figure 11a).
Specifically, γ̇local/γ̇ � 2 for φp = 0.001 (single-particle result), while γ̇local/γ̇ � 5 for
φp = 0.1. In general, a large shear rate is effective in exciting the fast relaxation mode. At
Wi = 0.1, the normalized first relaxation rate (λ(1)γ̇ )−1 = 10 is beyond the range of the
local shear rate for φp � 0.1; therefore, the elastic response is irrelevant. At Wi = 2, where
the first mode is relevant, the normalized second relaxation rate is (λ(2)γ̇ )−1 = 6.15, thus
indicating that the second mode is still irrelevant to the elastic response.

The p.d.f. of the local shear rate, which is centred at the mean and is normalized
by the standard deviation, is shown in figure 11(b). At φp = 0.001, the normalized
p.d.f. is highly skewed and has fat tails. This corresponds to large positive values
of the skewness M3(γ̇local) and kurtosis M4(γ̇local) (the inset in figure 11b), where
Mn( f ) = 〈( f − 〈f 〉f )n〉f /σ n( f ) is the normalized nth-order statistic of f . As φp increases,
the shape of the p.d.f. becomes closer to the Gaussian distribution (the dashed line), which
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Figure 11. The φp and Wi dependence of the local strain rate in the fluid region. (a) P.d.f. of γ̇local, where
φp = 0.1 (red), 0.05 (orange), 0.025 (green) and 0.001 (blue), and the dotted and solid lines represent p.d.f.s
at Wi = 0.1 and 2.0, respectively. The strain rate is normalized by the imposed shear rate γ̇ , and the arrows
indicate the first and second relaxation rates at Wi = 2.0. The inset shows the φp dependence of the mean and
standard deviation for Wi = 0.1 (open symbols) and 2.0 (closed symbols). (b) P.d.f. of γ̇local centred at the mean
and normalized by the standard deviation. The inset shows the φp dependence of the skewness and kurtosis.
The line types are the same as those in (a). The dashed line indicates the standard Gaussian distribution. (c)
Average local strain rate, where blue squares and red circles correspond to Wi = 0.1 and 2.0, respectively, and
the line is the result from homogenization theory.

corresponds to the decrease of M3(γ̇local) and M4(γ̇local). However, even at φp = 0.1, the
p.d.f. remain positively skewed, suggesting the asymmetric nature of the local shear-rate
distribution. In addition, the shape of the p.d.f. in figure 11(a,b) is not sensitive to the
change in Wi.

Figure 11(c) shows the root-mean-square of the local shear rate, ˜̇γ =
√
〈γ̇ 2

local〉f , as a
function of φ at Wi = 0.1 and 2.0. This average shear rate increases with φp because
the deformable fluid volume decreases with φp. This phenomenon is expected to be
common in solid suspensions. For comparison, a prediction for the average shear rate
by a homogenization theory for viscous fluid (Chateau, Ovarlez & Trung 2008),

˜̇γ = γ̇

√
ηr(φp, Wi→ 0)

1− φp
, (3.5)
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Figure 12. P.d.f. of (a) strain-rate state s and (b) irrotationality E in the fluid region at various values of φp
(0.1 (red), 0.05 (orange), 0.025 (green) and 0.001 (blue)). For each φp, Wi = 0.1 (dotted lines) and 2.0 (solid
lines). The inset shows the φp dependence of the mean (red circles) and standard deviation (blue squares). The
open and solid symbols in the inset indicate the results of Wi = 0.1 and 2.0, respectively.

is drawn in figure 11(b), where ηr in (3.5) is calculated with the Eilers fit by Haddadi
& Morris (2014). Although the increasing trend of the average shear rate with φp is
similar, the average shear rate in the studied viscoelastic medium is slightly smaller
than that predicted by (3.5). This is partly because (3.5) does not consider suspension
microstructures explicitly. In fact, even for a Newtonian medium, (3.5) was reported to
overestimate the suspension viscosity obtained by DNS at high φp (Alghalibi et al. 2018).
From figure 11, the level of shear rate is hardly affected by Wi for Wi � 2, and the
fluctuation of γ̇local is mainly dominated by the solid volume fraction.

Next, the local flow pattern is discussed for different φp and Wi. The topological
aspect of the local flow pattern defined by ∇u can be characterized by two scalars:
multi-axiality of the strain rate and irrotationality of ∇u (Nakayama, Kajiwara & Masaki
2016). The multi-axiality of flow in the incompressible flow is conveniently identified by
the strain-rate state, which is defined as

s = 3
√

6 det D

(D : D)3/2 , (3.6)

where s ∈ [−1, 1] by definition. For uniaxial elongational flow, where stretching in
one direction and compression in the other two directions occur, s > 0, whereas for
biaxial elongational flow, where compression in one direction and stretching in the other
two directions occur, s < 0. For planar flow, where stretching occurs in one direction,
compression occurs in another direction and no strain is found in the other direction, s = 0.
The magnitude of s is determined by the relative magnitude of the three principal strain
rates of D. Figure 12(a) shows p.d.f.s of s for different φp and Wi. Since homogeneous
shear flow is planar flow, s = 0 when φp → 0. As φp and/or Wi increase, the fraction of
the planar flow indicated by s = 0 decreases, and the fraction of triaxial flow indicated by
s /= 0 increases. This trend is also captured by the mean and standard deviation of s (the
inset in figure 12a).

The relative contribution of vorticity to the strain rate is characterized by irrotationality,
which is defined as

E =
√

D : D
√

D : D +
√

Ω : ΩT
, (3.7)
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where Ω = (∇u−∇uT)/2 is the vorticity tensor. By definition, E ∈ [0, 1]. For rigid-body
rotation, E = 0; and E = 1 for irrotational flow. As the vorticity contribution decreases,
E increases. Figure 12(b) shows the p.d.f. of the irrotationality for different φp and Wi.
In homogeneous simple shear flow at φp → 0, the flow is half rotational, i.e. E = 1/2.
As φp increases, the fraction of E = 1/2 decreases, whereas the fraction of E /= 1/2
increases. In particular, the fraction of E > 1/2 is larger than that of E < 1/2, indicating
that the region with more irrotational flow than homogeneous shear flow increases with φp.
Since the vorticity contribution makes the fluid element avoid stretching, a large E value
suggests that the flow is strain-dominated to promote stretching of the conformation. As
Wi increases, the width of the E p.d.f. gets narrower. The trend of the E p.d.f. with φp
and Wi is summarized by the mean and standard deviation of E (the inset in figure 12b).
The insets in figure 12(a,b) indicate that the flow pattern as measured by s and E is mostly
dominated by φp. These changes in the p.d.f.s of s and E reflect the modulation of the flow
caused by the particle inclusion, which is further examined in the following section.

To discuss the correlation between the strain-rate state and irrotationality and the spatial
variation of the flow pattern, a joint p.d.f. of s and E for different φp at Wi = 0.1 and 2.0
is shown in figure 13; snapshots of s and E on a shear plane at different φp and Wi are
presented in figures 14 and 15, respectively. The simple shear flow corresponds to (s, E) =
(0, 1/2). At Wi = 0.1 and φp = 0.001 and 0.025 (figures 13a and 13c, respectively), the
s–E distribution appears like the face of a fox; high-E flow is actually non-planar high-|s|
flow, which forms the fox’s ears. At Wi = 0.1, the distribution of s is almost symmetric for
different φp (figure 13a,c,e,g), thus reflecting the fore–aft symmetry of the flow around
a particle (s and E at φp = 0.025 in figure 14). For irrotational flow of E > 0.5, the
fraction of the planar flow of s = 0 is relatively small, and hence the triaxial flow of
s /= 0 is predominant. This reflects the flow in the upstream and downstream regions
of the particles (s and E at φp = 0.025 in figure 14), where the flow is forced to avoid
the particles to generate irrotational bifurcating (biaxial elongational) flow upstream and
irrotational converging (uniaxial elongational) flow downstream (Einarsson et al. 2018;
Yang & Shaqfeh 2018a; Vázquez-Quesada et al. 2019; Matsuoka et al. 2020). As Wi
increases, the distribution of s at E > 1/2 becomes asymmetric (figure 13b,d, f ); the
fraction of s > 0 is larger than that of s < 0. This corresponds to symmetry breaking
in the upstream and downstream flows around the particles with an increase of Wi. As
shown in the E distribution at φp = 0.025 and Wi = 2.0 (figure 15), high-E regions around
a particle shift anticlockwise with respect to the symmetric distribution at Wi = 0.5.
Because of this change, in the upstream region of the particle, the vorticity contribution
increases with Wi, leading to a decrease in E, whereas E in the downstream region does not
change significantly. This change of flow patterns with Wi is attributed to the local flow
modulation by large polymer stress gradients around particles, which was examined in
detail in our previous study for a single-particle system (Matsuoka et al. 2020). Although
Wi affects the local flow pattern around a particle, the microstructure does not change
obviously with Wi, as seen in figures 14 and 15.

In this study, our DNS of many-particle systems enables us to examine the effect of
the particle volume fraction on the local flow patterns. As φp increases, the s–E p.d.f.
spreads out widely (from left to right panels in figure 13). In addition to the increase in
the fraction of the characteristic flow field around single particles, this s–E distribution
also reflects the spatial overlap of the characteristic flow field between particles, which is
shown in figures 14 and 15. Especially, the high-E fox ears in the s–E p.d.f. are smeared
out with increased φp because the interaction between particles becomes predominant to
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Figure 13. The 2-D p.d.f.s of strain-rate state s and irrotationality E in the fluid region: (a,b) φp = 0.001; (c,d)
φp = 0.025; (e, f ) φp = 0.05; and (g,h) φp = 0.1. The top and bottom rows indicate the results at Wi = 0.1 and
2.0, respectively. The contour lines correspond to p.d.f. = 10k with k = −4,−3,−2,−1, 0, 1, 2.
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Figure 14. Spatial distribution of the flow pattern characterized by: (a,b) strain-rate state s; (c,d) irrotationality
E; (e, f ) normalized polymer stretch of the first mode (tr C(1) − 3)/(2Wi2); and (g,h) normalized shear stress
of the first mode σ

(1)
p,xy/(η

(1)
p γ̇ ) on a shear plane (x, y plane) at Wi = 0.5. The top (a,c,e,g) and bottom (b,d, f,h)

rows are the results at φp = 0.025 and 0.1, respectively.

modify the flow between particles. Figure 16 shows the colour contour of the strain-rate
state at the highly irrotational region of E � 0.65 at Wi = 2.0. At the dilute condition of
φp = 0.025, the highly irrotational region adjacent to each particle is isolated over most
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Figure 15. Spatial distribution of the flow pattern characterized by: (a,b) strain-rate state s; (c,d) irrotationality
E; (e, f ) normalized polymer stretch of the first mode (tr C(1) − 3)/(2Wi2); and (g,h) normalized shear stress
of the first mode σ

(1)
p,xy/(η

(1)
p γ̇ ) on a shear plane (x, y plane) at Wi = 2.0. The top (a,c,e,g) and bottom (b,d, f,h)

rows are the results at φp = 0.025 and 0.1, respectively.
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Figure 16. The isovolume visualization of a highly irrotational region at Wi = 2.0: (a) φp = 0.001, (b) 0.025,
(c) 0.05 and (d) 0.1. The isovolume represents a region where E � 0.65, and the colour represents the strain-rate
state s.

of the time (figure 16b). In contrast, as φp increases, additional bifurcating irrotational
regions develop between particles when two particles get closer (figure 16c,d).

Finally, the development of polymer stretch and polymer shear stress at different φp
and Wi is discussed with a focus on the longest relaxation mode (k = 1) responsible for
shear thickening. The snapshots of the normalized polymer stretch (tr C(1) − 3)/(2Wi2)
and the normalized polymer shear stress σ

(1)
p,xy/η

(1)
p γ̇ = C(1)

xy /Wi at φp = 0.025 and 0.1 are
shown in figure 14 for Wi = 0.5 and in figure 15 for Wi = 2.0. The polymer shear stress
distribution is similar to that of the normalized stretch.

At Wi = 0.5 (figure 14), polymer stretch is promoted in the irrotational flow at the fore
and aft of a particle. This results in two high-stretch regions; one is the recirculation region
adjacent to the particle, and the other is downstream of the particle. In the recirculation
flow around a particle, the polymer is subjected to repeated stretch and reorientation, thus
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(a) (b) (c)

x
z

y

Figure 17. Polymer high-stretch region at Wi = 2.0: (a) φp = 0.025, (b) 0.05 and (c) 0.1. The isovolume of

tr C(1) � 2(2W̃i2 + 3) is visualized in green, where the threshold is twice the value of tr C in the Oldroyd-B
fluid under homogeneous shear flow.

resulting in a high-stretch region around the particle (Yang & Shaqfeh 2018a; Matsuoka
et al. 2020). On the other hand, outside the recirculation flow, the polymer that has passed
through the irrotational region around a particle is advected downstream to form another
high-stretch region slightly diagonal to the flow direction.

In a dilute condition of φp = 0.025, the high-stretch regions associated with different
particles rarely interact with each other. As φp increases, a downstream high-stretch region
shared by two particles is observed that occurs after the two particles pass each other. In
the case of Wi = 0.5 in figure 14, the downstream high-stretch region relaxes and does not
reach far; hence the structure of the elastic stress at φp = 0.1 is similar to that in dilute
cases. This is consistent with what was observed in figure 9(b); the relationship between
the particle-induced fluid stress 〈Σxy〉 and W̃i does not depend on φp when W̃i � 1.5.

On the other hand, at Wi = 2.0 (figure 15), the downstream high-stretch region between
particles does not relax immediately and extends over a long distance. Figure 17 shows a
3-D view of the high-stretch region at different φp and Wi = 2.0, where the isovolume of
tr C(1) that is more than twice the stretch in an Oldroyd-B fluid under homogeneous shear
flow is visualized. As φp increases, the streak-shaped high-stretch regions bridging two
separated particles become more evident. At φp = 0.1, most particles share high-stretch
regions with other particles. This result suggests that the development of elastic stress at
φp = 0.1 and Wi � 2 is qualitatively different from that in dilute cases. However, despite
this distinctive microscopic picture observed in the polymer stretching, the effect of such
polymer stretching structures on the averaged bulk polymer stress is still not significant
in the scope of the present study, as seen in figures 9 and 10. The polymer stretching
structure between many particles identified in figure 17 would cause a qualitative change
in the suspension rheology at higher φp and/or Wi where such structures would become
more frequent and persistent.

4. Conclusions

To elucidate the key factor for the quantitative prediction of the shear thickening
in suspensions in Boger fluids, DNS of many-particle suspensions in a multi-mode
Oldroyd-B fluid is performed using SPM. To evaluate the suspension rheology in
bulk systems, rather than applying a wall-driven confined system, simple shear flow
is imposed by Lees–Edwards periodic boundary conditions for the particle dynamics;
a time-dependent moving frame that evolves with the mean shear flow is applied to
create simple shear flow for the fluid dynamics. Our DNS is validated by analysing the
viscoelastic flow in a single-particle suspension in an Oldroyd-B fluid under simple shear.
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Good agreement is obtained with analytical solutions as well as with numerical results
for the shear thickening in the suspension viscosity as well as in the viscosity from the
particle-induced fluid stress, and the shear thinning in the viscosity from the stresslet.

The shear rheology of many-particle systems is investigated from dilute to semidilute
conditions up to φp � 0.1 and Wi � 2.5. Based on previous experimental work on a
suspension in a Boger fluid (Yang & Shaqfeh 2018b), a four-mode Oldroyd-B fluid
is used as a matrix to mimic the linear modulus of the Boger fluid. The presented
many-particle, multi-mode results for the shear-thickening behaviour of a suspension
quantitatively agree with the experimental results. Furthermore, for Wi � 2.5, an effective
set of parameters is derived for single-mode Oldroyd-B modelling for the matrix by
considering a relevant mode in the four-mode modelling. The many-particle results
with this effective single-mode model also reproduce the experimentally observed
shear-thickening behaviour in a suspension; this is in contrast to the underestimation
obtained by another DNS study that used a different set of the fluid parameters (Yang
& Shaqfeh 2018b). The presented results elucidate that, with an accurate estimation of
N1 of the matrix in the shear-rate range where the shear thickening starts to occur, shear
thickening in a suspension in a Boger fluid at around Wi = 1 can be predicted with a
relevant mode Oldroyd-B model. This finding in our study prompts us to consider shear
thickening of suspensions in more complex viscoelastic media showing strong nonlinearity
in viscosity and N1. In such cases, a proper estimation of nonlinear matrix N1 as well as
viscosity should be required to predict suspension rheology. Understanding the effects of
matrix nonlinearity on suspension rheology is our future work.

At a dilute suspension, the single-particle and many-particle systems are compared,
clarifying that the single-particle simulation underestimates the stresslet contribution
due to the lack of relative motion between particles, which is another factor affecting
the quantitative prediction of the suspension rheology. The underestimation of the
suspension viscosity in a single-particle calculation was pointed out in a previous
work with a wall-driven system (Vázquez-Quesada et al. 2019). We revealed that the
cause of the quantitative discrepancy comes from the stresslet contribution by the
suspension microstructure. The suspension stress decomposition into the stresslet and
the particle-induced fluid stress demonstrated the scaling of the polymer contribution to
the total shear thickening as was reported in a previous DNS result up to φp � 0.1 and
Wi � 1.0 (Yang & Shaqfeh 2018b). The underlying similarity of the elastic contribution
at different φp � 0.1 was directly confirmed by the scaling relation of the normalized
polymer dissipation function with respect to the suspension shear stress. Lastly, the flow
pattern and the elastic stress development are examined for different values of φp and Wi.
In dilute cases, shear thickening is attributed to the elastic stress near each particle. As
φp and/or Wi increase, the relative motion of the particles affects the local flow pattern
and polymer stretch around the particles. At Wi � 2 in the semidilute case, the elastic
stress between the passing particles does not fully relax to form an additional streak-shaped
region of high elastic stress. Although the impact of such polymer stretching structures on
the bulk suspension rheology is likely to be small within the scope of this study, further
study for the microstructures and corresponding polymer stretching structures at higher φp
and Wi will be necessary.
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Appendix A. Tensorial representation of equations in an oblique coordinate system

A.1. Oblique coordinate system
To impose simple shear flow on the system, a time-dependent oblique coordinate r̂
evolving with mean shear velocity U = γ̇ r2e1 is introduced as

r̂1 = r1 − γ̇ tr2, (A1)

r̂2 = r2, (A2)

r̂3 = r3, (A3)

t̂ = t, (A4)

where the quantities with a caret ( ·̂ ) represent variables observed in the oblique coordinate
system, and the upper indices 1, 2 and 3 represent the shear flow, velocity gradient and
vorticity direction, respectively. By introducing an oblique coordinate system, advection
by the mean flow, whose term explicitly depends on r2, i.e. (U · ∇) = γ̇ r2∂/∂r1, is
eliminated from the shear-enforced hydrodynamic equations. This enables the use of the
periodic boundary conditions (Rogallo 1981; Kobayashi & Yamamoto 2011; Molina et al.
2016). From the coordinate transformation, the covariant and contravariant transformation
matrices [Λ]νμ = Λν

μ = ∂rν/∂ r̂μ and [Λ′]μν = Λ′μν = ∂ r̂μ/∂rν are derived as

Λ =
⎛⎝1 γ (t) 0

0 1 0
0 0 1

⎞⎠ , Λ′ =
⎛⎝1 −γ (t) 0

0 1 0
0 0 1

⎞⎠ , (A5a,b)

respectively, where Λ · Λ′ = Λ′ · Λ = I by definition. Einstein’s summation rule is
applied hereafter.

By using transformation matrices, the covariant and contravariant basis vectors Êμ and
Êμ, respectively, and the corresponding components of the position vectors r = rμeμ =
rμeμ = r̂μÊμ = r̂μÊμ, are represented as

Êμ = Λν
μ eν, Êμ = Λμ

ν eν, (A6a,b)

r̂μ = Λν
μ rν, r̂μ = Λμ

ν rν. (A7a,b)

Since the oblique coordinate system is not an orthogonal system, covariant and
contravariant bases are used, where Êμ · Êν = δμ

ν holds. The lower and upper
indices (μ, ν = 1, 2, 3) of the tensor variables represent the covariant and contravariant
components of the tensor, respectively.

Figure 18 shows a schematic diagram of this transformation; a 2-D diagram on the
shear plane is used for the sake of explanation. At t = 0, the basis vectors of the
oblique coordinates Ê1 and Ê2 coincide with those of the static Cartesian coordinates
e1 and e2. At t > 0, the second basis vector of the oblique coordinate changes with time.
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r2

r1

Ê2(0) = e2

Ê1(0) = Ê1(t) = e1

Ê2(t) =γ̇te1 + e2

γ̇tr2

Figure 18. Schematic diagram of the oblique coordinate system. Here Ê1 and Ê2 and e1 and e2 are the basis
vectors in the oblique system and those in the static Cartesian system, respectively; and r1 and r2 are the
components of the position vector in the Cartesian system. The Cartesian system and the initial oblique system
coincide (blue square). At t > 0, the oblique system is sheared (pink parallelogram) by the strain of γ̇ t, where
γ̇ is the applied shear rate. The region of the oblique system outside the initial square (right triangle) can be
periodically transformed back into the square (left triangle).

The contravariant metric tensor for the oblique coordinate is defined as

Gμν ≡ Êμ · Êν =
⎛⎝1+ γ 2(t) −γ (t) 0
−γ (t) 1 0

0 0 1

⎞⎠ . (A8)

Note that, in the static Cartesian coordinate system, there is no distinction between the
covariant and contravariant expressions, i.e. rμ = rμ and eμ = eμ, and the metric tensor
is identical to the unit tensor, i.e. G = I . In the oblique system in figure 18, where the
coordinates are non-orthogonal but linear and spatially homogeneous, the metric tensor is
time-varying and spatially constant. In this situation, the Christoffel term in the covariant
differentiation is zero, and the covariant differentiation is represented by usual partial
differentiation: ∇̂μ = ∂/∂ r̂μ.

The periodicity in the governing equations can also be achieved by only the coordinate
transformation (A1)–(A4) with the orthogonal basis system (Rogallo 1981; Onuki 1997)
without using the oblique dual-basis system. This single-basis formalism has the advantage
that the tensorial representation for an equation is expressed uniquely but has the
disadvantage that a spatial differential operator includes the cross oblique term explicitly.
In contrast, the dual-basis formalism adopted in our method has the advantage that the
forms of differential operators and governing equations in the oblique coordinate system
are almost the same as that in the orthogonal system, as explained in § 2, although these
forms have dual (covariant and contravariant) expressions. This simple expression of the
governing equations in the coordinate system is preferable for a convenient implementation
of the practical simulation code.

A.2. Governing equations in the oblique coordinate system
The tensorial component representation of the fluid momentum equation on the general
coordinate system (Luo & Bewley 2004; Venturi 2009; Molina et al. 2016) is

δûμ

δt̂
= ρ−1∇̂νσ̂

νμ + φ̂ f̂ μ
p . (A9)
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The left-hand side of (A9) is the intrinsic time derivative in the general coordinate system,

δÂμ

δt̂
≡ ∂Âμ

∂ t̂
+ (ûν − Ûν)∇̂ν Âμ + Âν∇̂νÛμ, (A10)

where Ûμ ≡ −∂ r̂μ/∂t is the moving velocity of the coordinate, and for simple shear flow
U = γ̇ (t)r2e1 = γ̇ (t)r̂2Ê1. Since Âμ is defined in the moving system, the advection in the
second term in (A10) is by the relative velocity to the coordinate flow. The last term in
(A10) arises from the affine deformation caused by the coordinate flow. Introducing the
relative fluid velocity to the coordinate flow ξ = u−U , (A9) becomes

(∂̂t̂ + ξ̂ ν∇̂ν)ξ̂
μ = ρ−1∇̂νσ̂

νμ + φ̂ f̂ μ
p − 2γ̇ (t)ξ̂2δμ,1, (A11)

with the incompressibility condition ∇̂μξ̂μ = 0, where ∂̂t̂ ≡ ∂/∂ t̂|r̂μ = ∂/∂t|rμ +
γ̇ (t)r2∂/∂r1. The last term in (A11) arises from the spatial gradient of the coordinate flow.
Since this equation does not explicitly depend on the coordinate components r̂μ, periodic
boundary conditions can be assigned to (A11), and hence (A11) can be solved by a spectral
method (Rogallo 1981; Canuto et al. 1988). The stress tensor gradient in a Newtonian fluid
is obtained as

∇̂νσ̂
νμ
n = −Gνμ∇̂ν p̂+ ηsGνγ ∇̂ν∇̂γ ξ̂μ. (A12)

In a viscoelastic fluid, the polymer stress gradient term ∇̂νσ̂
νμ
p is considered in addition to

(A12). In our method, the tensorial expression for the constitutive equation of the polymer
stress is additionally introduced in a manner consistent with the previous Newtonian
formulation (Molina et al. 2016).

The intrinsic time derivative for conformation tensor C = ĈμνÊμÊν , which is
represented by its second-rank contravariant tensor, is expressed as (Venturi 2009)

δĈμν

δt̂
≡ ∂Ĉμν

∂ t̂
+ (ûγ − Ûγ )∇̂γ Ĉμν + Ĉμγ ∇̂γ Ûν + Ĉγ ν∇̂γ Ûμ, (A13)

and the upper-convected time derivative is expressed by

dcĈμν

dt̂
≡ δĈμν

δt̂
− Ĉγ ν∇̂γ ûμ − Ĉμγ ∇̂γ ûν. (A14)

Substituting (A13) into (A14), one obtains

dcĈμν

dt̂
= ∂Ĉμν

∂ t̂
+ ξ̂ γ ∇̂γ Ĉμν − Ĉμγ ∇̂γ ξ̂ ν − Ĉγ ν∇̂γ ξ̂μ. (A15)

By using (A15), the single-mode Oldroyd-B constitutive equation in the general coordinate
system is represented as

∂Ĉμν

∂ t̂
+ ξ̂ γ ∇̂γ Ĉμν = Ĉμγ ∇̂γ ξ̂ ν + Ĉγ ν∇̂γ ξ̂μ − 1

λ
(Ĉμν − Gμν), (A16)

σ̂ μν
p =

ηp

λ
(Ĉμν − Gμν). (A17)

Here, again, (A16) is independent of the coordinate components and has the same form as
that in the orthogonal coordinate system. Therefore, periodic boundary conditions can be
assigned to (A16).
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M-1. Initialization of field and particle data

C-1. Update of conformation tensor field Ĉ
P-1. Update of particle position

V-2. Update of velocity field ξ̂

V-1. Update of intermediate velocity field ξ̂
∗

M-4. Interpolation and transformation of u∗

M-5. Calculation of hydrodynamic forces for particles FH, NH

P-2. Update of particle velocity and angular velocity V, Ω

M-6. Calculation of coupling term for fluid φfp

M-2. Update of γ

M-3. Remeshing γ←γ –1

γ = 1

No

No

Yes

Yes

t = tend

t ←t + �t
On orthogonal coordinates

Figure 19. Flow chart of the main calculation procedure over one time step.

Appendix B. Numerical implementation

B.1. Time-stepping algorithm for the coupling between fluid and particles
A flow chart showing the calculation procedure for one time step is shown in figure 19.
The couplings between the flow and conformation and between the fluid and particles are
established in the following explicit fractional step approach. Throughout the evolution
process, field variables are converted from real space to wavenumber space and vice
versa as necessary. In this section, continuum variables in the Fourier space are denoted
by the subscript k, where k represents the wavenumber vector. The discretized nth
time step is indicated by the superscript of a variable as (·)n. Here, the constitutive
equation is a single-mode Oldroyd-B model to ease explanation, and the extension to the
multi-mode constitutive equations is straightforward. The calculation proceeds according
to the following procedure.

(i) Initialization of variables (M-1). Starting with the coordinate strain γ = 0, the field
variables are initialized as u = ξ = 0 and C = I at t = 0 over the entire domain.
Correspondingly, the translational and angular velocities of the particles are set
to zero. For a many-particle system, the positions of the particles are randomly
generated to keep the distance between particle surfaces at least 2Δ, where Δ is
the grid size.

(ii) Update of the conformation tensor field (C-1). The conformation tensor Ĉ is updated
to the next time step by integrating (A16) or (B31) over time to obtain the polymer
stress field. As mentioned in § 2.2, the small error of Ĉ accumulates in the inner
particle region according to the time evolution. This error can be eliminated by
resetting Ĉ = G over the φ̂ = 1 region if necessary. In this study, this reset operation
is safely omitted because the error is sufficiently small.

(iii) Update of the intermediate velocity field (V-1). Equation (A11) without the φ̂ f̂ p

term is time-integrated to obtain an intermediate velocity field ξ̂∗. In this step, the
fluid stress, i.e. the solvent and polymer stresses, are considered, and the solid–fluid
coupling is not considered.

(iv) Update of the shear strain (M-2). After the field calculations, the shear strain is
updated: γ n+1 = γ n + γ̇ 
t, where 
t is the time increment. This corresponds to
the deformation of the oblique coordinate system. In this step, if the apparent shear
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strain equals the threshold value γth, the remeshing process is conducted. In this
study, γth = 1.

(v) Remeshing (M-3). Practically, as time evolves, the oblique mesh is gradually
distorted, which can lead to a decrease in accuracy. To continue the simulation
as the strain increases infinitely while maintaining accuracy, the strained oblique
coordinates should be reset to a less strained state or to the static Cartesian
coordinates at some finite shear strain (Rogallo 1981). In this study, the oblique
coordinate system is reset to the orthogonal Cartesian coordinate system when
γ reaches γth = 1. First, the shear strain of the oblique system is reset as γ ←
γ − γth. Then, the field variables ξ̂∗ and Ĉ on the oblique grid outside of the
initial orthogonal grid are remapped through the periodic boundary in the flow
direction. Simultaneously, the components of the variables in the oblique coordinate
system are transformed to those in the reset coordinate system by the transformation
matrix. Correspondingly, the metric tensor (A8) and the norm of the wavenumber
vector in the spectral scheme, k̂ · k̂, are updated. The norm of wavenumber vector
in the wavenumber space corresponds to the Laplacian operator in real space, i.e.
Gμν∇̂μ∇̂ν ⇐⇒ −Gμν k̂μk̂ν = −k̂ · k̂, and then

k̂ · k̂ = k̂2
1 + (k̂2 − γ k̂1)

2 + k̂2
3, (B1)

where k̂i is the ith component of the covariant wavenumber vector in the oblique
coordinate system.

(vi) Interpolation and transformation of the intermediate velocity field (M-4). To
simplify the reconstruction of the φ field based on particle positions, the coupling
between the fluid and particle is treated on the usual static orthogonal coordinate
system. The grid points in the oblique coordinate system do not always coincide
with those in the static orthogonal coordinate system. Therefore, the intermediate
velocity field ξ̂∗ on the oblique grids should be interpolated to the static orthogonal
grids. This is done by using a periodic cubic spline interpolation (Molina et al. 2016).
After the interpolation, the oblique-basis components of ξ̂∗ are transformed to those
in Cartesian basis. In this step, the absolute velocity field u∗ is constructed using the
transformed ξ∗ and the base flow γ̇ r2e1:

u∗ = (γ̇ r2δμ,1 +Λμ
νξ̂

ν∗)eμ. (B2)

(vii) Update of the particle position (P-1). Hereafter, the calculation is conducted in the
orthogonal coordinate system (blue block in figure 19). Using the particle velocity
at the previous time step V n, the position of the ith particle is updated:

Rn+1
i = Rn

i +
∫ tn+1

tn
V n

i dt. (B3)

In this step, if the updated particle position crosses the top and bottom boundaries,
the position and velocity of the particle are modified according to the Lees–Edwards
boundary conditions (Lees & Edwards 1972; Kobayashi & Yamamoto 2011;
Molina et al. 2016). In this time, the φ field is also updated by using the new
particle positions consistent with Lees–Edwards boundary conditions. Then, the
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intermediate particle velocity field u∗p is calculated:

φn+1u∗p =
∑

i

φn+1
i [V n

i +Ωn
i × rn+1

i ], (B4)

where ri = r − Ri. This corresponds to the mapping of the Lagrangian particle
velocity on the Euler velocity field.

(viii) Calculation of hydrodynamic forces acting on particles (M-5). The hydrodynamic
force and torque exerted on the particles F H and NH are calculated by the change in
momentum in the particle domain:∫ tn+1

tn
F H

i dt =
∫

ρφn+1
i (u∗ − u∗p) dr, (B5)∫ tn+1

tn
NH

i dt =
∫

rn+1
i × ρφn+1

i (u∗ − u∗p) dr. (B6)

(ix) Update of the particle velocity and angular velocity (P-2). Using (B5) and (B6), the
particle velocities are updated as

V n+1
i = V n

i +
1

Mi

∫ tn+1

tn
[F H

i + F C
i ] dt, (B7)

Ωn+1
i = Ωn

i + I−1
p,i ·

∫ tn+1

tn
NH

i dt. (B8)

In this study, for the inter-particle force F C, the soft-core (truncated Lennard-Jones)
potential, which produces the short-range repulsive force, is adopted:

F C
i (R) = −

N∑
j /= i

Fsoft(rij)
rij

|rij| , (B9)

Fsoft(rij) = −
(

∂Usoft

∂r

)
r=rij

, (B10)

Usoft(r) =

⎧⎪⎨⎪⎩4ε

[(
2a
r

)36

−
(

2a
r

)18
]
+ ε (r < rc),

0 (r � rc),

(B11)

where rij = Rj − Ri is the distance vector from the ith particle to the jth particle
and rc = 21/18(2a). Vector rij is modified according to periodic boundary conditions
if necessary. This potential force is simply applied to avoid particle overlap. The
force parameter ε, which tunes the interaction strength, is set at ε/(η0γ̇ a3) = 0.561
in all many-particle calculations in this study. Under denser particle concentration
conditions, where the particle collisions and/or friction and its contribution to the
total stress can become significant, more realistic modelling of inter-particle force
may be required.

(x) Calculation of the coupling term for fluid (M-6). Now that both the positions and
velocities of particles have been updated, the final particle velocity field up is
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obtained as

φn+1un+1
p =

∑
i

φn+1
i [V n+1

i +Ωn+1
i × rn+1

i ]. (B12)

Then, the body force φ f p is calculated as

∫ tn+1

tn
φf p(x, t) dt = φn+1(un+1

p − u∗). (B13)

To calculate the stresslet (2.19), (B13) is further transformed as

∫ tn+1

tn
φf p dt = φn+1(un+1

p − u∗p)− φn+1(u∗ − u∗p). (B14)

The first term on the right-hand side is expressed by the changes in particle velocity

V i = V n+1

i − V n
i from (B7) and in angular velocity 
Ω i = Ωn+1

i −Ωn
i from

(B8), as

φn+1(un+1
p − u∗p) =

∑
i

φn+1
i [
V H

i +
ΩH
i × rn+1

i ]+
∑

i

φn+1
i 
V C

i , (B15)

where 
V H
i , 
ΩH

i and 
V C
i are the updates by the hydrodynamic forces F H

i and
NH

i and the inter-particle force F C
i , respectively. Therefore, φ f p can be decomposed

into the individual contributions from the hydrodynamic interactions φ f H
p and

direct inter-particle interactions φ f C
p , as φ f p = φ f H

p + φ f C
p . The individual

contributions of the body force are expressed to first order in time as

φf H
p 
t =

∑
i

φn+1
i [
V H

i +
ΩH
i × rn+1

i ]− φn+1(u∗ − u∗p), (B16)

φf C
p 
t =

∑
i

φn+1
i 
V C

i . (B17)

In the calculation of the stresslet contribution from φ f C
p , the direct virial expression

was used instead of (B17) for computational efficiency (Molina et al. 2016):

SC = − 1
N

∫
DV

rρφf C
p dr = − 1

N

∑
i<j

rijF C
ij , (B18)

where F C
ij is the inter-particle force on the ith particle due to the jth particle. In

this study, for conditions up to φp = 0.1 and Wi = 2.5, the contribution of SC
12

to the total stresslet S12 is small compared to the hydrodynamic contributions
(〈SC

12〉/〈S12〉 < 0.05 at φp = 0.1).
(xi) Update of the velocity field (V-2). Finally, the integrated body force φ f p is remapped

and transformed from the orthogonal coordinate system to the oblique coordinate
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system and added to the intermediate velocity field ξ̂∗:

ξ̂n+1 = ξ̂∗ +
̂

[∫ tn+1

tn
φf p ds

]
. (B19)

At this stage, incompressibility is assigned in the Fourier space,

ξ̂k ← ξ̂k −
(ξ̂k · k̂)

k̂ · k̂
k̂. (B20)

This solenoidal projection is also adopted after calculating ξ̂∗ (V-1).
The described fractional steps are repeated until the calculated time reaches the
target final time. Further information about the time-stepping algorithm is detailed
in previous work (Nakayama et al. 2008; Molina et al. 2016).

B.2. Spatial discretization and time integral scheme
Since the periodic boundary conditions are assigned in each direction, the continuum
variables such as ξ̂ and Ĉ are Fourier-transformed. In real space, the continuum variables
are collocated on the equispaced mesh point with spacing Δ. Spatial derivatives are
calculated in Fourier space while the second-order terms like the advection term in (A11)
and (A16) are calculated by a transformation method (Orszag 1969).

For the integration of ξ̂k over time, the exact linear part method, which is preferred for
solving stiff equations (Beylkin, Keiser & Vozovoi 1998), is adopted, where the nonlinear
part is discretized by the Euler method.

For the polymer constitutive equation, the explicit Euler method (first-order) is adopted.
In this study, to evaluate a single-particle system that corresponds to very dilute
suspensions (φp ∼ 0.001), the discretized equation (A16) is solved directly. This naive
implementation has been stable and accurate in such dilute conditions. However, at high
φp and Wi conditions, the large growth rate of the polymer stress around the particles
violates the positive-definiteness of the conformation tensor, thus resulting in an inaccurate
solution or divergence. Therefore, to evaluate a many-particle system that corresponds
to semidilute suspensions (0.025 � φp � 0.1), the log-conformation formalism is used
in which the time evolution equation of log C rather than C is solved to guarantee the
positive-definiteness of C (Fattal & Kupferman 2004; Hulsen, Fattal & Kupferman 2005).
A detailed description of the log-conformation formalism is provided in appendix B.3.

The particle position is updated by discretizing (B3) by the Euler method (first-order)
at the first time step and the second-order Adams–Bashforth scheme later. In the update
of the particle velocity (B7) and (B8), the impulsive hydrodynamic force and torque are
calculated by applying (B5) and (B6), respectively, and the potential force F C in (B7) is
discretized by the second-order Heun scheme because both particle positions at tn and tn+1

are already obtained in that stage:

1
Mi

∫ tn+1

tn
F C

i ds = 
t
2Mi

[F C
i (Rn+1)+ F C

i (Rn)]. (B21)

The time increment is determined based on the stability given by the fluid momentum
diffusion: 
t = ρ/η0K2

max (Kmax is the largest wavenumber in the spectral scheme).
As proven in the code validations in § 3.1 and appendix C, this choice is reasonable
considering the conditions in this study.
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B.3. Log-conformation-based constitutive equation for Oldroyd-B model
Because the conformation tensor C is real-symmetric and positive-definite, C can be
diagonalized as

C = R · Λ · RT, (B22)

where Λ = diag(λ1, λ2, λ3) and λi > 0 (i = 1, 2, 3) are the eigenvalues of C, and R is the
rotation matrix composed of the eigenvectors of C. Here, the new tensor variable Ψ is
introduced (Fattal & Kupferman 2004) as

Ψ = R · ΛΨ · RT, (B23)

where ΛΨ = diag(ln λ1, ln λ2, ln λ3) = ln Λ. From (B22) and (B23),

C = R · exp(ΛΨ ) · RT. (B24)

Note that, when C is obtained through (B24), C is strictly positive-definite by definition.
Furthermore, utilizing the time evolution of Ψ instead of (2.4), the exponential growth in
C is translated to the linear growth of Ψ , which enables numerical stability in the time
evolution. Specifically, the stretching in the principal axes of C by the velocity gradient
tensor ∇u is extracted as

∇u = R · M · RT, (B25)

B = R · diag(M11, M22, M33) · RT, (B26)

where B is symmetric and commutes with C by definition.
The residual component ∇u− B can be decomposed as

∇u− B = A+ C−1 · N, (B27)

with antisymmetric tensors A and N (Fattal & Kupferman 2004). Tensor N is proven to be
irrelevant in the affine deformation of C by inserting (B27) into the upper-convected time
derivative of C. On the other hand, A represents the rotation of the principal axes of C.
From the affine deformation of C in (2.4), the explicit expression of A in the frame of the
principal axes of C is derived by Hulsen et al. (2005) as

Aij = λiMij + λjMji

λi − λj
, i /= j, λi /= λj (B28)

(the summation convention is not applied here). When λi = λj, Aij is not uniquely
determined in the decomposition of ∇u in (B27), but the affine deformation of C and
Ψ by ∇u is still well defined, which case is explained next.

By using these tensors, the governing equation of Ψ for the single-mode Oldroyd-B
model is expressed as

∂Ψ

∂t
+ u · ∇Ψ = −A · Ψ + Ψ · A+ 2B + R ·

[
1
λ
(Λ−1 − I)

]
· RT. (B29)

When λi = λj, the corotational terms including Aij are reduced as (in the frame of the
principal axes of C)

−AijΨjj + ΨiiAij = (ln λi − ln λj)
λiMij + λjMji

λi − λj

→ Mij + Mji = 2Dij (B30)
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(the summation convention is not applied here). With this treatment, the evolution equation
(B29) of Ψ works safely even when λi = λj happens.

In the initial conditions, u = 0 over the entire domain leads to A = 0 and B = D, and
C = I results in R = I , Λ = I and Ψ = 0. The evolution of Ψ according to (B29) is
solved by numerical simulation; and C is calculated from Ψ via (B23) and (B24). The
contravariant tensor expression corresponding to (B29) in the oblique coordinates is the
following:

∂Ψ̂ μν

∂ t̂
+ ξ̂ γ ∇̂γ Ψ̂ μν = −γ̇ (Ψ̂ μ2δ1,ν + Ψ̂ 2νδ1,μ)− Gγ ζ Âμγ Ψ̂ ζν + Gγ ζ Ψ̂

μγ Âζν

+ 2B̂μν + R̂μγ

[
1
λ
([Λ̂]−1

γ ζ − Gγ ζ )

]
R̂νζ , (B31)

where [Λ̂]−1
γ ζ represents the covariant matrix component of Λ̂−1, which is simply the

matrix inverse of the contravariant matrix Λ̂γ ζ ; and Gγ ζ is the covariant metric tensor,
which is defined as

Gγ ζ ≡ Êγ · Êζ =
⎛⎝ 1 γ (t) 0

γ (t) 1+ γ 2(t) 0
0 0 1

⎞⎠ . (B32)

Note that, in the oblique coordinates, there is an additional term originating from the
moving coordinates (the first term on right-hand side of (B31)). Since (B31) does not
explicitly depend on the coordinate variables, it can be discretized by a spectral method.

Appendix C. Validations of the developed method

C.1. Polymer stress around a single particle
To test the validity of the developed method, a single-particle system is set up where a
neutrally buoyant spherical particle is suspended in a sheared Oldroyd-B fluid (figure 1a).
The cubic domain with a box length of L is sufficiently large compared to the size of the
particle used to represent the dilute particle system. Hereafter, for simplicity, the directions
of the Cartesian coordinate basis vectors are denoted by x, y and z instead of the 1, 2 and 3
notation used in appendices A and B, where x, y and z indicate the flow, velocity-gradient
and vorticity directions, respectively. As shown in figure 1(a), because the particle is
located at the centre of a simple shear flow, the net translational hydrodynamic force acting
on the particle F H vanishes, while the hydrodynamic torque NH rotates the particle.

A flow condition is considered in the β → 1, small-Wi and small-Re limit
where an analytical solution is available. In this limit, the flow pattern is
minimally affected by polymer stress, which is expressed analytically (Lin, Peery
& Schowalter 1970; Mikulencak & Morris 2004). Furthermore, when Wi
 1, the
polymer stress distribution is approximated by the second-order fluid (SOF) theory:
σ p = 2ηpD + 4(Ψ1 + Ψ2)D · D − Ψ1(D(2) + 4D · D), where D(2) is the upper-convected
derivative of D (Bird et al. 1987). Considering an Oldroyd-B fluid (Ψ1 = 2ηpλ, Ψ2 = 0),
the normalized polymer stress in the SOF limit is expressed as σ p/(ηpγ̇ ) = 2D̃ − 2WiD̃(2).
Here, β = 0.99, Wi = 0.001 and Re = 0.0142. In this situation, the normalized polymer
stress is approximated by σ p/(ηpγ̇ ) ≈ 2D̃.
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Figure 20. Mesh resolution dependence of polymer shear stress distributions near the particle. In panels (a–d)
the polymer shear stress normalized by ηpγ̇ on the shear plane through the centre of the particle is drawn
by colour contour for (a/Δ, ξ/Δ) = (8, 2), (8, 1) and (20, 2) and for the analytical solution, respectively.
The dotted lines around the particles for the DNS results in panels (a–c) denote the radial location of a+
ξ/2.(It may be necessary to zoom-in to see these.) In panel (e), the normalized polymer shear stress along
the line from the particle centre to the shear gradient direction y is drawn: the exact solution (analytical)
of σ p/(ηpγ̇ ) ≈ 2D̃ − 2WiD̃(2) at Wi→ 0 (solid line), and the results for (a/Δ, ξ/Δ) = (20, 2) (red), (8, 2)

(green) and (8, 1) (blue), respectively. In panel (e), the interface region indicated by 0 < φ < 1 at around
ry/a = 1 with thickness ξ is coloured in the same manner as that for the symbols.

Different mesh resolutions of the particle interface are examined: (a/Δ, ξ/Δ) = (8, 2),
(8, 1) and (20, 2). At first, the overall trend of the polymer shear stress (σp,xy) distribution
is similar for different resolutions (figure 20a–c) and the analytical solution (figure 20d).
The only difference is that small σp,xy oscillation is observed in the numerical solutions.
When comparing the result for a = 8Δ and ξ = 2Δ (figure 20a) with that for a = 20Δ

and ξ = 2Δ (figure 20c), it is clear that, as a/Δ increases, the wavenumber of the small
ripple in σp,xy increases, but its amplitude decreases. This is due to the slow convergence of
the Fourier series caused by the discontinuous change in σp,xy at the solid–liquid interface.
This artifact is a partly unavoidable intrinsic property of the spectral method. Regarding
the interface thickness, when comparing the result for a = 8Δ and ξ = 2Δ (figure 20a)
with that for a = 8Δ and ξ = Δ (figure 20b), no significant difference in the overall trend
is observed. However, when ξ = Δ, the distribution of σp,xy near the interface is somewhat
blurred, which is caused by the decrease in the number of mesh points that support the
interface region.

For a detailed evaluation, a one-dimensional profile of the polymer shear stress in the
velocity-gradient direction from the particle centre is shown in figure 20(e). The steep
increase in σp,xy near the particle surface is reasonably reproduced as the mesh resolution
increases, though the peak in σp,xy is somewhat smeared due to the limited mesh points
in the interface domain. Hereafter, considering a balance between the accuracy of the
numerical solution and the required computational cost, the particle radius is set to a = 8Δ

and the interface thickness to ξ = 2Δ. As seen in appendix C.2 and § 3, this resolution is
sufficiently valid for the problems investigated in this study.
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This work

(b)(a)

Figure 21. The Wi dependence of the normalized particle angular velocity ωz/γ̇ . (a) The result of this work
(red circles) compared with a previous numerical result (solid line; Snijkers et al. 2009) and the asymptotic
solution (dashed line; Housiadas & Tanner 2011a,b, 2018) at β = 0.615. (b) The β dependence of ωz/γ̇ for: β =
0.2 (red circles), 0.5 (orange squares), 0.615 (green triangles) and 0.8 (blue diamonds). The lines correspond
to predictions of the asymptotic solution.

C.2. Rotation of a particle under simple shear flow
Under simple shear in Stokes flow, as is well known, a suspended particle in a Newtonian
medium rotates with an angular velocity that is half of the applied shear rate, ωz/γ̇ =
0.5, where ωz is the particle angular velocity in the vorticity direction. However, in
viscoelastic fluids, this relative rotational speed decreases with increasing Wi (Snijkers
et al. 2009, 2011). D’Avino et al. (2008) and Snijkers et al. (2009, 2011) conducted
numerical evaluation for this phenomenon using a finite element method (FEM) and
surface-conforming mesh, reproducing the experimental rotational slowdown data with
DNS. They observed that the distribution of local torque and pressure on the particle
surface becomes asymmetrical with Wi. However, the physics of slowdown has not
been elucidated. This result is often referred to as the benchmark problem for a newly
developed numerical scheme of viscoelastic suspensions (Ji et al. 2011; Yang et al. 2016;
Vázquez-Quesada & Ellero 2017; Fernandes et al. 2019). To validate the method developed
in this work, the angular velocity of a particle in an Oldroyd-B fluid is evaluated at the same
numerical conditions as previously reported (Snijkers et al. 2009); however, no walls are
used in this study. The numerical set-up is the same as that in § 3.1.

Figures 21(a) and 21(b) show the β and Wi dependence of the normalized particle
angular velocity ωz/γ̇ . To compare with the previous numerical result, figure 21(a) shows
the result at β = 0.615. As Wi increases, ωz/γ̇ decreases. At Wi � 1, the result converges
with the theoretical prediction up to O(Wi4) made using asymptotic methods (Housiadas
& Tanner 2011a,b, 2018): ωz/γ̇ = 1/2− (1− β)Wi2/[4(1− 4Wi2Ω̃4)], where Ω̃4 is the
coefficient of the (1− β)Wi4 term in the series solution. At Wi � 1, the asymptotic
prediction starts to overestimate ωz/γ̇ . In this region, the result agrees reasonably well with
the previous FEM result (Snijkers et al. 2009). Figure 21(b) shows the β dependence of
ωz/γ̇ . As β decreases, which corresponds to an increase in the polymer stress contribution,
the negative slope of ωz/γ̇ increases. This trend is consistent with the asymptotic
predictions shown in figure 21(b).

The slowdown of rotation with increasing Wi and/or (1− β) suggests that the energy
partition from external work to elastic energy increases. Figure 22 shows the normalized
energy dissipation rate around the particle on the shear plane through the particle centre at
β = 0.5 and Wi = 0.1 and 1.0. The dissipation rate is decomposed into viscous (Φs) and
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Figure 22. The Wi dependence of the normalized energy dissipation around a particle at β = 0.5: (a,b) Wi =
0.1 and (c,d) Wi = 1.0. Panels (a,c) and (b,d) show the distributions of viscous dissipation Φs/(η0γ̇

2) and
polymer dissipation Φp/(η0γ̇

2), respectively. The dotted lines around particles show the radial location of
a+ ξ/2. (Again, it may be necessary to zoom-in to see these.)

elastic (Φp) contributions (Vázquez-Quesada et al. 2019) as Φt = Φs +Φp:

Φs = 2ηsD : D, (C1)

Φp = ηp

2λ2 (tr C + tr C−1 − 6). (C2)

At Wi = 0.1, Φs (figure 22a) and Φp (figure 22b) present similar distributions. Since
σ p = (ηp/λ)(C − I)→ 2ηpD at Wi→ 0, Φp is reduced to 2ηpD : D, which is proportional
to Φs. In contrast, at Wi = 1.0, Φs and Φp develop differently; the high-Φp region expands,
whereas Φs does not change much in comparison to the Wi = 0.1 case. The distribution
of Φp expands towards the shear-flow direction and high-Φp grows near the equator of
the particle (figure 22d), thus clearly showing an increase in the fraction of elastic energy
dissipation at high Wi. Particle rotation is caused by viscous stress. An increase in elastic
energy leads to a decrease in the relative fraction of viscous dissipation. As a result, the
angular velocity of the particle in the viscoelastic medium decreases in comparison with
that in viscous media. This slowdown of the particle rotation is enhanced with Wi and
(1− β).

In this section, the agreement between the numerical results of this work and the
previously reported numerical and theoretical results verifies that the presented numerical
scheme can successfully capture the dynamic coupling between particles and a viscoelastic
fluid.
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