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Abstract

We consider, for t in the boundary of a Galton–Watson tree (∂T), the covering number
Nn(t) by the generation-n cylinder. For a suitable set I and sequence (sn), we almost
surely establish the Hausdorff dimension of the set {t ∈ ∂T : Nn(t) − nb ∼ sn} for b ∈ I.
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1. Introduction and main results

Let (N, X) be a random vector with independent components taking values in N2, where N

denotes the set of nonnegative integers. Then consider {(Nu, Xu)}u∈⋃
n≥0 N

n+ to be a family of
independent copies of the vector (N, X) indexed by the set of finite words over the alphabet
N+, the set of positive integers (n = 0 corresponds to the empty sequence denoted by ∅). Let
T be the Galton–Watson tree with defining elements {Nu}. We have ∅ ∈ T; if u ∈ T and i ∈N+
then ui, the concatenation of u and i, belongs to T if and only if 1 ≤ i ≤ Nu and if ui ∈ T then
u ∈ T. Similarly, for each u ∈ ⋃

n≥0 N
n+, denote by T(u) the Galton–Watson tree rooted at u and

defined by the {Nuv}, v ∈ ⋃
n≥0 N

n+.
We assume that E(N)> 1, so that the Galton–Watson tree is supercritical. We also assume

that the probability of extinction is equal to 0, so that P(N ≥ 1) = 1.
For each infinite word t = t1t2 · · · ∈N

N++ and n ≥ 0, we set t|n = t1 · · · tn ∈Nn+ (t|0 =∅). If
u ∈Nn+ for some n ≥ 0 then n is the length of u and it is denoted by |u|. Then we denote by [u]

the set of infinite words t ∈N
N++ such that t||u| = u.

The set NN++ is endowed with the standard ultrametric distance

d : (u, v) �→ e− sup{|w| : u∈[w], v∈[w]},

with the convention that exp ( − ∞) = 0. The boundary of the Galton–Watson tree T is defined
as the compact set

∂T =
⋂
n≥1

⋃
u∈Tn

[u],

where Tn = T ∩Nn+.
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We consider Xu as the covering number of the cylinder [u], that is, the cylinder [u] is cut
off with probability p0 = P(X = 0) and is covered m times with probability pm = P(X = m),
m = 1, 2, . . . .

For t ∈ ∂T, let

Nn(t) =
n∑

k=1

Xt1···tk .

Since this quantity depends on t1 · · · tn only, we also denote by Nn(u) the constant value of
Nn( · ) over [u] whenever u ∈ Tn. The quantity Nn(t) is called the covered number (or more
precisely the n-covered number) of the point t by the generation-k cylinder, k = 1, 2, . . . , n.

We also define the α-dimensional Hausdorff measure of a set E by

Hα(E) = lim
δ→0

Hα
δ (E) = lim

δ→0
inf

{ ∑
i∈N

diam(Ui)
α
}
,

where the infimum is taken over all the countable coverings (Ui)i∈N of E of diameters less than
or equal to δ. Then the Hausdorff dimension of E is defined as

dim E = sup{α > 0: Hα(E) = ∞} = inf{α > 0: Hα(E) = 0},
with the conventions that

sup ∅= 0 and inf ∅= ∞.

Moreover, if E is a Borel set and μ is a measure supported on E, then its lower Hausdorff
dimension is defined as

dim(μ) = inf{dim F : F Borel, μ(F)> 0},
and we have

dim(μ) = ess infμ lim inf
r→0+

logμ(B(t, r))

log (r)
,

where the first infimum is taken over all t and B(t, r) stands for the closed ball of radius r
centered at t [10].

Consider an individual infinite branch t1 · · · tn · · · of ∂T. When E(X) is defined, the strong
law of large numbers yields limn→∞ n−1Nn(t) =E(X). It is also well known (see [11]) in the
theory of the birth process that limn→∞ Nn(t) = +∞ almost surely (a.s.) for every t ∈D =
{0, 1}N if and only if

p0 = P(X = 0)< 1
2 .

Then, if this condition is satisfied, every point is infinitely covered a.s.
For b ∈R, we consider the set

Eb =
{

t ∈ ∂T : lim
n→∞

Nn(t)

n
= b

}
.

These level sets can be described geometrically through their Hausdorff dimensions. They
have been studied by many authors; see, e.g. [4], [7], [8], [12], and [17], and [2] and [3] for the
general case. All these papers also deal with the multifractal analysis of associated Mandelbrot
measures (see also [13], [16], and [18] for the study of the Mandelbrot measures dimension).
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For the sake of simplicity, we will assume that the free energy of X defined as

τ (q) = log E

( N∑
i=1

eqXi

)

is finite over R. Let τ ∗ stand for the Legendre transform of the function τ , where, by
convention, the Legendre transform of a mapping f : R→R is defined as the concave and
upper semi-continuous function

f ∗(b) := inf
q∈R ( f (q) − qb).

We say that the multifractal formalism holds at b ∈R if dim Eb = τ ∗(b). We will assume
without loss of generality that X is not constant, so that the function τ is strictly convex.

The interior of subset A of R is denoted by int(A). In the following, we define the sets

J = {q ∈R;τ (q) − qτ ′(q)> 0}, �1
α = int

{
q : E

(∣∣∣∣
N∑

i=1

eqXi

∣∣∣∣α
)
<∞

}
,

�1 =
⋃

α∈(1,2]

�1
α, J = J ∩�1, and I = {τ ′(q); q ∈J }.

Remark 1. Define the set L = {α ∈R, τ ∗(α) ≥ 0}. We can show that L is a convex, compact,
and nonempty set (see [1, Proposition 3.1]). If we add the assumption that J =J (for example,
if we suppose that, for all q ∈ J, there exists α ∈ (1, 2] such that E[| ∑N

i=1 eqXi |α]<∞), then
I = int(L) (see also [1, Proposition 3.1]). In particular, I is an interval.

Next, we define, for b ∈R and any positive sequence s = {sn} such that sn = o(n), the set

Eb,s = {t ∈ ∂T : Nn(t) − nb ∼ sn as n → +∞},
where Nn(t) − nb ∼ sn means that (Nn(t) − nb)n and (sn)n are two equivalent sequences. We
can obtain the Hausdorff dimension of the set Eb via, for example, the methods used in [2],
[3], [14], and [15], but such methods do not give results on dim Eb,s.

Let (ηn)n≥1 be a positive sequence defined by ηn = sn − sn−1 for n ≥ 1 and suppose that the
following hypothesis holds.

Hypothesis 1. Let sn = o(n) and ηn = o(1). Then there exists (εn) such that

εn → 0,
∑
n≥1

exp

(
− ε

n∑
k=1

εk η
2
k

)
<+∞ for all ε > 0.

For example, to satisfy Hypothesis 1, we can choose, for n ≥ 1,

sn =
n∑

k=1

1

kα
and εn = n−γ

such that α ∈ (0, 1
2 ) and 1 − 2α − γ > 0.

We are able now to state our main result.
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Theorem 1. Let s = (sn)n≥1 be a positive sequence. Under Hypothesis 1, we have, a.s., for all
b ∈ I,

dim Eb,s = dim Eb = τ ∗(b).

A special case of this theorem was treated in [11], where the authors considered the space
{0, 1}N and constructed, for each b = τ ′(q) ∈ I, a Mandelbrot measure μq. Let us mention that
our theorem gives a stronger result in the sense that, a.s., for all b ∈ I, we have the multifractal
formalism. This requires a simultaneous building of an inhomogeneous Mandelbrot measure
and the computation of their Hausdorff dimensions.

2. Proof of Theorem 1

Let s be a positive sequence such that sn = o(n) and ηn = o(1).

2.1. Upper bounds for the Hausdorff dimension

Let us define, for q ∈R, the pressure-like function of q by

τ̃ (q) = lim sup
n→+∞

1

n
ln

( ∑
u∈Tn

exp (qNn(u))

)
.

Proposition 1. With probability 1, for all b ∈R,

dim Eb,s ≤ dim Eb ≤ τ̃ ∗(b) ≤ τ ∗(b),

a negative dimension meaning that Eb is empty.

Proof. It is clear, since sn = o(n), that, a.s., for all b ∈R, we have Eb,s ⊂ Eb. Then, a.s.,

dim Eb,s ≤ dim Eb.

In addition, we have

Eb =
⋂
ε>0

⋃
M∈N∗

⋂
n≥M

{t ∈ ∂T; |Nn(t) − nb| ≤ nε}.

Fix ε > 0. For M ≥ 1, the set E(M, ε, b) = ⋂
n≥M{t ∈ ∂T; |Nn(t) − nb| ≤ nε} is covered by the

union of those [u] such that u ∈ Tn, n ≥ M, and Nn(u) − nb + nε≥ 0. Thus, for α ≥ 0, n ≥ M,
and q> 0,

Hα
e−n(E(M, ε, b)) ≤

∑
u∈Tn

exp ( − nα) exp (qNn(u) − nqb + nqε).

Consequently, if ζ > 0 and α > τ̃ (q) + ζ − qb + qε, by the definition of τ̃ (q), for large enough
M, we have

Hα
e−n(E(M, ε, b)) ≤ exp

(
− nζ

2

)
.

This yields Hα(E(M, ε, b)) = 0; hence, dim E(M, ε, b) ≤ α. Since this holds for all ζ > 0, we
obtain dim E(M, ε, b) ≤ τ̃ (q) − qb + qε. It follows that

dim Eb ≤ inf
q>0

inf
ε>0

sup
M∈N∗

τ̃ (q) − qb + qε.
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Similarly, if we take q< 0, we obtain

dim Eb ≤ inf
q<0

inf
ε>0

sup
M∈N∗

τ̃ (q) − qb − qε.

Then we have
dim Eb ≤ τ̃ ∗(b).

If τ̃ ∗(b)< 0, we necessarily have Eb =∅.
It remains to show that, with probability 1,

τ̃ ∗(b) ≤ τ ∗(b) for all b ∈R.

The functions τ̃ and τ are convex and thus continuous. We need only prove that the inequality
τ̃ (q) ≤ τ (q) holds for each q ∈R almost surely. Fix q ∈R. For α > τ (q), we have

E

( ∑
n≥1

exp ( − nα)
∑
u∈Tn

exp (qNn(u))

)
=

∑
n≥1

exp ( − nα)E

( N∑
i=1

exp (qXi)

)n

=
∑
n≥1

exp (n(τ (q) − α)).

Consequently, ∑
n≥1

exp ( − nα)
∑
u∈Tn

exp (qNn(u))<∞, a.s.,

so that we have ∑
u∈Tn

exp (qNn(u)) = O( exp (nα)) and τ̃ (q) ≤ α.

Since α > τ (q) is arbitrary, this completes the proof. �

2.2. Lower bounds for the Hausdorff dimension

2.2.1. Construction of inhomogeneous Mandelbrot measures. We define, for (q, p) ∈J ×
[1,∞),

ϕ(p, q) = exp (τ (pq) − pτ (q)).

We have the following result.

Lemma 1. For all nontrivial compact sets K ⊂J , there exists a real number 1< pK < 2 such
that, for all 1< p ≤ pK, we have

sup
q∈K

ϕ(pK, q)< 1.

Proof. Let q ∈J . We have ∂ϕ(1+, q)/∂p< 0. Therefore, there exists pq > 1 such that
ϕ(pq, q)< 1. In a neighborhood Vq of q, we have

ϕ(pq, q′)< 1 for all q′ ∈ Vq.

If K is a nontrivial compact of J , it is covered by a finite number of such Vqi .
Let pK = infi pqi . If 1< p ≤ pK and supq∈K ϕ(p, q) ≥ 1, there exists q ∈ K such that

ϕ(p, q) ≥ 1 and q ∈ Vqi for some i.

Let us recall that the mapping p �→ ϕ(p, q) is log convex and that ϕ(1, q) = 1. Since 1< p ≤ pqi ,
we have ϕ(p, q)< 1, which is a contradiction. �
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Lemma 2. For all compact sets K ⊂J , there exists p̃K > 1 such that

sup
q∈K

E

(( N∑
i=1

eqXi

)p̃K )
<∞.

Proof. Since K is compact and the family of open sets J ∩�1
γ increases to J as γ decreases

to 1, there exists γ ∈ (1, 2] such that K ⊂�1
γ . Take p̃K = γ . The conclusion follows from the

fact that the function q �→E((
∑N

i=1 eqXi )̃pK ) is convex over �1
p̃K

and thus continuous. �

Now, we will construct the inhomogeneous Mandelbrot measure. For q ∈J and k ≥ 1, we
define ψk(q) as the unique t such that

τ ′(t) = τ ′(q) + ηk.

For u ∈ ⋃
n≥0 N

n+ and q ∈J , we define, for 1 ≤ i ≤ Nu,

V(ui, q) = exp (qXui)

E(
∑N

i=1 exp (qXi))
= exp (qXui − τ (q)),

and, for all n ≥ 0,

Ys
n(q, u) =

∑
v1···vn∈Tn(u)

n∏
k=1

V(u · v1 · · · vk, ψ|u|+k(q)).

When u =∅, this quantity will be denoted by Ys
n(q) and, when n = 0, its value equals 1.

The sequence (Ys
n(q, u))n≥1 is a positive martingale with expectation 1, which converges a.s.

and in the L1-norm to a positive random variable Ys(q, u) (see [13], [5], or [6, Theorem 1]).
However, our study will need the almost-sure simultaneous convergence of these martingales
to positive limits.

Proposition 2. (i) Let K be a compact subset of J . There exists pK ∈ (1, 2] such that, for all
u ∈ ⋃

n≥0 N
n+, the continuous functions q ∈ K �→ Ys

n(q, u) converge uniformly, a.s. and in the
LpK -norm, to a limit q ∈ K �→ Ys(q, u). In particular, E( supq∈K Ys(q, u)pK )<∞. Moreover,
Ys(·, u) is positive a.s.

In addition, for all n ≥ 0, σ ({(Xu1, . . . , XuNu ), u ∈ Tn}) and σ ({Ys(·, u), u ∈ Tn+1}) are
independent, and the random functions Ys(·, u), u ∈ Tn+1, are independent copies of Ys( · ): =
Ys(·,∅).

(ii) With probability 1, for all q ∈J , the weights

μs
q([u]) =

[ n∏
k=1

exp (ψk(q)Xu1...uk ) − τ (ψk(q)))

]
Ys(q, u)

define a measure on ∂T .

The measure μs
q will be used to approximate from below the Hausdorff dimension of the

set Eb,s.
The proof of Proposition 2 needs the following result.
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Lemma 3. For q ∈J , u ∈ T, and p ∈ (1, 2), there exists a constant Cp depending only on p
such that, for n ≥ 1,

E(|Ys
n(q) − Ys

n−1(q)|p) ≤ CpE

(∣∣∣∣
N∑

i=1

V(i, ψn(q))

∣∣∣∣p) n−1∏
k=1

E

( N∑
i=1

|V(i, ψk(q))|p
)

.

Proof. The definition of the process Yn immediately gives

Ys
n(q) − Ys

n−1(q) =
∑

u∈Tn−1

n−1∏
k=1

V(u|k, ψk(q))

( Nu∑
i=1

V(ui, ψn(q)) − 1

)
.

For each n ≥ 1, let Fn = σ {(Nu, Vu1, . . . ) : |u| ≤ n − 1} and let F0 be the trivial sigma-
field. For u ∈ Tn−1, we set Bu(q) = ∑Nu

i=1 V(ui, ψn(q)). By construction, the random variables
(Bu(q) − 1), u ∈ Tn−1, are centered, independent, identically distributed ( i.i.d.), and indepen-
dent of Fn−1. Consequently, conditionally on Fn−1, we can apply Lemma 6 in Appendix B to
the family {(Bu(q) − 1)

∏n−1
k=1 V(u|k, ψk(q))}. Noting that the Bu(q), u ∈ Tn−1, have the same

distribution yields

E(|Ys
n(q) − Ys

n−1(q)|p) =E
(
E(|Ys

n(q) − Ys
n−1(q)|p | Fn−1)

)
≤ 2p−1E(|B(q) − 1|p)E

( ∑
u∈Tn−1

n−1∏
k=1

|V(u|k, ψn(q))|p
)
,

where B(q) stands for any of the identically distributed variables Bu(q).
Using the branching property and the independence of the random vectors (Nu, Xu1, . . . )

used in the constructions yields

E

( ∑
u∈Tn−1

n−1∏
k=1

|V(u|k, ψk(q))|p
)

=E

[
E

( ∑
u∈Tn−2

n−2∏
k=1

|V(u|k, ψk(q))|p
)( Nu∑

i=1

|V(ui, ψn−1(q))|p) ∣∣∣∣Fn−2

)]

=E

( N∑
i=1

|V(i, ψn−1(q))|p
)
E

( ∑
u∈Tn−2

n−2∏
k=1

|V(u|k, ψk(q))|p
)

.

Then a recursion using the branching property and the independence of the random vectors
(Nu, Xu1, . . . ) yields

E

( ∑
u∈Tn−1

n−1∏
k=1

|V(u|k, ψk(q))|p
)

=
n−1∏
k=1

E

( N∑
i=1

|V(i, ψk(q))|p
)

.

Using the inequality
|x + y|r ≤ 2r−1(|x|r + |y|r), r> 1,

we obtain

E

(∣∣∣∣
Nu∑
i=1

V(ui, ψn(q)) − 1

∣∣∣∣p)
≤ 2p−1E

(∣∣∣∣
Nu∑
i=1

V(ui, ψn(q))

∣∣∣∣p

+ 1

)
.
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Since

1 =
(
E

( Nu∑
1=1

V(ui, ψn(q))

))p

≤E

∣∣∣∣
Nu∑
i=1

V(ui, ψn(q))

∣∣∣∣p

,

then it follows from Lemma 6 in Appendix B that

E

(∣∣∣∣
Nu∑
i=1

V(ui, ψn(q)) − 1

∣∣∣∣p)
≤ 2pE

(∣∣∣∣
Nu∑
i=1

V(ui, ψn(q))

∣∣∣∣p)
= 2pE

(∣∣∣∣
N∑

i=1

V(i, ψn(q))

∣∣∣∣p)
.

Finally, we have

E(|Ys
n(q) − Ys

n−1(q)|p) ≤ 2pE

(∣∣∣∣
N∑

i=1

V(i, ψn(q))

∣∣∣∣p) n−1∏
k=1

E

( N∑
i=1

|V(i, ψk(q))|p
)

. �

Proof of Proposition 2(i). Recall that the uniform convergence result uses an argument
developed in [6]. Fix a compact K ⊂J . Since ηk = o(1), we can fix, without loss of generality,
a compact neighborhood K′ ⊂J of K and suppose that

ψk(q) ∈ K′ for all q ∈ K and all k ≥ 1.

Fix a compact neighborhood K′′ of K′. By Lemma 2, we can find p̃K′′ > 1 such that

sup
q∈K′′

E

(( N∑
i=1

eqXi

)p̃K′′ )
<∞.

By Lemma 1, we can fix 1< pK ≤ min (2, p̃K′′ ) such that supq∈K′ φ(pK, q)< 1. Then, for each
q ∈ K′, there exists a neighborhood Vq ⊂C of q whose projection to R is contained in K′′ and
such that, for all u ∈ T and z ∈ Vq, the random variables

V(u, z) = exp (zXu)

E(
∑N

i=1 exp (zXi))
and �(z) = E(

∑N
i=1 Xi exp (zXi))

E(
∑N

i=1 exp (zXi))

are well defined. For z ∈ Vq and k ≥ 1, we define ψk(z) as the unique t such that

�(t) = �(z) + ηk.

Moreover, we have

sup
z∈Vq

φ(pK, z)< 1, where φ(pK, z) = E(
∑N

i=1 |ezXi |pK )

|E(
∑N

i=1 ezXi )|pK
.

By extracting a finite covering of K′ from
⋃

q∈K′ Vq, we find a neighborhood V ⊂C of K′ such
that

sup
z∈V

φ(pK, z)< 1 and ψk(z) is defined for all z ∈ V .
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Since the projection of V to R is included in K′′ and the mapping z �→E(
∑N

i=1 ezXi ) is
continuous and does not vanish on V , by considering a smaller neighborhood of K′ included in
V if necessary, we can assume that

CV = sup
z∈V

E

(∣∣∣∣
N∑

i=1

ezXi

∣∣∣∣pK
)∣∣∣∣E

( N∑
i=1

ezXi

)∣∣∣∣−pK

<∞.

Now, for u ∈ T, we define the analytic extension to V of Ys
n(q, u) given by

Ys
n(z, u) =

∑
v∈Tn(u)

n∏
k=1

V(u · v1 · · · vk, ψ|u|+k(z))

=
[ n∏

k=1

E

( N∑
i=1

eψk(z)Xi

)]−1 ∑
v∈Tn(u)

n∏
k=1

eψ|u|+k(z)X(uv|k).

We also denote Ys
n(z,∅) by Ys

n(z). The same lines as in the proof of Lemma 3 show that

E(|Ys
n(z) − Ys

n−1(z)|pK ) ≤ CpKE

(∣∣∣∣
N∑

i=1

V(i, ψn(z))

∣∣∣∣pK
) n−1∏

k=1

E

( N∑
i=1

|V(i, ψk(z))|pK

)
.

Note that E(
∑N

i=1 |V(i, z)|pK ) = φ(pK, ψk(z)). Then

E(|Ys
n(z) − Ys

n−1(z)|pK ) ≤ CpKE

(∣∣∣∣
N∑

i=1

V(i, ψn(z))

∣∣∣∣pK
) n−1∏

k=1

φ(pK, ψk(z)).

≤ CpK CV

n−1∏
k=1

sup
z∈V

φ(pK, z),

where we have used the fact that ψk(z) ∈ V for all k ≥ 1.
With probability 1, the functions z ∈ V �→ Ys

n(z), n ≥ 0, are analytic. Fix a closed polydisc
D(z0, 2ρ) ⊂ V . Theorem 2 gives

sup
z∈D(z0,ρ)

|Ys
n(z) − Ys

n−1(z)| ≤ 2
∫

[0,1]
|Ys

n(ζ (t)) − Ys
n−1(ζ (t))| dt,

where, for t ∈ [0, 1], ζ (t) = z0 + 2ρei2π t.
Furthermore, Jensen’s inequality and Fubini’s theorem give

E

(
sup

z∈D(z0,ρ)
|Ys

n(z) − Ys
n−1(z)|pK

)

≤E

((
2

∫
[0,1]

|Ys
n(ζ (t)) − Ys

n−1(ζ (t))| dt

)pK
)

≤ 2pKE

(∫
[0,1]

|Ys
n(ζ (t)) − Ys

n−1(ζ (t))|pK dt

)

≤ 2pK

∫
[0,1]

E|Ys
n(ζ (t)) − Ys

n−1(ζ (t))|pK dt

≤ 2pK CVCpK

n−1∏
k=1

sup
z∈V

φ(pK, z).
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Since supz∈V φ(pK, z)< 1, it follows that∑
n≥1

∥∥∥ sup
z∈D(z0,ρ)

|Ys
n(z) − Ys

n−1(z)|
∥∥∥

pK
<∞.

This implies that z �→ Ys
n(z) converge uniformly a.s. and in the LpK -norm over the compact

D(z0, ρ) to a limit z �→ Ys(z). This also implies that∥∥∥ sup
z∈D(z0,ρ)

Ys(z)
∥∥∥

pK
<∞.

Since K can be covered by finitely many such discs D(z0, ρ), we get the uniform convergence,
a.s. and in the LpK -norm, of the sequence (q ∈ K �→ Ys

n(q))n≥1 to q ∈ K �→ Ys(q). Moreover,
since J can be covered by a countable union of such compact K, we get the simultaneous
convergence for all q ∈J . The same holds simultaneously for all the functions q ∈J �→
Ys

n(q, u), u ∈ ⋃
n≥0 N

n+, because
⋃

n≥0 N
n+ is countable.

To complete the proof of Proposition 2(i), we must show that, with probability 1, q ∈ K �→
Ys(q) does not vanish. Without loss of generality, we can suppose that K = [0, 1]. If I is a
dyadic closed subcube of [0, 1], we denote by EI the event {there exists q ∈ I : Ys(q) = 0}. Let
I0 and I1 stand for the two dyadic intervals of I in the next generation. The event EI being
a tail event of probability 0 or 1. If we suppose that P(EI) = 1 then there exists j ∈ {0, 1}
such that P(EIj ) = 1. Suppose now that P(EK) = 1. The previous remark allows us to construct
a decreasing sequence (I(n))n≥0 of dyadic subscubes of K such that P(EI(n)) = 1. Let q0 be
the unique element of

⋂
n≥0 I(n). Since q �→ Ys(q) is continuous, we have P(Ys(q0) = 0) = 1,

which contradicts the fact that (Ys
n(q0))n≥1 converge to Ys(q0) in L1. �

2.2.2. Proof of Theorem 1. The proof of Theorem 1 can be deduced from the two following
propositions. Their proof are developed in the next subsections.

Proposition 3. Suppose that Hypothesis 1 holds. Then, with probability 1, for all q ∈J ,

Nn(t) − nb ∼ sn for μs
q-almost every t ∈ ∂T,

where b = τ ′(q).

Proposition 4. With probability 1, for all q ∈J and μs
q-almost every t ∈ ∂T,

lim
n→∞

log Ys(q, t|n)

n
= 0.

From Proposition 3, it follows, with probability 1, for all q ∈J and μs
q(Eb,s) = 1, that

limn→+∞ Nn(t)/n = b, b = τ ′(q). In addition, with probability 1, for all q ∈J and μs
q-almost

every t ∈ Eb,s, from Propositions 3 and 4, we have

lim
n→∞

log (μs
q[t|n])

log (diam([t|n]))
= lim

n→∞ −1

n
log

( n∏
k=1

exp (ψk(q)Xt1...tk − τ (ψk(q)))Ys(q, t|n)

)

= lim
n→∞ −1

n

n∑
k=1

ψk(q)Xt1...tk + 1

n

n∑
k=1

τ (ψk(q)) − log Ys(q, t|n)

n

= lim
n→∞ −1

n

n∑
k=1

ψk(q)Xt1...tk + 1

n

n∑
k=1

τ (ψk(q)).
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Since ηk = ◦(1) and then ψk(q) → q, we obtain

lim
n→∞

log (μs
q[t|n])

log (diam([t|n]))
= −qτ ′(q) + τ (q) = τ ∗(τ ′(q)).

We deduce the result from the mass distribution principle (Theorem 3) and Proposition 1.

2.3. Proof of Proposition 3

Let K be a compact subset of J . For b = τ ′(q), q ∈J , n ≥ 1, ε > 0, and s = (sn)n≥1, we set

E1
b,s,n,ε =

{
t ∈ ∂T :

n∑
k=1

Xt1···tk (t) − b − ηk ≥ ε
n∑

k=1

ηk

}
,

E−1
b,n,s,ε =

{
t ∈ ∂T :

n∑
k=1

Xt1···tk (t) − b − ηk ≤ −ε
n∑

k=1

ηk

}
.

Suppose that we have shown that, for λ ∈ {−1, 1}, we have

E

(
sup
q∈K

∑
n≥1

μs
q(Eλb,n,s,ε)

)
<∞. (2.1)

Then, with probability 1, for all q ∈J , λ ∈ {−1, 1}, and ε ∈Q∗+,

∑
n≥1

μs
q(Eλb,n,s,ε)<∞.

Consequently, by the Borel–Cantelli lemma, for μs
q-almost every t, we have

n∑
k=1

Xt1···tk (t) − b − ηk = o

( n∑
k=1

ηk

)
,

so Nn(t) − nb ∼ sn, which yields the desired result.
Let us prove (2.1) when λ= 1 (the case λ= −1 is similar ). Let θ = (θn) be a positive

sequence and q ∈ K. Then

sup
q∈K

μs
q(E1

b,n,s,ε) ≤ sup
q∈K

∑
u∈Tn

μs
q([u])1{E1

b,n,s,ε}(tu),

where tu is any point in [u]. Denote tu simply by t. Then

sup
q∈K

μs
q(E1

b,n,s,ε)

≤ sup
q∈K

∑
u∈Tn

μs
q[u]

n∏
k=1

exp (θkXt1···tk − θkb − θkηk(1 + ε))

≤ sup
q∈K

∑
u∈Tn

n∏
k=1

exp ((ψk(q) + θk)Xt1···tk − τ (ψk(q)) − θkb − θkηk(1 + ε))Ys(q, u).
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For q ∈ K, θ = (θn), and n ≥ 1, set

Hs
n(q, θ ) =

∑
u∈Tn

n∏
k=1

exp ((ψk(q) + θk)Xt1···tk − τ (ψk(q)) − θkb − θkηk(1 + ε))Ms(u),

where
Ms(u) = sup

q∈K
Ys(u, q).

Recall from the proof of Proposition 2 that there exists a neighborhood VK ⊂C of K such that

�(z) = E(
∑N

i=1 Xi exp (zXi))

E(
∑N

i=1 exp (zXi))
and ψk(z) for k ≥ 1

are well defined for z ∈ VK .
For ε > 0, z ∈ VK , and n ≥ 1, we define

Hs
n(z, θ ) =

∑
u∈Tn

n∏
k=1

exp ((ψk(z) + θk)Xu|k − θk�(z) − θkηk(1 + ε))

×E

( N∑
i=1

exp (ψk(z)Xi)

)−1

Ms(u).

Proposition 5. There exists a neighborhood V ⊂ VK of K, a positive constant CK, and a
positive sequence θ such that, for all z ∈ VK and all n ∈N∗,

E(|Hs
n(z, θ )|) ≤ CK exp

(
−ε

4

n∑
k=1

εkη
2
k

)
,

where the sequence (εn)n is the sequence used in Hypothesis 1.

Lemma 4. There exists a positive sequence θ = (θn) and a positive constant CK such that, for
all q ∈ K, we have

E
(
Hs

n(q, θ )
) ≤ CK exp

(
−ε

2

n∑
k=1

εkη
2
k

)
.

Proof. Let θ = (θn) be a positive sequence. Clearly we have

E(Hs
n(q, θ ))

=
n∏

k=1

E

( N∑
i=1

exp
(
(ψk(q) + θk)Xi

)
exp

(−τ (ψk(q)) − θkb − θkηk(1 + ε)
))

E(Ms(u)),

≤ C′
K

n∏
k=1

exp
(
τ (ψk(q) + θk) − τ (ψk(q)) − θkb − θkηk(1 + ε)

)
,

where, by Proposition 2, C′
K =E(Ms(u)) =E(Ms(∅))<∞ for all u ∈ ⋃

n≥0 N
n+.
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Since ηk = o(1), we can fix a compact neighborhood K′ of K and suppose that, for all k ≥ 1
and all q ∈ K, we have ψk(q) ∈ K′. For q ∈ K and k ≥ 1, writing the Taylor expansion of the
function g : θ �→ τ̃ (ψk(q) + θ ) at 0 up to the second order, we obtain

g(θ ) = g(0) + θg′(0) + θ2
∫ 1

0
(1 − t)g′′(tθ ) dt,

with g′′(tθ ) ≤ mK = supt∈[0,1] supq∈K′ g′′(tθ ). It follows that, for all k ≥ 1

τ (ψk(q) + θk) − τ ((ψk(q)) − θkτ
′((ψk(q)) ≤ θ2

k mK .

Recall that τ ′(ψk(q)) = τ ′(q) + ηk. Then

E
(
Hs

n(q, θ )
) ≤ C′

K

n∏
k=1

exp (τ (ψk(q) + θk) − τ (ψk(q)) − θkb − θkηk(1 + ε))

≤ C′
K

n∏
k=1

exp
(−θkηkε+ θ2

k mK
)
.

Choose the sequence θ such that θk = εkηk. Then

E(Hs
n(q, θ )) ≤ C′

K

n∏
k=1

exp (−εkη
2
k (ε− εkmK)).

Since εk → 0 then, for large enough k, we have ε− εkmK > ε/2. Then there exists a constant
CK such that

E(Hs
n(q, θ )) ≤ CK exp

(
−ε

2

n∑
k=1

εkη
2
k

)
. �

Proof of Proposition 5. Since E(|Hs
n(q, θ )|) ≤ CK exp ( − (ε/2)

∑n
k=1 εkη

2
k ) for q ∈ K, there

exists a neighborhood Vq ⊂ VK of q such that, for all z ∈ Vq, we have E(|Hs
n(z, θ )|) ≤ CK

exp ( − (ε/4)
∑n

k=1 εkη
2
k ). By extracting a finite covering of K from

⋃
q∈K Vq, we find a

neighborhood V ⊂ VK of K such that

E(|Hs
n(z, θ )|) ≤ CK exp

(
− ε

4

n∑
k=1

εkη
2
k

)
. �

With probability 1, the functions z ∈ V �−→ Hs
n(z, θ ) are analytic. Fix a closed polydisc

D(z0, 2ρ) ⊂ V, ρ > 0, such that D(z0, 2ρ) ⊂ V . Theorem 2 gives

sup
z∈D(z0,ρ)

|Hs
n(z, θ )| ≤ 2

∫
[0,1]

|Hn(ζ (t), θ )| dt,

where, for t ∈ [0, 1],
ζ (t) = z0 + 2ρei2π t.
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Furthermore, Fubini’s theorem gives

E

(
sup

z∈D(z0,ρ)
|Hs

n(z, θ )|
)

≤E

(
2

∫
[0,1]

|Hs
n(ζ (t), θ )| dt

)

≤ 2
∫

[0,1]
E|Hs

n(ζ (t), θ )| dt

≤ 2 exp

(
− ε

4

n∑
k=1

εkη
2
k

)
.

Finally, we obtain

E

(
sup
q∈K

μs
q(E1

b,n,s,ε)
)

≤ 2 exp

(
− ε

4

n∑
k=1

εkη
2
k

)
,

and then, under Hypothesis 1, we obtain (2.1), which completes the proof of Proposition 3.

2.4. Proof of Propostion 4

Let K be a compact subset of J . For a> 1, q ∈ K, and n ≥ 1, set

E+
n,a = {t ∈ ∂T : Ys(q, t|n)> an}

and
E−

n,a = {t ∈ ∂T : Ys(q, t|n)< a−n}.
It is sufficient to show that, for E ∈ {E+

n,a, E−
n,a},

E

(
sup
q∈K

∑
n≥1

μs
q(E)

)
<∞. (2.2)

Indeed, if this holds then, with probability 1, for each q ∈ K and E ∈ {E+
n,a, E−

n,a},∑
n≥1 μ

s
q(E)<∞; hence, by the Borel–Cantelli lemma, for μs

q-almost every t ∈ ∂T, if n is
large enough, we have

− log a ≤ lim inf
n→∞

1

n
log Ys(t|n, q) ≤ lim sup

n→∞
1

n
log Ys(t|n, q) ≤ log a.

Letting a tend to 1 along a countable sequence yields the result.
Let us prove (2.2) for E = E+

n,a (the case E = E−
n,a is similar). At first we have

sup
q∈K

μs
q(E+

n,a) = sup
q∈K

∑
u∈Tn

μs
q([u])1{Ys(q,u)>an}

= sup
q∈K

∑
u∈Tn

Ys(q, u)
n∏

k=1

exp (ψk(q)X(u) − τ (ψk(q)))1{Ys(q,u)>an}

≤ sup
q∈K

∑
u∈Tn

(Ys(q, u))1+ν
n∏

k=1

exp (ψk(q)Xu − τ ((ψk(q)))a−ν,

≤ sup
q∈K

∑
u∈Tn

Ms(u)1+ν
n∏

k=1

exp (ψk(q)Xu − τ (ψk(q)))a−ν,
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where Ms(u) = supq∈K Ys(q, u) and ν > 0 is an arbitrary parameter. For q ∈ K and ν > 0, we
set Ln(q, ν) = ∑

u∈Tn
Ms(u)1+ν ∏n

k=1 exp (ψk(q)Xu − τ (ψk(q)))a−ν .
Recall from the proof of Proposition 2 that there exists a neighborhood UK ⊂C of K such

that, for all z ∈ UK and k ≥ 1,

ψk(z) is well defined and E

( N∑
i=1

eψk(z)Xi

)
�= 0.

Lemma 5. Fix a> 1. For z ∈ UK and ν > 0, let

Ln(z, ν) =
[ n∏

k=1

E

( N∑
i=1

exp (ψk(z)Xi)

)−1] ∑
u∈Tn

Ms(u)1+ν
n∏

k=1

exp (ψk(z)Xu|k )a−ν .

There exists a neighborhood V ⊂Cd of K and a positive constant CK such that, for all z ∈ V
and all integers n ≥ 1,

E(|Ln(z, pK − 1)|) ≤ CKa−n(pK−1)/2,

where pK is given by Proposition 2.

Proof. For z ∈ UK and ν > 0, let

L̃1(z, ν) =
∣∣∣∣E

( N∑
i=1

exp (zXi)

)∣∣∣∣−1

E

( N∑
i=1

∣∣∣∣ exp (zXi)

∣∣∣∣
)

a−ν .

Let q ∈ K. Since E(̃L1(q, ν)) = a−ν , there exists a neighborhood Vq ⊂ UK of q such that, for
all z ∈ Vq, we have E(|̃L1(z, ν)|) ≤ a−ν/2. By extracting a finite covering of K from

⋃
q∈K Vq,

we find a neighborhood V ⊂ UK of K such that, for all z ∈ V , E(|̃L1(z, ν)|) ≤ a−ν/2 . Without
loss of generality (recall the proof of Proposition 2 and the fact that ηk = o(1)), we can suppose
that, for all k ≥ 1,

E
(|̃L1(ψk(z), ν)|) ≤ a−ν/2

for all z ∈ V . Therefore,

E(|Ln(z, ν)|)

=
[ n∏

k=1

∣∣∣∣E
( N∑

i=1

exp
(
ψk(z)Xi

))∣∣∣∣−1]
E

(∣∣∣∣ ∑
u∈Tn

Ms(u)1+ν
n∏

k=1

exp
(
ψk(z)X(u)

)∣∣∣∣
)

a−nν

≤
[ n∏

k=1

∣∣∣∣E
( N∑

i=1

exp
(
ψk(z)Xi

))∣∣∣∣−1]
E

( ∑
u∈Tn

Ms(u)1+ν
n∏

k=1

∣∣∣∣ exp
(
ψk(z)X(u)

)∣∣∣∣
)

a−nν .

By Proposition 2, there exists pK ∈ (1, 2] such that, for all u ∈ ⋃
n≥0 N

n+,

E(Ms(u)pK ) =E(Ms(∅)pK ) = CK <∞.
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Take ν = pK − 1 in the last calculation. It follows, from the independence of
σ ({(Xu1, . . . , XuNu ), u ∈ Tn−1}) and σ ({Ys(·, u), u ∈ Tn}) for all n ≥ 1, that

E(|Ln(z, pK − 1)|)

≤
[ n∏

k=1

∣∣∣∣E
( N∑

i=1

exp (ψk(z)Xi)

)∣∣∣∣−1] n∏
k=1

E

( N∑
i=1

∣∣∣∣ exp (ψk(z)Xi)

∣∣∣∣
)n

CKa−n(pK−1)

= CK

n∏
k=1

E
(|̃L1(ψk(z), pK − 1)|)

≤ CKa−n(pK−1)/2,

completing the proof. �
With probability 1, the functions z ∈ V → Ln(z, ν) are analytic. Fix a closed polydisc

D(z0, 2ρ) ⊂ V, ρ > 0, such that D(z0, 2ρ) ⊂ V . Theorem 2 gives

sup
z∈D(z0,ρ)

|Ln(z, pK − 1)| ≤ 2
∫

[0,1]
|Ln(ζ (t), pK − 1)| dt,

where, for t ∈ [0, 1],
ζ (t) = z0 + 2ρei2π t.

Furthermore, Fubini’s theorem gives

E

(
sup

z∈D(z0,ρ)
|Ln(z, pK − 1)|

)
≤E

(
2

∫
[0,1]

|Ln(ζ (r), pK − 1)| dr

)

≤ 2
∫

[0,1]
E|Ln(ζ (r), pK − 1)| dr

≤ 2CKa−n(pK−1)/2.

Since a> 1 and pK − 1> 0, we obtain (2.2).

Appendix A. Cauchy formula in several variables

Let us recall the Cauchy formula for holomorphic functions.

Definition 1. Let D(ζ, r) be a disc in C with centre ζ and radius r. The set ∂D is the boundary
of D. Let g ∈ C(∂D) be a continuous function on ∂D. We define the integral of g on ∂D as∫

∂D
g(ζ )dζ = 2iπr

∫
[0,1]

g(ζ (t))ei2π t dt,

where ζ (t) = ζ + rei2π t.

Theorem 2. Let D = D(a, r) be a disc in C with radius r> 0, and let f be a holomorphic
function in a neighborhood of D. Then, for all z ∈ D,

f (z) = 1

2iπ

∫
∂D

f (ζ ) dζ

ζ − z
.

It follows that

sup
z∈D(a,r/2)

|f (z)| ≤ 2
∫

[0,1]
| f (ζ (t))| dt.
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Appendix B. Mass distribution principle

Theorem 3. ([9, Theorem 4.2].) Let ν be a positive and finite Borel probability measure on a
compact metric space (X, d). Assume that M ⊆ X is a Borel set such that ν(M)> 0 and

M ⊆
{

t ∈ X, lim inf
r→0+

log ν(B(t, r))

log r
≥ δ

}
.

Then the Hausdorff dimension of M is bounded from below by δ.

Lemma 6. ([6].) If {Xi} is a family of integrable and independent complex random variables
with E(Xi) = 0, then E| ∑ Xi|p ≤ 2p ∑

E|Xi|p for 1 ≤ p ≤ 2.
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