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Abstract

Support vector machine (SVM) methods are widely used for classification and regression anal-
ysis. In many engineering applications, only one class of data is available, and then one-class
SVM methods are employed. In reliability applications, the one-class data may be failure data
since the data are recorded during reliability experiments when only failures occur. Different
from the problems handled by existing one-class SVM methods, there is a bias constraint in
the SVM model in this work and the constraint comes from the probability of failure esti-
mated from the failure data. In this study, a new one-class SVM regression method is pro-
posed to accommodate the bias constraint. The one class of failure data is maximally
separated from a hypersphere whose radius is determined by the known probability of failure.
The proposed SVM method generates regression models that directly link the states of failure
modes with design variables, and this makes it possible to obtain the joint probability density
of all the component states of an engineering system, resulting in a more accurate prediction
of system reliability during the design stage. Three examples are given to demonstrate the
effectiveness of the new one-class SVM method.

Introduction

The support vector machine (SVM) method was originally developed for classifying data from
two different classes (Boser et al., 1992; Vapnik and Vapnik, 1998; Vapnik, 2013). Two-class
SVM methodologies obtain an optimal decision boundary by maximizing the margin between
the training patterns. More specifically, given a data set composed of points from two different
classes, an optimal boundary is built in the form of a hyperplane or hypersurface defined by
the maximum margin between the points and the boundary, and the points on the maximum
margin are the so-called support vectors.

SVM can be analyzed theoretically based on statistical learning theory and optimization
methods, thus it outperforms other learning algorithms in many aspects. The advantage of
SVM is attributed to its essence based on the principle of the maximal margin (Tian et al.,
2012), the dual theory, and the kernel trick, which enable SVM to solve machine learning
problems with only limited training points. It overcomes traditional difficulties due to the
curse of dimensionality and over-fitting. This makes SVM highly successful and effective in
real applications, and thus it has recently received considerable attention in various domains,
such as pattern recognition (Frias-Martinez et al., 2006; Peng, 2011; Truong and Kim, 2012),
data mining (Cortez, 2010), fault detection (Mahadevan and Shah, 2009; Chen et al., 2011;
Gryllias and Antoniadis, 2012), space frame structure optimization (Hanna, 2007), and reli-
ability analysis (Li et al., 2006; das Chagas Moura et al., 2011; Hu and Du, 2018a; Wang
et al., 2018).

Most traditional SVM methods assume more or less equally balanced data from both
classes, and the decision boundary is therefore determined by the data belonging to different
classes. However, when encountering with imbalanced data sets where the number of data
from one of these two classes far outnumbers that from the other class or even equals to
zero, the performance of the general two-class SVM may drop dramatically (Akbani et al.,
2004). This situation is very common in real-world applications, especially in certain domains
such as reliability analysis and design. For example, to evaluate the reliability of a system or a
component, designers may perform reliability testing repeatedly until the system or the com-
ponent fails. They then record the failure data, such as sizes, loads, and the temperature at the
time when the failure occurs. In this case, all the training points belong to only one class (fail-
ure). Due to the need of dealing with one-class data, many methods have been developed, and
they have been used in applications such as novelty detection (Ma and Perkins, 2003), docu-
ment classification (Manevitz and Yousef, 2001), and disease diagnosis (Dreiseitl et al., 2010).
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The existing one-class SVM methods create the optimal
hyperplane (decision boundary) with a weight vector (normal
vector) and a bias (intercept), which determine the orientation
and location of the hyperplane, respectively. Due to the regulari-
zation of the optimization model, only the weight vector is actu-
ally to be determined, and the bias is treated separately after the
weight vector is obtained. In some engineering applications,
such as the aforementioned system reliability prediction, the
bias is available, leaving only the weight vector unknown and to
be determined.

To accommodate the known bias, in this work, we propose a
new one-class SVM method. The constraint of the known bias
geometrically forms a hypersphere centered at the origin. By
maximizing the minimum distance between one-class training
points and the hyperplane that is tangent to the known
hypersphere, the proposed method produces the optimal weight
vector (orientation) of the desired hyperplane. The hyperplane
function is thus determined by the obtained weight vector and
the known bias. Since the hyperplane function explicitly defines
the decision boundary which classifies the training points, it
could then be used for further analysis, such as the aforemen-
tioned system reliability estimation, where the hyperplane
function is actually the reconstructed computational model of
the component.

The rest of the paper is organized as follows. In the section
“Methodology review,” we briefly review the methodology of gen-
eral one-class SVM. Section “A new algorithm for one-class sup-
port vector machines with a bias constraint” introduces the
proposed one-class SVM algorithm with a bias constraint. The
application of this new method to the system reliability analysis
is discussed in the section “Application of the new one-class
SVM in system reliability prediction.” One mathematical example
and two engineering examples are provided in the section
“Examples for methodology validation,” followed by conclusions
and future work in the section “Conclusions.”

Methodology review

The one-class SVM (Schölkopf et al., 2001) is a variant of the gen-
eral SVM and is used for only one class of training points. This
method regards the training points available as belonging to the
first class and the origin as being the second class. Then the gen-
eral two-class SVM techniques could be employed. A decision
boundary is built by maximizing the distance between training
points and the origin, as shown in Figure 1.

For m training points (x1, y1), (x2, y2), . . . , (xm, ym), yi = +1,
i = 1, 2, . . . ,m, x [ Rn, belonging to the only one class, the opti-
mization model is given by

min
v, j, r

1
2
vvT + 1

mv

∑m
i=1

ji − r

s.t. v · c (xi) + ji − r ≥ 0, ji ≥ 0, i = 1, 2, . . . ,m

⎧⎪⎨
⎪⎩ (1)

in which ω and ρ are the to-be-determined weight vector and bias,
respectively. The regularization variable v∈ (0, 1) indicates the
maximum value of the fraction of training data set errors, and
ξ = [ξ1, ξ2, …, ξm] is a vector of slack variables that allow point
xi to locate on the other side of the optimal hyperplane.

With introducing Lagrange multipliers ηi and γi, the
Lagrangian function of Eq. (1) is given by

L(v, j, r)+ = 1
2
vvT + 1

mv

∑m
i=1

ji − r−
∑m
i=1

gi(v · c (xi)

+ ji − r) −
∑m
i=1

hiji (2)

With the appropriate kernel function K(xi, X) = K(ψ(xi), ψ(X)),
the optimization model is then written in the dual form

min
g

1
2

∑m
i, j=1

gigjK(xi,X)

s.t. 0 ≤ gi ≤
1
mv

,
∑m
i=1

gi = 1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(3)

Note that when v approaches zero, most of the training points
locate inside the estimated support. Then the upper bound of γi in
Eq. (3) tends to infinity, making the second inequality constraint
useless, which is similar to the hard margin algorithm used in
two-class SVM. Since there is no constraints for bias ρ, the origi-
nal optimization model can still be solved by assigning a large
negative value to ρ (Schölkopf et al., 2001).

Standard quadratic programing can be used to solve for γ1, γ2,…,
and γm. The weight vector of the hyperplane is computed by

v =
∑m
i=1

gic (xi) (4)

And the bias is calculated by

r =
∑m
i, j=1

giK(xi, xj) (5)

With the determined ω and b, the decision boundary for one-
class SVM is given by

f (X) =
∑m
i=1

giK(xi,X) −
∑m
i, j=1

giK(xi, xj) (6)

Fig. 1. Basic principle of general one-class SVMs.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 347

https://doi.org/10.1017/S0890060419000155 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060419000155


A new algorithm for one-class support vector machines
with a bias constraint

In this work, we propose a new one-class SVM method with a
bias constraint. In the general SVM algorithm, although a bias
exists, it is treated separately and does not appear in the optimiza-
tion model. In the present problem, a bias exists and it is used to
formulate a constraint function of the optimization model. The
existence of the bias simplifies the optimization model.

The problem arises in the field of system reliability analysis.
The proposed method works for the following situation. For the
prediction of the reliability associated with a failure mode, repea-
ted reliability testing is performed, and the failure data are
recorded until failures occur. Then there is only one class of
data. With the failure data, the reliability, which is the probability
that the failure mode does not occur, can be estimated. This reli-
ability determines the bias. While more background information
about reliability will be provided in the section “Application of the
new one-class SVM in system reliability prediction,” the new one-
class SVM problem we are dealing with is summarized below.

Information available includes the following:

• A data set of m training points and responses is given by
(u1, y1), (u2, y2), . . . , (um, ym), u [ Rn, yi = −1, i = 1, 2, …,
m. Note that different from the general SVM where training
points are denoted by X, here we use u for training points
because it is a common notation for reliability analysis where
the new method will be used. The data set is from reliability
testing, and it may include load, dimensional, temperature,
and other parameters that cause a failure. The corresponding
response is the state of the component under testing, and
yi =−1 represents a failure state. All data points belong to the
class of failure, and no data points belong to the class of safety.

• We know the shortest distance β from the origin to the domain
to which the data set belongs. This distance comes from the
known reliability.

The assumptions we make for the new SVM method are as
follows:

• We assume that the boundary of the domain to which the data
set belongs is a hyperplane. This assumption is valid for reliabil-
ity applications where the first order reliability method (FORM)
(Cruse, 1997) is applicable.

• The hyperplane is given by

Y = b+ aUT (7)

where β is a constant, and α is a unit vector. In the reliability
application concerned by this study, β is given and is determined
by the reliability estimated from the training points, and α
happens to be a unit vector. This assumption does not affect
the generality of the proposed method.

Our task is to determine the unit vector α. In sum, our present
problem is to find the optimal normal vector α of a hyperplane
given its distance to the origin being β and a data set
(u1, y1), (u2, y2), . . . , (um, ym),u [ Rn.

As demonstrated in Figure 2, the problem is to find a hyper-
plane that is tangent to a hypersphere with a radius of β, and
the hyperplane also maximizes the distance from any training
points to the hypersphere.

Denote the distance from ui to the hypersphere by di. Points
located in the negative region enable Y < 0; otherwise, Y > 0 holds.
The minimum distance is given by

d = min{di} = min {−(b+ auTi )} (8)

in which the negative sign indicates that the training points locate in
the negative side of the hyperplane Z(U), thereby making d positive.
Since β is a known constant, d is actually determined by minimizing
di + β , which is equal to −auTi . Note that di + β indicates the scalar
projection of ui onto α. Since auTi is negative, the direction of α is
opposite to that of ui. The geometrical meaning of di + β is shown in
Figure 3.

To construct the optimal hyperplane, our task then becomes to
find the maximum d, which can be obtained from the following
optimization model

max
a, d

d

s.t. −(b+ auTi ) ≥ d (i = 1, 2, . . . ,m),

{
(9)

This is the basic model of the proposed one-class SVM with a
bias constraint determined by the given constant β. Let h = d + β,
and Eq. (9) is rewritten as

max
a, h

h

s.t. −auTi ≥ h (i = 1, 2, . . . ,m).

{
(10)

Setting ω = α/h, we have h = 1/ ‖ v ‖. Then Eq. (10) becomes

max
v

1
‖ v ‖

s.t. vuTi ≤ −1(i = 1, 2, . . . ,m),

⎧⎨
⎩ (11)

which is equivalent to the constrained quadratic programing
problem as follows:

min
v

1
2
vvT

s.t. vuTi + 1 ≤ 0 (i = 1, 2, . . . ,m).

⎧⎨
⎩ (12)

Fig. 2. Basic principle of the proposed one-class SVM.
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With Lagrange multipliers λi≥ 0, the Lagrangian function is
given by

L(v) = 1
2
vvT −

∑m
i=1

li(−vuTi − 1) (13)

According to the KKT conditions, we have

∂L
∂v

= 0 � v = −
∑m
i=1

liui (14)

Substituting Eq. (14) into Eq. (13), the Lagrangian function is
rewritten as

L(v) = 1
2

∑m
i, j=1

liljuiu
T
j −

∑m
i=1

li
∑m
i=1

liui

( )
uTi − 1

( )

= 1
2

∑m
i, j=1

liljuiu
T
j −

∑m
i, j=1

liljuiu
T
j +

∑m
i=1

li

=
∑m
i=1

li − 1
2

∑m
i, j=1

liljuiu
T
j

(15)

Thus, the dual form of the quadratic programing problem in
Eq. (12) is given by

max
l

∑m
i=1

li − 1
2

∑m
i, j=1

liljuiu
T
j

s.t. li ≥ 0, ∀i = 1, 2, . . . ,m

⎧⎪⎨
⎪⎩ (16)

Solving the optimization model in Eq. (16) yields the Lagrange
multipliers λ1, λ2, …, λm. Substituting them into Eq. (14)
produces the weight vector ω. The unit vector α is then recovered
by a = v/ ‖ v ‖, which thereby constructs the function Z(U) for
the hyperplane. Similar to the general one-class SVM algorithm,
the training points satisfying {xi: i∈ 1, 2, …, m, λi >0} are support
vectors by which the optimal hyperplane is finally determined.

With the known bias β and the acquired normal vector α, the
function of the hyperplane is determined by

Y = Z(U) = b+ aUT (17)

which is a decision boundary defining the domain of the one class
data set and could then be used to predict the state of a new sam-
ple. Substitute a new sample uN into Eq. (17). If Y < 0, the new
sample belongs to the same class as that of the training points,
and y =−1; otherwise, it is outside the domain of the training
points and belongs to the class of y = +1.

The proposed one-class SVM algorithm can easily accommo-
date the bias constraint, which is derived from the given one-class
data set. The new algorithm only focuses on this data set without
considering the origin as the second class. The optimal hyper-
plane is constructed based on the hard margin associated with
the bias constraint. Specifically, if we regard seeking such an opti-
mal hyperplane as a dynamic process, the general one-class SVM
technique attempts to move the hyperplane to the desired posi-
tion through rotations and translations. While in the proposed
method the hyperplane only rotates around the origin while keep-
ing tangent to the hypersphere with a radius of β. In other words,
the hyperplane rolls without slipping on the hypersphere. Also,
since no slack variables ξ; and regularization parameter v are
introduced, the constraints for the optimization model are rela-
tively simple thereby increasing the computation efficiency.

Application of the new one-class SVM in system reliability
prediction

System reliability is the probability of a system working normally
without failures. Since the system state (safe or failed) is deter-
mined by the states of its components and it may be hard to pre-
dict the system reliability directly, the system reliability is usually
estimated based on component states. Physics-based methods
(Cruse, 1997; Mahadevan, 1997; Hu and Du, 2016, 2019; Hu
et al., 2017) and statistics-based methods (Lawless, 1983;
Hoyland and Rausand, 2004; Meeker and Escobar, 2014; Hu
and Du, 2017b) are two possible choices for component reliability
analysis. We first briefly review the concepts and basic techniques
of the two kinds of reliability methods and then explain how the
proposed algorithm works for system reliability analysis.

Physics-based reliability methods

Physics-based reliability methods use computational models to
estimate reliability, which predict the component failure state
based on physical principles. The computational model is called
a limited-state function, denoted by y = g(X), where X is a vector
of basic random variables, which are root variables that affect the
state of the failure mode, such as component shape and dimen-
sions, loadings, material properties, and environmental factors;
y is the state variable. For each failure mode, a limit-state function
is built. If Y > 0, the state is safe. Otherwise, a failure occurs. The
reliability with respect to the failure mode is given by

R = Pr {state = safe} = Pr {y = g(X) . 0} (18)

The probability of failure pf is given by

pf = Pr {state = failed} = Pr {y = g(X) , 0} = 1− R (19)

Since it is difficult to compute Eq. (19) analytically, many
approximation methods have been proposed, including FORM
(Cruse, 1997; Chiralaksanakul and Mahadevan, 2005), the second
order reliability method (Zhao and Ono, 1999), the saddlepoint
approximation method (Du and Sudjianto, 2004; Hu and Du,

Fig. 3. Geometric meaning of di + β.
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2018c), the partial safety factor method (Hu and Du, 2018b), and
Monte Carlo simulation (MCS) (Green et al., 2013). In this work,
we adopt FORM to approximate a linear form of g(X), then the
component probability of failure could be easily estimated. The
procedure of FORM is briefly summarized in the following
three steps.

Step 1: Transform random variables into standard normal
variables

Assume that all the random variables in the X-space are inde-
pendent. The original random variables X = (X1, X2, …, Xn) are
transformed into standard normal random variables U = (U1,
U2, …, Un) in the U-space. The transformation is given by
(Rosenblatt, 1952)

Fi(xi) = F(ui)(i = 1, 2, . . . , n) (20)

where Fi( · ) and Φ( · ) are the cumulative distribution functions
(CDF) of Xi and a standard normal variable, respectively. The
transformation could also be given in the form of

xi = T(ui) = F−1(F(ui)) (i = 1, 2, . . . , n) (21)

in which T( · ) denotes the transformation function.
Step 2: Approximate a linear limit-state function
After the transformation, the component probability of failure

is computed by

pf = Pr {g(T(U)) , 0} (22)

FORM then approximates g(T(U)) at the most probable point
(Cruse, 1997), and yields a linear limit-state function

Z(U) = b+ aUT (23)

Step 3: Compute pf
With the new limit-state function Z(U) in Eq. (23), which is a

linear combination of standard normal random variables, pf is cal-
culated by

pf = Pr {Z(U) , 0} = F(−b) (24)

Statistics-based reliability methods

A statistics-based method relies on field or testing data related to
failures of a component. The component reliability R is estimated
by

R = Pr {state = safe} ≈ N − Nf

N
(25)

where Pr{·} denotes a probability, Nf is the number of failed com-
ponent, and N is the total number of components.

SVM is widely used with the statistics-based method which
creates a reliability model using the provided training data with
no need for physical principle of the component. Note that the
recorded field or testing data belong to either the safe region or
failure region. SVM can therefore identify the safety-failure
boundary by solving a binary classification problem (Hu and
Du, 2017b). As is mentioned above, the general two-class SVM
is only available for cases where two classes of training data are
provided.

Application of the new method

We now discuss how to use the proposed one-class SVM
approach to achieve a linear decision boundary (limit-state func-
tion) if only a one-class training data set is given. The details are
as follows.

We still use y = g(X) as the component limit-state function, and
the original random variables, denoted by X = (X1, X2, …, Xn)
are independent. The counterpart of X in the U-space, denoted
by U = (U1, U2, …, Un), are standard normal random variables.
Given a data set of m training points from reliability testing at fail-
ure states as follows:

(x1, y1), (x2, y2), . . . , (xm, ym), x [ Rn yi = −1, i = 1, 2, . . . ,m

The bias β is known, which comes from the component reli-
ability estimated by the supplier using the given training points.

Step 1: Transform X into U
Similar to FORM, the transformation is given by

xj = T(uj) = F−1(F(uj)), j = 1, 2, . . . , n (26)

Step 2: Approximate a linear limit-state function based on one-
class SVM

According to the proposed one-class SVM discussed in the sec-
tion “A new algorithm for one-class support vector machines with
a bias constraint,” the optimal normal orientation of the
to-be-determined decision boundary is given by v = −∑m

i=1 liui,
in which λi is available after solving the dual form of the
Lagrangian in Eq. (16), and ui is obtained in step 1. Since the bias
β is also available, the linear form of the component limit-state func-
tion is then obtained by

Z(U) = b+ aU (27)

in which a = v/ ‖ v ‖.
Since β is known, there is no need to recalculate component

reliability using Z(U). Z(U) is actually used for the system reliabil-
ity prediction by integrating with other available limit-state func-
tions from FORM. Next, we will discuss how to do so.

System reliability analysis

System reliability could be estimated either by a physics-based
approach, a statistics-based approach, or the integration of both.
Predicting system reliability is an important task, especially for
systems with outsourced components. Outsourcing is a common
practice because more and more industrial firms function like sys-
tem integrators with numerous components outsourced (Click
and Duening, 2004), resulting in urgent demand for integrating
both statistics- and physics-based approaches. Accurately predict-
ing the system reliability requires complete design information for
both in-house and outsourced components, such as the limit-sate
functions and distributions of basic random variables. System
designers may know everything about the in-house components;
however, the design details of outsourced components are usually
unavailable since they are proprietary to outside suppliers. This
makes it hard to directly use traditional methods for system reli-
ability analysis (Cheng and Du, 2016). To address this issue, the
proposed one-class SVM method with a bias constraint is used
to reconstruct the limit-state functions for outsourced
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components, thereby integrating the new algorithm with physic-
based methods for accurate system reliability prediction.

A proof-of-concept method (Hu and Du, 2017a) has been
recently developed, and it validates the feasibility of this study.
This work is an extension of the algorithm proposed in Hu and
Du (2017a) with a bias constraint derived from the data set pro-
vided by the component supplier, such as the reliability data at
failure states. We now introduce how to use the proposed method
for system reliability prediction. The application scope is summa-
rized as follows:

• The system has m components (failure modes) and m≥ 2.
• Component states are dependent.
• There are two types of components: (1) type-I components,
whose probabilities of failure are obtained through physics-
based methods, have available limit-state functions
gIi (·), (i = 1, 2, . . . ,m1), where m1 is the component number.
(2) For the other m2(m2 =m−m1) type-II components, no
limit-sate functions are available, but the data set of training
points from fields or testing is provided, and the probabilities
of failure are evaluated using a statistics-based method.

• Assume the system is in series.
• Distributions of all basic random variables are known.

For a type-I component, the limit-state functions in the
U-space are transformed by

gIi (X) −−−−−−−�
X�T(U)

ZI
i (U) = bI

i + aI
iU

T (i = 1, 2, . . . ,m1) (28)

For type-II components, the limit-state functions produced by
the proposed one-class SVM is given in the form of

ZII
j (U) = bII

j + vj

‖ vj ‖U
T

= bII
j + aII

j U
T( j = m1 + 1, m1 + 2, . . . ,m)

(29)

Since the components of U follow a standard normal distribu-
tion, the reconstructed limit-state functions ZI

i (U) and ZII
j (U) also

follow normal distributions ZI
i (U) � N(mI

i ,s
I
i) and ZII

j (U) �
N(mII

j ,s
II
j ), respectively, in which mI

i = bI
i and mII

j = bII
j are

their vectors of means, and the covariance of ZI
i (U) and ZII

j (U)
is ρij, which will be given in Eq. (32). Thus, the joint PDF of
ZI
i (U) and ZII

j (U), denoted by ϕU(u), is actually the PDF of a mul-
tivariate normal distribution with a mean vector μ and a covar-
iance matrix Σ. μ is given by

m = (bI
1,b

I
2, . . . ,b

I
m1
,bII

m1+1,b
II
m1+2, . . . ,b

II
m) (30)

in which bI
i(i = 1, 2, . . . ,m1) is obtained from FORM, and

bII
j (j = m1+1,m1+2, . . . ,m) is calculated by bII

j = −F−1(pfj).
Σ is given by

S =

1 r12 · · · r1m
r21 1 r2m

..

. ..
. . .

. ..
.

rm1 rm2 · · · 1

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

m×m

(31)

in which ρij is the correlation coefficient between the i-th and j-th
components and is computed by

rij = r ji =
aI
i(a

I
j )
T, i , j ≤ m1

aI
i(a

II
j )

T, i ≤ m1 , j

aII
i (a

II
j )

T,m1 , i , j

⎧⎪⎪⎨
⎪⎪⎩ (32)

From Eq. (29), we find aII
j = (vj/ ‖ vj ‖) (j = m1+1,m1+

2, . . . ,m), in which aII
j has the same direction as ωj.

With μ and Σ available, the complete joint PDF ϕU(u) is also
available and is given by

fU(u) =
1����������

(2p)n|S|
√ exp − 1

2
(u− m)TS−1(u− m)

( )
(33)

The probability of system failure is computed by

pfs = Pr
⋃m1

i=1

ZI
i (U) , 0

⋃ ⋃m
j=m1+1

ZII
j (U) , 0 (34)

And the system reliability is

Rs = Pr
⋂m1

i=1

−ZI
i (U) , 0>

⋂m
j=m1+1

−ZII
j (U) , 0

( )

=
∫
V

fU(u)du (35)

where Ω is the system safe region defined by

V = {U| − ZI
i (U) , 0, − ZII

j (U)
, 0(i = 1, 2, . . . ,m1;j = m1 + 1,m1 + 2, . . . , m)}

(36)

Thus Rs can be easily evaluated by solving the integral in Eq.
(35), and the probability of system failure is then pf_s = 1− Rs.
A schematic diagram of the proposed method is given in Figure 4.

The proposed method makes the following contributions to
reliability analysis: (1) at the component level, it provides a new
way to approximate component limit-state functions with only
estimated probabilities of failure and limited field or testing failure
data. (2) At the system level, since the provided component limit-
state functions are linearized using FORM, which produce the
same form as the approximated limit-state functions obtained
from the proposed one-class SVM, system reliability analysis
could be easily conducted. (3) It improves the accuracy of the sys-
tem reliability prediction because it accounts for the dependency
between components automatically. (4) It dramatically reduces
the computational cost due to the linear forms of all the limit-
state functions.

Examples of methodology validation

Three examples are used to demonstrate the effectiveness and
accuracy of the proposed method. Example 1 is a numerical prob-
lem showing how to apply the proposed method step by step.
Examples 2 and 3 involve engineering problems with multiple
failure modes.
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Example 1: a numerical problem

A system is comprised of two physical components, and each has
one failure mode. If either of components fails, the system fails.
There are two independent basic random variables X = (X1, X2),
where both X1 and X2 follow normal distributions of
X1 � N(12, 12) and X2 � N(40, 22), respectively. The limit-state
function of the first component is available and is given by

gI1(X) = −260+ 8.5X1 + 5.2X2 (37)

Thus, the component is a type-I component.
FORM produces a linear model, which is given by

ZI
1(U) = bI

1 + aI
1U

T = 3.7225+ 0.6328U1 + 0.7743U2 (38)

in which bI
1 = 3.7225 and aI

1 = (0.6328, 0.7743).
Component two is a type-II component since no model is

available. The probability of failure pf2 = 2.5517 × 10−5 is esti-
mated by a statistics-based reliability method using the recorded
testing points, which come from reliability testing.

Although no model is available, to analyze the accuracy, we
assume the true model in the X-space is given by

gII(true)2 (X) = −325+ 5.6X1 + 8.2X2 (39)

The linear model in the U-space is

ZII(true)
2 (U) = 4.0508+ 0.3231U1 + 0.9463U2 (40)

We then use computer experiments to mimic the physical reli-
ability testing. With MCS and the model in Eq. (39), we generate a
set of training points and transform them into the U-space as
shown in Table 1. We also assume that the value of pf2 given
above is known and is equal to the one estimated using Eq. (39).

Assume that the linear model for component two is given by

ZII
2 (U) = bII

2 + aII
2U

T (41)

in which bII
2 is calculated by bII

2 = −F−1(pf2) = 4.0508, and aII
2

is the to-be-determined unit vector. Using the proposed one-class

SVM method, we solve for aII
2 by

max
l

∑10
i=1

li − 1
2

∑10
i, j=1

liljuiu
T
j

s.t. li ≥ 0, ∀i = 1, 2, . . . , 10

⎧⎪⎨
⎪⎩ (42)

where u1 = (− 1.4342,− 3.8442), u2 = (− 2.1810,− 4.6721), …,
and u10 = (− 0.8223, − 4.1205) as shown in Table 1. After solving
the above model, we have the Lagrange multipliers λ = (0.0459, 0,
0.0099, 0, 0, 1.734 × 10−4, 0, 0, 0, 0), and the three support vectors
u1, u3, and u6 marked by the circles in Figure 5 are determined by
the non-zero multipliers. Substituting λ, u1, u2, …, and u10 into
v2 = −∑10

i=1 liui, we obtain the weight vector ω2 = (0.0712,
0.2182), resulting in a unit vector aII

2 = (v2/ ‖ v2 ‖) =
(0.3101, 0.9507). Thus the linear model of component two is
reconstructed by

ZII
2 (U) = bII

2 + aII
2U

T = 4.0508+ 0.3101U1 + 0.9507U2 (43)

The corresponding optimal hyperplane is also shown in
Figure 5, separating the one class training points (data set at fail-
ure state) clearly from the circle with a radius of bII

2 .

Fig. 4. Schematic diagram of the proposed method.

Table 1. Training points

No.

u

U1 U2

1 −1.4342 −3.8442

2 −2.1810 −4.6721

3 −0.5057 −4.1478

4 −1.3443 −3.9958

5 −1.9988 −3.9879

6 −1.7684 −3.7517

7 −2.5285 −3.6413

8 −1.9114 −3.8673

9 −3.0726 −3.3558

10 −0.8223 −4.1205
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The approximated limit-state function in Eq. (43) is very close
to the true one given in Eq. (40), thereby leading to high accuracy
of system reliability prediction, the details of which are shown
below.

Since the components of u follow standard normal distribu-
tions, the two dimensional random vector Z = [ZI

1(U),ZII
2 (U)]

follows a multivariate normal distribution with the joint PDF

fU(u) =
1����������

(2p)2|S|
√ exp − 1

2
(u− m)TS−1(u− m)

( )
(44)

where the mean vector μ and covariance matrix Σ are given by

m = (bI
1,b

II
2 ) = (3.7225, 4.0508) (45)

S = 1 r12
r21 1

[ ]
= 1 aI

1(a
II
2 )

T

aI
1(a

II
2 )

T 1

[ ]

= 1 0.9324
0.9324 1

[ ]
(46)

The system reliability is calculated by

Rs = Pr (−ZI
1(U) , 0>−ZII

2 (U) , 0) =
∫
V

fU(u)du (47)

where Ω is the system safe region defined by

V = {U| − ZI
1(U) , 0, − ZII

2 (U) , 0} (48)

Substituting Eq. (44) into Eq. (47), we have pf_s = 1− Rs =
1.0537 × 10−4.

We now discuss the case where the traditional system reliabil-
ity method is used and then compare the results from both
methods. The traditional method (Yong Cang, 1993) assumes
that the states of all the components are independent. Then the

system reliability is calculated by

Rs =
∏m
i=1

Ri (49)

where Ri is the reliability of the i-th component. The result is
given in Table 2 in the “Independence assumption method” col-
umn. Although this method is easy to use and effective, it may
produce large errors when the components are highly dependent.

To verify the accuracy, we also use the true limit-state func-
tions gI1(X) and gII(true)2 (X) in Eqs. (45) and (47) to evaluate the
system reliability based on FORM and consider this value as a
benchmark. The result obtained is 1.0478 × 10−4. Table 2 shows
all the results from different methods. The independence assump-
tion method has a large error of 18.46%, which is due to the
neglected strong correlation indicated by ρ12 = 0.9324. The pro-
posed method produces an error of only 0.56%, which shows
much higher accuracy.

Example 2: a cantilever beam

A cantilever beam is subject to moments m1 and M2, forces Q1

and Q2, and distributed loads denoted by (qL1, qR1) and (qL2,
qR2) as shown in Figure 6. Assume that m1, M2, and Q1; the
dimensions variables a1, a2, and b1; the yield strength Sa; and
the allowable shear stress τa are basic random variables, which
are assumed to be independent and listed in Table 3.
Deterministic parameters are listed in Table 4.

The cantilever beam fails due to three failure modes, and each
is considered as a component, thus the reliability of the beam is
regarded as system reliability. The first failure mode is caused
by excessive normal stress, and its limit-state function is known
and given by

gI1(X) = Sa − 6M
wh2

(50)

in which M is the bending moment at the root calculated by

M =
∑2
i=1

Mi +
∑2
i=1

Fibi +
∑2
i=1

qLi(di − ci)(di + ci)/2

+
∑2
i=1

[(qRi − qLi)(di − ci)/2][ci + 2(di − ci)/3]
(51)

Since the limit-state function is provided, this failure mode is
treated as a type-I component.

The second failure mode comes from the excessive shear stress
with a known limit-state function given by

gI2(X) = ta − tmax (52)

Fig. 5. Support vectors and optimal hyperplane.

Table 2. Results of system reliability from different methods

Proposed
method

Independent
assumption
method True value

pfs 1.0537 × 10−4 1.2413 × 10−4 1.0478 × 10−4

Error (%) 0.56 18.46 –
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in which τa is the allowable shear stress, and τmax is the maximal
shear stress computed by

tmax = 3
2wh

∑2
i=1

Fi +
∑2
i=1

qLi(di − ci) +
∑2
i=1

(qRi − qLi)(di − ci)
2

( )

(53)

Similarly, this failure mode is also a type-I component.
The third failure mode (FM3) is due to the excessive deflection

with an unknown limit-state function. It is therefore a type-II
component. The probability of failure pf3 due to this failure
mode is then evaluated using statistics-based methods with train-
ing points. Note that the training points used in this example
actually come from computer simulation, since it is hard for us
to perform real physical experiments due to lack of measuring
devices. Assume the true limit-state function for FM3 is

gII(true)3 (X) = va − vmax (54)

in which va = 8.4mm is the allowable deflection, and vmax is the
maximal tip deflection given by

vmax = 1
EI

ML2

2
+ BL3

2
+

∑2
i=1

Mi(L− ai)2
2

−
∑2
i=1

Fi(L− bi)3
6

[ ]

+ 1
EI

−
∑2
i=1

qLi(L− ci)4
24

−
∑2
i=1

(qRi − qLi)(L− ci)5
120(di − ci)

[

+
∑2
i=1

qRi(L− di)4
24

]
+ 1

EI

∑2
i=1

(qRi − qLi)(L− di)5
120(di − ci)

(55)

where B is the reaction force at the fixed end. The Young’s mod-
ulus is E = 200 × 109 Pa, and the moment of inertia is I =wh3/12.
Based on the given limit-state function in Eq. (54), 12 training
points at failure states are generated by simulation and are trans-
formed into the U-space as listed in Table 5. Since Sa and τa do
not affect the third failure mode, their components U7 and U8

are absent in the training points. As discussed previously, pf3 is
estimated by a statistics-based reliability method using the data

set from reliability testing and is assumed equal to the probability
of failure pf3 = 2.864 × 10−4 produced by FORM with the true-
limit state function in Eq. (54).

Assume the linear model for FM3 is given by

ZII
3 (U) = bII

3 + aII
3U

T (56)

where bII
3 = −F−1(pf3) = 3.4442. aII

3 is obtained from the fol-
lowing optimization model

max
l

∑12
i=1

li − 1
2

∑12
i, j=1

liljuiu
T
j

s.t. li ≥ 0, ∀i = 1, 2, . . . , 12

⎧⎪⎨
⎪⎩ (57)

in which ui represent the training points given in Table 5. Solving
the above the model, we obtain the Lagrange multipliers λ = (0, 0,
0.0345, 0, 0.0047, 0.0037, 0.0203, 0, 0, 4.25 × 10−4, 0, 0.0108);
therefore, six support vectors u3, u5, u6, u7, u10, and u12 are
determined by the nonzero components λ3, λ5, λ6, λ7, λ10, and
λ12 in λ. Then using λ, u1, u2, …, and u12 in v3 = −∑12

i=1 liui,
we have ω3 = (− 0.0787,− 0.2207, 0.0113, − 0.0023,− 0.1157,
− 0.0197), which produces the unit vector aII

3 = (v3/ ‖ v3 ‖)

Fig. 6. A cantilever beam system.

Table 3. Basic random variables

Random variables Distribution

X1 M1(Nm) N(50 × 103, (2 × 103)2)

X2 M2(Nm) N(30 × 103, (2 × 103)2)

X3 a1(m) N(1.5, 0.0052)

X4 a2(m) N(4.5, 0.0052)

X5 Q1(N) N(65 × 103, (13 × 103)2)

X6 b1(m) N(0.7, 0.0052)

X7 Sa(Pa) N(62.5 × 106, (1 × 106)2)

X8 τa(Pa) N(3.6 × 106, (1 × 105)2)

Table 4. Deterministic parameters

Parameters Values

1 Q2(N) 30 × 103

2 b2(m) 2.5

3 qL1(N/m) 30 × 103

4 qL2(N/m) 20 × 103

5 c1(m) 0.25

6 c2(m) 1.75

7 qR1(N/m) 20 × 103

8 qR2(N/m) 1 × 103

9 d1(m) 1.25

10 d2(m) 4.75

11 L(m) 5.1

12 w(m) 0.204

13 h(m) 0.403
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= (−0.3001, − 0.8414, 0.0430, − 0.0087, − 0.4409, − 0.0750).
Thus, the linear model in Eq. (56) is determined and is given by

ZII
3 (U) = 3.4442− 0.3001U1 − 0.8414U2 + 0.0113U3

− 0.0023U4 − 0.1157U5 − 0.0197U6 (58)

Since the first two failure modes are type-I components,
FORM could be directly used with the following linear models:

ZI
i (U) = bI

i + aI
iU

T(i = 1, 2) (59)

in which bI
1 = 3.4989, bI

2 = 3.2470, aI
1 = (−0.181, − 0.181, 0,

0,− 0.826, − 0.046), and aI
2 = (0, 0, 0, 0, − 0.92, 0).

Thus, vectors [ZI
1(U), ZI

2(U), ZII
3 (U)] follow a multivariate

normal distribution with the joint PDF given by

fU(u) =
1����������

(2p)3|S|
√ exp − 1

2
(u− m)TS−1(u− m)

( )
(60)

where the mean μ and covariance matrix Σ are given by

m = (bI
1,b

I
2,b

II
3 ) = (3.4989, 3.2470, 3.4442)

and

S =
1 r12 r13
r12 1 r23
r13 r23 1

⎡
⎣

⎤
⎦ =

1 0.7608 0.5744
0.7608 1 0.4062
0.5744 0.4062 1

⎡
⎣

⎤
⎦,

where ρ12, ρ13, and ρ23 are the correlation coefficients between
ZI
1(U) and ZI

2(U), ZI
1(U), and ZII

3 (U), and ZI
2(U) and ZII

3 (U),
respectively.

The system reliability is then calculated by

Rs = Pr (−ZI
1(U) , 0>−ZI

2(U) , 0>−ZII
3 (U) , 0)

=
∫
V

fU(u)du (61)

where Ω is the system safe region defined by

V = {U| − ZI
1(U) , 0, − ZII

2 (U) , 0, − ZII
3 (U) , 0} (62)

Then Eq. (61) yields pf_s = 1− Rs = 1.022 × 10−3.
For validation, we use FORM and all the given limit-state func-

tions gI1(X), gI2(X), and gII3 (X) to solve for the true system reliability.
Likewise, we also use the independence assumption method. The
results are shown in Table 6. The proposed method outperforms
the independence assumption method with much higher accuracy.

Example 3: a slider mechanism

As shown in Figure 7, a slider system consists of four major com-
ponents. An external moment is applied to joint A. The task is to
find the system reliability when θ2 = π/2.

Component 1 is beam AB with a length of l1, and its cross-
section is defined by the width b1 and height h1. The failure
mode (FM1) of AB is the excessive normal stress, and the limit-
state function is known and is given by

gI1(X) = Sa1 − S1 (63)

in which Sa1 is the allowable normal stress, and
S1 = (M(h1/2))/(b1h31/12) is the maximal normal stress devel-
oped in the beam.

Component 2 is beam BC with a length of l2 and a cross-
section defined by the width b2 and height h2. Beam BC has
one failure mode (FM2) due to buckling with a known limit-state
function given by

gI2(X) = Pcr − FBC (64)

Table 5. Training points for FM3

No.

U

U1(M1) U2(M2) U3(a1) U4(a2) U5(F1) U6(b1)

1 2.8351 2.0504 −1.6190 −1.5710 2.0410 0.8219

2 1.7433 2.2424 −0.1380 0.9161 2.5797 2.1406

3 1.0681 2.6931 −1.2685 −0.5628 2.0397 −0.1730

4 4.0026 2.6572 −1.4512 −0.4765 2.0030 −0.4871

5 2.2738 3.5800 0.4564 0.7455 −0.2342 −0.7254

6 0.2692 2.6336 1.3638 0.2184 2.8383 0.4362

7 1.0906 3.1686 0.4705 −0.3467 0.9793 1.6114

8 1.0306 3.3218 −0.1654 −1.9311 0.9750 1.0332

9 1.4163 3.3888 0.7300 −0.4728 1.1202 0.9889

10 1.0380 3.0489 −0.2377 −0.0370 1.3500 0.6203

11 1.0432 2.6388 −1.6206 0.3320 2.6083 −0.3964

12 0.6974 3.2863 1.4655 2.2559 1.4333 −0.5095
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in which Pcr = π2E2I2/(Kl2)
2 is the critical force for buckling where

I2 = b2h32/12, and FBC =M/l1 is the internal force in the beam.
Component 3 is shaft DE with a diameter of d4 and a length of

l3. Two failure modes (FM3 and FM4) exist in the shaft which are
caused by excessive deflection and excessive normal stress, respec-
tively. The corresponding limit-state functions are known and
given by

gI3(X) = da3 − d3
gI4(X) = Sa4 − S4

{
(65)

in which δa3 is the allowable deflection, and δ3 is the maximal
deflection given by

d3 = FBC sin (p/2− u1)l4(l23 − l24)3/2
9

��
3

√
l4E4(p/4)(d4/2)4

(66)

where E4 is the Young’s modulus of shaft DE. Sa4 is the allowable
normal stress, and S4 is the maximal normal stress developed in
the shaft and is calculated by

S4 = FBC sin (p/2− u1)(d4/2)
(p/4)(d4/2)4

(67)

Component 4 is spring CD with one failure mode (FM5) due
to excessive shear stress in the spring coils. The limit-state func-
tion of FM5 is unknown while the probability of failure is given
by pf3 = 1.04 × 10−3. Likewise, to simulate the testing, we assume
the true limit-state function is given by

gII(true)5 (X) = ta5 − t5 (68)

in which ta5 � N(100× 106, (25× 106)2)Pa is the allowable shear
stress of the spring coil, and τ5 is the developed maximal shear

stress and calculated by

t5 = FBC cos(p/2− u1)D
pd3

4D− d
4D− 4d

+ 0.615d
D

( )
(69)

in which D � N(34.7× 10−3, 10−4)m is the outer diameter of the
spring, and d = 29.5 × 10−3m is the spring inner diameter. We
then generate 12 training points of X with the corresponding fail-
ure states determined by gII(true)5 (X) , 0.

Table 7 shows all the random variables known by the system
designers, and Table 8 lists all the known deterministic parame-
ters. Since D and τa5, denoted by X9 and X10, respectively, are
only known by the spring supplier, they are not listed in
Table 7. There are actually ten basic random variables in the
system. For FM5, the training points are provided in the form
of (X1, X2, X9, X10).

At the system level, the five FMs in the system are actually trea-
ted as five components. The first four FMs with known limit-state
functions gIi (X)(i = 1, 2, 3, 4) are type-I components, and FM5 is
a type-II component since its limit-state function gII5 (X) is not
available.

For type-I components, gIi (X) could be approximated by
FORM as

ZI
i (U) = bI

i + aI
iU

T (i = 1, 2, . . . , 4) (70)

Table 6. Results from different methods

Proposed
method

Independent
assumption
method True value

pf_s 1.0198 × 10−3 1.1028 × 10−3 1.0155 × 10−3

Error (%) 0.42 8.59 –

Fig. 7. A crank-slider system.

Table 7. Random variables

Random variables Distribution

X1 M1(Nm) N(350, 652)

X2 l1(m) N(0.3, (1 × 10−4)2)

X3 l2(m) N(0.9, (2 × 10−3)2)

X4 b1(m) N(0.022, (5 × 10−4)2)

X5 h1(m) N(0.019, (5 × 10−4)2)

X6 b2(m) N(0.015, (5 × 10−4)2)

X7 h2(m) N(0.009, (5 × 10−4)2)

X8 d4(m) N(0.0228, (1 × 10−4)2)

Table 8. Deterministic parameters

No. Deterministic parameters Values

1 E2(Pa) 200 × 109

2 E4(Pa) 200 × 109

3 K 1

4 l3(m) 0.65

5 l4(m) 0.95

6 Sa1(Pa) 400 × 106

7 Sa4(Pa) 460 × 106

8 δa4(m) 0.0032
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in which

bI
1= 2.5099,aI

1=(−0.91,0,0,0.16,0.38,0,0,0,0,0)
bI
2= 2.6609,aI

2=(−0.60,1.4×10−3, −0.02,0,0,0.14,0.79,0,0,0)
bI
3= 2.5653,aI

3=(−0.99,2.6×10−4, 1.6×10−2,0,0,0,0,0.14,0,0)
bI
4= 2.4145,aI

4=(−0.99,2.6×10−4, 1.5×10−2,0,0,0,0,0.10,0,0)
(71)

For the type-II component, the limit-state function is recon-
structed by the proposed one-class SVM method and is given by

ZII
5 (U) = bII

5 + aII
5U

T (72)

in which bII
5 = −F−1(pf5) = 3.0785 and aII

5 = (−0.109, 0.066, 0,
0, 0, 0, 0, 0, 0.068, 0.989).

Then ZI
i (U)(i = 1, 2, . . . , 4) and ZII

5 (U) follow a multivariate
normal distribution with the mean vector m and covariance
matrix S given by

m = (−2.5099, − 2.6099, − 2.5653, − 2.4145, − 3.0785) (73)

S =

1 0.546 0.903 0.907 0.099
0.546 1 0.593 0.595 0.065
0.903 0.593 1 0.999 0.107
0.907 0.595 0.999 1 0.108
0.099 0.065 0.107 0.108 1

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦ (74)

Thus the probability of system failure is calculate by pf_s = 1-Rs =
0.0133.

Based on the known limit-state functions gIi (X)(i = 1, 2, 3, 4) and
gII(true)5 (X), the true system reliability can be directly obtained by
FORM. The results from different methods are shown in Table 9,
which demonstrate that the proposed method is close to the true
value and outperforms the independence assumption method.

Conclusions

Motivated by the need for creating component models from one-
class failure data in system reliability prediction, this study devel-
ops a new one-class SVM method for data set that is on the one
side of a hyperplane, which is tangent to a hypersphere with a
known radius. Different from traditional SVM methods, the
new method creates a linear model using both the given data
set and the radius; in other words, only the orientation of the
hyperplane is determined.

The advantages of the proposed method for system reliability
prediction are multifold. At first, it reveals the relationship
between component states (safe or failed) with factors that affect
the state, such as component dimensions, loading, and environ-
ment. Second, the method makes it possible to account for the

dependence between component states through the created mod-
els. Third, the method obtains a complete probability density
function of all the component states. Fourth, the method provides
a feasible way to integrate physics- and statistics-based reliability
methods. As a result, an accurate system reliability prediction
can be produced.

There are several assumptions for the application of the pro-
posed method, such as the distributions of basic random variables
are known, the reliability resulting from the FORM is accurate,
and no stochastic processes are involved. In our future study,
we will extend the method to time-dependent problems where
the data set varies with respect to time.
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