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Dynamics and mixing of a variable-density turbulent flow subject to an externally
imposed acceleration field in the zero-Mach-number limit are studied in a series of
direct numerical simulations. The flow configuration studied consists of alternating
slabs of high- and low-density fluid in a triply periodic domain. Density ratios in
the range of 1.05 6 R ≡ ρ1/ρ2 6 10 are investigated. The flow produces temporally
evolving shear layers. A perpendicular density–pressure gradient is maintained in
the mean as the flow evolves, with multi-scale baroclinic torques generated in the
turbulent flow that ensues. For all density ratios studied, the simulations attain
Reynolds numbers at the beginning of the fully developed turbulence regime. An
empirical relation for the convection velocity predicts the observed entrainment-ratio
and dominant mixed-fluid composition statistics. Two mixing-layer temporal evolution
regimes are identified: an initial diffusion-dominated regime with a growth rate ∼t1/2

followed by a turbulence-dominated regime with a growth rate ∼t3. In the turbulent
regime, composition probability density functions within the shear layers exhibit
a slightly tilted (‘non-marching’) hump, corresponding to the most probable mole
fraction. The shear layers preferentially entrain low-density fluid by volume at all
density ratios, which is reflected in the mixed-fluid composition.

Key words: shear layer turbulence, turbulent flows, turbulent mixing

1. Introduction

Variable-density turbulent flow responding to an externally imposed acceleration
field, such as gravity, is encountered in many contexts, such as inertial confinement
fusion, geophysics, astrophysics, compressible turbulence and combustion. In the
present study, of interest is the flow dynamics resulting from the body force ρg,
where ρ is the density of the fluid and g the imposed acceleration field. The action
of the body force generates complex multi-scale dynamics. For instance, in a uniform
gravitational field, density stratification results in waves, instabilities and modification
of turbulence by stable density stratification or buoyant convection (e.g. Turner 1979).

† Email address for correspondence: igat@caltech.edu
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In many applications, the flow can be treated as incompressible with only small
density variations, ρ ′/ρ � 1, and the Boussinesq approximation can adequately
describe the flow physics (Gerz, Schumann & Elghobashi 1989; Métais & Herring
1989; Batchelor, Canuto & Chasnov 1992; Holt, Koseff & Ferziger 1992; Gerz &
Yamazaki 1993; Jacobitz, Sakar & Van Atta 1997; Staquet & Godeferd 1998; Shih
et al. 2000; Riley & deBruynKops 2003; Diamessis & Nomura 2004; Chung &
Matheou 2012). Boussinesq flows can capture the effects of stratification in decaying
turbulence (Métais & Herring 1989; Staquet & Godeferd 1998; Riley & deBruynKops
2003), with some studies of unstable stratification, e.g. buoyancy-driven flows of a
fluctuating density field (Batchelor et al. 1992) or stable stratification if a different
mechanism, e.g. shear (Gerz et al. 1989; Holt et al. 1992; Jacobitz et al. 1997; Shih
et al. 2000; Diamessis & Nomura 2004; Chung & Matheou 2012), drives the flow.
Such flows tend to be nearly barotropic, with mean pressure gradients typically in
the direction of, or opposite to, mean density gradients.

Misalignments of pressure and density gradients generate baroclinic torques that
can significantly influence the flow dynamics and may be important to include in
large-eddy simulation (LES) modelling of high-Reynolds-number turbulent flows. The
Boussinesq linearization retains density variations only in accounting for body force in
the momentum equation (e.g. Batchelor et al. 1992), with non-hydrostatic baroclinic
torques in the vorticity equation ignored.

The goal of the present study is to investigate turbulence in a variable-density flow
dominated by baroclinic torques. A flow configuration is considered in which two
different gas-phase fluids and an externally imposed vertical acceleration field result in
initially perpendicular pressure and density gradients. A mean perpendicular density–
pressure gradient is maintained as the flow evolves while multi-scale baroclinic torques
are generated in the turbulent shear-layer flow that ensues.

The present flow is inspired by flow visualization of a laboratory demonstration
by Robert Breidenthal in the late 1970s at Caltech (unpublished). The flow was a
baroclinically generated shear layer formed between vertically oriented streams of
water solutions, whose densities were close, i.e. 1ρ/ρ � 1, with 1ρ = ρ1 − ρ2. A
recent analysis of this flow indicates a velocity difference across such a shear layer
(circulation per unit shear-layer length) that is linearly increasing in time. This is
as opposed to a Kelvin–Helmholtz layer, for example, whose velocity difference is
constant.

The present study extends the aforementioned baroclinically generated shear layer of
water solutions to higher density ratios, renders it in a periodic domain, and employs
a direct numerical simulation (DNS) approach. Specifically, simulations with varying
free-stream density ratios in the range 1.056R≡ρ1/ρ2 610 are performed. By way of
example, flow with a density ratio of R= 10 corresponds to turbulent mixing of argon
(Ar) and helium (He). The low-Mach-number approximation of the full equations of
motion is used to study this flow whose density ratios place it outside the validity of
the Boussinesq approximation. For low density ratios, i.e. R= 1+ ε, the flow limits
to the Boussinesq approximation for small ε. The limiting behaviour was investigated
and confirmed in a separate study that investigated yet lower density ratios, down to
R= 1.02, 1.01 and 1.005 (Gat et al. 2016).

The present flow exhibits common attributes with other fundamental variable-density
(non-Boussinesq) flow configurations, such as three-dimensional Rayleigh–Taylor
instability simulations (e.g. Rayleigh 1882; Taylor 1950; Anuchina et al. 1978; Read
1984; Youngs 1984, 1989; Cook & Dimotakis 2001, and others) and variable-density
buoyancy-generated turbulence (Sandoval 1995, and studies mentioned therein) and
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later studies (e.g. Livescu & Ristorcelli 2007, 2008; Livescu et al. 2009; Chung &
Pullin 2010) that further expanded on the work of Sandoval (1995). In the present
configuration, the turbulent mixing region grows in the horizontal direction, i.e.
perpendicular to the vertical acceleration, whereas in Rayleigh–Taylor-type flows, the
mixed-fluid region grows in the vertical direction, i.e. parallel to the acceleration
direction. In addition, the present simulations correspond to temporally evolving
mixed-fluid regions between two pure-fluid accelerating (free) streams, in contrast to
spatially homogeneous buoyancy-generated turbulent flows (e.g. Livescu & Ristorcelli
2007, 2008; Chung & Pullin 2010).

This flow exhibits similarities to buoyancy-generated turbulent flows as well as
similarities to classical spatially developing shear layers (e.g. Brown & Roshko
1974, 2012; Bradshaw 1977; Ho & Huerre 1984; Dimotakis 2005, and references
therein). In the present flow, however, the vertically accelerating free streams develop
temporally growing shear layers. In many experiments on buoyancy-driven free-stream
acceleration (e.g. Thorpe 1968, 1978; Pawlak & Armi 1998), gravity is inclined with
respect to the free-stream flow direction, whereas acceleration is parallel to the
free-stream flow direction in the present study.

Similar to Livescu & Ristorcelli (2007) and Chung & Pullin (2010), the present
flow is triply periodic. The lack of solid boundaries introduces a degree of freedom
and non-uniqueness (Livescu & Ristorcelli 2007) that requires specification of the
mean-pressure gradient in place of a far-field boundary condition. The mean-pressure
gradient sets the flow reference frame (see § 2.2). A zero-mean-momentum reference
frame is chosen that also facilitates force accounting.

The flow configuration, governing equations and numerical solution method are
discussed in § 2. The flow parameters are introduced in § 3 followed by analyses
of the flow evolution and turbulence, including mixing and spectra, in §§ 4 and 5.
In § 6, the discussion notes that some attributes of variable-density flows can be
mapped to those for uniform-density flows, such as spectral scaling for all density
ratios, R, extending to the limit of R= 1+ ε, as ε→ 0. Further details regarding the
numerical method, quality of the simulations and sensitivity to the initial conditions
are documented in appendices A and B.

2. Problem formulation
2.1. Governing equations

Absent species sources and sinks, the mass, momentum and species mass-fraction
conservation equations for flow subject to an externally imposed acceleration field,
such as gravity, are

∂ρ

∂t
+∇ · (ρu) = 0, (2.1a)

∂ρu
∂t
+∇ · (ρuu) = −(Γ +∇p)− ẑ ρg+∇ · τ , (2.1b)

∂ρYα
∂t
+∇ · [ρYα(u+ vα)] = 0. (2.1c)

In these equations, ρ is the density of the mixture, u is the velocity vector, p is the
pressure, Γ (t) is the spatially uniform component of the pressure gradient, g is the
magnitude of the acceleration in the −ẑ direction, Yα is the α-species mass fraction
and vα is the α-species diffusion velocity (e.g. Dimotakis 2005). A Newtonian viscous
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stress tensor and monatomic gases, i.e. zero bulk viscosity (Hirschfelder, Curtiss &
Bird 1964) are assumed,

τ =µ
[
∇u+ (∇u)T − 2

3(∇ · u)I
]
, (2.1d)

where I is the identity matrix.
The equation of state assumed for the binary mixture of fluids with density ρ1 and

ρ2, with ρ1 >ρ2 (Sandoval 1995), is

1
ρ(x, t)

=
Y(x, t)
ρ1
+

1− Y(x, t)
ρ2

=
1
ρ2
− Y(x, t)

(
1
ρ2
−

1
ρ1

)
, (2.2)

with the mass fraction, Y(x, t)≡ Y1(x, t)= 1− Y2(x, t). In the zero-Mach-number limit
(incompressible flow) studied here, temperature is uniform (and infinite), decoupling
the energy equation.

The species diffusion velocity (2.1c) is dominated by Fickian transport i.e.

ρYv =−ρD∇Y, (2.3)

where v≡v1 and Yv=Y1v1=−Y2v2 for a binary mixture. Combining the conservation
equations for mass and species mass fraction yields the density evolution equation,

Dρ
Dt
=
∂ρ

∂t
+ u · ∇ρ =−ρ∇ · u= ρ∇ ·

(
D
ρ
∇ρ

)
, (2.4)

i.e. variable-density flow is not divergence free in the presence of diffusion, even in
the zero-Mach-number limit (e.g. Sandoval 1995; Cook & Dimotakis 2001; Livescu
2013).

The simulations assume gas-phase molecular diffusion, i.e. a unity Schmidt number,
Sc≈ 1, where Sc≡ (µ/ρ)/D is the ratio of the viscous to the species diffusivity. In
considering a mixture of two gases, treated here as ideal, each would be characterized
by its own density, e.g. ρ1 and ρ2, with the mixed-fluid density, ρ(X), a function
of the mixture mole fraction, X = [ρ(X) − ρ2]/[ρ1 − ρ2]. Similarly, while dynamic
viscosity would be a function of temperature in each of the two pure fluids, there
would be a temperature-dependent dynamic viscosity that would be a function of
mixture composition and temperature, i.e. µ(X, T). The model for the simulations
performed adopts the simplifying assumption that µ(X,T)=µ is uniform and constant
in the flow. A unity Schmidt number then yields a variable diffusion coefficient, i.e.
D(x, t)=µ/ρ(x, t).

2.2. Flow reference frame

The simulated flow is in a triply periodic cube of volume L3 with an imposed vertical
acceleration field. In this set-up, the pressure gradient can be solved up to a constant
(in space), Γ (t) in (2.1b) (Livescu & Ristorcelli 2007). The simulations exploit this
degree of freedom to select the frame of reference. Some authors chose Γ (t) to render
the flow maximally unstable (Livescu & Ristorcelli 2007), or to ensure a constant
mean velocity (Chung & Pullin 2010). In the simulations presented here, a different
approach is chosen.
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To help track forces acting on the flow, Γ (t) is selected such that d〈ρu〉/dt= 0 in
the chosen frame, i.e. a constant volume-averaged momentum. Here, 〈 〉 denotes the
domain volume average,

〈∗〉 =
1
V

∫
V
∗ dV. (2.5)

The simulated flow is set to be initially quiescent, with zero initial volume-averaged
momentum, yielding zero mean momentum for all time. Ensuring d〈ρu〉/dt= 0 then
requires

Γ ∼=−ẑρ0g, (2.6)

where
ρ0 = 〈ρ〉 = βρ1 + (1− β)ρ2, (2.7)

with β denoting the high-density fluid volume fraction in the domain. For the majority
of the simulations shown, ρ0= (ρ1+ ρ2)/2, i.e. β = 1/2, with equal volumes of high-
and low-density fluid in the domain.

In the simulated frame of reference corresponding to (2.6), Γ is approximately
constant, since the mean density, ρ0, remains constant as the flow evolves. However,
local fluctuations can cause small unsteady displacements of the centre of mass,
requiring the imposition of small variations in Γ to maintain a constant mean
momentum.

2.3. Flow initialization
The flow is initialized with a region of high-density fluid between regions of low-
density fluid, as shown in figure 1. With this initialization, the flow is statistically
anisotropic with respect to all three axes but statistically homogeneous in the (y, z)-
plane. In the chosen frame, low-density fluid moves opposite to the external uniform
acceleration field and high-density fluid moves in the direction of the external uniform
acceleration field. In a stationary frame, both fluids would move in the direction of
the external uniform acceleration field (i.e. downwards in figure 1).

Transitions at fluid interfaces are initially represented by error functions,

ρ(x; t= 0)=
1
2

{
erf
[

xi(x)− x0

21x

]
− erf

[
xi(x)− (L− x0)

21x

]}
(ρ1 − ρ2)+ ρ2, (2.8a)

where x= (x, y, z),

xi(x)= x+ 201xξ(y, z) and x0 = (1− β)L/2. (2.8b,c)

1x is the grid spacing, L is the periodic cubic domain extent and ξ(y, z) is the
initial scaled perturbation field. Perturbation amplitudes are scaled by 201x (2.8b,c),
tying them to grid size to ensure their resolution, with the factor of 20 setting the
perturbation amplitude. This yields 201xξRMS < 0.44δi, with δi the initialized shear-
layer width.

The flow is initialized with u(x, t= 0)= 0. The zero-velocity initialization and (2.8)
are not solutions to (2.4). However, the imposition of pressure as a Lagrange multiplier
generates the correct diffusion-induced velocity in the first time step(s). Transients
from this initial condition decay as the flow evolves. Different initializations were
tested with functions other than an error function, such as a hyperbolic tangent and
the full initial solution to (2.4). All relaxed to statistically similar states. Details of
the initial perturbation displacements, ξ(y, z), and initial function profile tests are
discussed further in appendix B.
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Low
density,

High
density,

Low
density,

x

y

z

FIGURE 1. Initial density field. High-density fluid (dark blue) moves in the same direction
as the acceleration field between regions of low-density fluid (light blue) moving in the
opposite direction to the acceleration field. The interface between high- and low-density
fluid is initially perturbed in the (y, z)-plane.

2.4. Numerical method
The method of direct numerical simulation is used to solve the flow equations. A
Fourier pseudo-spectral spatial discretization method is employed (Chung & Pullin
2010) in the triply periodic cubic domain. A Helmholtz–Hodge decomposition of
pressure is implemented following Chung & Pullin (2010). The present simulations
maintain a constant volume-averaged momentum in the entire domain, as discussed in
§ 2.2. The zero volume-averaged momentum constraint is imposed by removing any
small mean-momentum fluctuations that ensue at every time step. The semi-implicit
Runge–Kutta time stepping method of Spalart, Moser & Rogers (1991) is used.

The computational domain for the flow simulations is discretized using 10243 cells
for the majority of the simulations shown. If no resolution is indicated, the results
are for 10243 runs. Simulations performed with a 5123 resolution are labelled as such.
All simulations are resolved to kmaxηmin > 1.5, where kmax is the maximum resolved
wavenumber and ηmin is the minimum plane-averaged Kolmogorov length scale (see
appendix A).

This code has been used previously, where it was tested and verified in Chung &
Pullin (2010), and further verified as part of the present work. Additional details on
the numerical method are discussed in appendix A.

3. Flow characteristics
The flow in the cubic computational domain is scaled as:

L= 4π; (3.1a)

with times scaled by the characteristic time

τ = 2π

√
`

Ag
, (3.1b)
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and
`=

L
2
, (3.1c)

the horizontal distance between the initial free-stream midpoints.

A=
R− 1
R+ 1

, (3.1d)

is the Atwood number, with
R≡

ρ1

ρ2
, (3.1e)

the density ratio of high- to low-density fluid. The mean density is set to ρ0 = 1 (cf.
(2.7)), which selects the values of ρ1 and ρ2, given the volume fraction of high-density
fluid, β, and the density ratio, R.

Figure 2 displays slices of the density field for density ratios: R= 1.4, 2, 5 and 10,
with β = 1/2. Only half the domain slice in x is shown. Figure 2(a) depicts the flow
for those density ratios at the same non-dimensional time, t/τ . The flow is initially
dominated by diffusion, with growing unsteadiness eventually leading to turbulence.
In this turbulent regime, flow realizations are best compared at the same Reynolds
number as opposed to the same dimensionless time.

An outer-scale Reynolds number is used in this discussion, based on the shear-layer
width, δ, the vertical velocity difference across the shear layer, 1W, and the mean
density within the shear layer, ρ, as described in § 4. Flow realizations for R = 1.4,
2 and 5 are shown in figure 2(b) at Reδ ≈ 8500, at the outset of fully developed
turbulence, as further discussed in § 4. The flow for R= 10 is displayed at Reδ≈ 7700,
the highest Reynolds number attained at that (highest) density ratio.

Flow statistics in the fully developed turbulent regime, which generally begins
at approximately Reδ ∼ 104 (Dimotakis 2000), exhibit relatively low sensitivity to
Reynolds number. The flow discussed here enters this regime at comparable outer
flow Reynolds numbers, as also discussed in § 4.

Shear layers eventually encroach across a pure free-stream fluid, as can be seen in
the slices for R= 5 and R= 10 in figure 2(b), where the shear layer has straddled the
low-density stream. Flow simulations are terminated once mixed fluid extends across
either of the pure free streams.

4. Bulk flow statistics
4.1. Shear-layer width growth

We adopt the mixed-fluid region width definition proposed by Koochesfahani &
Dimotakis (1986), wherein the ‘mixed-fluid’ transverse extent, i.e. the shear-layer
width, δ(t), is based on a 1 % criterion, or the transverse extent that spans all
locations with fluid mass fractions in the range

0.01< Y(x, t) < 0.99. (4.1)

Rewriting (2.4) with Sc= 1 (uniformly), i.e. D(x, t)=µ/ρ(x, t) allows both sides the
equation to be expressed as functions of 1/ρ, which helps elucidate the shear-layer
growth behaviour, i.e.

D
Dt

(
1
ρ

)
=µ

1
ρ
∇

2

(
1
ρ

)
. (4.2)
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z

x x x x

z 0.5

0

1.0

0.5

0

1.0

(a)

(b)

FIGURE 2. High-density fluid mole fraction for R= 1.4, 2, 5 and 10 (from left to right).
Dark colour indicates X = 1 (pure high-density fluid) and white indicates X = 0 (pure
low-density fluid). (a) Flow slices at the same time, t/τ ≈ 0.2, when shear-layer growth
is dominated by diffusion. (b) Flow slices at later (and different) times, at Reδ ≈ 8500,
except for R= 10 flow that is displayed at Reδ ≈ 7700.

Diffusion induces a contribution to the initial velocity field, and for the unperturbed
case, u= x̂u(x, t) and ρ = ρ(x, t), as in Cook & Dimotakis (2001),

u(x, t)≈ uD(x, t)=µ
∂

∂x

[
1

ρ(x, t)

]
. (4.3)

The convective term initially satisfies the equation,

u · ∇
(

1
ρ

)
=µ

[
∂

∂x

(
1

ρ(x, t)

)]2

. (4.4)

Defining f (ζ )= ρ0/ρ(x, t), with ζ = (x− x0)/
√

tµ/ρ0, equation (4.2) becomes

f (ζ )f ′′(ζ )+
ζ

2
f ′(ζ )− [ f ′(ζ )]2 = 0, (4.5)

with boundary conditions of f (ζ→∞) → ρ0/ρ1 and f (ζ→ − ∞) → ρ0/ρ2, which
admits similarity solutions. Equation (4.5) indicates that the relevant length scale in
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0–10 –5 5 10

 0.5

 0

1.0

 0.5

 0

1.0

0–0.05 0.05

(a) (b)

FIGURE 3. Mass-fraction solutions to the self-similar mass conservation equation (4.5)
for four density ratios. (a) Plot of Y(ζ ), with dashed line at ζ = 0 shown for reference.
(b) Plot of Y(x, t= 0) with dashed line at (x− x0)/`= 0.

the diffusive regime is
√

tµ/ρ0; the shear layer would grow as ∼
√

t in this regime.
However, to avoid gradient singularities, flows are initialized with a small width,
corresponding to an effective initial time, ti, in each case.

The solution to (4.5) is density ratio dependent, as dictated by the boundary
conditions. Figure 3 displays solutions to (4.5) in terms of mass fractions, where

f (ζ )=
ρ0

ρ2
−

(
ρ0

ρ2
−
ρ0

ρ1

)
Y(ζ )→ Y(ζ )=

ρ0

ρ2
− f (ζ )

ρ0

ρ2
−
ρ0

ρ1

. (4.6)

Figure 3(a) displays solutions of (4.5) in terms of the self-similar variable, ζ .
Figure 3(b) displays solutions at the initial times, ti, i.e. Y(x, t = 0), where x is
offset by x0 to match initial conditions. Profiles are asymmetric, with longer tails
extending into the lower-density fluid.

In the present simulations, the initial velocity field is set to zero everywhere,
i.e. u(x, t = 0) = 0. However, initially, a non-zero initial diffusion-induced velocity
field is required (cf. (4.3)), with non-zero components in all directions induced by
the perturbed density field. This initial non-zero diffusion-induced velocity field was
shown to have little impact on the flow and omitted in the majority of the simulations.
Appendix B discusses this and other initial condition choices.

The self-similar mass conservation equation predicts shear-layer widths that grow in
the diffusive regime as

δ(t)
δi
=

(
t+ ti

ti

)1/2

, (4.7a)

with δi= δ(t= 0), as set by the initial conditions. This growth is independent of τ in
the local diffusive regime, the characteristic time in (3.1b), as confirmed in figure 4
that displays the temporal shear-layer width growth for the density ratios studied, non-
dimensionalized with δi.

Following transition to the second regime, shear-layer widths grow in time as

δ(t)
δtr
'

(
t+ ti

ttr + ti

)3

, (4.7b)
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10–1

100

101

10010–110–2

FIGURE 4. Non-dimensionalized shear-layer width, (δ/δi)
√

ti/τ , versus time, for seven
density ratios (coloured lines) with the black line for slope reference.

in which the two asymptotic (diffusive and unsteady) regimes cross at ttr (figure 5),
with ttr an implicit function of τ . Transitions to the second regime for each flow
vary somewhat. However, no systematic dependence of the transition time on flow
parameters or initial perturbations is observed, as discussed further in appendix B.

Figure 5 displays shear-layer widths plotted as δ/` (lines on top), and shear-layer
widths further scaled with

√
ti/τ (lines on bottom). The shear-layer width is initialized

as, δi, corresponding to a ti, which then scales shear-layer width growth in the
diffusive regime. Shear-layer width growth in the unsteady flow regime scales with `,
rather than δi, and plotted accordingly in figure 5.

In the present study, shear-layer widths in the turbulent regime are observed to
grow approximately proportional to the cube of time. Modulo variations in the high-
Lyapunov-exponent turbulent regime, this near-cubic time dependence of the shear-
layer width emerges as a relatively robust result. This can be explained in terms of
dimensional analysis and similarity. The time derivative of the shear-layer widths, i.e.
dδ/dt, or in terms of the scaled time, t/τ , is given by

dδ
d(t/τ)

'Λ(t; τ , R, g), (4.8a)

where Λ is a function with units of length. This then leads to

dδ
d(t/τ)

∝Agt2, (4.8b)

i.e. the relevant length scale based on the reduced acceleration, Ag, with A=A(R)
the Atwood number (3.1d). Dividing both sides by ` then yields,

d(δ/`)
d(t/τ)

∝
t2

`/(Ag)
'Cδ

( t
τ

)2

, (4.8c)
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100

10010–110–2

FIGURE 5. Shear-layer widths versus time, for seven density ratios (coloured lines). Black
lines denote approximate reference slopes. Top lines are non-dimensionalized by domain
width. Bottom lines scale non-dimensionalized shear-layer widths with

√
ti/τ .

as observed, modulo virtual origins in time and δ. Rescaling `, i.e. `→ λ`, only
redefines the proportionality constant, i.e. Cδ→ λ

1/2Cδ, leaving the predicted quadratic
growth rate time dependence unaltered.

A comparison of this behaviour with the growth of the time-dependent vertical
extent of the mixed-fluid region in Rayleigh–Taylor (RT) flow, hRT(t), is of interest.
RT flow also evolves in response to an externally imposed acceleration field, g, such
as gravity, and possesses the same acceleration-induced length scale, Agt2. RT flow,
however, has no characteristic time scale akin to τ that is imposed on its dynamics.
In the present flow, τ scales the time dependence, as seen in figure 5 and in other
time-dependent statistics discussed below. Equivalently, RT flow does not possess a
time-independent length scale akin to `, in terms of which the characteristic time τ
is defined (3.1b).

In RT flow, the vertical extent of the mixed-fluid region grows at a rate that is linear
in time, i.e. dhRT/dt∝Agt. Vertical velocities also grow linearly in time in the present
flow, as shown and discussed below. The difference is that the quadratic growth rate
of the shear-layer width δ(t) is of a horizontal extent (perpendicular to the acceleration
field), versus the vertical extent (parallel to the acceleration field), hRT , in RT flow.

As defined here and as demonstrated to scale time-dependent results in the present
flow, the time scale, τ , can be recognized as the period of a simple pendulum of
length `, in a reduced acceleration/gravity field, Ag. The pendulum length, `, in the
definition of τ is the distance to the two mid-span points in the two free streams,
independently of β, the horizontal span of the high-density fluid.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

49
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.490


Incompressible variable-density turbulence in an acceleration field 517

The high-density fluid responds here by initially accelerating in the direction
of the uniform acceleration field (downwards in figure 1), while the low-density
fluid accelerates opposite to it (upwards in figure 1), akin to the motion of an
initially horizontal pendulum. Periodic boundary conditions on the top and bottom
surfaces, however, prevent stable stratification at later times, corresponding to a
vertical orientation of an equivalent pendulum, and yielding a homogeneous mixture
for long times (Gat et al. 2016). Nevertheless, the initial phase of what would be
an overturning motion is unimpeded by the boundary conditions and the pendulum
period emerges as a characteristic time scale.

Shear-layer growth rates in figure 5 suggest that Cδ increases with R. Flows with
R = 5 and R = 10 density ratio did not reach scaled times that were as large in
their late-time asymptotic state as for lower density ratios; their free streams were
encroached earlier, as discussed above towards the end of § 3. Wider free streams
(higher grid resolution) for those density ratios may have allowed a similar asymptotic
state to be attained, as suggested in R< 5 flows.

The present flow is relevant to RT flow. Shear layers investigated here correspond to
sheared regions formed between descending high-density fluid ‘spikes’ and ascending
low-density fluid ‘bubbles’ in RT flow. The rapidly growing shear layers reported here
would be expected to encroach across the supply of pure fluids in RT flow, leading to
a later growth phase in the vertical extent of that flow that may, eventually, be slower.

4.2. Free-stream velocity difference across the shear layer
The externally imposed acceleration (gravity) field induces a hydrostatic pressure field,
which initially is the sole pressure field component,

Γ +∇p'−ẑρ0g, (4.9)

simplifying (2.1b) for the free-stream velocity, i.e.

DU
Dt
'−ẑg

(
1−

ρ0

ρ

)
, (4.10)

ignoring viscous terms that are small compared to the pressure and acceleration terms.
This analysis applies to the free-stream velocity field, U, as opposed to the space–time-
dependent velocity in the entire domain, u(x, t).

The free-stream velocity field is dominated by its ẑ component, even at late times,
which is a function of x – the coordinate across the shear-layer thickness. Thus,

DU
Dt
=
∂U
∂t
+ (U · ∇)U≈ ẑ

∂W
∂t
+ ẑW

∂W(x)
∂z
= ẑ

∂W
∂t

(4.11)

with the free-stream velocity field, U= (0, 0,W). Integrating this equation yields

W(x, t)=−gt
[

1−
ρ0

ρ(x)

]
. (4.12)

The difference between the free-stream velocities is then a linear function of time, i.e.
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FIGURE 6. Scaled free-stream velocity difference, 1W, for β = 1/2 and various density
ratios. Dashed black line plots the prediction of (4.13b).

1W = |W1 −W2| = gt
(
ρ0

ρ2
−
ρ0

ρ1

)
= Agt

(R+ 1)
R
[(R− 1)β + 1], (4.13a)

where, as before, β is the volume fraction of high-density fluid in the periodic domain.
Scaling the right-hand side by τ/` yields

1W =
(2π)2(R+ 1)[(R− 1)β + 1]

(τ/`)R

( t
τ

)
, (4.13b)

or,
d1W
d(t/τ)

=
(2π)2(R+ 1)[(R− 1)β + 1]

(τ/`)R
. (4.13c)

For the common β = 1/2 case, this becomes

d1W
d(t/τ)

=
[2π(R+ 1)]2

2(τ/`)R
. (4.13d)

Figure 6 displays the simulated values of 1W, confirming the analytical solution
in (4.13b) and (4.13d). Plots shown are for β = 1/2. The results were tested and also
hold for β=1/4, 1/3, 2/3 and 3/4, but are not shown for brevity. Late-time deviations
occur when shear layers bridge across a free-stream extent.

Returning to the discussion of RT flow, we note that vertical velocities here are also
proportional to time, so the vertical separation between two free-stream points across
a shear layer would increase as t2, as does the vertical extent in RT flow.
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4.3. Mean shear-layer density
Equation (4.5) shows that, in the viscous diffusive regime, ρ, the mean fluid density
within the shear layer is a function of ζ = (x − x0)/

√
tµ/ρ0, i.e. the density field

shape throughout the diffusive regime depends only on the self-similarity variable, ζ .
The density profile width will increase with time without changing the mean density
within the shear layer. This allows the mean density to be predicted from (4.5), for
one-dimensional unperturbed flow.

An empirical relation for the mean density within the shear layer can also be
obtained through the entrainment ratio. The volumetric entrainment ratio, Ev, is the
ratio of entrained volume of high- to low-speed fluid in the mixing region. For a
temporally growing shear layer, Ev can be represented by the ratio of induction
velocities, vi1 and vi2 (Dimotakis 1986),

Ev =
X2(ρ)

X1(ρ)
=−

vi2

vi1
, (4.14)

where Xα are the species mole fractions, or volume fractions, with ραXα = ρYα.
Induction velocities vi1 = d 〈x0.99〉y,z,L/R /dt and vi2 = d 〈x0.01〉y,z,L/R /dt, with 〈x0.99〉y,z,L/R
and 〈x0.01〉y,z,L/R marking the mean left, L, and right, R, shear-layer boundaries
(figure 1) in terms of mass fraction (4.1), averaged over (y, z).

The entrainment ratio can be related to the ratio of apparent velocities in the
convective frame with the Dimotakis (1986) ansatz, i.e.

Ev =
X2(ρ)

X1(ρ)
=−

vi2

vi1
=

W2 −Wc

Wc −W1
, (4.15)

where Wc is the mean convective velocity of the large-scale shear-layer turbulent
structures. With (4.15), ρ, the mean density within the shear layer is predicted by

X(ρ)= X1(ρ)=
1

Ev + 1
=
ρ − ρ2

ρ1 − ρ2
, (4.16)

where X = X1.
In the present simulations, an empirical relation for the convection velocity, Wc, is

indicated by correlations of spatial eddy locations over time and the evolution of the
(y, z)-averaged vertical velocity. An expression for Wc is obtained for β = 1/2 using
a relation for temporally growing shear-layer convection velocities (Dimotakis 1986),

Wc =
1+ r
√

R

1+
√

R
, (4.17)

where r is the free-stream velocity ratio, i.e.

Wc

1W
=
(W1 +W2)/1W

2
√

R+ 3
=

R− 1

(2
√

R+ 3)(R+ 1)
. (4.18)

Figure 7 displays the mean density within the shear layers derived from the
simulations (solid lines), compared to the empirical relation for ρ (dashed lines) for
β= 1/2. The empirical relation for ρ is derived using the volumetric entrainment-ratio
definition (4.15) with (4.16) noting the vertical velocities, W1, W2 and Wc from (4.12)
and (4.18). Values of ρ from simulations are calculated using the shear-layer 1 %
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FIGURE 7. Mean density within the shear layer for seven density ratios. Solid lines
show flow simulation results over time and dashed lines display the constant value of
the empirical results using (4.15), (4.16) and (4.18).

criterion (4.1) at each (y, z)-plane for both shear layers, and averaging. After an
initial transient, as mentioned in § 2.3, the mean shear-layer density is seen to relax
to approximately the same value independently of initial conditions. These values
also match well with the predicted mean density from (4.5). At late times, mean
shear-layer densities deviate from the constant ρ after pure fluid is depleted. The
flow exhibits a small deviation from the predicted ρ at t/τ values corresponding to
the transition to the second flow regime (figure 5).

Wc depends on the reference frame and β, the ratio of heavy to light fluid in the
computational domain. The expression for Wc above can be extended empirically to
capture the dependence on β:

Wc

1W
=
[(1− β)2W1 + β

2W2]/1W
βRβ + 3(1− β)/2

=
β3R− (1− β)3

[βRβ + 3(1− β)/2][(R− 1)β + 1]
, (4.19)

which agrees with (4.18) for β = 1/2 and was obtained similarly by comparing
simulations of the same R but different β values. We offer no theoretical explanation
for it, however.

Figure 8 displays the comparison of (4.19) (in conjunction with (4.15) and (4.16) to
obtain ρ) with the simulation ρ for R= 5 for various β values. These equations yield
similar ρ values to the simulations (and the analytical solution to (4.5)) and (4.19)
approximately matches the mean velocity of the shear layer, as it should in this case.

Equation (4.19) indicates that for β > 1/2, Wc > 0 for all R. However, for β < 1/2,
there are density ratios for which the convective velocity is negative (downward) in
the zero-mean-momentum reference frame. For example, for β = 1/3, Wc< 0 if R< 7,
and for β = 1/4, Wc < 0 if R < 26, which includes all R values investigated. Flow
animations also support this conclusion.
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0.9

1.3

0.5

0.7

FIGURE 8. Mean density within R = 5 shear layers simulated for five β values
on 5123 grids. Solid lines show flow simulation results. Dashed lines display the
empirical expression value. Small deviations from late-time predictions coincide with
diffusive-to-unsteady flow transitions, as also seen in figure 7. Note different y-axis here
versus that in figure 7.

4.4. Reynolds number
Figure 9 shows the evolution of the Reynolds number, Reδ=ρδ1W/µ, based on outer-
scale variables. The two asymptotic flow regimes, diffusive and unsteady/turbulent, are
evident. Some of the curves in figure 9 may suggest the beginning of a third regime at
late times. However, this occurs when a free-stream fluid is depleted and shear layers
no longer grow freely.

Profiles of the mean kinetic energy in the shear layer become nearly Reynolds-
number independent for Reδ & 8000, characteristic of behaviour past the mixing
transition (Dimotakis 2000). These results are also omitted for brevity.

5. Statistics in mixed-fluid regions
5.1. Entrainment ratio

Shear-layer entrainment ratios are studied following the analysis of experiments by
Koochesfahani & Dimotakis (1986), who analyse mixture fraction probability density
function (p.d.f.) behaviour in spatially developing shear layers. Koochesfahani &
Dimotakis (1986) find that mole fraction values in a liquid-phase flow at Reynolds
numbers beyond the mixing transition exhibit a ‘non-marching’ or ‘slightly tilted’
hump in the shear-layer composition p.d.f. across the transverse extent of the mixing
region. The results of a similar analysis are shown in figure 10.

This paper discusses temporally developing gas-phase (Sc = 1) shear layers
subject to an imposed acceleration field, whereas Koochesfahani & Dimotakis
(1986) experimentally investigated spatially developing shear layers with constant and
uniform free-stream velocities across liquid-phase shear layers (Sc ∼ 103). However,
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FIGURE 9. Reynolds-number evolution. Coloured lines display information from the
numerical simulations and black lines (solid and dashed) denote reference slopes.

behaviour similar to that reported by Koochesfahani & Dimotakis (1986) is found in
the present flow.

Figure 10(a) shows the p.d.f. of high-density fluid mole fraction, X, across the shear
layer for R = 1.4 early in the simulation (t/τ = 0.18), in the diffusion-dominated
regime. The expected ‘marching p.d.f.’ is observed in this regime. Figure 10(b)
displays the shear-layer mole fraction p.d.f. later, for the same (R = 1.4) simulation,
in the unsteady/turbulent regime. In this regime, a prevalent mole fraction (‘non-
marching’) p.d.f. is observed. However, the most probable mole fraction is not
exactly the mean mole fraction of mixed fluid within the shear layer, indicated by the
black line, although they are close. Asymmetric composition excursions away from
the most probable values yield most probable mole fraction values away from the
mean, as the p.d.f.s indicate and is shown in figure 11.

Non-marching p.d.f.s are observed at all density ratios in the turbulent regime, with
a hump location and degree of tilt a function of R. Figure 10(c) shows this in terms
of the shear-layer mole fraction p.d.f. for the R=5 simulations in the turbulent regime.
Figure 10(d) displays the same behaviour for the R= 2 simulations at even later times,
for Reδ > 10 000 attained for this flow.

The shear layers entrain more low-density high-speed fluid than high-density
low-speed fluid, by volume, at amounts that increase with R (Dimotakis 1986).
This is consistent with the solution to the self-similar mass conservation equation,
shown in figure 3, with asymmetric p.d.f.s (figure 11). This has also been observed in
buoyancy-driven flows (Livescu & Ristorcelli 2008). Additionally, similarly to spatially
developing liquid-phase shear layers, simulated temporally developing gas-phase
shear layers also exhibit a constant (in time) and most probable mole fraction
(‘non-marching’ hump). This is not commonly reported for gas-phase shear-layer
experiments (Meyer, Dutton & Lucht 2006). Marching versus non-marching p.d.f.s
have been reported to depend on initial conditions (Rogers & Moser 1994; Mattner
2011), in particular, the dimensionality of the initial disturbances, i.e. two- versus
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FIGURE 10. Mole fraction p.d.f.s across the shear layer. (a) Data for R = 1.4 in the
diffusion-dominated regime at t/τ = 0.18. (b) Data for the same flow as (a), but at a
later time, in the turbulence-dominated regime at t/τ = 0.35. (c) Data for R= 5 flow in
the unsteady/turbulent regime at t/τ = 0.34. (d) Data for R= 2 flow at t/τ = 0.37, when
Reδ > 10 000. Solid black lines mark X(ρ).

three-dimensional (Slessor, Bond & Dimotakis 1998). Initial disturbances in this study
more closely correspond to the three-dimensional initial perturbations of Slessor et al.
(1998), for which they report marching p.d.f.s. For all initial conditions explored
(appendix B), non-marching slightly tilted p.d.f. behaviour was ubiquitous in the
non-diffusive unsteady growth regimes.

5.2. Spectra
For uniform-density flows at finite Reynolds numbers, spectra are found to scale as
k−5/3+q, with q → 0 with increasing Reynolds numbers (Kolmogorov 1941, 1962;
Mydlarski & Warhaft 1996). Similar behaviour is observed for variable-density flows
at low density ratios (e.g. Batchelor et al. 1992; Livescu & Ristorcelli 2008; Chung
& Matheou 2012). However, for variable-density flow, the kinetic energy, as opposed
to the specific kinetic energy, is important.

For notational purposes, the spectrum of a field is denoted as S and the spectrum
of the fluctuating specific kinetic energy by Su′·u′ = Su′u′ + Sv′v′ + Sw′w′ , where u′ =
(u′, v′, w′), omitting the factor of 1/2. Spectra shown are spatial one-dimensional
spectra along the z direction, at particular x locations, averaged over y. We compare
the fields at x values corresponding to 〈ρ〉y,z≈1, where 〈ρ〉y,z denotes the mean density
averaged over (y, z) at x locations where the spectra are calculated.
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FIGURE 11. One-dimensional p.d.f.s half-way across the shear layer (x/δ = 0.5) for
various density ratios at times corresponding to Reδ ≈ 8500. The p.d.f. for the R = 10
simulation is displayed at Reδ ≈ 7700.

Spectra shown are also averaged at the corresponding values of x in the two shear
layers (cf. figure 1).

Su′·u′(k3; x, t) =
〈∫

∞

−∞

u′(x+ ẑz′, t) · u′(x, t)e−ik3z′dz′
〉

y

=
〈
|Fz{u(x, t)}|2 + |Fz{v(x, t)}|2 + |Fz{w(x, t)}|2

〉
y . (5.1)

In the limit of R→ 1, the kinetic energy spectrum must yield the specific kinetic
energy spectrum, multiplied by the (near-)uniform density. The scaled spectrum,
Sj′·j′/ρ, is calculated based on the field j ≡ ρ1/2u, as proposed by Kida & Orszag
(1992). The kinetic energy spectrum is then computed conventionally. After division
by ρ, results should converge to specific kinetic energy spectra in the limit of R→ 1.

To facilitate comparisons and as suggested above, figure 12(a) plots specific
kinetic energy spectra (solid lines), Su′·u′ , and kinetic energy spectra divided by ρ

(dashed lines), Sj′·j′/ρ, non-dimensionalized by ε−1/4ν−5/4. The specific kinetic energy
dissipation rate is ε and ν = µ/ 〈ρ〉y,z is a kinematic viscosity, with both averaged
over (y, z)-planes at the same x locations.

The panels in figure 12 display spectra at different times, corresponding to similar
Reynolds numbers of Reδ ≈ 8500 for six simulations, with Reδ ≈ 7700 for the R= 10
simulation, the largest Reynolds number attained at that density ratio. Spectra are
plotted versus wavenumber, kz, scaled with η, where η= (ν3/ε)1/4, the plane-averaged
Kolmogorov length scale.

Figure 12(a) reveals approximately one decade of power-law scaling. Including
density in the autocorrelation through the j dynamic variable has only a small effect
on the spectra and does not alter their power-law scaling. The two sets of spectra
are similar, as also reported by Kida & Orszag (1992) in their investigation of
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FIGURE 12. Spectra for seven density ratios at times corresponding to Reδ≈8500. Spectra
for R= 10 are displayed at Reδ≈ 7700. (a) Specific kinetic energy (solid lines) and kinetic
energy (dashed lines) spectra, (b) vorticity (solid lines) and specific vorticity (dashed lines)
spectra.

smaller density variations, i.e. ρ ′/ρ 6 0.18, in simulations of compressible turbulence.
The close match between kinetic energy and specific kinetic energy spectra is not
attributable to statistical independence between the density and velocity fields. As
evident from the flow geometry, this is not expected.

Figure 12(b) displays non-dimensionalized vorticity spectra, Sω′·ω′ (solid lines), and
non-dimensionalized specific vorticity spectra, S(ω/ρ)′·(ω/ρ)′ (dashed lines). As with
kinetic energy, including density in the vorticity spectra has a small effect, albeit a
slightly larger effect than for kinetic energy.
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103
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FIGURE 13. One-dimensional compensated spectra in z for flow with R= 1.4 at various
Reynolds numbers. Note the different x axis, which is scaled by the (outer-scale) shear-
layer width, δ(t), as opposed to the inner-scale of η in figure 12. Spectra are multiplied
by (kz`)

5/3−q, where `= L/2 half the computational domain width, and q= 0.3. The black
horizontal line is for reference.

The transport equation for specific vorticity, ω/ρ, in variable-density flow can be
written as,

D
Dt

(
ω

ρ

)
=

(
ω

ρ

)
· s+

1
ρ

[
(Γ +∇p)×∇

(
1
ρ

)
+∇×

(
1
ρ
∇ · τ

)]
, (5.2)

where s = (∇u + ∇uT)/2 is the local strain rate tensor and τ is the viscous stress
tensor. In this formulation, no dilatation term appears and density enters through its
reciprocal, motivating the investigation of specific vorticity in figure 12(b).

To explore the spectral dependence on Reynolds number, figure 13 displays
one-dimensional kinetic energy spectra for R= 1.4. These are compensated (multiplied
by (kz`)

5/3−q, with q= 0.3) and exhibit very small slopes over about a decade, with
slopes slightly decreasing with increasing Reynolds number, terminating with the
viscous attenuation at small scales, i.e. progressively higher wavenumbers. The value
q = 0.3 was determined by fitting slopes to achieve nearly horizontal lines for the
larger Reynolds numbers and is consistent with findings by Mydlarski & Warhaft
(1996). Figure 13 demonstrates the larger-scale wavenumber separation with increasing
Reynolds number, as expected.

6. Conclusions
Results of direct numerical simulation of a variable-density flow at zero Mach

number subject to a uniform acceleration field are presented in a novel configuration,
with density ratios in the range 1.05 6 R 6 10. The downward acceleration acts on
initially vertical slabs of high-density fluid, in between vertical slabs of low-density
fluid, in a triply periodic cubic flow domain. Initially horizontal density gradients are
acted on by the acceleration-induced vertical pressure gradient, producing baroclinic
torques that generate vorticity and shear-layer growth. The simulated flow attains
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Reynolds numbers that are in, or approaching, the fully developed turbulent regime
with Reδ,max ≈ 20 000.

Simulations are in an accelerating frame in which the mean momentum is constant
and maintained to be zero, facilitating imposed force accounting. In that frame, the
acceleration dictates the vertical shear-layer large-scale structure convection velocity,
Wc. An empirical relation obtained for Wc predicts the observed entrainment ratio
and dominant mixed-fluid composition statistics, in accord with the self-similar mass
conservation equation.

An equation for 1W=|W1−W2|, the difference of the free-stream vertical velocities
as a function of time, 1W(t/τ)/(`/τ) = fn(t/τ ; R, β), is derived and solved. The
theory is confirmed by simulation for all values of R studied, provided unmixed free-
stream fluid remains on both sides of the shear layers.

Two phenomena cause shear-layer growth: diffusion and turbulent eddy growth.
Diffusion dominates in a first regime, yielding a growth rate of δ/δi =

√
(t+ ti)/ti.

A subsequent regime is dominated by unsteady eddy growth, leading to turbulence.
Shear-layer growth in this regime is found to scale approximately as the cube of
time, i.e. δ(t)/δtr ' [(t + ti)/(ttr + ti)]

3, where δtr is the shear-layer thickness at the
transition time to the unsteady/turbulent regime, ttr.

The cubic time dependence represents a new result, to the best of our knowledge.
This unsteady/turbulent shear-layer growth is traceable to a fixed length scale, `, that
in turn defines a fixed characteristic flow time, τ . The (horizontal width) growth
rate then becomes, dδ/d(t/τ) ∝ Agt2, consistent with the observed cubic growth in
time. Notably, the vertical extent of a Rayleigh–Taylor mixed-fluid region grows
quadratically in time, i.e. a linear growth of its derivative, dhRT/dt ∝ t, as with the
linear growth in time of all vertical velocities in the flow studied here.

In the unsteady/turbulent regime, composition p.d.f.s within the shear layers
exhibit a slightly tilted and constant in time (‘non-marching’) hump, (approximately)
corresponding to the most probable mole fraction. The shear layers preferentially
entrain low-density fluid by volume, as noted previously (Dimotakis 1986; Livescu &
Ristorcelli 2007, 2008), and this is reflected in the mixed-fluid composition observed
for all density ratios investigated in this flow.

For non-uniform-density flows, spectra of the kinetic energy must include the local
density, i.e. ρu2, as opposed to the specific kinetic energy, u2 (ignoring factors of 1/2).
This is addressed via the spatial autocorrelation of j= ρ1/2u and its spectra. Scaling
the latter with ρ, the mean density in the shear-layer mixed-fluid region, yields spectra
similar to specific-kinetic energy spectra. The specific vorticity, ω/ρ, obviating dealing
with dilatation as a separate effect in flows extending to high density ratios, was also
studied. Spectra of fluctuating specific vorticity are found to be very nearly similar
to scaled fluctuating vorticity spectra. Other statistics, such as entrainment ratio and
shear-layer composition p.d.f.s, that depend on density ratio are found to be in accord
with previous theory predictions.

In conclusion, the baroclinic-vorticity-generated flow described in this paper exhibits
novel dynamics, with attributes that can be mapped to those for uniform-density flows,
such as spectral scaling, regardless of the density ratio, R, extending to the Boussinesq
limit, i.e. R= 1+ ε, as ε→ 0, but also others that cannot be similarly mapped.
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Appendix A. Numerical method
A.1. Time integration

The time integration method used is a low-storage semi-implicit Runge–Kutta scheme
from Spalart et al. (1991), with an adaptive time step, discussed in Chung (2009)
and Chung & Pullin (2010). The discrete time mass conservation equation (Chung
2009, equation (2.20a)) differs from the implementation in this paper to account for a
variable diffusivity, D(x, t)=µ/ρ(x, t), as opposed to D(x, t)=D= const. in Chung
(2009) and Chung & Pullin (2010). The variable diffusion coefficient here requires
solving for ρ instead of s = log(ρ/ρ0) with additional terms in the equation for Hs

(Hρ here) in Chung (2009, § 2.3.2), which are solved explicitly.

A.2. Pressure term

Chung & Pullin (2010) decompose the pressure term into Lagrange multipliers
(φ,ψ, f ):

P=
1
ρ(∗)

(Γ +∇p)=∇φ + h+ f , (A 1)

where ρ(∗) is a weighted average density over the time step, h=∇×ψ , and f = f (t)
is a harmonic component.

With this decomposition, φ can be solved exactly from the divergence of the
momentum equation, combined with the mass conservation equation. ψ is calculated
iteratively, as described in Chung (2009, § 2.3.1), with a convergence error set to
be less than 10−6 in the present simulations. Lastly, f is solved by imposing a zero
volume-averaged momentum constraint, i.e.

〈
ρn+1un+1

〉
= 0, as discussed in § 2.2.

This is similar to Chung (2009), but with a volume-averaged momentum here, as
opposed to a mid-plane-averaged velocity field in Chung (2009).
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FIGURE 14. (a) Plots of kmaxηmin for seven simulations and (b) total mass error (see text).

A.3. Grid resolution
The value of the uniform viscosity, µ, is set in the simulations to ensure that they
remain well resolved, i.e. kmaxηmin > 1.5 (Donzis & Yeung 2010), with

ηmin =min
x

{(
ν3

ε

)1/4
}
, (A 2)

where ν = µ/〈ρ〉y,z and ε is the (y, z)-plane averaged kinetic energy dissipation rate,
also used in scaling the spectra, ensuring that η > 0.71x. Figure 14(a) plots kmaxηmin

for seven density ratios. The simulations conserve mass to a fractional error of
δm/m . 10−8, as shown in figure 14(b), where m(t) is the total mass in the domain
at time t and δm(t)= |m(t)−m(0)|.
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Appendix B. Flow sensitivity to initial conditions
To probe flow dependence on initial conditions, various initial density and velocity

profiles and perturbations were tested. These tests were performed on 5123 grids.
Initial perturbations were chosen to be isotropic and calculated similarly to Cook

& Dimotakis (2001). A discrete two-dimensional random number field is convolved
with a spatial Gaussian filter. The resulting field is Fourier transformed and filtered
with a radial Gaussian function. The Fourier coefficients are then inverse transformed
and used as the perturbation field, ξ(y, z), to offset x locations of the initial density
profile (2.8). The ratio of perturbation root mean square to initialized shear-layer width
is in the range 0.36< (201xξRMS)/δi < 0.44, depending on grid size and density ratio,
as referenced in the main text.

Spectra of the isotropic perturbation fields are taken in the radial direction and
averaged in the polar direction. Three perturbation spectra were tested, labelled:
‘Pert1’, ‘Pert2’ and ‘Pert3’, in figure 15(a). The spectra (in figure 15a) use different
initial discrete random number fields and spectral Gaussian filter widths. The flow in
this paper was initialized with Pert3.

To investigate the effects of the initial density profile, an error function (chosen for
the simulations shown throughout this paper), a hyperbolic tangent function, and a
numerical fit to the solution of (4.5) were used to represent density interfaces.

The sensitivity of the flow to the various initial conditions, is assessed in terms
of the shear-layer width growth (figure 15b). This illustrates that initial diffusive
growth rates are similar in all cases studied. The shear-layer width slopes in this
diffusive regime are very nearly 0.5, as predicted, with actual slopes in the range
0.4802–0.4881.

Transition times when the flow enters the turbulent regime depend on perturbations
and initial profiles, with variations in ttr less than 10 %. The growth in the
unsteady/turbulent regime depends weakly on initial conditions and differs (somewhat)
between 5123 and 10243 simulations. Other flow statistics studied, e.g. shear-layer
composition p.d.f., mean shear-layer density, etc. are found to be statistically
independent (or only weakly dependent) on the initial condition choices described
above.

While testing the effects of the initialized density field as the numerical fit to (4.5),
the initial velocity field dependence was specifically probed. This was motivated by
initial condition effects documented in Cook & Dimotakis (2001), in which the flow
was initialized with a diffusion-induced velocity deduced from their three-dimensional
initial density profiles. Simulations were run with a zero initial velocity field, i.e.
ui = 0, as in the simulations documented in the main text, as well as with
ui = µ∇(1/ρ) – the three-dimensional equivalent to (4.3) required by continuity
by the initial three-dimensional density field. In the case of ui = 0, the pressure
Lagrange multiplier generates the required fields after the first time step to satisfy
continuity. The study below assesses the differences on the flow from the two initial
velocity fields.

A discrete pointwise L2-norm was employed to study the sensitivity to the initial
velocity, shown in figure 16(a), with

L2,F(t)=

[(
1x
L

)3 ∑
l,m,n

|Flmn(t)ui=µ∇(1/ρ) − Flmn(t)ui=0|
2

]1/2

. (B 1a)

Each component of the velocity field and the density field were tested, with

F(t)=
{

ui(t)
1W

,
ρ(t)
1ρ

}
, (B 1b)
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FIGURE 15. (a) Radial spectra of three initial perturbation fields tested in 5123

simulations, along with the initial perturbation spectra in the 10243 simulations. (b)
Shear-layer width growth in time for initial perturbations and initial profiles tested with
5123 grids. The 10243 result is shown for comparison. Blue, magenta, red and green solid
lines plot results from error function initial profiles with different perturbations. Yellow
and red lines differ only by the initial random number field of the perturbation profiles.
Yellow, cyan and green lines are initialized with Pert3. Results plotted derive from R= 10
simulations.

where 1ρ is the difference between free-stream densities. The error is seen to decrease
in the diffusive regime, but diverges as the flow enters the turbulent regime. Pointwise
statistics, however, do not provide the appropriate error metric in the high-Lyapunov-
exponent unsteady/turbulent regime. In that regime, a scaled difference of averaged

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

49
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.490


532 I. Gat, G. Matheou, D. Chung and P. E. Dimotakis

10–2

10–3

10–4

10–5

10–6

10–7

10–3

10–4

10–5

10–6

10–7

10–8

10010–110–2

10010–110–2

(a)

(b)

FIGURE 16. Differences in statistics between two simulations with the same initial density
field, but different initial velocity fields. (a) Pointwise L2-norms of the evolving velocity
and density fields. (b) Evolving shear-layer width difference (B 2a). Results in these plots
are for R= 10 simulations with 5123 grids.
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quantities, such as shear-layer widths, rather than a pointwise metric, is computed,

1G(t)= |G(t)ui=µ∇(1/ρ) −G(t)ui=0|, (B 2a)

with

G(t)=
δ∗(t)
δ∗(t)

, δ∗(t)=
δ(t)
δi

√
ti

τ
, (B 2b)

and
δ∗(t)= 1

2 [δ
∗(t)ui=µ∇(1/ρ) + δ

∗(t)ui=0]. (B 2c)

The results are plotted in figure 16(b). The quantities differenced criss-cross each other
in the turbulent regime, indicating the absence of a systematic statistical difference in
time, with only a small fractional amplitude difference, even towards the end of the
simulations, when rapid shear-layer growth occurs.

Effects from the differences in the initial velocity field are seen to be small,
especially when compared to those resulting from the different initial density fields
discussed above, which are also small.

There are many possible initialization choices. This section quantified the relative
lack of initialization sensitivity of this flow, which may not hold for other flows.
Investigation of the sensitivity to various initial condition choices was undertaken
because a zero initial velocity does not satisfy the continuity equation (2.4). The
initial condition choice was simple to implement and the inconsistency is lifted after
the first 1–2 time steps through strict mass conservation, leaving no significant imprint
on the flow.
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