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Abstract
Visual–Inertial Navigation Systems (VINS) plays an important role in many navigation applications. In order
to improve the performance of VINS, a new visual/inertial integrated navigation method, named Sliding-Window
Factor Graph optimised algorithm with Dynamic prior information (DSWFG), is proposed. To bound computational
complexity, the algorithm limits the scale of data operations through sliding windows, and constructs the states to
be optimised in the window with factor graph; at the same time, the prior information for sliding windows is set
dynamically to maintain interframe constraints and ensure the accuracy of the state estimation after optimisation.
First, the dynamic model of vehicle and the observation equation of VINS are introduced. Next, as a contrast,
an Invariant Extended Kalman Filter (InEKF) is constructed. Then, the DSWFG algorithm is described in detail.
Finally, based on the test data, the comparison experiments of Extended Kalman Filter (EKF), InEKF and DSWFG
algorithms in different motion scenes are presented. The results show that the new method can achieve superior
accuracy and stability in almost all motion scenes.

1. Introduction

In many challenging environments, the satellite signal is weak or even blocked, which leads to the failure
of satellite navigation systems. In order to solve this problem, a variety of other autonomous navigation
methods can be used, including inertial navigation, visual navigation and so on. The inertial navigation
option has the advantages of high output rate and not being affected by environmental interference, but
its error will increase rapidly over time. The output rate of the visual sensor is low, but it can provide
accurate information after image processing. A combination of visual and inertial can complement
each other and improve autonomous navigation performance significantly in unknown and challenging
environments. Therefore, because of their huge potential, Visual–Inertial Navigation Systems (VINS)
have become a popular research option (Eckenhoff et al., 2017). According to the different back-end
data-fusion processing methods, the VINS can be divided into two categories: one is the filtering-based
method represented by the Kalman filter, which assumes a certain Markov property and the current
state estimation only needs to consider the influence of the previous state; the other is the nonlinear
optimisation algorithm represented by graph optimisation, which not only considers the state at the
previous moment but also the states of a section or the whole (Huang, 2019).

The filtering-based VINS method generally uses the motion data collected by the inertial measurement
unit (IMU) to predict the motion state. At the same time, this method processes the image data collected
by the visual sensor, extracts the feature information as an observation and updates the state estimate.
A tightly coupled visual–inertial navigation algorithm based on the extended Kalman filter (EKF) is
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proposed (Mourikis and Roumeliotis, 2007), known as multi-state constraint kalman filter (MSCKF).
This algorithm is one of the earliest successful VINS algorithms (Jiang et al., 2019). However, filtering-
based methods have problems with accumulated linearisation errors and inconsistency (Hsiung et al.,
2018). From the perspective of inconsistent estimates of VINS, a VINS method based on observability
constraints is proposed (Hesch et al., 2014), and a real-time visual-inertial odometry algorithm based
on EKF is proposed (Li and Mourikis, 2013) which uses first-estimate Jacobian (FEJ) method (Huang
et al., 2009) to improve the MSCKF algorithm by enforcing fixed linearisation points.

With the improvement of computer performance, the VINS methods based on nonlinear optimisa-
tion can linearly estimate the motion states multiple times and theoretically obtain the optimal estimate
of all the states to be optimised. Due to the above advantages, the VINS methods based on nonlinear
optimisation have attracted the attention of researchers. Nevertheless, the large amount of data accu-
mulation will affect the real-time performance of the system. Regarding the calculation scale problem
brought by the nonlinear optimisation method, some scholars have used the sliding-window filter (SWF)
to improve the real-time performance of the system by restricting the amount of data through the use of
sliding windows (Sibley et al., 2006; Zhuang et al., 2019). But a big problem with SWF is how to deal
with the discarded state. It is proposed that abandoning the measurement quantity outside the sliding
window would lead to loss of information related to the interaction variables (Sibley et al., 2010), and
a reasonable way to discard the old state from the sliding window is to marginalise the discarded state
(Dong-Si and Mourikis, 2011). This would marginalise the prior discarded frame in the sliding window
and estimate the Gaussian distribution of the states in the sliding window at this time by adding the
prior information.

At the same time, it should be noted that taking the marginalisation operation blindly will introduce
additional prior information and destroy the sparse nature of the matrix (Kretzschmar et al., 2011;
Johannsson et al., 2013; Hsiung et al., 2018; Wilbers et al., 2019). A method is proposed to avoid
introducing new constraints between existing nodes, so that the number of variables only grows with the
size of the exploration space (Johannsson et al., 2013). An information-based criterion for determining
which nodes will be marginalised in pose-graph optimisation is proposed (Kretzschmar et al., 2011). To
avoid introducing additional prior information, it is necessary to ensure reduction of the constraints of
the nodes to be marginalised. Therefore, it is necessary to design complicated algorithms to discriminate
suitable nodes for the marginalisation operation. A sparse scheme is designed, which focuses on reducing
the constraints brought by marginalisation and optimally estimating the location of landmarks without
affecting the sparse pattern of the problem (Wilbers et al., 2019). In addition, a nonlinear factor graph
is used to sparse and edge the dense prior information, and the resulting factor graph maintained
information sparsity (Hsiung et al., 2018).

This paper proposes a novel visual–inertial integrated navigation method by building prior infor-
mation of sliding window dynamically, named SWF graph optimised algorithm with dynamic prior
information (DSWFG). The DSWFG algorithm uses sliding window to limit the data operation scale
and constructs the fixed number of states in the window with the factor graph. At the same time, the prior
information of the sliding window is set dynamically to maintain the inter-frame constraint. In this way,
DSWFG algorithm can dynamically construct the prior information of the sliding window and constrain
the states to be optimised in the window. Compared with using the marginalisation method and making
the constructed graph densely connected, this method can avoid making the sparse matrix dense.

In this paper, the comparative experiment of optimal filtering and factor graph optimisation is
designed to verify the effect of the proposed algorithm. Before introducing the DSWFG algorithm in
detail, the invariant extended Kalman filter (InEKF) algorithm based on the Lie group is introduced.
In the experimental part, comparative experiments are carried out in different motion scenarios. The
results are analysed from the aspects of motion trajectory estimation, pose error statistics, and single-
cycle time consumption. This contribution is organised as follows: Section 2 describes the space state
model of mobile robots. Sections 3 and 4 describes the InEKF algorithm and the DSWFG algorithm,
respectively. Section 5 presents a comparative analysis of EKF, InEKF and our new method in different
motion scenarios. Finally, Section 6 contains the summary and conclusions of this contribution.
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2. Spatial state model of mobile vehicle

Assuming that there are a certain number of fixed landmarks in the real coordinate system, an mobile
vehicle equipped with a monocular camera and an IMU tracks the fixed landmarks, p. Therefore, the
estimated status including the rotation matrix 𝑹, velocity 𝒗, displacement 𝒑, IMU deviation 𝒃𝑛 =
[𝒘𝑛,𝑏 , 𝒂𝑛,𝑏] and three-dimensional position 𝒍 𝑖 = [𝒍1, . . . , 𝒍 𝑝]of the landmarks, then the dynamic model
of the system can be constructed as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑹𝑛 = 𝑹𝑛−1 exp((𝒘𝑛,i − 𝒘𝑛,𝑏 + 𝒏w
𝑛 )d𝑡)

𝒗𝑛 = 𝒗𝑛−1 + (𝑹𝑛 (𝒂𝑛,i − 𝒂𝑛,𝑏 + 𝒏a
𝑛) + W𝒈)d𝑡

𝒑𝑛 = 𝒑𝑛−1 + 𝒗𝑛d𝑡
𝒘𝑛,b = 𝒘𝑛−1,𝑏 + 𝒏bw

𝑛

𝒂𝑛,b = 𝒂𝑛−1,𝑏 + 𝒏ba
𝑛

(2.1)

where n= discrete time index; 𝑹𝑛 = rotation matrix at epoch n; 𝒗𝑛 = speed of the vehicle at epoch
n; 𝒑𝑛 = displacement of the agent at epoch n; exp(𝒘𝑑𝑡) maps the angular velocity 𝒘 to the rota-
tion matrix; 𝒘𝑛,i and 𝒂𝑛,i = angular velocity and acceleration output by the IMU at epoch n;
W𝒈 = [ 0 0 −g ]T = gravity, and g= local acceleration of gravity; and d𝑡 = time difference between the
measured moments.

The system noise model of Gaussian white noise is expressed as

𝒏 = [𝒏w
𝑛 , 𝒏

a
𝑛, 𝒏

bw
𝑛 , 𝒏ba

𝑛 ] ∼ N(0,𝑸) (2.2)

Constitute a special Euclidean group matrix 𝑿𝑛 ∈ 𝑆𝐸2+𝑚 (3) with 𝑹, 𝒗, 𝒑, 𝒍 𝑖 , as follows

𝑿𝑛 =

[
𝑹𝑛 𝒗𝑛 𝒑𝑛 𝒍 𝑖

02+𝑚,3 𝑰2+𝑚,2+𝑚

]
(2.3)

Due to the addition not being closed in manifold space 𝑿𝑛, it must use exponential mapping for
incremental description. However, the vector 𝒃𝑛 is the additional IMU deviation satisfying the European
addition. Therefore, the system state is expressed by [𝑿𝑛, 𝒃𝑛], and the system state equation is expressed
as

[𝑿𝑛, 𝒃𝑛] = 𝑓 (𝑿𝑛−1,𝑼𝑛−1 − 𝒃𝑛−1, 𝒏) (2.4)

where 𝑼𝑛 = [𝒘𝑛,i, 𝒂𝑛,i] = input of the time-varying system; 𝒏 = system noise.
The observation values of landmarks are 𝒁𝑖𝑛 (𝑖 = 1, . . . , 𝑝) and the observation noise are 𝒏𝑖y

(𝑖 = 1, . . . , 𝑝). The observation equation is expressed as

𝒁𝑖𝑛 = 𝑌 (𝑿𝑛) =
∏

(𝑹c(𝑹T
𝑛 ( 𝒍 𝑖 − 𝒑𝑛) − 𝑷c)) + 𝒏𝑖y (2.5)

where
∏

= internal parameter matrix of the pinhole camera, 𝑹c and 𝑷c = rotation matrix and the
translation vector from the IMU coordinate system to the camera coordinate system, respectively. The
𝒏y ∼ 𝑁 (0, 𝑵) is observation noise. For convenience of description, the Equation (2.5) is abbreviated as

𝒁𝑛 = 𝛾(𝑹T
𝑛 ( 𝒍 − 𝒑𝑛)) + 𝒏y (2.6)

3. The optimal filtering algorithm

Based on the space state model of the robot, this section introduces the InEKF algorithm based on the
filtering method. The traditional EKF algorithm estimates the system state by linearising the dynamic
equations, but in the process of error transmission, the error transfer matrix F depends on the estimated
value of the current state. When noise is introduced, the state estimation value could be unpredictable.
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Therefore, it may lead to filter divergence (Barrau, 2015). The InEKF algorithm changes the definition
of state error by introducing the concept of the Lie group and Lie algebra, and reconstructs the error
state with a special Euclidean group. Using the reconstructed error state to derive the error transfer
equation in the Lie group space, the error transfer matrix F is relatively independent of the state estimate
(Barrau, 2015). To a certain extent, the InEKF algorithm can solve the accumulated linearisation errors
and inconsistencies (Wu et al., 2017).

3.1. Status prediction

Based on the error transmission, the system equation of the error 𝒆𝑛 can be derived and the state error
can be defined as

𝒆𝑛 = ( �̂�𝑛𝑿−1
𝑛 , �̂�𝑛 − 𝒃𝑛) ≡ (𝜼𝑛, 𝝇𝑛) (3.1)

where the symbol ∧= the observed value of the state 𝑿𝑛; and the symbol ≡ indicates that the error 𝒆𝑛
can be defined as the form of 𝜼𝑛 and 𝝇𝑛, as

𝝇𝑛 =

[
�̂�𝑛,𝑏 − 𝒘𝑛,𝑏
�̂�𝑛,𝑏 − 𝒂𝑛,𝑏

]
≡

[
𝝇w
𝑛

𝝇a
𝑛

]
,

𝜼𝑛 =

[
�̂�𝑛𝑹

T
𝑛 �̂�𝑛 − �̂�𝑛𝑹

T
𝑛𝒗𝑛 �̂�𝑛 − �̂�𝑛𝑹

T
𝑛 𝒑𝑛 𝒍 𝑖 − �̂�𝑛𝑹

T
𝑛 𝒍 𝑖

02+𝑝,3 𝑰2+𝑚,2+𝑚

]
=

[
𝜼𝑅𝑛

𝝃𝑣𝑛 𝝃 𝑝𝑛 𝝃𝑙𝑛
02+𝑚,3 𝑰2+𝑚,2+𝑚

]
Let 𝜼𝑅𝑛

= �̂�𝑛𝑹
T
𝑛, and the lie algebra of 𝜼𝑅𝑛

= 𝝃𝑅𝑛
, then 𝜼𝑅𝑛

= exp(𝝃𝑅𝑛
); Let 𝝃𝑣𝑛 = �̂�𝑛 − �̂�𝑛𝑹

T
𝑛𝒗𝑛,

𝝃 𝑝𝑛 = �̂�𝑛 − �̂�𝑛𝑹
T
𝑛 𝒑𝑛, 𝝃𝑙𝑛 = 𝒍 𝑖 − �̂�𝑛𝑹

T
𝑛 𝒍 𝑖 . Since 𝜼𝑅𝑛

is a small quantity, the exponential function can be
approximated to 𝜼𝑅𝑛

= exp(𝝃𝑅𝑛
) ≈ 1 + (𝝃𝑅𝑛

)× by first-order Taylor approximation, then

�𝜼𝑛 =
[( �𝝃𝑅𝑛

)× �𝝃𝑣𝑛 �𝝃 𝑝𝑛 �𝝃𝑙𝑛
02+𝑚,5+𝑚

]
(3.2)

where (·)× is expressed as a skew symmetric matrix.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

( �𝝃𝑅𝑛
)× = ( �̂�𝑛 (𝒏w

𝑛 − 𝝇w
𝑛 ))×�𝝃𝑣𝑛 = (𝑔)×𝝃T

𝑅𝑛
+ �̂�𝑛 (𝒏w

𝑛 − 𝝇a
𝑛) + (�̂�𝑛)× �̂�𝑛 (𝒏w

𝑛 − 𝝇w
𝑛 )�𝝃 𝑝𝑛 = 𝝃𝑣𝑛 + ( �̂�𝑛)× �̂�𝑛 (𝒏w

𝑛 − 𝝇w
𝑛 )�𝝃𝑙𝑛 = ( 𝒍 𝑖)× �̂�𝑛 (𝒏w

𝑛 − 𝝇w
𝑛 )

�𝝇w
𝑛 = −𝒏bw

𝑛

�𝝇a
𝑛 = −𝒏ba

𝑛

(3.3)

where 𝒏w
𝑛 = noise measured by the gyroscope, and 𝒏a

𝑛 = noise measured by the accelerometer. Let
𝝃𝑛 = [𝝃T

𝑅𝑛
, 𝝃T
𝑣𝑛
, 𝝃T

𝑝𝑛
, 𝝃T
𝑙𝑛
]T, 𝒏𝑛 = [𝒏w

𝑛 , 𝒏
a
𝑛, 𝒏

bw
𝑛 , 𝒏ba

𝑛 ]T, then the error state transfer equation is given as

𝑑

𝑑𝑛

( [
𝝃𝑛
𝝇𝑛

] )
= 𝑭𝑛

[
𝝃𝑛
𝝇𝑛

]
+ 𝑮𝑛𝒏𝑛 (3.4)

Derive the state transition matrix Fn and calculate the covariance matrix Pn, that is

𝜱𝑛 = exp(𝑭𝑛d𝑡) (3.5)
𝑷𝑛 =𝜱𝑛𝑷𝑛−1𝜱

T
𝑛 + 𝑮𝑛𝑸𝑛𝑮

T
𝑛 (3.6)
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3.2. Measurement update

According to the observation Equation (2.6), there is

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝒚1
𝑛 = 𝑹T

𝑛 ( 𝒍1 − 𝒑𝑛)) + 𝒏1
y

𝒚2
𝑛 = 𝑹T

𝑛 ( 𝒍2 − 𝒑𝑛)) + 𝒏2
y

. . . . . .

𝒚𝑘𝑛 = 𝑹T
𝑛 ( 𝒍𝑘 − 𝒑𝑛)) + 𝒏𝑘y

(3.7)

where 𝒚𝑖𝑛 = distance of the landmark i relative to the sensor itself. And one line of the Equation (3.7)
can be rewrite as

𝒀 𝑖𝑛 = 𝑿−1
𝑛 𝑳𝑖 + 𝑺𝑖𝑛 (3.8)

where 𝒀 𝑖𝑛 = (𝒚𝑖𝑛, 0, 1, 0)T, 𝑳𝑖 = ( 𝒍 𝑖𝑛, 0, 1, 0)T, 𝑺𝑖𝑛 = (𝒏𝑖y, 0, 0, 0)T.
Then the observation error �̃�𝑛 is defined as

𝒁𝑖𝑛 = �̂�𝑛𝒀
𝑖
𝑛 − 𝑳𝑖

= 𝜼𝑛𝑳
𝑖 − 𝑳𝑖 + �̂�𝑛𝑺

𝑖
𝑛

(3.9)

Stack up all the observation errors and eliminate all zero rows, there is

�̃�𝑛 =
��
(
𝝃𝑅𝑛

)
× 𝒍

1
𝑛 + 𝝃 𝑝𝑛 + �̂�𝑛𝒏

1
y

......(
𝝃𝑅𝑛

)
× 𝒍
𝑘
𝑛 + 𝝃 𝑝𝑛 + �̂�𝑛𝒏

𝑘
y

���
≈
��
−
(
𝒍1𝑛

)
×
𝑳1 + �̂�𝑛𝑺

1
𝑛

......

−
(
𝒍𝑘𝑛

)
×
𝑳𝑘 + �̂�𝑛𝑺

𝑘
𝑛

�����
��
𝝃𝑅𝑛

𝝃𝑣𝑛
𝝃 𝑝𝑛
𝝃𝑙𝑛

����� +
��
�̂�𝑛𝒏

1
y

......

�̂�𝑛𝒏
𝑘
y

���
= 𝑯𝑛𝝃𝑛 + 𝒏y (3.10)

and the error after update is

𝜼𝑛+1 = �̂�𝑛+1𝑿
−1
𝑛 = �̂�𝑛+1 �̂�

−1
𝑛 𝜼𝑛 (3.11)

Then the error state update equation can be established as

𝜼𝑛 + 1 = exp(𝑲 𝜉 �̃�𝑛)𝜼𝑛 (3.12)

𝜼𝑛 = exp(𝝃𝑛) ≈ 1 + (𝝃𝑛)×, ignore the high-order small quantity, there is

𝝃𝑛+1 = 𝝃𝑛 + 𝑲 𝜉 �̃�𝑛 (3.13)

Therefore, the state error is updated as[
𝝃𝑛+1
𝝇𝑛+1

]
=

[
𝝃𝑛
𝝇𝑛

]
+ 𝑲

( [
𝑯𝝃𝑛 𝑯𝝇𝑛

] [𝝃𝑛
𝝇𝑛

]
+ 𝑽𝑛

)
(3.14)

where 𝑲 = [𝑲 𝜉 , 𝑲 𝜍 ]T; 𝑯𝝃𝑛 = 𝑯𝑛; 𝑯𝝇𝑛
=
[
03𝑘,3 03𝑘,3

]
; 𝑽𝑛 is the Gaussian noise.
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Figure 1. Express the VINS movement process using factor graphs.

3.3. Filter update

The gain 𝑲 can be calculated as

𝑲 = 𝑷𝑛𝑯
T
𝑛 (𝑯𝑛𝑷𝑛𝑯

T
𝑛 + 𝑽𝑛)−1 (3.15)

and the state deviation increment is calculated through the gain 𝑲

[𝛿𝑿, 𝛿𝒃] = 𝑲�̃�𝑛 (3.16)

Then the system states 𝑿𝑛+1 and covariance 𝑷𝑛+1 are updated as⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑿𝑛+1 = exp(𝛿𝑿)𝑿𝑛
𝒃𝑛+1 = 𝒃𝑛 + 𝛿𝒃

𝑷𝑛+1 = (𝑰 − 𝑲𝑯𝑛)𝑷𝑛
(3.17)

4. The DSWFG algorithm

4.1. The overall framework

Based on the state Equation (2.4) and observation Equation (2.5), a small segment of the VINS movement
process is established with a factor graph, as shown in Figure 1. In this figure, the pose 𝒙𝑛 of the system
and the space coordinates 𝒍𝑛 of the landmarks are variable nodes, represented by circles; the state
constraints 𝒇 𝑛 and observation constraints 𝒛𝑛 of adjacent variable nodes are factor nodes, represented
by squares. Because IMU has a high data rate, it is generally regarded as a reference source in the
VINS. When the visual or IMU sensors update the observation data, the variable nodes (for example,
x1) representing the state variables at the current time and the constrained factor nodes (for example,
z1) are generated in the factor graph. During the operation of the factor graph optimisation, whenever
new observations are obtained, the Bayesian inference can be used to obtain the optimal estimate of the
variable at each time.

Therefore, the complete motion process of VINS can be represented by a factor graph as several dots
and several edges connecting the dots. Each dot in the graph is the variable node to be optimised, and
each edge connected to two variable nodes corresponds to a factor node, which is used to constrain the
variable node. Through the construction of dots and edges, the error distribution structure of the visual–
inertial system can be established intuitively, and the constraint relationship between variables can be
displayed intuitively. For the factor graphs, its maximum posterior probability inference is equivalent to
maximising the product of the potential energy of all factors (Dellaert and Kaess, 2017), which is also
equivalent to minimising the solution of the nonlinear least squares problem. For the established graph,
the numerical iterative method, like Gauss–Newton (GN) or Levenberg–Marquardt (LM), can be used
to obtain the optimal solution of each factor node through a series of linear approximations.

Based on the factor graph optimisation, an improved VINS method named DSWFG is proposed.
The following elaborates the DSWFG from three parts: the overall framework, the front-end processing
method and the back-end processing method. Whenever there is an image frame input, the front-end part
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Figure 2. The overall framework of DSWFG algorithm.

extracts the speeded up robust features (SURF) points on the image frame and uses the kanade-lucas-
tomasi (KLT) tracking algorithm to track the feature points extracted from the previous image frame and
takes the threshold constraint method to obtain the valid feature points of the current frame. At the same
time, the front-end part uses the IMU pre-integration method to align the IMU with the image frame, then
sends the processed IMU data and vision data to the back end. The back-end part limits the data operation
scale with SWF and constructs the graph with the fixed number of states in the window using factor
graphs. At the same time, the prior information of the sliding window is set dynamically to maintain the
interframe constraint. The overall framework of DSWFG algorithm is shown in Figure 2. The following
will be illustrated from the IMU pre-integration method in the front-end part, the construction of prior
information of the sliding window in the back-end part and the optimisation of the states in the window.

4.2. The IMU pre-integration method in the front-end part

Due to the high frequency of the IMU, there will be a large number of variable nodes added in the
graph. Using the numerical iterative method to approximate the optimal solution of each factor node
directly will result in less optimisation benefits for the high computational complexity. Therefore, a
set of the IMU measurements between two adjacent image frames are integrated into a single relative
motion constraint by the IMU pre-integration, and the processed IMU measurements are aligned with
the image frames. Then, in the process of overall batch optimisation, the visual and IMU constraints
can be considered at the same time, reducing the calculation burden and improving the optimisation
effect. In addition, the IMU pre-integration method introduces the pre-integration term through an
incremental expression, which can effectively avoid the recalculation of the IMU measurements during
the optimisation process. The IMU pre-integration method in this section is based on the research of
Forster (Forster et al., 2017), and the derivation process is as follows.

The motion relationship and the IMU noise model can be established as{
�̃�B(𝑡) = 𝒘B(𝑡) + 𝒃𝑔 (𝑡) + 𝜼𝑔 (𝑡)
�̃�B (𝑡) = 𝑹T

WB (𝒂W(𝑡) − 𝒈W) + 𝒃𝑎 (𝑡) + 𝜼𝑎 (𝑡)
(4.1)

where 𝑹WB represents rotation matrix from the carrier coordinate system B to world coordinate system
W. IMU angular velocity measurements 𝒘B are added bias 𝒃𝑔 and noise 𝜼𝑔. The measured values of
IMU accelerometer 𝒂B are added bias 𝒃𝑎 and noise 𝜼𝑎. The differential motion model is established as

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�𝑹WB = 𝑹WB𝒘

∧
B

�𝒗W = 𝒂W

�𝒑W = 𝒗W

(4.2)
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where the symbol ∧ represents the transformation of the vector into an antisymmetric matrix. The
discrete form of motion equation is obtained by Euler integral

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑹WB(𝑡 + Δ𝑡) = 𝑹WB (𝑡)Exp(𝒘B(𝑡)Δ𝑡)
𝒗W(𝑡 + Δ𝑡) = 𝒗W(𝑡) + 𝒂W(𝑡)Δ𝑡
𝒑W(𝑡 + Δ𝑡) = 𝒑W(𝑡) + 𝒗W(𝑡)Δ𝑡 + 1

2
𝒂W(𝑡)Δ𝑡2

(4.3)

where Δ𝑡 = interval time between two adjacent IMU measurements. Combining the IMU noise model
with Equation (4.3) gives

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑹WB (𝑡 + Δ𝑡) = 𝑹WB(𝑡)Exp

((
�̃�B(𝑡) − 𝒃𝑔 (𝑡) − 𝜼𝑔𝑑 (𝑡)

)
Δ𝑡
)

𝒗W(𝑡 + Δ𝑡) = 𝒗W(𝑡) + 𝒈WΔ𝑡 + 𝑹WB

(
�̃�B(𝑡) − 𝒃𝑎 (𝑡) − 𝜼𝑎𝑑 (𝑡)

)
Δ𝑡

𝒑W(𝑡 + Δ𝑡) = 𝒑W(𝑡) + 𝒗W(𝑡)Δ𝑡 + 1
2
𝒈WΔ𝑡2 + 1

2
𝑹WB

(
�̃�B(𝑡) − 𝒃𝑎 (𝑡) − 𝜼𝑎𝑑 (𝑡)

)
Δ𝑡2

(4.4)

where noise terms 𝜼𝑔𝑑 and 𝜼𝑎𝑑 are in discrete form, and the relationships between discrete noise and
continuous noise are ⎧⎪⎪⎪⎨⎪⎪⎪⎩

Cov(𝜼𝑔𝑑 (𝑡)) =
1
Δ𝑡

Cov(𝜼𝑔 (𝑡))

Cov(𝜼𝑎𝑑 (𝑡)) =
1
Δ𝑡

Cov(𝜼𝑎 (𝑡))
(4.5)

For symbol simplicity, the reference coordinate system in the formula is omitted. Assuming that the
IMU measurements are aligned with the image frames, then the pose relationship between the adjacent
image frames i and j can be obtained as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑹 𝑗 = 𝑹 𝑗

𝑗−1∏
𝑘=𝑖

Exp
((
�̃�𝑘−𝒃𝑔𝑘−𝜼

𝑔𝑑
𝑘

)
Δ𝑡
)

𝒗 𝑗 = 𝒗𝑖 + 𝒈Δ𝑡𝑖 𝑗 +
𝑗−1∑
𝑘=𝑖

𝑹𝑘
(
�̃�𝑘 − 𝒃𝑎𝑘 − 𝜼𝑎𝑑𝑘

)
Δ𝑡

𝒑 𝑗 = 𝒑𝑖 +
𝑗−1∑
𝑘=𝑖

[
𝒗𝑘Δ𝑡 + 1

2
𝒈Δ𝑡2 + +1

2
𝑹𝑘

(
�̃�𝑘 − 𝒃𝑎𝑘 − 𝜼𝑎𝑑𝑘

)
Δ𝑡2

] (4.6)

In order to avoid solving 𝑹𝑖 , 𝒗𝑖 , 𝒑𝑖 again, introduce the pre-integration term through incremental
expression

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ𝑹𝑖 𝑗 = 𝑹T
𝑖 𝑹𝑖 =

𝑗−1∏
𝑘=𝑖

Exp
((
�̃�𝑘−𝒃𝑔𝑘−𝜼

𝑔𝑑
𝑘

)
Δ𝑡
)

Δ𝒗𝑖 𝑗 = 𝑹T
𝑖 (𝒗 𝑗 − 𝒗𝑖 − 𝒈Δ𝑡𝑖 𝑗) =

𝑗−1∑
𝑘=𝑖

𝑹𝑖𝑘
(
�̃�𝑘−𝒃𝑎𝑘−𝜼𝑎𝑑𝑘

)
Δ𝑡

Δ 𝒑𝑖 𝑗 = 𝑹T
𝑖

(
𝒑 𝑗 − 𝒑𝑖 − 𝒗𝑖Δ𝑡𝑖 𝑗 + 1

2
𝒈Δ𝑡2𝑖 𝑗

)
=

𝑗−1∑
𝑘=𝑖

[
𝒗𝑖𝑘Δ𝑡 + 1

2
𝑹𝑖𝑘

(
�̃�𝑘−𝒃𝑎𝑘−𝜼𝑎𝑑𝑘

)
Δ𝑡2

] (4.7)

Therefore, the IMU constraints between image frames can be obtained by the IMU measurements
between two adjacent image frames.
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Figure 3. The processing flow of SWF.

4.3. The construction of prior information in the back-end part

Based on the front-end IMU pre-integration method, the IMU measurements are aligned with the image
frames, and the processed data collected from IMU and visual sensor are sent to the back end. The
back-end part limits the amount of data with the sliding window and constructs the graph with the fixed
number of states in the window using factor graph optimisation method. At the same time, the prior
information of the current sliding window is set dynamically to maintain the interframe constraint. The
processing flow of SWF is shown in Figure 3.

Once the image frame has been acquired, the front-end data processing module outputs observation
information and motion state of the current image frame and integrates it into the sliding window as the
current frame information. In order to maintain a fixed number of K image frames within a window, the
historical image frames in the window must be processed. Then, the oldest image frame in the window
is removed. Therefore, once a new image frame has been acquired, the current frame information is
added to the rear end of the window, and the oldest image frame at the front of the window is removed
at the same time.

If the oldest image frame in the window is directly removed and only the internal states in the window
are optimised, then the inter-frame constraint will be lost. That is, there is an IMU constraint between
the image frame removed and the adjacent image frame in the window. Only performing optimisation
operations on the internal states in the window will easily cause the optimised states not meet the IMU
constraint, which affects the overall estimate precision.

Therefore, the oldest image frame cannot be directly removed. The constraint between the oldest
and the adjacent image frame in the window needs to be considered. Once new image frame has been
acquired, the image frame to be removed is determined and the motion state corresponding to the image
frame removed is selected as the priori information. Since the state corresponding to the removed image
frame has undergone multiple optimisation estimates, it can be considered that the state corresponding
to the removed image frame can be fixed without being optimised again. Select it as the prior information
of current sliding window and form the IMU constraint with the state corresponding to the adjacent
image frame. In the subsequent optimisation, it can be used to constrain the states to be optimised,
remove the error measurement information and fix the problem of states mutation caused by the input
of wrong states, so that ensure the accuracy of the estimates.

The triangulation method (Richard and Zisserman, 2000) is used to estimate the spatial positions of
M landmarks observed by the K image frames in the window to form interframe observation constraints.
Combined with the estimations of motion states, interframe motion constraints and observation con-
straints are established. The corresponding logical relationship is constructed using factor graphs, and
the numerical iterative method is used to approximate the optimal solutions of K motion states in the
window. Then, the motion state corresponding to the oldest image frame of current window is selected
and used as the output of current sliding window.

4.4. The optimisation of the states in the window

Based on the data processing of the current sliding window, K motion states, M spatial positions of
landmarks and the prior information of current sliding window are obtained. The graph is constructed
with the data obtained. Then the optimisation of graph is equivalent to the least squares problem inside
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Figure 4. The processing flow of factor graph optimisation.

the window. For the established graph, use the LM method to obtain the optimal solution of each factor
node through a series of linear approximations. The processing flow of factor graph optimisation is
shown in Figure 4.

The state 𝒙 is constituted with K motion states 𝒙𝑛 in current sliding window, M landmarks 𝒍𝑛 observed
by the K motion states, as well as the priori information 𝒙pri, which can be written as

𝒙 = {𝒙pri, 𝒙1, . . . , 𝒙𝐾 , 𝒍1, . . . , 𝒍𝑀 } (4.8)

where the state 𝒙𝑛 includes the position and rotation of the carrier, 𝒍𝑚 =
[
𝑥𝑚 𝑦𝑚 𝑧𝑚

]
and c 𝒍𝑚 =[ c𝑥𝑚

c𝑦𝑚
c𝑧𝑚

]
refer to the spatial positions of the mth landmark in the world coordinate and camera

coordinate system, respectively. Showing non-zero blocks only, the sparse matrix 𝑯 is constructed as

𝑯 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−𝑯𝒙,1 1

−𝑮𝒙,1 −𝑮𝒍 ,1
. . . . . . . . .

−𝑯𝒙,𝐾 1
−𝑮𝒙,𝐾 −𝑮𝒍 ,𝐾

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.9)

where 𝑯𝒙,𝑛 is a 6 × 6 Jacobian matrix

𝑯𝒙,𝑛 =

[
𝜕𝒆𝑛IMU
𝜕 𝒑𝑛

𝜕𝒆𝑛IMU
𝜕𝑹𝑛

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝜕P𝒆𝑛IMU
𝜕 𝒑𝑛

𝜕P𝒆𝑛IMU
𝜕𝑹𝑛

𝜕R𝒆𝑛IMU
𝜕 𝒑𝑛

𝜕R𝒆𝑛IMU
𝜕𝑹𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(4.10)

where IMU error 𝒆𝑛IMU = difference between the pre-integration term and the state solved by the IMU
measurements at epoch n, including position error P𝒆𝑛IMU and rotation error R𝒆𝑛IMU; 𝑹𝑛 = rotation matrix
at epoch n; 𝒑𝑛 = the position at epoch n; and 𝑮𝒙,𝑛 = a 2𝑚 × 6 matrix, where m is determined by the
number of landmarks observed in the current observation frame, that is

𝑮𝒙,𝑛 = [𝑮1
𝒙,𝑛, . . . ,𝑮

𝑚
𝒙,𝑛]T (4.11)

where 𝑮𝑚
𝒙,𝑛 is a 2 × 6 Jacobian matrix

𝑮𝑚
𝒙,𝑛 =

[
𝜕𝒆𝑚VIS
𝜕 𝒑𝑛

𝜕𝒆𝑚VIS
𝜕𝑹𝑛

]
=

[
𝜕𝒆𝑚VIS
𝜕c 𝒍𝑚

𝜕c 𝒍𝑚
𝜕 𝒑𝑛

𝜕𝒆𝑚VIS
𝜕c 𝒍𝑚

𝜕c 𝒍𝑚
𝜕𝑹𝑛

]
(4.12)
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where 𝒆𝑚VIS =
[ u𝒆𝑚VIS

v𝒆𝑚VIS
]
= observation error of the mth landmark projected in the pixel coordinate

system at epoch n.

𝒈 =
𝜕𝒆𝑚VIS
𝜕c 𝒍𝑚

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝜕u𝒆𝑚VIS
𝜕c𝑥𝑚

𝜕u𝒆𝑚VIS
𝜕c𝑦𝑚

𝜕u𝒆𝑚VIS
𝜕c𝑧𝑚

𝜕v𝒆𝑚VIS
𝜕c𝑥𝑚

𝜕v𝒆𝑚VIS
𝜕c𝑦𝑚

𝜕v𝒆𝑚VIS
𝜕c𝑧𝑚

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(4.13)

𝑮𝒍 ,𝑛 is a 2𝑚 × 6𝑚 matrix, where m is determined by the number of landmarks observed in the current
observation frame. 𝑮𝒍 ,𝑛 is expressed as

𝑮𝒍 ,𝑛 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑮1

𝒍 ,𝑛

𝑮2
𝒍 ,𝑛

. . .
𝑮𝑚

𝒍 ,𝑛

⎤⎥⎥⎥⎥⎥⎥⎦ (4.14)

where 𝑮𝑚
𝒍 ,𝑛 is a 2 × 3 Jacobian matrix

𝑮𝑚
𝒍 ,𝑛 =

𝜕𝒆𝑚VIS
𝜕 𝒍𝑚

=

[
𝜕𝒆𝑚VIS
𝜕c 𝒍𝑚

𝜕c 𝒍𝑚
𝜕 𝒍𝑚

𝜕𝒆𝑚VIS
𝜕c 𝒍𝑚

𝜕c 𝒍𝑚
𝜕 𝒍𝑚

]
(4.15)

The K IMU observation errors 𝒆𝑛IMU and M landmarks observation errors 𝒆𝑚VIS are stacked to form the
internal error vector 𝒆 in current sliding window. 𝜮 = total covariance, the structure is

𝒆 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝒆1
IMU
. . .
𝒆𝐾IMU

𝒆1
VIS
. . .
𝒆𝑀VIS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝜮−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜮−1
0

. . .
𝜮−1
𝐾

𝜮−1
𝐾+1

. . .
𝜮−1
𝐾+𝑀

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.16)

Form linear equations corresponding to all states in current sliding window for linear optimisation

(𝑯T𝜮−1𝑯)𝛿𝒙 = −𝑯𝜮−1𝒆 (4.17)

According to the construction of factor graphs, motion state estimations in the current sliding window
are determined jointly by the motion states, landmark positions and prior information. Since the state
related to the prior information is fixed, the algorithm does not need to solve the increment related to
the fixed value during optimisation process. Then the dimension of matrix 𝑯 can be reduced and the
influence of prior information can be kept, so that the computational complexity is reduced, and the
incremental solution is not affected.

The overall state increment is obtained by solving the linear equation, and the node state is corrected
multiple times using the overall state increment. Combined with the prior information of the current
sliding window, the optimal estimations of states in the window can be obtained and fed back to the
window for the next optimisation operation.

5. Experimental results and analysis

5.1. Experimental environment and design

To validate the new method, the comparative experiments are designed between the optimal filtering
methods and factor graph optimisation method. Based on the EKF, InEKF and the proposed DSWFG
method, the karlsruhe institute of technology and toyota institute of technology (KITTI) dataset is
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Table 1. Experimental parameters.

Simulation parameters Value Unit

Gyroscope noise 0·04 rad/
(
h
√

Hz
)

Gyroscope random walk 1·0e-06 rad/
(
s2
√

Hz
)

Accelerometer noise 0·04 m/
(
s2
√

Hz
)

Accelerometer random walk 1·0e-06 m/
(
s3
√

Hz
)

IMU initialise attitude variance 1·0e-06 rad2

IMU initialise position variance 1·0e-04 m2

IMU initialise velocity variance 1·0e-06 (m/s)2

selected as the experimental environment. The KITTI dataset is a combination of image frames, trajectory
data and IMU data collected by the autonomous driving platform driving in different complex scenarios,
such as cities, villages and highways (Geiger et al., 2012). The experiments mainly use the grayscale
images provided by the dataset fragments, the IMU measurements provided by the OXTS RT 3003
positioning system, and the real position and attitude data to test the effect of the algorithm. The
synchronised IMU output rate and image output rate are both 10Hz.

In this paper, the motion trajectory estimation, pose error statistics, and single-cycle time consuming
are analysed to verify the proposed DSWFG algorithms. The setting of the sliding window range and
the maximum number of optimisation iterations greatly affect the accuracy and real-time performance
of the DSWFG algorithm. In order to ensure that the experiment results in different scenes are not
affected by the change of parameters, the parameters of the sliding window range and the maximum
number of iterations are fixed. Then, the range is set to 10, and the maximum number is set to 6. And the
simulation is processed in the Matlab R2016 on a PC with Intel Core i5-9400 CPU at 2·90 GHz, 8-GB
RAM equipped with Windows 10. The main noise parameters and variances are shown in Table 1.

5.2. Multi-scenario comparison experiments

5.2.1. The residential area driving scene
The dataset sequence named 2011_09_26_drive_0036 is used. In order to establish a table for further
quantitative analysis, the dataset segment name is abbreviated as 26–36. The dataset contains 803 image
frames and a total of 715 meters of residential area driving. This scene contains the driving process
of two right-angle turns. Figure 5 intuitively describes the results of the EKF, InEKF and DSWFG
algorithms on this dataset segment. The lines in Figure 5(a) represent the real motion trajectory Vs.
the estimated trajectory of each algorithm. In Figures 5(b) and 5(c), each algorithm is evaluated by
three-directional position errors and attitude angle errors.

Before the second right-angle bend, it can be seen that the motion trajectories estimated by the three
algorithms are basically consistent with the real trajectory, and the main error lies in the turning of the
real trajectory. At the second right-angle turn, which is at frame 338, the driving platform encounters
and follows a truck. Because the distance between the driving platform and the truck is relatively close,
a huge moving object affects the constraints of landmarks. Then, it makes the position drift using the
EKF and InEKF. It can also be seen that the InEKF and EKF have a certain degree of divergence in
attitude and position estimation error from the frame 338. In comparison, the InEKF is superior to the
EKF. And from an overall perspective, the DSWFG algorithm achieves optimal stability and superior
estimation accuracy in this scenario.
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(a) (b)

(c)

Figure 5. Results of residential area scene using the 26–36 dataset. (a) The real trajectory vs. calculated
trajectories. (b) The attitude error. (c) The position error.

5.2.2. The city driving scene
The dataset sequence named 2011_09_30_drive_0018 is used, and the dataset segment name is abbre-
viated as 30–18. The first 1200 image frames and a total of 872 meters of city driving are used for
simulation. This scene contains the driving process of four right-angle turns. During this traversal,
Figure 6 intuitively describes the results of the EKF, InEKF and DSWFG algorithms on this dataset
segment.

Before the third right-angle bend, it can be seen that the motion trajectories estimated by the three
algorithms are basically consistent with the real trajectory. At the 887th frame and the 1134th frame
around the fourth right-angle turn, there are moving objects, which last about 30 frames and 20 frames,
respectively. The common effect of moving objects and right-angle bending causes the divergence of
the trajectory estimated by the InEKF and leads to worse estimation accuracy. Due to the accumulation
of errors, the estimation accuracy of EKF is much lower than the DSWFG algorithm. At the same time,
it can also be seen from Figures 6(b) and 6(c) that the position estimation error of the InEKF starts to
diverge from the 1134th frame, while the EKF algorithm and the DSWFG algorithm can still maintain
good stability. The overall comparison shows that the DSWFG algorithm achieves the best stability and
superior estimation accuracy in this scenario.

5.2.3. The highway driving scene
The dataset sequence named 2011_10_03_drive_0042 is used, and the dataset segment name is abbre-
viated as 03–42. The 1170 image frames and a total of 2566 meters of highway driving area are used.
This scene records the driving process of getting on and off the highway, which includes a starting curve
and a final 360-degree circular curve. In this traversal process, Figure 7 describes the results of the EKF,
InEKF and DSWFG algorithms. Given that the number of vehicles on the highway are few and other
vehicles are relatively fast in this dataset fragment, the impact of moving objects is relatively small.
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(a) (b)

(c)

Figure 6. Results of city driving scene using the 30–18 dataset. (a) The real trajectory vs. calculated
trajectories. (b) The attitude error. (c) The position error.

(a) (b)

(c)

Figure 7. Results of highway driving scene using the 03–42 dataset. (a) The real trajectory vs. calculated
trajectories. (b) The attitude error. (c) The position error.
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Table 2. Results of EKF, InEKF and DSWFG.

RMSE Average

Sequence Method x (m) y (m) z (m) Pitch (°) Roll (°) Yaw (°) time (s)

26-19 EKF 0·356 4·288 6·285 2·158 1·710 6·810 0·095
InEKF 0·821 2·938 9·091 1·449 1·254 1·518 0·037

DSWFG 1·198 2·389 2·785 1·364 0·151 0·739 0·592
26-36 EKF 7·150 64·603 64·007 11·526 2·755 10·623 0·099

InEKF 5·802 11·944 28·520 3·801 6·053 2·315 0·039
DSWFG 0·525 4·413 3·751 0·553 2·626 0·981 0·549

30-18 EKF 19·132 2·152 10·081 6·445 3·477 5·878 0·120
InEKF 18·314 24·761 23·087 8·502 2·894 7·772 0·052

DSWFG 1·856 1·864 6·894 0·615 1·663 1·464 0·373
30-20 EKF 1·894 22·954 11·088 3·333 5·745 6·268 0·109

InEKF 15·777 56·610 11·757 2·410 7·193 14·599 0·054
DSWFG 2·720 5·315 6·840 0·882 1·374 1·486 0·406

30-33 EKF 154·187 112·883 84·057 11·862 6·627 30·531 0·135
InEKF 208·391 178·597 157·354 7·328 10·683 41·192 0·070

DSWFG 4·982 6·337 21·047 0·496 0·324 1·168 0·250
30-34 EKF 40·222 80·776 111·373 38·377 43·699 9·970 0·119

InEKF 30·303 29·229 144·733 4·982 3·732 7·031 0·054
DSWFG 9·303 2·544 7·733 0·464 0·554 0·100 0·313

03-42 EKF 8·448 9·217 167·231 5·681 8·237 4·355 0·097
InEKF 161·326 70·874 362·543 11·288 15·008 5·699 0·045

DSWFG 5·163 3·290 36·903 0·816 1·809 1·696 0·485

It can be seen that the movement trajectories solved by three verified algorithms are basically
consistent with the real trajectory in Figure 7(a). The motion trajectories solved by the DSWFG algorithm
and EKF algorithm almost match the real trajectory, especially in the middle of the real trajectory. Due
to the influence of dynamic objects at the beginning, the trajectory obtained by the InEKF is deviated,
which in turn affects the accuracy of the subsequent trajectory.

5.2.4. Statistical analysis
In addition to the typical three sets of experimental results above, more experiments were carried out for
quantitative analysis. Table 2 shows the error statistical results of seven driving scenes, including rural
roads, circular driving, complex loops and highways. The bold part indicates that the result is relatively
optimal. Based on the comparison results of the three algorithms, it can be seen that the DSWFG
algorithm can still maintain a good solution result in various sports scenarios. In order to compare the
results of the three algorithms accurately, the root-mean-square error (RMSE) in three directions and the
computing time are taken as the evaluation index. The following conclusions can be drawn from Table 2:

(a) From the results of sequences 26–36, 30–18, 30–33, 30–34 and 03–42, it can be seen that the
DSWFG algorithm has better accuracy than the InEKF and EKF algorithms in terms of position
and attitude errors.

(b) From the results of sequences 26–19 and 30–20, it can be seen the EKF are slightly better than the
DSWFG algorithm in some ways. However, considering the overall estimation accuracy of the
position and attitude, the DSWFG algorithm has better accuracy than do the InEKF and EKF
algorithms.
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(c) Analysing the time consuming of a single cycle, an overall comparison shows that the InEKF
algorithm is the fastest, while the DSWFG algorithm is relatively slow.

(d) The real-time performance of the InEKF is superior to the other two algorithms, and its accuracy is
generally better than the traditional EKF method under the ideal conditions during the background
environment is stationary. However, with the influence of moving objects, the stability of the InEKF
is poor, and its motion trajectory is easy to diverge. The real-time performance of the DSWFG is
relatively poor, but the comparison results in various motion scenes show that it can maintain the
superior accuracy and optimal stability.

6. Conclusion

This paper presents a new visual–inertial integrated navigation algorithm. Considering the optimisation
processing of factor graphs, the front end of the algorithm uses the IMU pre-integration to align the
IMU with the image frame. Because of the effect of data accumulation and prior information on the
optimisation performance of factor graphs, the DSWFG algorithm is proposed. The sliding window
constraint is added to the factor graphs to limit the operation scale, the prior information of the
sliding window is dynamically set to maintain the interframe constraints, and the error measurements
are corrected to ensure the accuracy of the optimised quantities in the sliding window. A series of
dynamic experiments of the residential area, the city driving and the highway driving scenes are
carried out to demonstrate the new approach. The traditional EKF, the improved InEKF and the new
DSWFG algorithms are carried out for comparison through the aspects of motion trajectory, attitude,
and positioning error and time consuming. The results show that DSWFG algorithm can maintain the
superior solution accuracy and optimal stability in various motion scenes. This research provides a
reference for the further study of visual–inertial navigation systems.
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