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Abstract

We consider, for ¢ in the boundary of a Galton—Watson tree (dT), the covering number
N, (1) by the generation-n cylinder. For a suitable set / and sequence (s,), we almost
surely establish the Hausdorff dimension of the set {t € dT: N, (1) —nb ~ s,} forb e I.
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1. Introduction and main results

Let (N, X) be a random vector with independent components taking values in N2, where N
denotes the set of nonnegative integers. Then consider {(N,, Xu)}MGUnz() Nt to be a family of
independent copies of the vector (N, X) indexed by the set of finite words over the alphabet
N4, the set of positive integers (n = 0 corresponds to the empty sequence denoted by &). Let
T be the Galton—Watson tree with defining elements {N,}. We have @ € T;ifue Tand i e N4
then ui, the concatenation of u and i, belongs to T if and only if 1 <i <N, and if ui € T then
u € T. Similarly, for each u € Un>0 N’ , denote by T(u) the Galton—Watson tree rooted at u and
defined by the {N,,,}, ve U,-o N1

We assume that E(NV) > 1, so that the Galton—Watson tree is supercritical. We also assume
that the probability of extinction is equal to 0, so that P(N > 1) = 1.

For each infinite word t =t1tr - - - € NT* andn>0,wesett, =t ---t, e N} (t1p=0). If
u € N’ for some n > 0 then 7 is the length of u and it is denoted by |u|. Then we denote by [u]
the set of infinite words 7 € NT* such that 1, = u.

The set NT* is endowed with the standard ultrametric distance

d: (M, V) e~ supf{|w|: uelw], ve[w]}’

with the convention that exp ( — oo) = 0. The boundary of the Galton—Watson tree T is defined

as the compact set
aT=( U ul.

n>1ueT,
where T, =TNN}.
Received 12 June 2018; revision received 30 January 2019.

* Postal address: Department Mathématiques, Faculté des Sciences de Monastir, Avenue de 1’Environment 5000,
Monastir, Tunisia. Email address: najmeddine.attia@ gmail.com

265

https://doi.org/10.1017/jpr.2019.17 Published online by Cambridge University Press


https://doi.org/10.1017/jpr.2019.17
http://www.appliedprobability.org
mailto:najmeddine.attia@gmail.com
https://doi.org/10.1017/jpr.2019.17

266 N. ATTIA

We consider X, as the covering number of the cylinder [«], that is, the cylinder [u] is cut
off with probability po =P(X =0) and is covered m times with probability p,, = P(X =m),
m=1,2,....

For t € 3T, let

Nn(t) = Z thwtk'
k=1

Since this quantity depends on ¢; - - - t,, only, we also denote by N,,(«) the constant value of

N, (-) over [u] whenever u € T,,. The quantity N,(¢) is called the covered number (or more

precisely the n-covered number) of the point ¢ by the generation-k cylinder, k=1, 2, ..., n.
We also define the «-dimensional Hausdorff measure of a set £ by

H(E) = lim HYE) = lim i { i .a},
()= lim H§(E) = lim inf Z diam(U;)
ieN
where the infimum is taken over all the countable coverings (U;);cn of E of diameters less than
or equal to 6. Then the Hausdorff dimension of E is defined as

dim E = sup{a > 0: H¥(E) = oo} = inf{la > 0: H*(E) =0},

with the conventions that
sup@=0 and inf@=o0.

Moreover, if E is a Borel set and p is a measure supported on E, then its lower Hausdorff
dimension is defined as

dim(w) = inf{dim F: F Borel, u(F) > 0},

and we have

1 B(t,
dim(e) = ess inf, liminf log w(B(, 1))
- r—0t log (r)
where the first infimum is taken over all ¢ and B(z, r) stands for the closed ball of radius r
centered at 7 [10].

Consider an individual infinite branch 71 - - - #,, - - - of 3T. When E(X) is defined, the strong
law of large numbers yields lim;,_, n~ N, (1) = E(X). It is also well known (see [11]) in the
theory of the birth process that lim,_, o, N,(f) = +oc almost surely (a.s.) for every t € D =
{0, 13N if and only if

po=PX=0) < 1.

Then, if this condition is satisfied, every point is infinitely covered a.s.
For b € R, we consider the set

Ey={reaT: lim N =b}.

n—oo n

These level sets can be described geometrically through their Hausdorff dimensions. They
have been studied by many authors; see, e.g. [4], [7], [8], [12], and [17], and [2] and [3] for the
general case. All these papers also deal with the multifractal analysis of associated Mandelbrot
measures (see also [13], [16], and [18] for the study of the Mandelbrot measures dimension).
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For the sake of simplicity, we will assume that the free energy of X defined as

N

7(q) =log ]E< Z eqx">

i=1

is finite over R. Let 7* stand for the Legendre transform of the function t, where, by
convention, the Legendre transform of a mapping f: R — R is defined as the concave and
upper semi-continuous function

by := inf (f(q) — gb).
geR

We say that the multifractal formalism holds at b € R if dim Ep = t*(b). We will assume
without loss of generality that X is not constant, so that the function 7 is strictly convex.
The interior of subset A of R is denoted by int(A). In the following, we define the sets
>

o
) <OO}’
i=1

Q'= ) Q. J=JnQ'", and I={7'(q):qe T}
ae(1,2]

N

J={qeR;t(q) — qt'(g) > 0}, Qé:int{q: ]E(

Remark 1. Define the set L = {a € R, t*(«v) > 0}. We can show that L is a convex, compact,
and nonempty set (see [1, Proposition 3.1]). If we add the assumption that J = J (for example,
if we suppose that, for all g € J, there exists « € (1, 2] such that E[| Zf\i 1 edXi |*T < 00), then
I =int(L) (see also [1, Proposition 3.1]). In particular, / is an interval.

Next, we define, for b € R and any positive sequence s = {s,,} such that s, = o(n), the set
Eps={t€dT: Ny(t) — nb~s,as n— 400},

where N,,(f) — nb ~ s, means that (N, () — nb), and (s,), are two equivalent sequences. We
can obtain the Hausdorff dimension of the set £, via, for example, the methods used in [2],
[3], [14], and [15], but such methods do not give results on dim Ej, 5.

Let (n,)n>1 be a positive sequence defined by n, =s, — s,—1 for n > 1 and suppose that the
following hypothesis holds.

Hypothesis 1. Let s, = o(n) and 1, = o(1). Then there exists () such that

n
&, — 0, Zexp(—sZskn,%><+oo forall e > 0.

n>1 k=1

For example, to satisfy Hypothesis 1, we can choose, for n > 1,

n
1
Sp= Z = and ¢,=n""
k=1

such that o € (0, ) and 1 — 2o — y > 0.
We are able now to state our main result.
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Theorem 1. Let s = (s,),>1 be a positive sequence. Under Hypothesis 1, we have, a.s., for all
bel,
dim Ejp ; = dim Ej = t%(b).

A special case of this theorem was treated in [11], where the authors considered the space
{0, 1}N and constructed, for each b = t/(q) € I, a Mandelbrot measure g Let us mention that
our theorem gives a stronger result in the sense that, a.s., for all b € I, we have the multifractal
formalism. This requires a simultaneous building of an inhomogeneous Mandelbrot measure
and the computation of their Hausdorff dimensions.

2. Proof of Theorem 1

Let s be a positive sequence such that s, = o(n) and 1, = o(1).

2.1. Upper bounds for the Hausdorff dimension
Let us define, for g € R, the pressure-like function of g by

T(g) = lim sup l In ( Z exp (qN,,(u))).

—+4o00 N
n—>+ ueT,

Proposition 1. With probability 1, for all b € R,
dim Ep ; <dim Ep <T¥(b) < T7(b),

a negative dimension meaning that Ej, is empty.

Proof. Itis clear, since s, = o(n), that, a.s., for all b € R, we have Ej s C Ep. Then, a.s.,
dim Ej ¢ < dim E},.

In addition, we have

Eb=ﬂ U ﬂ{teaT;|Nn(:)—nb|§ne}.

e>0 MeN* n>M

Fix ¢ > 0. For M > 1, the set E(M, ¢, b) = ﬂnzM{t € dT; N, (t) — nb| < ne} is covered by the
union of those [u] such that u € T,,, n> M, and N,,(u) — nb + ne > 0. Thus, fora >0, n > M,
and g > 0,

Ho (E(M, g, b)) < Z exp (—na) exp (gN,(u) — ngb + nge).

ueT,

Consequently, if > 0 and @ > T(q) + ¢ — gb + ge, by the definition of T(g), for large enough
M, we have

HE (B, e, b)) < exp ( %)

This yields H*(E(M, ¢, b)) = 0; hence, dim E(M, ¢, b) < «. Since this holds for all ¢ > 0, we
obtain dim E(M, ¢, b) < T(q) — qb + ge. It follows that

dim Ep, < inf inf sup T(gq) — gb + gs.
q>0e>0 pren
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Similarly, if we take g < 0, we obtain

dim Ep, < inf inf sup T(gq) —gb — gs.
q<0e>0 pren

Then we have
dim Ej, < TH(b).

If T*(b) < 0, we necessarily have Ej, = &.
It remains to show that, with probability 1,

TH(b) < t*(b) forall beR.

The functions T and 7 are convex and thus continuous. We need only prove that the inequality
T(q) < t(q) holds for each ¢ € R almost surely. Fix g € R. For « > t(g), we have

N n
E( D exp(—na) Y exp (anw))) =) exp(— na)E( > exp (qxo)

n>1 ueT, n>1 i=1
= exp(n(t(g) — ).
n>1
Consequently,

Z exp (— no) Z exp (gN,(u)) < oo, a.s.,

n>1 ueT,

so that we have
> exp(gN,(w) = O(exp (na)) and T(g) <.
ueT,

Since @ > t(qg) is arbitrary, this completes the proof. O

2.2. Lower bounds for the Hausdorff dimension
2.2.1. Construction of inhomogeneous Mandelbrot measures. We define, for (g, p) € J X
[1, 00),

¢(p, @) = exp (t(pq) — pT(q)).
We have the following result.
Lemma 1. For all nontrivial compact sets K C J, there exists a real number 1 < px < 2 such
that, for all 1 < p < pg, we have

sup ¢(pk, q) < 1.
qgek

Proof. Let g€ J. We have d¢p(17%, q)/dp < 0. Therefore, there exists pq > 1 such that
¢(pg, 9) < 1. In a neighborhood V; of g, we have

¢(pg, ) <1 forallg €V,

If K is a nontrivial compact of 7, it is covered by a finite number of such V..
Let px = infj pg,. If 1 < p < pk and sup g ¢(p, g) = 1, there exists g € K such that

¢(p,q)>1 and geV, forsomei.

Let us recall that the mapping p — ¢(p, q) is log convex and that (1, ¢) = 1. Since 1 < p < p,,
we have ¢(p, ¢) < 1, which is a contradiction. O
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Lemma 2. For all compact sets K C J, there exists px > 1 such that

N Pk
supE((ZeqX") ) < 00.
qgek i—1

Proof. Since K is compact and the family of open sets J N Q:, increases to 7 as y decreases
to 1, there exists y € (1, 2] such that K C Q)l, Take px = y. The conclusion follows from the

fact that the function g — E(( Zf\; 1 edXi )IN”( ) is convex over Q%K and thus continuous. O

Now, we will construct the inhomogeneous Mandelbrot measure. For g € 7 and k > 1, we
define 1% (g) as the unique ¢ such that

() =1"(q) + mk.
Foru e UnzO N’ and g € J, we define, for 1 <i <N,

exp (gXui)

V(ui, q) =
E(Y Y exp (¢Xi)

=exp (¢Xui — T(q)),

and, for all n >0,

Yiqw= Y V@i v Yu@).

ViV €T,(u) k=1

When u = @, this quantity will be denoted by Y;(¢) and, when n = 0, its value equals 1.

The sequence (Y (g, u)),>1 is a positive martingale with expectation 1, which converges a.s.
and in the L'-norm to a positive random variable Y*(q, u) (see [13], [5], or [6, Theorem 1]).
However, our study will need the almost-sure simultaneous convergence of these martingales
to positive limits.

Proposition 2. (i) Let K be a compact subset of J. There exists px € (1, 2] such that, for all
u€J,=o N1k, the continuous functions q € K — Y, (g, u) converge uniformly, a.s. and in the
Lyy-norm, to a limit q € K+ Y*(q, u). In particular, I( SUPgek Y¥(g, u)P¥) < oo. Moreover,
Y*(-, u) is positive a.s.

In addition, for all n>0, c({(Xy1, ..., Xun,), u€Ty}) and o({Y°(-, u), ueTyi1}) are
independent, and the random functions Y*(-, u), u € T,41, are independent copies of Y*( - ): =
Yi(., 9).

(ii) With probability 1, for all g € J, the weights

wy(lul) = [ l_[ exp (Vi(@)Xuy...p) — T(T/fk(Q))):| Yi(q, w

k=1
define a measure on 9T .

The measure ufl will be used to approximate from below the Hausdorff dimension of the
set Ep .
The proof of Proposition 2 needs the following result.
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Lemma 3. Forge J, ueT, and p € (1, 2), there exists a constant C,, depending only on p
such that, forn>1,

p\ 1 N
) I1 E( > v wkw))w).

E(Yy(@) =Y, (@I") = CpIE<
k=1 N i=1

N
> VG, Yu(g)
i=1

Proof. The definition of the process Y, immediately gives

n—1 Ny
Y@ -V @= Y [] Ve mw»( > Vi, yu(g) — 1).
ueT,— k=1 i=1

For each n>1, let F,=0{(N,, Vy1,...): lul <n—1} and let Fy be the trivial sigma-
field. For u e T,,_1, we set B,(q) = vaz“l V(ui, ¥,(q)). By construction, the random variables
(Bu(q) — 1), ueT,_1, are centered, independent, identically distributed ( i.i.d.), and indepen-
dent of F;,_1. Consequently, conditionally on F,_, we can apply Lemma 6 in Appendix B to
the family {(B,(q) — 1) ]_[Z;ll V(uik, ¥1(q))}. Noting that the B,(q), u € T,_1, have the same

distribution yields
E(Yp(@) = Y1 (@) =E(E(Y,(q) = V(@I | Fa-1))

n—1

<27 'B(B@) -~ 1ME( Y [T Ivou. ‘”"(q”'p)’

MET,,,] k=1

where B(g) stands for any of the identically distributed variables B, (g).
Using the branching property and the independence of the random vectors (N, Xy1, - . .)
used in the constructions yields

n—1
E( > T v wk@»v’)

ueT, | k=1
n—2 Ny
= E[E( > T v, vanr ) ( > Vi, a1 (@)F) fn_z)}
ueT, o k=1 i=1
N n—2
= IE( > v wn_l(qm”)E( > [T v wk(q»v”).
i=1 ueT,_ k=1

Then a recursion using the branching property and the independence of the random vectors
(Ny, Xut, - .. ) yields
n—1

n—1 N
E( > [T v wk(q)w’) =11 E( > Iva, wk(q»v").

ueT,_; k=1 k=1 i=1
Using the inequality
ey <27 D, >
we obtain
NM

2 >

p
> Vi, y(@) — 1‘ ) < 2P—1E<
i=1

p
+1>.

Nu
> Vi, Yu(g))
i=1
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Since
Ny »
> Vi, Yulg))|

i=1

Ny »
1= (E( > Vi, wq)))) <E
1=1

then it follows from Lemma 6 in Appendix B that

(v )

Finally, we have

Ny N p
> Vi, Yu(9)) >V, I/fn<q)>‘ )
i=1 i=1

Ny
D Vi, ya(g) — 1
i=1

=2

N py n—1 N
> VG, wn(q»‘ ) E(ZIV(L wk(qw). O

E(Y3(q) — Y (@) < sz<
i=1 k=1 i=1

Proof of Proposition 2(i). Recall that the uniform convergence result uses an argument
developed in [6]. Fix a compact K C J. Since nx = o(1), we can fix, without loss of generality,
a compact neighborhood K’ C 7 of K and suppose that

Yr(g)e K forallge K and all k> 1.

Fix a compact neighborhood K” of K’. By Lemma 2, we can find pg» > 1 such that
N

By
sup E((Z eqX") ) < 00.
qeK” i=1

By Lemma 1, we can fix 1 < px < min (2, pgr) such that SUp, ek’ ¢(pk, q) < 1. Then, for each
g € K', there exists a neighborhood V,, C C of ¢ whose projection to R is contained in K and
such that, forallu € Tand z € V. the random variables

exp (zX,)
E(CN, exp (2X))

_ECY, X exp (2X))

V(u, z) = M@=
(u, 2) @ E(CN | exp (X))

are well defined. For z € V; and k > 1, we define ¥(z) as the unique ¢ such that
L) =T() + nk.

Moreover, we have

sup ¢(pk, z) <1, where ¢(pk,z)= w
z€Vy ’ ’ s |E(Ziv=1 er,-)|pK

By extracting a finite covering of K" from [ J g Vg, we find a neighborhood V C C of K" such
that

sup ¢(pk, z) < 1 and Y (z) is defined for all z € V.

eV
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Since the projection of V to R is included in K” and the mapping z+> FE( Zf\; L ey is
continuous and does not vanish on V, by considering a smaller neighborhood of K’ included in

V if necessary, we can assume that
N P N
S| ) (2 e)
=1 i=1

Now, for u € T, we define the analytic extension to V of Y3(g, u) given by

—PK
Cy =sup E( < 00.

eV

Yicw= Y [V i v Yrum)

veT,(u) k=1
n N 1 .,
= |: 1_[ IE( Z ellfk(z)X,->:| Z 1_[ eVl @X @vy)
k=1 i=1 VETn(u) k=1

We also denote Y;(z, @) by Y (z). The same lines as in the proof of Lemma 3 show that

prN 1 N
) [1 E( > IV, tﬁk(z))lpK)-

E(Y,(z) = Y,_(@P%) < CPKE<
k=1 N i=1

N
DV, Yu(2)
i=1
Note that E( YN, |V(i, 2)I’K) = ¢(pk, ¥x(2)). Then

N
D VG, Yu(2)

E(1Y,(2) — Y, @P%) < CM@(
i=1

P\ 11
) [ [ ¢k, v
k=1

n—1
<CpCy 1_[ sup ¢(pk, 2),
k=1 €V

where we have used the fact that Y (z) € V for all k > 1.
With probability 1, the functions z € V i Y3(z), n> 0, are analytic. Fix a closed polydisc
D(z0, 2p) C V. Theorem 2 gives

sup V@)Yl <2 / VW) — ¥, () db,
zeD(z9,p) [0,1]

where, for 7 € [0, 1], £(f) = zo + 2pe'>™".
Furthermore, Jensen’s inequality and Fubini’s theorem give

E(_sup 1Y) - Yo, @F")
2€D(z0.p)

PK
< ]E<<2 /IO G0 =Y @) dr) )
- zma( / VS ) — Yo )P dr)

[0,1]

<ok f[o BV EO) =Y, o d
n—1

<2PKCyCpy [ | sup ¢k 2)-
k=1 zeV
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Since sup,.y ¢(pk, 2) < 1, it follows that

sp (Y3~ Vil <oo.
n>1 €Do,p) PK

This implies that z+— Y;(z) converge uniformly a.s. and in the /PX-norm over the compact
D(zp, p) to a limit z — Y*(z). This also implies that

sup Y°(2)
2€D(z0,p)

< Q.
PK

Since K can be covered by finitely many such discs D(zg, p), we get the uniform convergence,
a.s. and in the LPX-norm, of the sequence (g € K — Y;(¢))y>1 to g € K — Y*(q). Moreover,
since J can be covered by a countable union of such compact K, we get the simultaneous
convergence for all g € J. The same holds simultaneously for all the functions g € J +—
Yi(q, u), uelJ,-o N}, because | J,-o N\ is countable.

To complete the proof of Proposition 2(i), we must show that, with probability 1, g € K —
Y®(g) does not vanish. Without loss of generality, we can suppose that K =[0, 1]. If / is a
dyadic closed subcube of [0, 1], we denote by E; the event {there exists g € I: Y*(¢q) = 0}. Let
Ip and I stand for the two dyadic intervals of I in the next generation. The event E; being
a tail event of probability 0 or 1. If we suppose that P(E7) =1 then there exists j € {0, 1}
such that P(E;) = 1. Suppose now that P(Ex) = 1. The previous remark allows us to construct
a decreasing sequence (/(n)),>o of dyadic subscubes of K such that P(E,)) = 1. Let go be
the unique element of (), /(n). Since ¢ — Y*(g) is continuous, we have P(Y*(go) =0) =1,
which contradicts the fact that (Y3 (go))n>1 converge to Y*(go) in L O

2.2.2. Proof of Theorem 1. The proof of Theorem 1 can be deduced from the two following
propositions. Their proof are developed in the next subsections.

Proposition 3. Suppose that Hypothesis 1 holds. Then, with probability 1, for all q € J,
N,.(t) —nb~s, for uf]-almost everyte€ dT,

where b =1/(g).

Proposition 4. With probability 1, for all g € J and p-almost every t € 9T,

i log Y*(q, t)
m — =

n—oo n

0.
From Proposition 3, it follows, with probability 1, for all g€ J and M;(Eb,x) =1, that

lim,,— 100 N,,(1)/n=b, b= 1’'(g). In addition, with probability 1, for all g € 7 and uf]—almost
every t € Ej 5, from Propositions 3 and 4, we have

m —————— =
n—o0 log (diam([#,])) n—o0

log (45 [1n]) 1 -
o~ lim - log (Hexpwk(q)Xn...,k @)Y, u))
k=1

1 & 1 & log Y*(q, t1,
= Him Y @y LY gy — )

k=1 k=1

| o IS
= Jim == Y@Xy .+ - D TW9).
k=1 k=1
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Since 1 = o(1) and then x(q) — ¢, we obtain

IOg (/'LZ [t\n])

Jim. m =—qt'(q) +1(q) =77 (T (9)).

We deduce the result from the mass distribution principle (Theorem 3) and Proposition 1.

2.3. Proof of Proposition 3
Let K be a compact subset of 7. Forb=1'(q), g€ J,n>1, e >0, and s = (sy)n>1, We set

n n
Ej .= {t €dT: Y Xy —b—m=e) nk},

k=1 k=1
n n
Ej .= {t €dT: Y Xy —b—m<—e» ﬂk}-
k=1 k=1
Suppose that we have shown that, for A € {—1, 1}, we have
E(sup Z ,uf](E,in’s,a)> < 00. (2.1)
qek n>1

Then, with probability 1, forallge J, A € {—1, 1}, and e € Q%
D My (B 5.0) < 00
n>1
Consequently, by the Borel-Cantelli lemma, for M‘;—almost every ¢, we have

n

Z Xy () —=b =i = 0(2 ﬁk)7
k=1

k=1

so N, (t) — nb ~ s,, which yields the desired result.
Let us prove (2.1) when A =1 (the case A = —1 is similar ). Let 8 = (6,) be a positive
sequence and g € K. Then

sup (B} 5.0) <SUp Y wy(uDlipr (),
qek qek ueT, IS.E
where t#, is any point in [u]. Denote #, simply by ¢. Then

1
sup Mz(Eb,n,s,s)
gek

n
<sup Yl [ | exp (OcXey.p — Ok — i1 + £)
g€k ueT, k=1

< sup D T Texp (@) + 60X 0 — T@Wa(@) — Ok — Gimi(1 + )Y (g, w).
4R eT, k=1
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Forge K,0 =(6,),and n > 1, set

Hi(q. 0)="Y " [ ] exp ((¥x(@) + 00X, ., — TWr(@)) — Ohb — Omi(1 + £))M* (w),
ueT, k=1

where

M (u) = sup Y*(u, g).
gekK

Recall from the proof of Proposition 2 that there exists a neighborhood Vx C C of K such that

E(YN, X; exp (X))

r'(z)=
T TR(RY exp X))

and Yp(z) fork>1

are well defined for z € Vg.
For e > 0, z € Vg, and n > 1, we define

Hy(z, 0)= Y [ ] exp () + 00Xy — 6T @) — Ormi(1 + )
ueT, k=1

N —1
X E(Z exp (W(z)xa) M (u).

i=1

Proposition 5. There exists a neighborhood V C Vg of K, a positive constant Ck, and a
positive sequence 0 such that, for all 7 € Vg and all n € N*,

e n
E(|H(z. 0)) < Cr exp(—;L > ekmf),
k=1

where the sequence (gy,), is the sequence used in Hypothesis 1.
Lemma 4. There exists a positive sequence 6 = (6,) and a positive constant Cg such that, for

all g € K, we have

n
: € 2
E(H:(q. 9)) < Ck exp<—§ > Sknk)-
k=1
Proof. Let 6 =(6,) be a positive sequence. Clearly we have

E(H,(q. 9))

n N
=11 E( D exp (Yr(@) + 00Xi) exp (=T (Ya(@)) — kb — Bl + e>)>JE<MS<u)>,
k=1

i=1

<C'k [ [ exp (r(Wa(@) + 60) — T(¥r(q)) — kb — Opic(1 +¢)),
k=1

where, by Proposition 2, C'x = E(M*(u)) = E(M*(2)) < oo for all u € Unzo N7
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Since nx = o(1), we can fix a compact neighborhood K’ of K and suppose that, for all k > 1
and all ¢ € K, we have y(q) € K'. For ¢ € K and k > 1, writing the Taylor expansion of the
function g: 0 — T(Y(g) + 0) at O up to the second order, we obtain

1
4(0) = 5(0) + 6g/(0) + 6 / (1 — g u6)
0
with g”(10) < mg = sup,co 1 SUp ek’ g"(10). Tt follows that, for all k > 1

T(Yi(@) + 0k) — T(Yr(@)) — Ok (Yi(g)) < O mk.
Recall that T’ (Yx(g)) = 7'(g) + nx. Then
E(H,(q,0)) <C'k ﬁ exp (t(Yr(q) + 6k) — T(Yr(q)) — Okb — Opi(1 + €))

k=1

<C'k ﬁ exp (—Gknks + 9,3m1<).
k=1

Choose the sequence 6 such that 6y = e;nx. Then
E(H,(q,0) <C'k ﬁ exp (—exni(e — exmg)).

k=1

Since g — 0 then, for large enough k, we have ¢ — gxmg > /2. Then there exists a constant
Ck such that

e n
E(H}(q. 0)) < Ck exp (—5 > ekn,%>. O
k=1

Proof of Proposition 5. Since E(|H}(q, 6)]) < Cg exp (— (¢/2) > y_; 8/{17]%) for g € K, there
exists a neighborhood V, C Vg of ¢ such that, for all ze V,, we have E(|H,(z, 8)|) <Ck
exp (—(e/4) > 1, skn]%). By extracting a finite covering of K from quK V4, we find a
neighborhood V C Vi of K such that

< n
E(|H}(z. 6)]) < Ck exp (— > skni). O
k=1

With probability 1, the functions z e V —— H;(z, #) are analytic. Fix a closed polydisc
D(z0, 2p) C 'V, p >0, such that D(zp, 2p) C V. Theorem 2 gives

sup  |H,(z, 0)] 52/ |H,(¢ (), 0)] dt,
z€D(z0,p) [0,1]

where, for r € [0, 1],
¢(t) =20 +2pe™,
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Furthermore, Fubini’s theorem gives

IE( sup IHZ(Z,9)|)§E<2/ IHZ(i(t),e)ldt>
[0.1]

2€D(z0,p)

<2 f EJHS (¢ (1), 6)) dr
[0,1]

n
€ 2
<2exp (— 2 Z 8k77k>-
k=1
Finally, we obtain

]E( sup ,uq(Eb s 8)) <2exp <— - Zsknk>

qgek

and then, under Hypothesis 1, we obtain (2.1), which completes the proof of Proposition 3.

2.4. Proof of Propostion 4
Let K be a compact subset of 7. Fora> 1,g€ K, and n > 1, set
E;fa ={tedT: Y(q, t}n) > d"}
and
E, ,={tedT:Y(q, t1n) <a "}.
It is sufficient to show that, for E € {E;

n,a’ n,a}’

<sup > ,uq(E)) < 0. (2.2)

qgek n>1

Indeed, if this holds then, with probability 1, for each g€ K and E e {E' E,j

n,a’

> n>1 My(E) < 00; hence, by the Borel-Cantelli lemma, for jij-almost every t € 9T, if n is
large enough, we have

1 1
—loga <liminf — log Y(tin, q) < l1m sup log Y*(ts, q) <loga.
n—o0

Letting a tend to 1 along a countable sequence yields the result.
Let us prove (2.2) for E = E,ta (the case E = E,, is similar). At first we have

sup i (E;F ) =sup D ()1 (ys(q.un>ar)
qek qekK ueT,

=sup Y Y*(q, u) H exp (Y(@)X(u) — T(Yr@)ys(q.u>an)

qek ueT, k=1

<sup 3 (G )" H exp (Yi(@)X — T(Yr@)a",

q¢€ uET k=1

<sup Y M) Hexp W @Xu — T(Wr(g@))a ",

€K eT, k=1
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where M*(u) = sup,cg Y*(¢, u) and v > 0 is an arbitrary parameter. For ¢ € K and v > 0, we

set Ln(q, v) = Y e1, MY @)™ TTRZ; exp (@)X — T(Yr(@))a"
Recall from the proof of Proposition 2 that there exists a neighborhood Ug C C of K such
that, forall z€ Ug and k > 1,

N
Yi(z) is well defined and IE( Z e""'(Z)Xi) # 0.

i=1
Lemma 5. Fixa> 1. Forze Ug and v > 0, let

n

N
Ln(z, v) = [ [ E( Y exp (W(z)xi)) } > M H exp (Yx(2)Xuy)a"

k=1 i=1 ueT,

There exists a neighborhood V C C¢ of K and a positive constant C such that, for all z € V
and all integers n > 1,

E(Lu(z, px — D) < Cxa™"Px D72,
where pg is given by Proposition 2.
Proof. Forze Ug and v > 0, let

N

IE(Z

i=1

exp (zX;)

N
Li(z,v)= ’E( Z exp (ZXi)>
i=1

s

Let g € K. Since E(Ll(q, v)) =a"", there exists a neighborhood V,; C Uk of ¢ such that, for
all zeV,, we have E(ILl(z, V) <a V2. By extracting a finite covering of K from quK

we find a neighborhood V C Uk of K such that, forall ze V, E(|L1(z, V) <a V2. Wlthout
loss of generality (recall the proof of Proposition 2 and the fact that n; = o(1)), we can suppose
that, forall k > 1,

]E(|Zl(l/fk(z), ) < a2

for all z € V. Therefore,

E(|Ln(z. v)])
n N —1
=[ I1 E(Zexp (wk(z)xi)> ] ( ZMA(u)”“]"[exp wk(z)xw)))
k=1 i=1 ueT,
n N n
<[ TT[E( Xew twomy )| ] (ZMW)“”]‘[ exp () )
k=1 i=1 ueT,

By Proposition 2, there exists pgx € (1, 2] such that, for all u € UnzO N4,

E(M*(uyX) = E(M*(@YK) = Cx < 0.
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Take v=px—1 in the last calculation. It follows, from the independence of
o({Xut, - ... Xun,), ue€T,—1}) and o ({Y*(-, u), u € T,}) forall n> 1, that

E(|Ln(z, px — DD

" N —1 n N "

= |: 1_[ E( Zexp (Kﬁk(Z)Xi)) ] E( Z exp (Yr(2)X;) ) Cxa k=D
k=1 i=l k=1 =1
n

=Ck H E(ILi (¥(2), pk — DI)

k=1
< Cxa "Pk=D/2,

completing the proof. -

With probability 1, the functions z€ V — L,(z, v) are analytic. Fix a closed polydisc
D(zp,2p) CV, p >0, such that D(zg, 2p) C V. Theorem 2 gives

sup |Ly(z, pxk — DI < 2/ [La (5 (D), px — D) dt,
z2€D(z0,p) [0,1]

where, for 7 € [0, 1], .
() =20+ 2,06127”.

Furthermore, Fubini’s theorem gives

E( sup |Ln(z,pK—1>|)sE<2 / |Ln(<;(r>,pk—1>|dr>
[0.1]

z2€D(20,p)
<2 / EIL.(¢(r). px — D] dr
[0,1]
<2Cka™"Pk=D/2,

Since a > 1 and px — 1 > 0, we obtain (2.2).

Appendix A. Cauchy formula in several variables
Let us recall the Cauchy formula for holomorphic functions.
Definition 1. Let D(¢, r) be a disc in C with centre ¢ and radius r. The set 9D is the boundary
of D. Let g € C(dD) be a continuous function on dD. We define the integral of g on dD as
/ 8(¢)d¢ =2imr f g @)e dr,
oD [0,1]

where ¢ (1) = ¢ + rel?™’.

Theorem 2. Let D= D(a, r) be a disc in C with radius r >0, and let f be a holomorphic
function in a neighborhood of D. Then, for all 7 € D,
1 f©)dg
=5 | .
ap §—2

21w

1t follows that
sup ()] <2 / @) dr
[0.1]

z€D(a,r/2)
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Appendix B. Mass distribution principle

Theorem 3. ([9, Theorem 4.2].) Let v be a positive and finite Borel probability measure on a
compact metric space (X, d). Assume that M C X is a Borel set such that v(M) > 0 and

log V(B(,
Mc {teX, Jim inf 2& VB 1) 35].
r—>0+t logr

Then the Hausdorff dimension of M is bounded from below by §.

Lemma 6. ([6].) If {X;} is a family of integrable and independent complex random variables
with B(X;) =0, then E| Y_ X;|P <27 > E|X;|P for | <p <2.
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