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We study the blow-up phenomenon for non-negative solutions to the following
parabolic problem:

ut(x, t) = ∆u(x, t) + (u(x, t))p(x) in Ω × (0, T ),

where 0 < p− = min p � p(x) � max p = p+ is a smooth bounded function. After
discussing existence and uniqueness, we characterize the critical exponents for this
problem. We prove that there are solutions with blow-up in finite time if and only if
p+ > 1.

When Ω = R
N we show that if p− > 1 + 2/N , then there are global non-trivial

solutions, while if 1 < p− � p+ � 1 + 2/N , then all solutions to the problem blow up
in finite time. Moreover, in the case when p− < 1 + 2/N < p+, there are functions
p(x) such that all solutions blow up in finite time and functions p(x) such that the
problem possesses global non-trivial solutions.

When Ω is a bounded domain we prove that there are functions p(x) and domains
Ω such that all solutions to the problem blow up in finite time. On the other hand, if
Ω is small enough, then the problem possesses global non-trivial solutions regardless
of the size of p(x).
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1. Introduction

We consider non-negative solutions to the following parabolic semilinear problem
with a reaction given by a variable exponent:

ut(x, t) = ∆u(x, t) + (u(x, t))p(x) in Ω × (0, T ),
u(x, 0) = u0(x) in Ω,

}
(1.1)

where u0(x) and p(x) are two non-negative continuous, bounded functions. For
future reference let us define

p− = inf
x

p(x) and p+ = sup
x

p(x). (1.2)

We study both cases Ω = R
N or Ω a bounded smooth domain, in which case we

impose Dirichlet boundary conditions to our problem

u(x, t) = 0 on ∂Ω × (0, T ). (1.3)

Existence of a solution can easily be achieved, but uniqueness is subtle due to
the fact that p(x) can be less than 1 in some region of Ω. The difficulty comes
from the non-Lipschitz character of the reaction [1, 10, 15]. Nevertheless, in this
case we can prove existence of a maximal and a minimal solution. Moreover, a
comparison principle among maximal solutions and among minimal solutions can
easily be obtained. In the case p− < 1 we show that these solutions are always
different for the initial value u0 ≡ 0 (and hence we have non-uniqueness). When
p− � 1, uniqueness is standard. We shall discuss these issues in the next section.

When dealing with a parabolic problem there are several interesting features
to analyse, but the first step is to identify the so-called critical exponents. For p
constant we have that there are solutions to (1.1) with T < ∞ (T is the maximal
existence time) if and only if p > 1. In this case, we have

lim
t↗T

‖u(·, t)‖∞ = +∞,

a phenomenon that is called blow-up in the literature and has attracted great inter-
est (see, for instance, [5, 7, 18, 22, 28, 29] and the references therein). However, the
case of a reaction given by a power with variable exponent is much less known
in relation with blow-up. In fact, only a brief mention is included in [24], where
existence of blow-up solutions is shown provided that p− > 1.

Hence, the first critical exponent one has to look for in a parabolic problem is the
blow-up exponent, an exponent such that there are solutions with blow-up if and only
if p > pb. When Ω = R

N and p is constant we have pb = 1. Moreover, in this case
there exists a second critical exponent, called the Fujita exponent [14,17,19,22,31].
We refer the reader to [12,16,20,23,25–27,30] for more references concerning Fujita
exponents in other related problems. For p > pF = 1 + 2/N there are solutions
with blow-up and global solutions, while for 1 < p � pF every non-trivial solution
blows up. Thus, the Fujita exponent separates regions of parameters for which all
non-trivial solutions blow up and regions where there are both global and blow-up
solutions.
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In the Dirichlet case, we also have that the blow-up exponent is pb = 1 and there
is no Fujita-type exponent, since for p > 1 there are always both global and blow-up
solutions.

Our main aim in this paper is to find conditions on the variable exponent function
p(x), analogous to the above for constant p, in order to have existence or nonex-
istence of global solutions and/or blow-up solutions. These conditions are called
blow-up conditions or Fujita-type conditions.

We prove a sharp result concerning the blow-up occurrence (theorem 1.1), and
two conditions of Fujita type in R

N (theorem 1.2) that are complemented with two
examples. We also present a new phenomenon of Fujita type in bounded domains:
roughly speaking, if p(x) < 1 in some large set and p(x) > 1 in some other set, also
large, then every solution blows up (see theorem 1.3).

First, let us look for the critical blow-up condition. In this case we have that
p+ = 1 is the critical condition for (1.1) in both R

N and Ω bounded with (1.3).
Indeed, it is enough for p(x) to be larger than 1 in a small ball to have existence of
blow-up solutions.

Theorem 1.1. For problem (1.1) in R
N or in a bounded domain with (1.3), we

have the following:

(i) if p+ > 1, then there are solutions that blow up in finite time;

(ii) if p+ � 1, then every solution is global.

The existence of blow-up solutions in the case p− > 1 is proved in [24].
Next we look for the Fujita condition. For Ω = R

N we have the following result,
which says that the value pF = 1+2/N plays a role. If p(x) lies above pF everywhere,
then there are global solutions and if p(x) lies below pF everywhere, then every
solution blows up, while there are functions p(x) crossing the value pF that show
that in this case we can have both situations.

Theorem 1.2.

(i) If p− > 1 + 2/N , then problem (1.1) possesses global non-trivial solutions.

(ii) If 1 < p− < p+ � 1 + 2/N , then all solutions to problem (1.1) blow up in
finite time.

(iii) If p− < 1 + 2/N < p+, then there are functions p(x) such that problem (1.1)
possesses global non-trivial solutions and functions p(x) such that all solutions
blow up.

In a bounded domain with Dirichlet boundary conditions we find the surprising
fact that there is also a Fujita-type phenomenon. In fact, we can have that every
non-trivial solution to (1.1) with Dirichlet boundary conditions (1.3) blows up. This
has to be contrasted with the case when p is constant, in which there are always
non-trivial global solutions. On the other hand, if the domain is small enough, then
there are global solutions regardless of the function p(x). Both situations constitute
the core of the following theorem.
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Theorem 1.3.

(i) There are functions p(x) and domains Ω such that all solutions to prob-
lem (1.1)–(1.3) blow up in finite time.

(ii) If Ω ⊂ Br(x0) for some x0 ∈ R
N and r <

√
2N then problem (1.1)–(1.3)

possesses global non-trivial solutions regardless the exponent p(x).

(iii) If p− > 1 then there are global solutions regardless the size of the domain Ω.

The paper is structured as follows: in the following section we deal with the
questions of existence, comparison and uniqueness for the solutions of our problems;
in § 3 we perform the study of the blow-up phenomenon.

2. Existence and uniqueness

To begin our analysis, we discuss briefly existence and uniqueness of solutions to
problem (1.1).

If p− � 1, then the reaction term f(x, s) = sp(x) is continuous in both variables
and locally Lipschitz in the second one. Therefore, there exists a unique classical
solution, at least for small times, for any bounded initial datum [13]. Moreover, a
comparison principle also holds: if u0 � v0 (and in addition u � v on ∂Ω in the
Dirichlet problem case), then u(x, t) � v(x, t) whenever they are bounded. See [13]
for Ω bounded and [1] for comparison in the whole space.

If p− < 1, we still have existence of a solution but uniqueness is not true in
general. For instance, when p(x) is constant p(x) ≡ p < 1 and Ω = R

N , the
function

U(t) = c∗t
1/(1−p), c∗ = (1 − p)1/(1−p),

is a non-trivial solution with zero initial datum.
In the general case we can construct a maximal solution just by taking the limit

ū = lim
ε→0

u(ε),

where u(ε) is the unique solution to our problem with initial condition u(ε)(x, 0) =
u0(x) + ε, and with the reaction f(x, s) = sp(x) replaced by

f(ε)(x, s) =

{
sp(x) if s � ε or p(x) � 1,

εp(x)−1s if s < ε and p(x) < 1
(2.1)

(see [9]). In the Dirichlet case we also replace the boundary condition by u(ε) = ε
on ∂Ω. Since the problem for u(ε) satisfy a comparison principle, we get a non-
increasing sequence of positive functions. The existence time is then uniformly
bounded from below. We also deduce in the limit a comparison result for maximal
solutions. A minimal solution is obtained by taking limits for Lipschitz problems
that approximate (1.1) from below. More precisely, let

u = lim
ε→0

u(ε),
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where u(ε) is the unique solution to the problem (1.1) with f replaced by f(ε) and
with the same initial data. Clearly, we have, for any solution u to problem (1.1),
the inequalities

0 � u � u � ū.

Each solution has its own maximal existence time, and the comparison is true
whenever they are defined. Furthermore, any supersolution z to (1.1) satisfies z � u,
though comparison with ū does not necessarily hold, but it does hold if z is strictly
positive, z � µ > 0. An analogous property is true for subsolutions. When p(x)
is constant, p(x) ≡ p < 1 and u0 ≡ 0, we have that the minimal and maximal
solutions are

u(x, t) ≡ 0, ū(x, t) = U(t) = c∗t
1/(1−p),

while a continuous family of different solutions between u and ū exists, namely
u(x, t) = U(t − τ) for t > τ > 0 and u(x, t) = 0 for 0 � t � τ .

We now prove that the same phenomenon occurs if only p− < 1: a non-trivial
solution exists when u0 ≡ 0. Therefore, in this case u �= ū. We remark that in the
case when p is a constant less than 1, it has been proved in [1] (see also [10,15]) that
u0 ≡ 0 is the only initial value that produces non-uniqueness, a phenomenon that
is denoted by almost uniqueness in [8], where a more general diffusion is treated.
We conjecture that almost uniqueness also holds for our problem with variable
exponent provided p− < 1.

Theorem 2.1. Let u0 ≡ 0 in problem (1.1) (posed in Ω or in R
N ), and assume

that the exponent satisfies p(x) � γ < 1 for every x ∈ D, an open bounded subset of
Ω. Then the corresponding maximal solution satisfies ū(x, t) > 0 for every x ∈ D,
and for any 0 < t < T .

Proof. We construct a non-trivial positive subsolution. To this end let D̃ ⊂ D be a
smooth domain and consider the function

w(x, t) = a(t)ϕ1(x),

where ϕ1 is the first eigenfunction of the Laplacian with Dirichlet boundary con-
dition in D̃, namely ϕ1 satisfies −∆ϕ1 = λ1ϕ1 in D̃, ϕ1 = 0 on ∂D̃, normalized
according with maxD̃ ϕ = 1. We want to choose a function a(t) with a(0) = 0 such
that w is a subsolution to (1.1). We first need, for x ∈ D̃,

wt − ∆w = a′(t)ϕ1 + λ1a(t)ϕ1 � a(t)p(x)ϕ
p(x)
1 = wp(x).

To satisfy this inequality it suffices to consider, for small t (e.g. t � 1), the function

a(t) = ct1/(1−γ)

with a suitable small constant c > 0. Now, extending w by 0 outside D̃, we get
that w is a subsolution to (1.1) for 0 � t � 1. This implies ū � w > 0 in D̃ for
0 � t � 1. Finally, for times k < t � k + 1 we compare with w(x, t) replaced by
w(x, t − k).

We want to refine the proof of theorem 2.1 in order to obtain a lower estimate
for every solution.
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Lemma 2.2. Assume that the exponent satisfies p(x) � γ < 1 for every x ∈ D ⊂ Ω
and let u be any solution to problem (1.1) with initial datum u0(x) �≡ 0. Given any
compact subset D̃ ⊂ D, there exists a constant c > 0 (depending only on N , the
function p and the distance between D̃ and Dc) such that

u(x, t) � ct1/(1−γ) (2.2)

for every x ∈ D̃, 0 � t � 1.

Proof. First of all, since comparison is not true for general solutions, we construct
a strictly positive subsolution and perform a comparison argument in a set where
our solution is also strictly positive.

It is clear that, since u is a supersolution to the heat equation, we have that,
given x0 ∈ D, r > 0 such that Br(x0) ⊂ D and t0 > 0 small enough,

µ = min{u(x, t) : x ∈ Br(x0), t0 � t � t0 + 1} > 0.

Now, for some ε < µ, η > 0 and α = 1/(1 − γ), consider the function

w̃(x, t) = ε + ηtαϕ1

(
x − x0

r

)
,

where ϕ1 is the first eigenfunction of the Laplacian in the unit ball with ϕ(0) = 1.
We want to compare u(x, t + t0) with w̃(x, t) in Br(x0) × (0, 1). The ingredients we
need are the following.

• The problem has the comparison property: both functions satisfy u(x, t+t0) �
µ, w̃(x, t) � ε for (x, t) ∈ Br(x0) × (0, 1).

• Comparison of the initial conditions: w̃(x, 0) = ε < µ � u(x, t0).

• Comparison of the boundary data: w̃(x, t) = ε < µ � u(x, t) for x ∈ ∂Br(x0).

• An inequality for the equation: in order to substitute w̃ into the equation, we
need η > 0 to satisfy

ηαtα−1ϕ1 + ηtα
λ1

r2 ϕ1 − (ηtαϕ1 + ε)p(x) � 0.

This holds if we choose

η =
(

α +
λ1

r2

)−α

.

This implies u(x, t+t0) � w̃(x, t), and thus u(x, t+t0) � ctα+ε for x ∈ Br/2(x0),
0 � t � 1, where c = η minB1/2(0) ϕ. Observe that the constant η (and thus c) is
independent of t0 and ε. Therefore, letting ε and t0 go to 0, we obtain (2.2). By the
same reason, if D = R

N , a sharp constant can be obtained by letting r → ∞.

Remark 2.3. Notice that from this proof we also obtain that, for all t � 1 and
x ∈ D̃ ⊂ D,

u(x, t) � δ > 0

holds, where δ depends only on N , the function p and the distance between D̃
and Dc.

We merely compare this result with the subsolution s(x, t) = w(x, t + 1).
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3. Blow-up

Now we focus our attention on the blow-up phenomenon, and consider the question
of whether or not the solutions to our problems blow up. This leads to two types
of results. Namely, on the one hand, the conditions on the reaction exponent p(x)
under which we have the existence of blow-up solutions or all solutions are globally
defined. On the other hand, we also look for conditions on p(x) such that every
solution blows up or there exist also global solutions.

The first result concerning existence of blow-up solutions is an application of
Kaplan’s method of eigenfunctions if p(x) > 1 somewhere. We need the following
version of Jensen’s inequality. It uses some easy properties of the functional spaces
Lp(x) (see, for example, [11]).

Lemma 3.1. Let µ be a positive measure in B ⊂ R
N with

∫
B

dµ = 1 and let f ∈
Lγ(B,dµ) and 1 � σ � p(x) � γ for x ∈ B. Then, there exists a constant c > 0
such that ∫

B

|f |p(x) dµ � c min
{( ∫

B

|f | dµ

)σ

,

( ∫
B

|f | dµ

)γ}
.

Proof. Following [11], we consider the space

Lp(x)(B,dµ) =
{

g measurable :
∫

B

|g(x)|p(x) dµ < ∞
}

with the norm

‖g‖∗ ≡ ‖g‖Lp(x)(B,dµ) = inf
{

τ > 0:
∫

B

∣∣∣∣g(x)
τ

∣∣∣∣
p(x)

dµ � 1
}

.

The condition on f guarantees f ∈ Lp(x)(B,dµ). It is easily verified that
∫

B

|f |p(x) dµ �
{

‖f‖σ
∗ if ‖f‖∗ � 1,

‖f‖γ
∗ if ‖f‖∗ � 1.

On the other hand, an inequality of Hölder type holds in the space defined above,
so we also have ∫

B

|f | dµ � c1‖f‖∗.

The constant c1 is explicit in terms of the bounds on p(x), and it satisfies c1 < 2 [11].
We have also used the fact that ‖1‖∗ = 1. Therefore, we have proved the statement
with c = ( 1

2 )γ .

Two useful consequences are given next.

Corollary 3.2. In the above hypotheses we have

(i)
∫

B

|f |p(x) dµ � c min
{( ∫

B

|f |σ dµ

)
,

( ∫
B

|f |σ dµ

)γ/σ}
,

(ii)
∫

B

|f | dµ � 1 =⇒
∫

B

|f |p(x) dµ � c

( ∫
B

|f | dµ

)σ

.
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We are now in a position to reproduce the classical Kaplan argument for blow-
up [21], and proceed with the proof of theorem 1.1.

Theorem 3.3. If there exists some ball B ⊂ Ω in which the exponent function
satisfies p(x) � σ > 1, then there exist solutions to problem (1.1) (with (1.3) in a
bounded domain) that blow up in finite time.

On the other hand, if p(x) � 1 everywhere, then every non-trivial solution to
problem (1.1) (with (1.3) in a bounded domain) is globally defined.

Proof. Take ϕ the first eigenfunction of −∆ with Dirichlet boundary conditions in
B (with eigenvalue λ), normalized this time to have integral 1. Let

J(t) =
∫

B

uϕ.

From (1.1) and the above corollary we have

J ′ =
∫

Ω

u∆ϕ +
∫

Ω

up(x)ϕ � −λJ + cJσ

whenever J(t) � 1. Clearly, this implies blow-up, provided that J(0) is large. That
is, if the initial datum is such that J(0) � max{1, (2σλ)1/(σ−1)}, then the solution
blows up.

To see that solutions are global when p(x) � 1 in the whole Ω, it suffices to
observe that the function

w(t) = ‖u0‖∞et

is a strictly positive supersolution to (1.1). Hence, for any t0 > 0 the maximal
solution to the problem is bounded in R

N × [0, t0] and then it is global. Observe
that, to use comparison arguments, it is crucial that w is strictly positive. Therefore,
any solution is global.

We next consider the so-called Fujita phenomenon. First we treat the standard
case of the problem posed in the whole space.

3.1. The case when Ω = R
N

Theorem 3.4. If p− > 1+2/N , then (1.1) with Ω = R
N possesses global solutions.

Proof. We only have to consider as a supersolution a global solution to the problem
with constant reaction exponent p− such that it lies always below 1 [14].

Theorem 3.5. If 1 < p− � p+ � 1+2/N , then all solutions to (1.1) with Ω = R
N

blow up in finite time.

Proof. Again, the proof follows the classical methods of Fujita and Weissler [14,31]
for the constant exponent case, once we have established Jensen’s inequality (corol-
lary 3.2). Assume first then that 1 < p− � p+ < 1 + 2/N . Applying Kaplan’s
method with φ replaced by φµ(x) = µNφ1(µx), where φ1 is any non-negative func-
tion satisfying ∫

RN

φ1 = 1 and ∆φ1 + φ1 � 0 in R
N
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(for instance, a Gaussian), and using lemma 3.1 we have

J ′ � −µ2J + c min{Jp− , Jp+}. (3.1)

Now take µ > 0 small enough such that J(0) > (µ2/c)1/(p+−1). This is possible
because of the restriction on p+. In fact,

∫
RN

µNφ1(µx)u0(x) dx = J(0) >

(
µ2

c

)1/(p+−1)

means that ∫
RN

φ1(µx)u0(x) dx > c−1/(p+−1)µ2/(p+−1)−N → 0.

Now, whenever J(t) is small, (3.1) implies

J ′ � −µ2J + cJp+
> c̃Jp+

.

This gives that J(t) increases and for times t > t1, where t1 is such that J(t1) = 1,
the inequality (3.1) becomes

J ′ � −µ2J + cJp−
> c̃Jp−

.

This implies blow-up, since p− > 1.
Now, let p+ = 1 + 2/N . Here it suffices to show that the integral∫

RN

u(·, t) dx

is large for t large. Without loss of generality we may assume, as in [31], that the
initial datum is above some Gaussian,

u0(x) � cGε(x) = c(4πε)−N/2 exp
(

− |x|2
4ε

)
.

Therefore, u(x, t) � cGt+ε(x) for every t � 0. Now, by the integral representation
of the solution of the semilinear equation, we have

u(x, t) � c

∫ t

0
Gt−s ∗ up(x)(x, s) ds � c

∫ t

0
Gt−s ∗ G

p(x)
s+ε (x) ds.

Integrating in R
N and using corollary 3.2 we obtain∫

RN

u(x, t) dx � c

∫ t

0
min

{( ∫
RN

G
p−
s+ε(x) dx

)
,

( ∫
RN

G
p−
s+ε(x) dx

)p+/p−}
ds.

But a simple computation shows that∫
RN

cG
p−
s+ε(x) dx = c

∫
RN

(s + ε)(1−p−)N/2G(s+ε)/p−(x) dx = c(s + ε)(1−p−)N/2.

Since p− � 1+2/N , we have (1− p−)N/2 � −1, and thus the integral of the latter
term diverges as t → ∞.
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Next we show some examples for the intermediate case, that is, for functions p(x)
with 1 < p− < 1 + 2/N < p+. In the first one every solution blows up and in the
second one there are global solutions.

Example 3.6. Consider (1.1) in R and let p(x) be any function such that p(x)
agrees with its minimum, which we fix between 1 and 2, in the half-line,

p(x) = p− ∈ (1, 2) for x � 0.

In this example, we construct a subsolution with finite time blow-up. First, we
note that the solution u to (1.1) is positive for all t > 0. Therefore, we can take a
non-trivial function w0(x) � u(x, t0) with w0(0) = 0.

Now we consider the following problem:

wt = wxx + wp− in R
+ × (0, T̃ ),

w(0, t) = 0 in (0, T̃ ),

w(x, 0) = w0(x) in R
+.

It is clear from the above that u is a supersolution to this problem. On the other
hand, it is known (see [23]) that for this problem the blow-up and the Fujita expo-
nents are given by pb = 1 and pF = 2, respectively.

Therefore, any solution to our problem with the chosen reaction exponent blows
up.

Example 3.7. First, we consider a discontinuous exponent. We take

r(x) =

{
p+, |x| > R,

p−, |x| � R,

where p+ > N/(N − 2) > 1 + 2/N > p− > 1.
In this case, we construct a stationary supersolution. In the region |x| > R we

consider the explicit radial solution

u(r) = cr−α, α =
2

p+ − 1
, c = (α(N − 2 − α))1/(p+−1).

In the inner region we consider a radial solution of

∆v + vp− = 0, x ∈ BR(0),

v = cR−α, x ∈ ∂BR(0).

The existence of such a v is equivalent to the existence of a positive solution to

∆w + (w + cR−α)p− = 0, x ∈ BR(0),
w = 0, x ∈ ∂BR(0),

which can be obtained using a mountain-pass argument (see, for example, [2])
considering the functional

L(u) = 1
2

∫
BR(0)

|∇w|2 − 1
p− + 1

∫
BR(0)

(w + cR−α)p−+1
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in H1
0 (BR(0)). Note that p− is subcritical and hence we have compactness of the

inclusion H1
0 (BR(0)) ↪→ Lp−+1(BR(0)).

Notice that the function

Ū(x) =

{
v(|x|), x ∈ BR(0),
u(|x|), x ∈ R

N \ BR(0),

is a supersolution in the whole space if and only if |v′(R)| � |u′(R)|. In order to
estimate v′(r), we consider the function

w(r) =
v(Rr)
cR−α

,

which solves the problem

∆w + cp−1R2+α(1−p−)wp = 0, x ∈ B1(0),
w = 1, x ∈ ∂B1(0).

Observe that for R = 0 we obtain the constant solution w(r) = 1. It is easy to
check that for R small enough we have

w(r) = 1 + o(1) and w′(r) = o(1).

This gives us v′(r) = o(R−α−1). On the other hand, u verifies that u′(R) =
−cαR−α−1; then, taking R small enough, the function Ū is a supersolution to
our problem with r(x) as exponent.

Now, we want to modify r(x) to obtain a continuous exponent p(x) such that Ū
is still a supersolution to the problem with p(x).

Since R is small and Ū |∂BR(0) = cR−α there exists a small δ > 0 such that Ū > 1
in the annulus BR+δ(0)\BR(0). Now, we just consider p(x) any continuous function
that verifies p(x) = p− in BR(0), p(x) = p+ in R

N \ BR+δ(0) and p− � p(x) � p+
in BR+δ(0) \ BR(0). We observe that Ū is a supersolution to our problem with
p(x). In fact, by our previous calculations, we only have to take care of points in
the annulus BR+δ(0) \ BR(0) and for those points we have

∆Ū(x) + (U(x))p(x) � ∆Ū(x) + (U(x))p+ = ∆u(x) + (u(x))p(x) = 0.

3.2. The case when Ω is bounded

Our next aim is to study the occurrence of a Fujita-type phenomenon in a
bounded domain. Actually, we find sufficient conditions ensuring that every solution
to problem (1.1)–(1.3) corresponding to a non-trivial non-negative initial datum u0,
with Ω bounded, blows up. Note that this is an important difference with respect to
the problem with a constant exponent in the reaction posed in a bounded domain.
To build such examples we argue as follows: first we need a large region in which p(x)
lies below 1 (this will force the solution to grow in the whole Ω) and a large region
where p(x) is above 1 (this is necessary for blow-up to occur; see theorem 1.1).

We begin with a preliminary lemma.

Lemma 3.8. If there exists some ball BR(x0) ⊂ Ω′ ⊂ Ω in which the exponent
function satisfies 0 < σ � p(x) � γ < 1 for x ∈ Ω′, then any solution to problem

https://doi.org/10.1017/S0308210510000399 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210510000399


1038 R. Ferreira and others

(1.1)–(1.3) verifies for every x ∈ BR/2(x0) that u(x, t) � cR2/(1−σ), from some
time t > t0 > 0, with c = c(N, p(x)) > 0 independent of R.

Proof. Without loss of generality let us suppose that the ball in the hypothesis is
centred at the origin.

Since p(x) � γ < 1 in Ω′, we can apply remark 2.3 to obtain that there exists
δ > 0 such that u is a supersolution to the problem

vt = ∆v + vp(x) in BR(0) × (1,∞),
v = δ on ∂BR(0) × (1,∞),
v = δ for t = 1.

⎫⎪⎬
⎪⎭ (3.2)

Observe that w(x, t) = δ is a subsolution. Therefore, we can replace the reaction
term by a Lipschitz continuous function without changing the problem (see (2.1)),
and then we have uniqueness and comparison. On the other hand, taking A large,
we have that

w̄(x, t) = A − Aγ |x|2
2N

is a supersolution of (3.2). This implies that v is uniformly bounded. Moreover, we
have a Lyapunov functional given by

F (v) = 1
2

∫
BR(0)

|∇v|2 −
∫

BR(0)

|v|p(x)+1

p(x) + 1
,

which satisfies
d
dt

F (v)(t) = −
∫

BR(0)
|vt|2(x, t) dx � 0.

We conclude in a rather standard way (see, for example, [4]) that, for every sequence
tj → ∞, we can extract a subsequence, still denoted by tj , such that

lim
j→∞

v(x, tj) = V (x)

in L2(BR(0)), where V (x) � δ is a stationary solution of (3.2). The uniqueness of the
stationary solution follows in the same way as for the case of constant exponent [6].
Therefore, the above limit holds for every sequence of times.

Now, in order to get rid of the dependence upon R, we pass to the unit ball with
the change of scales

V (x) = R2/(1−σ)Ṽ (x/R),

where Ṽ satisfies
−∆Ṽ � Ṽ p(Rx) in B1(0),

Ṽ = δR−2/(1−σ) on ∂B1(0).

}
(3.3)

By [3, proposition 1], there exists a unique, positive, classical solution φ of

−∆φ = φγ in B1(0),
φ = 0 on ∂B1(0).

}
(3.4)
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Set z = ηφ with η = min(1; ‖φ‖−1
∞ ). Then z satisfies z � 1 and −∆z � zγ in B1(0).

We claim that Ṽ � z in B1(0). Assume the contrary. Arguing similarly to [3, p. 383],
we set

τ0 = sup{τ � 1; τ Ṽ − z takes some negative values in B1(0)}.

Since Ṽ > 0 in B1(0) it is clear that τ0 ∈ (1,∞). Moreover, w = τ0Ṽ − z is greater
than or equal to zero in B1(0) and attains a null minimum at some point of B1(0)
(note that w > 0 on ∂B1(0)). On the other hand, we have

−∆w � τ0Ṽ
p(Rx) − zγ � (τ0 − τ

p(Rx)
0 )Ṽ p(Rx) + (τ0Ṽ )p(Rx) − zp(Rx)

� (τ0 − τ
p(Rx)
0 )Ṽ p(Rx)

> 0

due to z � 1, p(Rx) � γ < 1, τ0 > 1, w � 0 and Ṽ > 0. But this contradicts the
maximum principle.

Summing up, we get that, for x ∈ BR/2(0) and t > t0, it holds that

u(x, t) � 1
2V (x) = 1

2R2/(1−σ)Ṽ (x/R) � 1
2R2/(1−σ) min

x∈B1/2(0)
z(x) = cR2/(1−σ).

We are now ready to state sufficient conditions ensuring blow-up occurrence for
every solution to problem (1.1)–(1.3). As stated in § 1, if p(x) < 1 in some large set
and p(x) > 1 in some other set, also large, then every solution blows up. In fact, the
first condition, together with lemma 3.8, makes the solution grow, which implies,
together with the second condition and theorem 3.3, that the solution blows up.
We make this argument rigorous in the next result.

Theorem 3.9. Let q be any arbitrary continuous function defined in the unit ball
B1(0) verifying that q(x) − 1 changes sign. Then there exist two large positive con-
stants M > L > 0 such that if the ball BM (x1) ⊂ Ω for some x1, then the solution to
the problem (1.1)–(1.3) with the reaction exponent satisfying p(x) ≡ q((x − x1)/L)
for every x ∈ BL(x1) blows up in finite time for any non-trivial non-negative initial
datum u0.

Proof. Since q(x) − 1 changes the sign, there exist two balls in B1(0) such that
q(x)−1 has different signs in each of them. For simplicity, we assume that q(x)−1 <
0 in a ball centred at x = 0. This allows us to choose two large constants R1, R2 < L
such that

(i) 0 < σ � p(x) � γ < 1 for every x ∈ BR1(x1),

(ii) p(x) � µ > 1 for every x ∈ BR2(x2) ⊂ BL(x1).

The specific sizes of the R1 and R2 needed will be made precise later on. From (i)
we are working under the hypothesis of lemma 3.8, which yields that for any t � t0
we have u(x, t) � A ≡ cR

2/(1−σ)
1 for any x ∈ BR1/2(x1). This implies that u is a
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supersolution to the following problem:

ωt = ∆ω in BM (x1) \ BR1/2(x1),
ω = 0 on ∂BM (x1),
ω = A on ∂BR1/2(x1),

ω(x, 0) = u(x, t0) in BM (x1) \ BR1/2(x1).

By classical theory, we know that ω converges uniformly to the unique stationary
solution given by

r(x) = A
Γ (M) − Γ (|x − x1|)
Γ (M) − Γ (R1/2)

,

where Γ is the fundamental solution of the Laplacian. Then, there exist t1 > t0 and
M large enough (in fact, M − L large) such that for all x ∈ BL(x1) \ BR1/2(x1) we
have

u(x, t) � ω(x, t) � r(x) − ε � 1
2A − ε.

This means that we can take R1 large (which means A is large) in order to get
u(x, t) � 2 in the whole ball BR2(x2). We have now reached an appropriate point
to give the precise meaning of R2 being large. If we take a look at the proof of
theorem 3.3, we observe that, defining

J(t) =
∫

BR2 (x2)
ϕ1u dx,

where ϕ1 is the first eigenfunction of the Laplacian in BR2(x2), normalized to have
integral 1, a sufficient condition to have blow-up in finite time is given by

J(t) > max{1, (2µλ1)1/(µ−1)} (3.5)

for some t � 0, where λ1 is the first eigenvalue associated to ϕ1. Since the above
calculations imply J(t1) � 2, the blow-up condition (3.5) is achieved by taking R2
large enough in order to get λ1 small. Indeed λ1 < 1

2 is sufficiently small. This
completes the proof.

Now we prove that, when Ω is contained in a small ball, there are global solutions
regardless of the size of p(x).

Theorem 3.10. If there exists some ball Br(x0) ⊃ Ω with r <
√

2N , then there are
global solutions to (1.1) with Dirichlet boundary conditions (1.3) for every p(x) � 0.

Proof. We only need to observe that the function

w(x) =
2N − |x − x0|2

2N

is a supersolution of (1.1). Indeed, since r <
√

2N , we have that w(x) > 0 at ∂Ω.
Moreover, w(x) � 1; hence, w(x)p(x) � 1 = −∆w(x).

Theorem 3.11. Let p− > 1. Then there is a global non-trivial solution to (1.1)–
(1.3).
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Proof. Let
z(x, t) = εe−λtϕ1(x),

where ϕ1 is the first eigenfunction of the Laplacian in Ω with Dirichlet boundary
conditions, normalized with maxx ϕ1(x) = 1.

Then we have that z is a supersolution, provided that λ and ε are small. In fact,
we have

zt(x, t) = −λz(x, t)

and

∆z(x, t) + zp(x)(x, t) = −λ1z(x, t) + (εe−λtϕ1(x))p(x)

� −λ1z(x, t) + (εe−λtϕ1(x))p− .

And hence it suffices that

λz(x, t) � λ1z(x, t) − zp−(x, t),

that is,
(λ1 − λ)z(x, t) � zp−(x, t),

which holds on choosing λ and ε small enough, since p− > 1.
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