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Inertial particles (i.e. with mass and of finite size) immersed in a fluid in motion are
unable to adapt their velocities to the carrying flow and thus they have been the subject
of much interest in fluid mechanics. In this paper we consider an ocean setting with
inertial particles elastically connected forming a network that floats at the interface
with the atmosphere. The network evolves according to a recently derived and validated
Maxey–Riley equation for inertial particle motion in the ocean. We rigorously show
that, under sufficiently calm wind conditions, rotationally coherent quasigeostrophic
vortices (which have material boundaries that resist outward filamentation) always possess
finite-time attractors for elastic networks if they are anticyclonic, while if they are cyclonic
provided that the networks are sufficiently stiff. This result is supported numerically under
more general wind conditions and, most importantly, is consistent with observations of
rafts of pelagic Sargassum, for which the elastic inertial networks represent a minimal
model. Furthermore, our finding provides an effective mechanism for the long range
transport of Sargassum, and thus for its connectivity between accumulation regions and
remote sources.
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1. Introduction

This paper is motivated by a desire to understand the mechanism that leads rafts of
pelagic Sargassum – a genus of large brown seaweed (a type of alga) – to choke coastal
waters and land on, most notably, the Caribbean Sea and beaches, a phenomenon that has
been on the rise and is challenging scientists, coastal resource managers and administrators
at local and regional levels (Langin 2018). A raft of pelagic Sargassum is composed
of flexible stems which are kept afloat by means of bladders filled with gas while it
drifts under the action of ocean currents and winds (figure 1a). A mathematical model
is here conceived for this physical depiction of a drifting Sargassum raft as an elastic
network of buoyant, finite-size or inertial particles that evolve according to a novel motion
law (Beron-Vera, Olascoaga & Miron 2019b), which has been recently shown capable of
reproducing field (Olascoaga et al. 2020) and laboratory (Miron et al. 2020) observations.
The motion law derives from the Maxey–Riley equation (Maxey & Riley 1983), a classical
mechanics Newton’s second law that constitutes the de jure fluid mechanics framework
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(b)(a)

FIGURE 1. (a) Floating raft of Sargassum. Credit: A. M. Brin, Blue Glass Photography.
(b) Elastic network of finite-size, buoyant particles providing a minimal representation for the
raft on the left.

for investigating inertial dynamics (Michaelides 1997). The inability of inertial particles
to adapt their velocities to the carrying fluid flow leads to a dynamics that can be quite
unlike that of fluid or Lagrangian (i.e. neutrally buoyant, infinitesimally small) particles
(Cartwright et al. 2010). While largely overlooked in ‘particle tracking’ in oceanography,
particularly Sargassum raft tracking (Putman et al. 2018; Johns et al. 2020), this holds
true for neutrally buoyant particles, irrespective of how small they are (Babiano et al.
2000; Sapsis & Haller 2010). The Maxey–Riley theory for inertial particle dynamics in
the ocean (Beron-Vera et al. 2019b; Miron et al. 2020; Olascoaga et al. 2020) accounts
for the combined effects of ocean currents and winds on the motion of floating finite-size
particles. Elastic interaction among such particles unveils, as we show here, a mechanism
for long-range transport that may be at the core of connectivity of Sargassum between
accumulation regions in the Caribbean Sea and surroundings and possibly quite remote
blooming areas in the tropical North Atlantic from the coast of Africa (Ody et al. 2019)
to the Amazon River mouth (Gower, Young & King 2013), along what has been dubbed
(Wang et al. 2019) the ‘Great Sargassum belt’.

2. The model

To construct the mathematical model, we consider a (possibly irregular) network of
N > 1 spherical particles (beads) connected by (massless, non-bendable) springs. The
particles are assumed to have small radius, denoted by a, and to be characterized by a
water-to-particle density ratio δ ≥ 1 finite, so 1 − δ−1 approximates well (Olascoaga et al.
2020) reserve volume assuming that the air-to-particle density ratio is very small. The
elastic force (per unit mass) exerted on particle i, with two-dimensional Cartesian position
xi = (x1

i , x2
i ), by neighbouring particles at positions {xj : j ∈ neighbour(i)}, is assumed to

obey Hooke’s law (cf. e.g. Goldstein 1981)

Fi = −
∑

j∈neighbour(i)

kij(|xij| − �ij)
xij

|xij| , (2.1)

for i = 1, . . . , N, where
xij := xi − xj. (2.2)
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Here, kij ≥ 0 is the stiffness (per unit mass) of the spring connecting particle i with
neighbouring particle j and �ij ≥ 0 is the length of the latter at rest. Elastic network models
are commonly employed to represent biological macromolecules in the study of dynamics
and function of proteins (Bahar, Atilgan & Erman 1997). Elastic chain models, a particular
form of elastic network models, are used to represent polymers (Bird et al. 1977). A
relevant recent application (Picardo et al. 2018) is the investigation of preferential sampling
of inertial chains in turbulent flow.

According to the Maxey–Riley theory for inertial ocean motion (Beron-Vera et al.
2019b; Olascoaga et al. 2020), a particle of the elastic network, when taken in
isolation, evolves according to the following second-order ordinary differential equation
(appendix A)

ẍ +
(

f + 1
3

Rω

)
ẋ⊥ + τ−1 ẋ = R

Dv

Dt
+ R

(
f + 1

3
ω

)
v⊥ + τ−1u, (2.3)

where
u := (1 − α)v + αva, (2.4)

and ⊥ represents a + 1
2π rotation. Time-and/or-position-dependent quantities in (2.3) and

(2.4) are: the (horizontal) velocity of the water, v, with (D/Dt)v = ∂tv + (∇v)v where
∇ is the gradient operator in R

2; the water’s vorticity, ω; the air velocity, va; and the
Coriolis ‘parameter’, f = f0 + βx2, where f0 = 2Ω sin ϑ0 and β = 2a−1

� Ω cos ϑ0 with Ω

and a� being Earth’s angular velocity magnitude and mean radius, respectively, and ϑ0
being reference latitude. Quantities independent of position and time in (2.3) and (2.4) in
turn are

R(δ) := 1 − 1
2Φ(δ)

1 − 1
6Φ(δ)

∈ [0, 1); (2.5)

τ(δ) := 1 − 1
6Φ(δ)

(1 + (1 − γ )Ψ (δ)) δ4

a2ρ

3μ
> 0, (2.6)

which measures the inertial response time of the medium to the particle (ρ is the assumed
constant water density and μ the water dynamic viscosity); and

α(δ) := γΨ (δ)

1 + (1 − γ )Ψ (δ)
∈ [0, 1), (2.7)

which makes the convex combination (2.4) a weighted average of water and air velocities
(γ ≈ 1/60 is the air-to-water viscosity ratio). Here

Φ(δ) := i
√

3
2

(ϕ(δ)−1 − ϕ(δ)) − 1
2
(ϕ(δ)−1 + ϕ(δ)) + 1 ∈ [0, 2), (2.8)

is the fraction of emerged particle piece’s height, where

ϕ(δ) := 3

√
i
√

1 − (2δ−1 − 1)2 + 2δ−1 − 1, (2.9)

and

Ψ (δ) := π−1 cos−1(1 − Φ(δ)) − π−1(1 − Φ(δ))
√

1 − (1 − Φ(δ))2 ∈ [0, 1), (2.10)

which gives the fraction of emerged particle’s projected (in the flow direction) area. The
Sargassum raft drift model is obtained by adding the elastic force (2.1) to the right-hand
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side of the Maxey–Riley set (2.3). The result is a set of N second-order ordinary differential
equations, coupled by the elastic term, viz.,

ẍi +
(

f
∣∣∣
i
+ 1

3
Rω

∣∣∣
i

)
ẋ⊥

i + τ−1 ẋi = R
Dv|i
Dt

+ R
(

f
∣∣∣
i
+ 1

3
ω

∣∣∣
i

)
v|⊥i + τ−1u|i + Fi, (2.11)

for i = 1, . . . , N, where |i means pertaining to particle i.
Now, as the radius (a) of the elastically interacting particles is small by assumption,

the inertial response time (τ ∝ a2) is short. We write, then, τ = O(ε) where 0 < ε 	 1
is a parameter that we use to measure smallness throughout this paper. In this case
ε can be interpreted as a Stokes number (Cartwright et al. 2010). That τ = O(ε) has
an important consequence: (2.11) represents a singular perturbation problem involving
slow, xi, and fast, vi = ẋi, variables. This readily follows by rewriting (2.11) as a
system of first-order ordinary differential equations in (xi, vi), i.e. a non-autonomous
four-dimensional dynamical system, which reveals that while xi changes at O(1) speed,
vi does it at O(ε−1) speed. The geometric singular perturbation theory (Fenichel 1979;
Jones 1995) extended to non-autonomous systems (Haller & Sapsis 2008) was applied by
Beron-Vera et al. (2019b) to (2.3) to frame its slow manifold, to wit, a (2 + 1)-dimensional
subset {(x, vp, t) : vp = u(x, t) + uτ (x, t) + O(ε2)} of the (4 + 1)-dimensional phase
space (x, vp, t) where

uτ = τ

(
R

Dv

Dt
+ R

(
f + 1

3
ω

)
v⊥ − Du

Dt
−
(

f + 1
3

Rω

)
u⊥
)

, (2.12)

with Du/Dt = ∂tu + (∇u)u, which normally attracts all solutions of (2.3) exponentially in
time. On the slow manifold, (2.3) reduces to a first-order ordinary differential equation in x
given by ẋ = vp = u + uτ + O(ε2), which represents a non-autonomous two-dimensional
dynamical system. Mathematically more tractable than the full set (2.3), this reduced set
facilitated the uncovering of aspects of the inertial ocean dynamics such as the occurrence
of great garbage patches in the ocean’s subtropical gyres (Beron-Vera, Olascoaga &
Lumpkin 2016; Beron-Vera et al. 2019b) and the potential role of mesoscale eddies
(vortices) as flotsam traps (Beron-Vera et al. 2015; Haller et al. 2016; Beron-Vera et al.
2019b). Because the elastic force (2.1) does not depend on velocity, the geometric singular
perturbation analysis of (2.3) by Beron-Vera et al. (2019b) applies to (2.11) with the only
difference that the equations on the slow manifold are coupled by the elastic force (2.1),
namely,

ẋi = vi = u|i + uτ |i + τFi + O(ε2), (2.13)

for i = 1, . . . , N. The slow manifold of (2.11) is the (2N + 1)-dimensional subset
{(xi, vi, t) : vi = u(xi, t) + uτ (xi, t) + τFi(xi; xj : j ∈ neighbour(i)) + O(ε2), i = 1, . . . , N}
of the (4N + 1)-dimensional phase space (xi, vi, t), i = 1, . . . , N.

3. Behaviour near mesoscale eddies

Having settled on a Maxey–Riley equation for Sargassum raft drift, we turn to evaluate
its ability to represent reality. This evaluation is not meant to be exhaustive; such a
type of evaluation is left for a future publication. With this in mind, we consider an
actual observation of Sargassum, in the North-western Atlantic (figure 2). This figure
more precisely shows, on the first week of October 2006, the satellite-derived maximum
Chlorophyll index (MCI) at the ocean surface. Floating Sargassum corresponds to MCI
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FIGURE 2. Floating Sargassum distribution inferred from satellite spectrometry on the first
week of October 2006 in the region of the North-western Atlantic indicated in the inset map.
Sargassum corresponds to MCI values exceeding −0.25 mW m−2 sr−1 nm−1. MCI is inferred
from the Medium Resolution Imaging Spectrometer (MERIS) aboard Envisat. Overlaid in heavy
black are snapshots of the evolution of the boundary of a coherent material vortex revealed by
satellite altimetry data. The small open circle represents the centre of the vortex and the black
curve the corresponding trajectory.

values exceeding −0.25 mW m−2 sr−1 nm−1 (Gower, King & Goncalves 2008; Gower
et al. 2013). Note the spiralled shape of the high-MCI distribution filling a compact region.
Overlaid on the MCI distribution are snapshots of the evolution of a coherent material
vortex/eddy, as extracted from satellite altimetry measurements of sea surface height,
widely used to investigate mesoscale (50–200 km) variability in the ocean (Fu et al. 2010).
Shown in heavy black is the boundary of the vortex; the (small) open circle and thin
black curve indicate its centre and trajectory described, respectively. Below, we will give
precise definitions for all these objects. What is important to realize at this point is that,
being material, the boundary of such a vortex, which can be identified with the core of
a cold Gulf Stream ring (vortex) (Talley et al. 2011), cannot be traversed by water. Yet it
may be bypassed by inertial particles, whose motion is not tied (Haller & Sapsis 2008;
Beron-Vera et al. 2015) to Lagrangian coherent structures (Haller & Yuan 2000; Haller
2016). However, this is not enough to explain the collection of Sargassum inside the ring.
In fact, this ring is cyclonic (a water particle along the boundary circulates in the local
Earth rotation’s sense, which is anticlockwise in the northern hemisphere), and inertial
particles tend to collect inside anticyclonic vortices while avoiding cyclonic vortices, as
was formally shown by Beron-Vera et al. (2019b) in agreement with a similar observed
tendency of plastic debris in the North Atlantic subtropical gyre (Brach et al. 2018). The
relevant question is whether elastic interaction alters this paradigm.

We begin by addressing this question via direct numerical experimentation. This is
done by integrating (2.3) for an elastic network of inertial particles centred at a point
on the boundary of the coherent material vortex on 10 April 2006. The water velocity
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904 A8-6 F. J. Beron-Vera and P. Miron

v is inferred using altimetry, following standard practice (e.g. Beron-Vera, Olascoaga &
Goni 2008). In turn, the air velocity (va) is obtained from reanalysis (Dee et al. 2011).
While these velocities provide an admittedly imperfect representation of the carrying
flow, they are data based and hence enable a comparison with observed behaviour.
Parameters characterizing the carrying fluid system are set to mean values, namely, ρ =
1025 kg m−3, ρa = 1.2 kg m−3, μ = 0.001 kg m−1 s−1 and μa = 1.8 × 10−5 kg m−1 s−1.
The initial network is chosen to be a square of 12.5 km side (it could be chosen irregular, if
desired, as that one obtained from Delaunay triangulation of polygonal regions spanning
the area covered by the Sargassum raft in figure 7). The network’s springs are of equal
length at rest, �ij = 0.5 m. The beads, totalling n = 625, have a common radius a = 0.1 m.
The buoyancies of the beads are all taken to be the same and equal to δ = 1.25, which
has been found appropriate for Sargassum (Olascoaga et al. 2020). The resulting inertial
parameters are α = 5.9 × 10−3, R = 0.6 and τ = 4.1 × 10−2 d. Shown in red in figure 3
are snapshots (on 11 May 2006, 20 June 2006 and 7 October 2006) of the evolution of the
network for two different stiffness values, kij = 4.25 d−2 (a–c) and kij = 425 d−2 (d–f ). For
reference, inertial particles, unconstrained by elastic forces, i.e. with motion obeying (2.3)
or (2.11) with Fi = 0, are shown in blue, and the boundary and trajectory of the centre
of the coherent material vortex are shown in black. The inertial particles, consistent with
Beron-Vera et al.’s (2019b) prediction, are repelled away from the vortex. By contrast, the
elastic network of inertial particles remains close to it when kij = 4.25 d−2 or, much more
consistent with the observed Sargassum distribution in figure 2, collect inside the vortex
when kij = 425 d−2. In figure 4 we show the results of the same numerical experiments
when the sense of the planet’s rotation is artificially changed, mimicking conditions in the
southern hemisphere. This is achieved by multiplying the Coriolis parameter ( f ) by −1.
The effect of this alteration first is a change in the polarity of the vortex from cyclonic
to anticyclonic. The second, more important, effect is that the inertial particles of the
network, irrespective of whether they elastically interact or not, are attracted into the
vortex. Next we show how analytic treatment of the reduced Maxey–Riley set (2.13) sheds
light on the numerically inferred behaviour just described.

4. A formal result

With the above goal in mind, we first make the coherent material vortex notion precise.
This is done by considering the Lagrangian-averaged vorticity deviation, or LAVD, field
(Haller et al. 2016)

LAVDt
t0(x0) :=

∫ t

t0

|ω(Ft′
t0(x0), t′), t′) − ω̄(t′)| dt′, (4.1)

where

ω̄(t) = 1
areaU(t)

∫
U(t)

ω(x, t) d2x, (4.2)

which is an average of the vorticity over a region of water U(t) = Ft
t0 U(t0). Here,

Ft
t0 is the flow map that takes water particle positions x0 at time t0 to positions

x at time t. As defined by Haller et al. (2016), a rotationally coherent vortex over
t ∈ [t0, t0 + T], an evolving material (water) region V(t) ⊂ U(t), t ∈ [t0, t0 + T], such
that its time-t0 position is enclosed by the outermost, sufficiently convex isoline of
LAVDt0+T

t0 (x0) around a local (non-degenerate) maximum (respectively, minimum), for
T > 0 (respectively, T < 0). (To be more precise, a region V(t) may contain several
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A minimal Maxey–Riley model for the drift of Sargassum rafts 904 A8-7

(e)

(b)(a) (c)

(d ) ( f )

FIGURE 3. Snapshots of the evolution of elastic networks of inertial particles (red) initially
lying on the boundary of the coherent material vortex of figure 2. From left to right are positions
30, 60 and 180 d after initialization on 10 April 2006. The stiffness of the network in the panels
(a–c) is smaller than that in the panels (d–f ). Blue dots, shown for reference, correspond to
inertial particles which do not interact elastically. Overlaid in all panels are the boundary of the
vortex (heavy black), centre (small open circle) and corresponding trajectory (black curve).

(e)

(b)(a) (c)

(d ) ( f )

FIGURE 4. As in figure 3, but with the sign of the Coriolis parameter ( f ) artificially set
negative.

local extrema (Beron-Vera et al. 2019a), but we conveniently exclude from consideration
such situations here to enable a straightforward definition of vortex centre Haller et al.
2016.) As a consequence, the elements of the boundaries of such material regions
V(t) complete the same total material rotation relative to the mean material rotation
of the whole water mass in the domain U(t) that contains them. This property of
the boundaries tends (Haller et al. 2016) to restrict their filamentation to be mainly
tangential under advection from t0 to t0 + T . Furthermore, the ensuing water-holding
property of rotationally coherent eddies and related elliptic Lagrangian coherent structures
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904 A8-8 F. J. Beron-Vera and P. Miron

(Haller & Beron-Vera 2013, 2014; Farazmand & Haller 2016; Haller, Karrasch &
Kogelbauer 2018), verified numerically extensively (Haller et al. 2016; Beron-Vera et al.
2019a) and observed in controlled laboratory experiments (Tel et al. 2018; Tel, Vincze
& Janosi 2020) and field surveys involving in situ (buoy trajectories) and remote
(satellite-inferred chlorophyll distributions) measurements (Beron-Vera et al. 2018), can be
so enduring (Wang, Olascoaga & Beron-Vera 2015, 2016) for the water-holding property
to provide a very effective long-range transport mechanism in the ocean consistent with
traditional oceanographic expectation (Gordon 1986). The material vortex in figure 2
(and also 3 and 4) is of the rotationally coherent class just described. It was obtained by
applying LAVD analysis on t0 = 7 October 2006, a day of the week when the Sargassum
raft observation in figure 2 was acquired, using T = −180 d. This turned out to be the
longest backward-time integration from which a closed LAVD isoline with a stringent
convexity deficiency of 10−3 was possible to find. It represents a rather long backward-time
integration, which dates the ‘genesis’ of the rotationally coherent vortex around t0 + T =
10 April 2006. Figure 2 not only shows the vortex boundary on detection date (t0), but also
several advected images of it under the backward-time flow out to t0 + T .

The second step in reaching the goal above is to assume that set (2.13), which attracts
all solutions of (2.11), can be approximated by

ẋi = vi = gf −1
0 ∇⊥η|i + τ(g(1 − α − R)∇η|i + Fi), (4.3)

+O(ε2), i = 1, . . . , N, which is justified as follows. First, the near surface ocean flow is
in quasigeostrophic balance (Pedlosky 1987), as can be expected for mesoscale ocean
flow (Fu et al. 2010). Interpreting ε as a Rossby number (Pedlosky 1987), this means that
v = gf −1

0 ∇⊥η + O(ε2), where g is gravity and η = O(ε) is sea surface height, ∂t = O(ε)

and f = f0 + O(ε). Second, the elastic interaction does not alter the nature of the critical
and slow manifolds, which is guaranteed by making Fi = O(ε). Third, α = O(ε), at least,
consistent with it being very small (a few per cent) over a large range of buoyancy (δ)
values; cf. figure 2 of Beron-Vera et al. (2019b). Indeed, taking δ = 1.25 (as was found
appropriate by Olascoaga et al. (2020) for Sargassum), recall we estimated α ≈ 5 × 10−3.
This is actually quite small, and more consistent with α = O(ε3) for a Rossby number
that typically characterizes mesoscale flow (ε = 0.1). Note that this makes αva = O(ε3)

for an O(1) near surface atmospheric flow. But this would not be consistent with the
quasigeostrophic ocean flow assumption. So we require, fourth, that va = O(ε2), at least,
i.e. the wind field over the period of interest is sufficiently weak (calm).

Now, let x := (x1
1 , . . . , x1

N, x2
1 , . . . , x2

N) and v := (v1
1, . . . , v

1
N, v2

1, . . . , v
2
N). Then write

(4.3) as
ẋ = v(x, t). (4.4)

We denote by F t
t0 the corresponding flow map, namely, F t

t0(x0) := x(t; x0, t0) where
x0 = x(t0). Following Haller et al. (2016) closely, we invoke Liouville’s theorem (e.g.
Arnold 1989) and note that a trajectory F t

t0(x0) is overall forward attracting over t ∈
[t0, t0 + T], T > 0 (resp., T < 0), if det DF t0+T

t0 (x0) < 1 (respectively, det DF t0+T
t0 (x0) >

1). Let us suppose now that the time-t0 position of the network of elastically connected
inertial particles is very close to the centre of a rotationally coherent vortex, given by
(Haller et al. 2016)

x∗
0 = arg maxx0∈V(t0)LAVDt0+T

t0 (x0), (4.5)

which is expected to exist in a well-defined fashion when the ocean flow is
quasigeostrophic, as we have assumed here. We write the above formally as |xi(t0) − x∗

0 | =
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O(ε)

x0
∗

O(ε)

t0 t0 + T

FIGURE 5. By smooth dependence of the solutions of (4.3) on parameters, an elastic network
of inertial particles initially O(ε)-close to the centre of x∗

0 of a rotationally coherent vortex will
remain O(ε)-close to the trajectory flowing from it over a finite-time interval [t0, t0 + T].

O(ε), i = 1, . . . , N. Then, by smooth dependence of the solutions of (4.3) on parameters,
for t ∈ [t0, t0 + T] finite, one has

xi(t; xi(t0), t0) = Ft
t0(x∗

0 ) + O(ε), (4.6)

for i = 1, . . . , N, where Ft
t0 is the flow map generated by the quasigeostrophic ocean

velocity field g f −1
0 ∇⊥η (figure 5). With this in mind, we find (appendix B)

det DF t0+T
t0 (x0) = exp τ(A + B), (4.7)

+ O(ε2), where

A := gN(1 − α − R)signt∈[t0,t0+T](T∇2η(Ft
t0(x∗

0 ), t))
∣∣∣∣
∫ t0+T

t0

|∇2η(Ft
t0(x∗

0 ), t)|dt
∣∣∣∣ , (4.8)

and

B := −T
N∑

i=1

∑
j∈neighbour(i)

kij. (4.9)

Noting that 1 − α − R ≥ 0, it finally follows that

THEOREM 4.1. Ft
t0(x∗

0 ) is locally forward attracting overall over t ∈ [t0, t0 + T]:

(i) for all kij when signt∈[t0,t0+T]∇2η(Ft
t0(x∗

0 ), t) < 0; and
(ii) provided that

|T|
N∑

i=1

∑
j∈neighbour(i)

kij > gN(1 − α − R)

∣∣∣∣
∫ t0+T

t0

|∇2η(Ft
t0(x∗

0 ), t)| dt
∣∣∣∣ , (4.10)

when signt∈[t0,t0+T]∇2η(Ft
t0(x∗

0 ), t) > 0.

Since ω = g f −1
0 ∇2η + O(ε2), the above result says that the centre of a cyclonic

rotationally coherent quasigeostrophic eddy represents a finite-time attractor for elastic
networks of inertial particles in the presence of calm winds if they are sufficiently
stiff, while that of an anticyclonic eddy irrespective of stiffness. The minimal stiffness
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kmin required for a cyclonic eddy centre to attract an elastic inertial network over
finite time decreases with the network’s size. This can be readily seen assuming
that the stiffness is the same for all pairs of elastically connected particles, say,
kij = k, and considering a square network with N = n2 elements. In such a case one
easily computes

∑N
i=1

∑
j∈neighbour(i) = 4n(n − 1) and thus kmin = (n/4(n − 1))(1 − α −

R)| f0T−1LAVDt0+T
t0 (x∗

0 )| + O(ε2), which decays to a value bounded away from 0 as n →
∞. (In getting the last result we have relied on the fact that U(t) in (4.2) can be taken as
large as desired, e.g. area U(t) = O(ε−1) as we have specifically set.) Thus, as the size of
the network increases, the condition on the stiffness is expected to be more easily satisfied.
Similarly, this condition is easier to be fulfilled as the buoyancy of the particles approaches
neutrality; indeed, limδ→1 kmin = 0. Note, on the other hand, that limn→1 kmin = ∞. Thus,
as expected, the result of Beron-Vera et al. (2019b) for isolated inertial particles is
recovered: while anticyclonic eddy centres attract finite-size particles floating at the ocean
surface, cyclonic ones always repel them away. It is important to realize that statements
on the existence of finite-time attractors inside rotationally coherent eddies do not say
anything about basins of attraction. Yet the expectation, verified numerically above in
qualitative agreement with remote-sensing data, is that mesoscale eddies will in general
trap Sargassum rafts if they initially lie near their boundaries (the sensitivity analysis in
appendix C provides further numerical support for this expectation).

5. Concluding remarks

The above formal result provides an explanation for the behaviour of the elastic network
in figures 3 and 4. This encourages us to speculate that Sargassum rafts should behave
similarly. Of course, there are additional (physical) processes in the ocean that may also
play a role. For instance, downwelling associated with submesoscale (less than 10 km)
motions can lead to surface convergence of flotsam. While such convergence has been
recently observed (D’Asaro et al. 2018), numerical simulations and theoretical arguments
(McWilliams 2016) suggest that this should happen at the periphery of submesoscale
cyclonic vortices, where density contrast is large. Yet, consistent with this work, initial
inspection of satellite images is revealing (J. Triñanes 2020, private communication) that
Sargassum collection is not restricted to vortex peripheries and further that both cyclonic
and anticyclonic eddies trap Sargassum.

We note too that pelagic Sargassum is reportedly (J. Sheinbaum 2020, private
communication) observed to sometimes be found beneath the sea surface, which can be a
result of downwellings and/or reductions of the buoyancy of the rafts as they absorb water
or undergo physiological transformations. The effects of the latter can be incorporated into
the minimal model of this paper, partially at least, by making δ ≥ 1 a function of time, as
it has been done previously (Tanga & Provenzale 1994) in the standard Maxey–Riley set.
Full representation, beyond the scope at present, of possible three-dimensional aspects of
the motion of Sargassum rafts will require one to consider the (vertical) buoyancy force
along with a reliable representation of the three components of the ocean velocity field,
coupled with an ecological model of Sargassum life cycle.

We close by noting that satellite-altimetry observations reveal a dominant tendency of
mesoscale eddies of either polarity to propagate westward (Morrow, Birol & Griffin 2004;
Chelton, Schlax & Samelson 2011) consistent with theoretical argumentation (Nof 1981;
Cushman-Roisin, Chassignet & Tang 1990; Graef 1998; Ripa 2000). This observational
evidence, along with the additional observational evidence on the long-range transport
capacity of eddies (Wang et al. 2015, 2016; Beron-Vera et al. 2018), makes the result
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of this paper a potentially very effective mechanism for the connectivity of Sargassum
between the Caribbean Sea and remote regions in the tropical North Atlantic. Clearly,
a comprehensive modelling effort is needed to verify this hypothesis. The are several
parameters that will require specification, which may be obtained from a study of the
architecture of Sargassum rafts or, alternatively, from observed evolution (as inferred from
satellite imagery) via regression or learning (e.g. Aksamit, Sapsis & Haller 2020).
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Appendix A. Review of the Maxey–Riley set (2.3)

The exact motion of inertial particles obeys the Navier–Stokes equation with moving
boundaries as such particles are extended objects in the fluid with their own boundaries.
This results in complicated partial differential equations which are hard to solve and
analyse. Here, as well as in Beron-Vera et al. (2019b), the interest is in the approximation,
formulated in terms of an ordinary differential equation, provided by the Maxey–Riley
equation (Maxey & Riley 1983), the de jure fluid mechanics paradigm for inertial particle
dynamics.

Such an equation is a classical mechanics Newton’s second law with several forcing
terms that describe the motion of solid spherical particles immersed in the unsteady
non-uniform flow of a homogeneous viscous fluid. Normalized by particle mass, mp =
4
3πa3ρp, the relevant forcing terms for the horizontal motion of a sufficiently small particle,
excluding so-called Faxen corrections and the Basset–Boussinesq history or memory term,
are: (i) the flow force exerted on the particle by the undisturbed fluid,

Fflow = mf

mp

Dvf

Dt
, (A 1)

where mf = 4
3πa3ρf is the mass of the displaced fluid (of density ρf ), and Dvf /Dt is the

material derivative of the fluid velocity (vf ) or its total derivative taken along the trajectory
of a fluid particle, x = Xf (t), i.e. Dvf /Dt = [(d/dt)vf (x, t)]x=Xf (t) = ∂tvf + (∇vf )vf ;
(ii) the added mass force resulting from part of the fluid moving with the particle,

Fmass =
1
2 mf

mp

(
Dvf

Dt
− v̇p

)
, (A 2)

where v̇p is the acceleration of an inertial particle with trajectory x = Xp(t), i.e. v̇p =
(d/dt)[vp(x, t)]x=Xp(t) = ∂tvp where vp = ∂tXp = ẋ is the inertial particle velocity; (iii) the
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lift force, which arises when the particle rotates as it moves in a (horizontally) sheared
flow,

Flift =
1
2 mf

mp
ωf (vf − vp)

⊥, (A 3)

where ωf = ∂1v
2
f − ∂2v

1
f is the (vertical) vorticity of the fluid; and (iv) the drag force

caused by the fluid viscosity,

Fdrag =
12μf

Af

�f

mp
(vf − vp), (A 4)

where μf is the dynamic viscosity of the fluid, Af (= πa2) is the projected area of the
particle and �f (= 2a) is the characteristic projected length, which we have intentionally
left unspecified for future appropriate evaluation.

The above forces are included in the original formulation by Maxey & Riley (1983),
except for the lift force (A 3), due to Auton (1987) and a form of the added mass
term different than (A 2), which corresponds to the correction due to Auton, Hunt &
Prud’homme (1988). The specific form of lift force (A 3) can be found in Montabone
(2002, Chapter 4) (cf. similar forms in Henderson, Gwynllyw & Barenghi 2007; Sapsis
et al. 2011).

To derive (2.3), Beron-Vera et al. (2019b) first accounted for the geophysical nature
of the fluid by including the Coriolis force. (In an earlier geophysical adaptation of the
Maxey–Riley equation (Provenzale 1999), the centrifugal force was included as well, but
this is actually balanced out by the gravitational force on the horizontal plane.) This
amounts to replacing (A 1) and (A 2) with

Fflow = mf

mp

(
Dvf

Dt
+ f v⊥

f

)
, (A 5)

and

Fmass =
1
2 mf

mp

(
Dvf

Dt
+ f v⊥

f − v̇p − f v⊥
p

)
, (A 6)

respectively.
Then, noting that fluid variables and parameters take different values when pertaining

to seawater or air, e.g.

vf (x, z, t) =
{

va(x, t) if z ∈ (0, ha],
v(x, t) if z ∈ [−h, 0),

(A 7)

Beron-Vera et al. (2019b) wrote

v̇p + f v⊥
p = 〈Fflow〉 + 〈Fmass〉 + 〈Flift〉 + 〈Fdrag〉, (A 8)

where 〈 〉 is an average over z ∈ [−h, ha]. After some algebraic manipulation, (2.3) follows
upon making � = �a = δ−3h, as suggested by observations (Olascoaga et al. 2020), and
assuming δa 	 1 with the static stability considerations in § IV.B of Olascoaga et al.
(2020) in mind.
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Appendix B. Derivation of equations (4.7)–(4.9)

We begin by decomposing the elastic force as Fi = Ai + Bi, where

Ai := −
∑

j∈neighbour(i)

kijxij, Bi :=
∑

j∈neighbour(i)

kij�ij
xij

|xij| . (B 1a,b)

Then we note
∇iAi = −

∑
j∈neighbour(i)

kij∇ixij = −
∑

j∈neighbour(i)

kij Id2×2, (B 2)

and thus
N∑

i=1

trace∇iAi = −
N∑

i=1

∑
j∈neighbour(i)

kij trace Id2×2 = −2
N∑

i=1

∑
j∈neighbour(i)

kij. (B 3)

Now, let x, y ∈ R
2 and note

∇x
x − y

|x − y| = ∇x x

|x − y| − (x − y)2(x − y)�∇x x

2|x − y|3

= Id2×2

|x − y| − (x − y)(x − y)�Id2×2

|x − y|3

= Id2×2

|x − y| − (x − y)(x − y)�

|x − y|3 . (B 4)

Consequently,

trace∇x
x − y

|x − y| = trace

⎛
⎜⎝

1
|x − y| 0

0
1

|x − y|

⎞
⎟⎠

− trace

⎛
⎜⎜⎜⎝

(x1 − y1)
2

|x − y|3
(x1 − y1)(x2 − y2)

|x − y|3
(x2 − y2)(x1 − y1)

|x − y|3
(x2 − y2)

2

|x − y|3

⎞
⎟⎟⎟⎠

= 2
|x − y| − |x − y|2

|x − y|3

= 1
|x − y| . (B 5)

Using (B 4) we obtain

∇iBi = −
∑

j∈neighbour(i)

kij�ij

(
−∇ixij

|xij| + xijx�
ij

|xij|3
)

= −
∑

j∈neighbour(i)

kij�ij

(
− Id2×2

|xij| + xijx�
ij

|xij|3
)

, (B 6)
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while using (B 5),

N∑
i=1

trace∇iBi = −
N∑

i=1

∑
j∈neighbour(i)

kij�ij trace

(
− Id2×2

|xij| + xijx�
ij

|xij|3
)

= −
N∑

i=1

∑
j∈neighbour(i)

kij�ij

(
− 2

|xij| + 1
|xij|

)

=
N∑

i=1

∑
j∈neighbour(i)

kij
�ij

|xij| . (B 7)

Combining (B 3) and (B 7) we obtain

N∑
i=1

trace∇iFi =
N∑

i=1

∑
j∈neighbour(i)

kij

(
�ij

|xij| − 2
)

. (B 8)

Now, taking into account (B 8), from (4.3) it follows that

trace∇v(F t
t0(x0), t) =

N∑
1

trace∇ivi(xi(t; xi(t0), t0), t)

= τRαg
N∑
1

∇2η(xi(t; xi(t0), t0), t)

+ τ

N∑
i=1

∑
j∈neighbour(i)

kij

(
�ij

|xij(t; xij(t0), t0)| − 2
)

+ O(ε2)

= τRαgN∇2η(Ft
t0(x∗

0 ), t) − τ

N∑
i=1

∑
j∈neighbour(i)

kij + O(ε2), (B 9)

where Rα := 1 − α − R. Here, we have had (4.6) in mind, and consistent with this have
assumed �ij = O(ε), so �ij/|xij| ∼ 1 as ε → 0. Result (4.7)–(4.9) follows upon noting that
det DF t

t0(x0) = ∫ t
t0

trace∇v(F t′
t0(x0), t′)dt′, where ∇ is the gradient operator in R

2N .

Appendix C. Sensitivity analysis

We provide further numerical support for the expectation that mesoscales eddies should
in general trap Sargassum rafts through a sensitivity analysis with respect to the elastic
network’s initial position relative to the vortex and also the configuration of the initial
network. This is given in figure 6, which uses the same parameters as in figure 3(d,e,f )
except that initialization is made 25 (a–c) and 50 (d–f ) km away from the boundary of the
vortex. These distances correspond to approximately one and two times the mean radius
of the vortex, respectively. The initial network’s shape is irregular, obtained by applying
a small random perturbation on the original square network’s bead locations (figure 7).
Note the influence of the vortex on the network.
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(e)

(b)(a) (c)

(d ) ( f )

FIGURE 6. As in the bottom panels of figure 3, except that the initialization of the elastic
networks takes place away from the boundary of the vortex, at a distance equal to one (a–c) and
two times as large as (d–f ) the mean radius of the vortex (∼25 km) where the initial network’s
bead locations are a small random perturbation of the original locations forming a rectangular
grid.

FIGURE 7. Portions (of ∼2.5-km side) of the initial square network employed in figures 3
and 4 (beads depicted open) and the irregular network used in figure 6 (beads depicted solid).
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