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We extend previous work of Boyer, Davies & Guo (Fluid Dyn. Res., vol. 21, 1997,
pp. 381–401) to consider the evolution of an initially two-layer stratified fluid in a
cylindrical tank which is driven by a horizontal rotating disk. The turbulent motions
induced by the disk drive entrainment at the interface, and similarly to the results
of Boyer et al. (1997), the layer nearer to the disk deepens. Through high-frequency
conductivity probe measurements, we establish that the deepening layer is very well-
mixed, and the thickness of the interface between the two evolving layers appears
to be approximately constant. Under certain circumstances, we find that the rate
of increase in depth of the deepening layer decreases with time, at variance with
the results of Boyer et al. (1997), and implying that the characteristic velocity in
the deepening layer decreases as the upper layer deepens. We propose that such
time-dependent deepening, and the associated weakening of the upper-layer velocities,
occurs naturally because of the combined power requirements of entrainment and layer
homogenization which inhibit, when the stratification is very strong, the characteristic
velocities of the deepening layer approaching the (constant) velocities of the driving
disk, as assumed by Boyer et al. (1997).
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1. Introduction
Turbulent mixing in the presence of shear in a stratified fluid is a key small-scale

process in many geophysical situations, and is a particularly important component
of the heat budget within the oceans (Wunsch & Ferrari 2004; Ivey, Winters &
Koseff 2008). The energy budget of sheared and turbulent stratified flows is subtle,
and for parameterizations to be robust it is clearly beneficial to consider the mixing
properties of a range of model flows (see the review of Fernando 1991). A particularly
important class of flows (relevant for example to the deepening of the oceanic mixed
layer) arises when turbulent motions, interacting with large-scale shear, occur in the
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vicinity of a relatively well-defined interface between two layers of different density.
Shear-driven turbulence in the upper layer, due to some external forcing from wind,
tides and breaking waves then has two distinct, yet inherently interconnected effects.
Firstly, the turbulence entrains relatively dense fluid across the interface causing the
deepening of the upper layer. Secondly, the turbulence also homogenizes the upper
layer, redistributing the newly entrained fluid throughout the upper layer. Both these
processes clearly have related energy costs, as the potential energy of the total system
inevitably increases (see Peltier & Caulfield 2003, for a discussion).

Indeed, there have been many experimental and theoretical studies of both
entrainment and the subsequent homogenization, using a wide variety of forcing
mechanisms, as reviewed by Fernando (1991). A key challenge in interpreting
experimental measurements and applying them to real flows is the character of the
turbulence in the immediate vicinity of the density interface, as that determines the
character of the entrainment that actually occurs (see for example Turner 1986). Also
important is how that turbulence can be related both to the external forcing, and to
the turbulence throughout the interior of the fluid, as it is that interior turbulence
which transports the entrained fluid throughout the layer, and homogenizes the density
distribution of the layer.

As discussed recently in Woods et al. (2010), building on previous work by a
wide range of authors (including Turner 1968; Kato & Phillips 1969; Crapper &
Linden 1974; Fernando & Long 1988; Guyez, Flor & Hopfinger 2007), there are
two different competing mechanisms for shear-driven entrainment. When the density
difference across the interface is relatively weak compared to the prevailing shear,
overturning at the interface is possible, reminiscent of the classic Kelvin–Helmholtz
instability. In this case the entrainment and mixing is ‘diffusive’ in some sense, and
the region over which the density varies substantially has perhaps small yet non-trivial
thickness. In such circumstances (as discussed in more detail by Spigel, Imberger &
Rayner 1986 for example), this thickness can play a critical role in the flow dynamics.
Conversely, in situations where the density jump across the interface is relatively
strong, the interface cannot overturn, and a ‘scouring’ of wisps of fluid into the layer
occurs by means of turbulent eddies, impinging vortices and other energetic disordered
motions, as discussed in more detail in Linden (1979). Entrainment continues to occur,
but the physical process is different.

Modelling of these observed different physical processes has naturally led to a
range of different parameterizations. Upward entrainment of relatively dense fluid and
subsequent homogenization inevitably leads to an increase in the potential energy of
the system, as on average such a process raises the centre of mass of the fluid.
One major class of models assumes that the rate of increase of the potential energy
associated with the net upward flux of dense fluid is proportional to the cube of some
characteristic (turbulent) velocity u3

T within the flow, as originally proposed by Turner
(1968) to explain grid-turbulence-driven mixing, and reinforced by the observations of
Kato & Phillips (1969) in a different stress-driven mixing flow. Equivalently, it can be
assumed to be proportional to the dissipation rate of turbulent kinetic energy which,
on dimensional grounds, would be expected to scale as u3

T/lT for some characteristic
turbulent length scale lT .

Conventionally, this assumption is often posed in terms of an ‘entrainment velocity’
ue. In the simplest case of an interface between an upper layer with density ρ(t) and
(constant) depth h and a lower layer with density ρ0 + 1ρ = ρL (for some reference
density ρ0 where ρ0 > ρ(t) and ρ0�1ρ so that the Boussinesq approximation may be
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made), the increase in the potential energy per unit area of the upper layer is

d
dt
[g(ρL − ρ)h] ≡ ueg(ρL − ρ)= ueg

′ρ0, (1.1)

where g is the acceleration due to gravity, thus defining the reduced gravity g′ of
the entraining layer. Therefore, if the rate of increase of the potential energy is
proportional to u3

T (and so independent of the present value of density jump across the
interface)

ueg
′ ∝ u3

T

lT
, (1.2)

then the entrainment coefficient E is defined as

E ≡ ue

uT
∝ u2

T

g′lT
∝ 1

RiT
, (1.3)

where the (turbulent) ‘Richardson number’ quantifies the relative strength of the
potential energy to the kinetic energy in the turbulent flow. Such a scaling (see
Fernando 1991 for a review) suggests both that the various molecular diffusivities
in the flow play no dynamic role, and that the density flux across the interface
is independent of the present value of the density jump across that interface, i.e.
stratification does not modify the entrainment dynamics. It also implies that the ratio
of the density flux to the dissipation rate of turbulent kinetic energy, commonly
referred to as the ‘flux coefficient’ Γ , is close to constant, consistent with the classic
modelling assumptions of Osborn (1980). Such behaviour was demonstrated recently
by Woods et al. (2010) in stratified Taylor–Couette flow, where turbulent mixing in
an annular two-layer stratified flow was forced by a rotating inner cylinder, leading
typically to ‘scouring’ in the vicinity of the density interface.

However, particularly for flows with relatively weak stratification subject to
the shear-instability-induced overturning dynamics described above, an alternative
modelling approach assumes that stratification switches off mixing above a certain
threshold value of Richardson number, as presented for example by Pollard, Rhines
& Thompson (1973) and Spigel et al. (1986) and also embedded in the commonly
used ‘K-profile parameterization’ (KPP) of eddy diffusivities described in Large,
McWilliams & Doney (1994). Such a suppression of mixing suggests that the
entrainment process should be a stronger (decaying) function of the Richardson
number, and there is certainly some evidence to support that argument, as reviewed by
Linden (1979), Fernando (1991) and more recently in the context of oceanic overflows
in Wells, Cenedese & Caulfield (2010). However, numerical and experimental evidence
(see for example Canuto et al. 2008) suggests that turbulence, and hence some mixing
continues even to arbitrarily high values of characteristic Richardson numbers.

Essentially, the central question is what is an appropriate model for entrainment
and homogenization in a stratified fluid as a function of the strength of the
overall stratification, shear and turbulence? Though this has been widely considered,
both from a fundamental fluid dynamical viewpoint (see Fernando 1991) and an
oceanographic viewpoint (see for example Niiler & Kraus 1977; Sherman, Imberger
& Corcos 1978; Wunsch & Ferrari 2004; Ferrari & Wunsch 2009), it is fair to say
that there is as yet no consensus. A particularly important issue is that if the ‘mixing’
(more precisely, the horizontally averaged vertical density flux) is a non-monotonic
function of the stratification, then Phillips (1972) and Posmentier (1977) established
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that an initially linear stratification will inevitably become layered, with relatively well-
mixed regions being separated by relatively thin regions (or interfaces) of markedly
increased density gradient. However, if the mixing is simply a decaying function of
overall stratification for sufficiently strong stratification, it is possible to establish that
the problem becomes ill-posed, with the ‘strength’ of the interfacial density gradients
being unbounded. Barenblatt et al. (1993) demonstrated that this problem can be
regularized by assuming that there was a time lag between the dissipation and the
mixing within the flow. This idea is appealing, as it seems plausible that thorough
homogenization of a fluid with varying density will not be an instantaneous process.

However, there are of course other ways in which a regularization may be achieved.
One influential suggestion was made by Balmforth, Llewellyn Smith & Young (1998),
who developed a reduced-mixing-length model for stratified mixing forced at some
characteristic velocity scale U and length scale d. They assumed that the integral
scale of the turbulent motions would reduce from d if the flow was very strongly
stratified, and also that, in the absence of stratification, the characteristic turbulent
velocity scale would relax towards that of the forcing device, an assumption which
they referred to as ‘equipartition’. In combination, these assumptions lead to a model
in which the vertical density flux increases, decreases, then increases again with
overall stratification, thus regularizing the problem such that the density gradient
remains bounded. Guyez et al. (2007), also considering stratified Taylor–Couette flow
but at a somewhat lower Reynolds number than Woods et al. (2010), observed
such a non-monotonic flux curve with overall stratification with an increase of flux
at high stratification. Woods et al. (2010) only observed a constant finite value
of flux at high overall stratification in a two-layer flow, associated with scouring
at the interface. Furthermore, they observed that the typical interfacial thickness
remained approximately constant over much of the flow evolution, with an initial
sharpening due to establishment of scouring, and a final transient thickening when
the stratification became sufficiently weak to allow overturning, similarly to the
‘life-cycle’ of measurements of Guyez et al. (2007). The quasi-steady approximately
constant interfacial thickness is suggestive that the flow dynamics is regularized, as the
maximum local density gradient at the interface remained bounded.

Another specific experimental geometry with certain attractive features for the study
of entrainment and homogenization in a stratified flow is a cylindrical tank, filled with
fluid driven by a horizontal (impulsively started and then steadily rotating) disk at
one of the boundaries. Boyer, Davies & Guo (1997, referred to herein as BDG97)
considered the evolution of an initial two-layer density distribution in such a flow
geometry, building on earlier work by Davies et al. (1995) who considered a flow with
the same forcing applied to a linearly stratified fluid. As noted by BDG97, the flow
induced by this forcing is inherently three-dimensional, and extremely complex. There
is both a larger-scale circulation within the flow, leading to a radial distribution in the
large-scale shear between a developing well-mixed layer and the stationary fluid, and
also an active smaller-scale turbulent velocity field. However, the simple experimental
measurement of the rate of deepening of the mixed layer is highly useful, as it allows
the inference of the properties of the turbulent flow in the mixed layer, which are
typically difficult to measure and model. Just to take one example, the modelling and
parameterization of the viscous dissipation rate is especially challenging in layered
stratified shear flows where there are non-trivial spatial inhomogeneities. A common
approach is that presented by Niiler & Kraus (1977), who assumed that the dissipation
rate will scale in a way proportional to the various processes which are generating the
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turbulence. In the flow considered by BDG97, this corresponds to assuming that the
properties of the turbulence scale with the disk-driving mechanism.

Indeed, this is essentially what BDG97 assumed, since they supposed that the
turbulent velocities characteristic both of the entrainment at the interface and the
interior homogenization were constant, and scaled with the characteristic azimuthal
velocity ΩR, where Ω is the angular frequency of the disk (measured in rad s−1) of
radius R. If the turbulent velocities are indeed constant, it seems at least plausible that
the rate of change of the depth of the mixed layer is constant, and BDG97 showed
convincing experimental evidence supporting this hypothesis. They hypothesized that
the dominant mixing processes were associated with shear-driven overturning at the
density interface, yet they typically had relatively few density profiles available to
investigate any time-dependence in the variation of the interfacial thickness. Also
this hypothesis supposed that larger-scale shear dominated the entrainment and
mixing processes through ‘overturning’ compared to smaller-scale turbulence-induced
‘scouring’ at the density interface. In the light of the various theoretical models
discussed above, their observations are consistent with the central assumption of
Turner (1968) and the observations of Kato & Phillips (1969). The characteristic
entrainment velocities scale with the characteristic forcing velocities, and the actual
density flux across the interface is constant and hence independent of the present
value of the density difference between the undisturbed and the (turbulent) mixed
layer. This suggests that in this regime there is no variation of the entrainment and
mixing properties with stratification, although it is important to appreciate that the flow
regime which they considered has sufficiently weak overall stratification such that only
overturning dynamics is expected.

From an energy viewpoint however, such a situation of constant increase in depth of
the mixed layer cannot continue indefinitely. The power injected by the rotating disk
in contact with the mixed layer certainly forces entrainment at the interface between
the two layers. However, it also must contribute to the mobilization or agitation of
the entrained fluid to the characteristic velocities of the upper layer, to the small-scale
motions required to homogenize the mixed layer (and hence to increase the potential
energy of the whole system) and to the enhanced viscous dissipation associated with
the deepening turbulent layer. It seems reasonable to expect that as the mixed layer
deepens, the forcing associated with the rotating disk becomes insufficient to sustain a
‘constant’ characteristic flow velocity within the mixed layer, as the energy requirement
for mobilization of the fluid (and hence the attendant viscous dissipation) continues
to increase as the layer increases in depth. Therefore, the entraining velocity should
decrease as the mixed layer deepens, leading to a variable and reducing rate of
increase of the depth of the mixed layer.

Such a change in the rate of increase does not rely on any change in the entrainment
dynamics at the interface, which would be associated with a change in the local
interfacial balance between buoyancy and inertia, quantified by some appropriate
interfacial Richardson number, RiI , defined as

RiI = g1ρdI

ρ0u2
I

, (1.4)

where, as before g is the acceleration due to gravity, ρ0 is a reference density, dI is
the thickness of the interface over which there is a density jump of 1ρ and uI is
a characteristic velocity of the turbulent mixed layer in the vicinity of the interface
with the quiescent layer. Assuming (for simplicity, though it is consistent with the
experimental evidence of BDG97, and as presented below) that dI stays approximately
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constant, the model of BDG97 implies that RiI decreases monotonically, as mixing
will continually decrease the density jump 1ρ, and uI remains constant. On the
other hand, if the characteristic velocities in the mixed layer decrease due to the
energy constraints discussed above, it is not immediately clear how RiI evolves, and
so the implications of any model of such flows for the properties of the interfacial
entrainment must be considered carefully.

Therefore, the two primary objectives of this paper are to develop quantitative
models for both a flow with a constant rate of change of depth of the mixed layer,
and for a flow with a decreasing rate of change of the depth of the mixed layer,
and then to compare the predictions of these models to experimental measurements
of the flow evolution. Our modelling objective is not to capture every aspect of
the flow, but to understand in bulk terms what appear to be the key processes
driving the deepening through entrainment and homogenization of the mixed layer.
To address these objectives, the rest of the paper is organized as follows. In § 2,
we describe the evolution of a typical experiment, focusing on observations of the
key flow dynamics, and then develop competing models for the flow evolution.
In § 3 we present a quantitative comparison between these competing models and
our experimental measurements, showing categorically that the assumption that the
entraining velocity is constant cannot always be valid. Finally, in § 4, we draw our
conclusions.

2. Experimental observations
A cylindrical tank of total depth 30 cm and radius Rt = 15 cm is filled initially with

two layers of fluid with density ρL and ρU(t) and depth hL(t) and hU(t) = H − hL(t),
where H = 27 cm and the initial (filled) depth of the upper layer h0 was varied
between 6 and 20.6 cm. A horizontal disk of radius R = 12 cm was located at the
top of the tank, just below the free surface. The angular frequency of the disk varied
in the range 1 6 Ω 6 6 rad s−1, where Ω is the angular frequency, and remained
constant during an experiment. A conductivity probe traversed the full depth of the
fluids throughout the entirety of an experiment in the thin gap between the edge of
the disk and the tank wall, with a single up or down pass taking approximately 67.5 s.
We took measurements at 20 Hz, thus yielding a measurement every 0.1 mm. Because
of the inevitable wake effect, we only took measurements on the down stroke of the
probe, and so we chose to take profiles at precisely three minute intervals. Therefore,
the number of profiles in an experiment ranged between four and 80. The vertical
position of the probe was reproducible from one profile to the next, with an error of
the order of ±1 mm.

All experimental fluids were stored in the (temperature-controlled) laboratory for
several days before use, and so their temperature was stable throughout every
experiment. Also, such storage ensured that the experimental fluids were adequately
de-aerated. To calibrate the conductivity probe, we measured the conductivity of fluid
samples from the initial lower layer, the initial upper layer, and an equal-volume
mixture of these two fluids both before and after the experiment. Typically there was
negligible difference between these two calibrations. The densities of these reference
samples were determined with a DMA58 Anton Paar densitometer with an accuracy of
10−5 g cm−3.

This experimental set-up is somewhat different from that considered by BDG97, in
which the driving disk was at the bottom of the tank, but the dynamical behaviour
of the flow is very similar. The key large-scale parameter for the flow is the bulk
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(a) (b) (c) (d )
Rt

H

FIGURE 1. Snapshots of an experiment with Ω = 3 rad s−1,RiB = 0.237 at: (a) τ =Ωt = 0;
(b) τ = 375; (c) τ = 2700; and (d) τ = 7950. Note both the doming of the lower layer during
the initial spin-up <180 s, and the fact that the upper layer appears to be largely well-mixed
by the induced turbulent flow. The dashed white line indicates the bottom right margins of the
tank. The illuminated cross-section of the circular tank is distorted and looks narrower than it
is in reality.

Richardson number RiB defined as

RiB = g(ρL − ρU)hU

ρLΩ2R2
= g′UhU

Ω2R2
, ρU = 1

hU

∫ hU

0
ρU dz, (2.1)

where the vertical coordinate z is directed downwards from the free surface at z = 0,
and g′U(t) is the (average, though time-dependent) reduced gravity of the upper layer.
Although the upper layer depth hU is also time-dependent, conservation of mass within
the tank implies that g′UhU is independent of time, and so this quantity is a natural
measure of the overall balance between the strength of the density stratification, and
the intensity of the forcing. However, RiB is not necessarily the best measure of
the actual entrainment processes at the density interface, where it is appropriate to
consider more local measures of the relative strength of the stratification and the shear
(or more generally the potential energy required to overturn the interface and the
kinetic energy available in the flow), such as the interfacial Richardson number RiI

defined above in (1.4).
In figure 1, we show four different stages of a typical experiment, with RiB = 0.237.

The upper layer is dyed yellow, and the lower layer is dyed blue. As described in more
detail in BDG97, the spinning disk sets up a large-scale circulation which leads to a
radial pressure gradient in the upper-layer fluid which induces a characteristic doming
of the lower-layer fluid, as is apparent in figure 1(b). There is also clear evidence of
shear-driven mixing at the interface between the forced upper layer and the largely
quiescent lower layer.

This statement can be made more quantitative by consideration of the evolution of
the density profiles measured by the conductivity probe, as shown in figure 2, for an
experiment with RiB = 0.53. In figure 2(a), we plot the normalized density ρ̂(ζ, τ )

against ζ , where

ρ̂(ζ, τ )= ρ − ρU(0)
ρL − ρU(0)

, ζ = z/H, τ =Ωt, (2.2)

for eight different times. Over much of the flow evolution, to a very good
approximation the upper layer is well-mixed, and the interface between the two
layers remains sharp, with the same, very thin, characteristic thickness. Shear-driven
entrainment processes lead to an erosion of the lower layer through entrainment
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(b)(a)

FIGURE 2. Plots of (a) ρ̂ against ζ as defined in (2.2), and (b) ρ̃ against ζ − ζm as defined in
(2.3) for an experiment with Ω = 2 rad s−1, RiB = 0.53, at times τ = 3600n for: n= 0 (plotted
with a thick red line); n= 1 (thick green line); n= 2 (thick blue line); n= 3 (thick black line);
n= 4 (thin red line); n= 5 (thin green line); n= 6 (thin blue line); n= 7 (thin black line).

of denser fluid into the upper layer in which turbulent motions in turn rapidly
homogenize the density to a steadily increasing value.

That the upper layer is well-mixed, and the interface remains sharp is made clear in
figure 2(b), where we plot an alternatively scaled density ρ̃(ζ, τ ) against ζ − ζm, where
ζm(τ ) is the height at which ρ̂ = ρ̂m = 1/2, i.e. the (constant) mean value of the fluid
in the tank, and ρ̃ is defined as

ρ̃(ζ, τ )= ρ̂(ζ, τ )− ρ̂(0, τ )
ρ̂L − ρ̂(0, τ ) , (2.3)

where ρ̂L = ρ̂(1, τ )= 1, and so 0= ρ̃(0, τ )6 ρ̃(ζ, τ )6 ρ̃(1, τ )= 1 for all time.
There are three aspects of these profiles which are important to appreciate. The first

is that the upper and lower layers seem to be (to a very good approximation) very
close to constant in density. This indicates that, although the profile took 67.5 s to
be completed, it is fair to assume that it was ‘instantaneous’ as there is no evidence
of migration of the density in either layer in one profile. Secondly, by comparing
in particular the first (thick red) profile from before the experiment started with
the subsequent profiles, it is clear that the entrainment and mixing processes lead
to a ‘sharpening’ of the interface as observed by Guyez et al. (2007), and also
reminiscent of the ‘scouring’ observed in sufficiently strongly stratified Taylor–Couette
flow studied by Woods et al. (2010). Thirdly, the interfacial thickness after the
experiment started remains very close to constant (noting how figure 2(b) is expanded
substantially in the vertical).

A major flaw of our experimental procedure is that we only measured the density
distribution at a single radial distance (relatively close to the cylinder wall). Therefore,
there is no direct measurement of the radial variation of the interfacial thickness. From
figure 1, there is clearly variation in the vertical location of the interface, due to
the induced radial pressure gradient, as discussed in much more detail in BDG97.
However, BDG97 observed little radial variation in the thickness of the (primary)
density interface, although the substantial radial variation in the velocity distribution
(involving in particular non-trivial vertical velocities in some parts of the flow due
to recirculation) suggests a very complicated structure for the interfacial Richardson
number RiI , if uI is allowed to depend on radial location as well as time. Consistently
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with their experiments, we observed Kelvin–Helmholtz-like shear-driven overturning
over only some of the interface, with mixing processes near the tank centre and the
tank wall being apparently more associated with impinging (or ‘scouring’) turbulent
eddies.

Nevertheless, the fact that the interfacial thickness is approximately constant with
time is highly suggestive of the assumption that the interfacial thickness is not a
strong function of radial position. Any such radial variation in thickness would be
likely to be detected (at least transiently) during the evolution of the flow. Furthermore,
this constant interfacial thickness (as observed also by Woods et al. 2010) suggests
that the overall entrainment processes (which appear to be radially dependent and
complex) at the interface between the two layers do not change substantially with time.
These observations simplify the modelling of the evolution of the flow substantially
compared to, for example, Spigel et al. (1986), who tracked carefully the time-
dependent evolution of the interfacial region and modelled the large-scale shear-
induced mixing separately. In the present experiments, since both overturning and
scouring appear to occur simultaneously at different radial locations, a combined, bulk
parameterization seems most appropriate.

Therefore, it is reasonable to use the mean reduced gravity g′U as a measure of
the density jump across the interface (since the upper layer is well-mixed) and to
suppose that the characteristic length scale of the interface dI is roughly constant. If
the entrainment at the interface is governed by a local measure of the relative strength
of the stratification and the shear (in the form of a Richardson number) the natural
form for that measure is RiI , as defined in (1.4), which can be related to RiB by

RiI = g′UdI

u2
I

= RiB
dIΩ

2R2

hUu2
I

, (2.4)

where uI is the characteristic (presumably turbulent) velocity scale at the interface. It is
important to appreciate that this velocity scale is some appropriately radially averaged
value, as a non-trivial radial variation is expected in the actual time-averaged velocity
components.

The essential requirements for a simplified, yet still useful model of the flow may
then be reduced to two inter-related questions concerning aspects of RiI . Firstly, how
does the forcing determine uI? Secondly, how does mixing, i.e. the entrainment
(or equivalently the deepening of the upper layer) and the homogenization of the
density distribution, depend on RiI , or equivalently the upper-layer depth hU and the
characteristic velocity scale uI?

2.1. Constant-velocity ‘V’ model
The simplest possible model for the flow evolution is the model proposed in BDG97.
They assumed that the characteristic velocity throughout the upper well-mixed layer
was constant. We refer to this as the ‘V’ model, as it postulates constant velocity.
Since the bottom layer is stationary the power PI supplied at the interface in terms of
the interfacial stress σ is (within the Boussinesq approximation)

PI = dW

dt
= πR2uIσ = πR2cDρLu3

I , (2.5)

where cD is some empirically determined drag coefficient, and W is the work done by
the disk forcing at the interface.

BDG97 further hypothesized that a fixed proportion of the rate of working led to
increasing potential energy. For convenience, we define the (total) potential energy
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PE to be zero when hU = 0, and so the tank is completely filled with lower-layer
fluid of density ρL, and so in general

PE = πR2

[
−g
∫ hU

0
ρuz dz− g

∫ H

hU

ρLz dz+ gρLH2

2

]
= (πR2ρL)

g′Uh2
U

2
, (2.6a)

d
dt

PE = λPI = λ d
dt

W , (2.6b)

where λ is an empirical constant.
Since, as noted above, g′UhU is a constant, (2.6b) is effectively an evolution equation

for the velocity of the interface,

d
dt

hU = (2λcD)
u3

I

g′UhU
= (ΩR)(2λcD)

1
RiB

( uI

ΩR

)3
, (2.7)

using the definition for the bulk Richardson number (2.1). We choose to scale the layer
depth with its initial value, the time with the angular frequency Ω , and the interfacial
velocity uI with ΩR, and so

ĥU = hU

h0
, ûI = uI

ΩR
. (2.8)

Under the (constant-velocity) assumption that ûI = β a constant (BDG97 made the
simplest assumption that β = 1), (2.7) is easily integrated to yield

ĥU = 1+ R

h0

cV

RiB
τ, cV = 2cDλβ

3, (2.9)

where cV is a combination of empirical constants.
The rate of increase in depth of the mixed upper layer is constant, and proportional

to 1/RiB. Comparing this to the parameterization of the entrainment coefficient E as
defined in (1.3) requires a little care, since in the flow considered in this paper the
mixed layer is also increasing in depth, and so the left-hand side of (1.1) is zero by
construction. However, there are effectively two fluxes (which in this case precisely
cancel) corresponding to a migration flux Fm associated with the fact that the layer is
deepening, and an entrainment flux Fe across that interface, i.e.

d
dt
(g′UhU)= 0= Fm + Fe = g′U

d
dt

hU + hU
d
dt

g′U = g′U
d
dt

hU + g′Uue, (2.10)

generalizing the definition of the entrainment velocity ue from (1.1) to the case where
the layer depth is varying. Remembering that the entrainment is upwards, and the
coordinate system is defined so that the mixed layer increases in depth downwards, we
obtain

ue =−dhU

dt
=−(2λcD)

u3
I

g′UhU
= (ΩR)(2λcD)

1
RiB

( uI

ΩR

)3
, (2.11)

from (2.7). Since it is assumed that uI remains constant, uI must be proportional
to uT as defined in (1.3). Under the reasonable assumption that the dissipation in
the evolving layer should scale as u3

I /hU, hU ∝ lT , and so RiB ∝ RiT . Therefore, the
constant-velocity ‘V’ model does indeed naturally lead to the classical 1/Ri scaling
originally suggested by Turner (1968) which is commonly encountered scaling for
shear-driven turbulent entrainment (see Fernando 1991 for a fuller discussion).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

48
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.488


508 A. Shravat, C. Cenedese and C. P. Caulfield

Also, as uI stays constant while hU increases, within this model RiI decreases as the
mixed layer deepens. Interestingly, this variation of RiI requires a further assumption
for the constant rate of increase of the layer depth defined by (2.9) to remain valid,
namely that the entrainment processes at the interface and the subsequent entrainment
is actually independent of the value of RiI . As discussed in detail by Linden (1979),
and mentioned in the Introduction, the dependence of the vertical density flux on some
measure of overall stratification (such as RiI) is expected to be non-monotonic, with
the maximum value of the order of Γ ' 0.2 (where Γ , the flux coefficient, is the
ratio of the vertical density flux to the dissipation rate, as defined initially by Osborn
(1980)) being associated with an intermediate value of RiI = RiM ∼ O(1), and Γ → 0
for both smaller and larger values of RiI on either side of RiM.

Therefore, if the initial value of RiI < RiM, conventional models for Γ would
appear to suggest that entrainment at the interface should become progressively less
efficient, and thus the depth of the mixed layer should increase more slowly with time.
Conversely, if RiI > RiM initially, Γ should initially increase and then decrease. This
non-monotonicity, while leading also to a non-constant rate of increase of the layer
depth, may not be immediately apparent, because over time the initial increase and
subsequent decrease in Γ may compensate for each other. Since BDG97 principally
considered flows where RiB < 1.5, on the grounds that for such flows the mixing
dynamics at the interface appeared to be dominated by shear-driven overturnings
(and hence the local value of RiI had to be sufficiently small), it is not possible to
distinguish between these two possibilities, but caution must be exercised in drawing
the strong conclusion that the entrainment process is always the same at the interface
as the interfacial Richardson number is likely to vary strongly while uI stays constant.

There is a range of different mixing processes occurring at the interface at any
particular instant, associated both with shear-driven overturning and various smaller-
scale turbulent motions, and the combined effect of these different processes may
be relatively insensitive to the specific value of RiI , which should not be interpreted
as a precise measure of local sensitivity to stratified shear instability. Furthermore,
the assumption that the density flux across the interface is proportional to u3

I , and
independent of the stratification at the interface, is consistent with the entrainment
model and experiments of Turner (1968) and Kato & Phillips (1969). As shown
in the recent experiments of Woods et al. (2010), such dynamics (where the flux
is dependent on u3

I and not on the present value of the density jump across the
interface) can persist for very strongly stratified flows compared to the parameter
regime considered by BDG97.

2.2. Constant-disk-power ‘P’ model

Although this ‘V’ model is plausible, and consistent with the observed behaviour
as reported by BDG97, consideration of the flow energetics suggests that a constant
rate of increase of the depth of the upper mixed layer cannot continue for all times.
As the layer deepens, more and more power input is required to maintain the flow
with a constant characteristic velocity in the upper layer, not least because the total
viscous dissipation must increase as the total amount of mobilized fluid (in the upper
layer) increases due to entrainment. The only source of power for the total (fluid)
system is from the rotating disk, which is driven at constant velocity. Furthermore, the
entrainment of relatively dense fluid into the upper layer is only the first stage of the
mixing, as the turbulent motions also act to homogenize completely the density of the
upper layer. Therefore, it appears that requiring the local fluid velocity throughout the
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mixed layer to have a constant characteristic velocity requires a continually increasing
power from the driving disk, which must ultimately be impossible to supply.

This issue is made more clear by considering an energy equation for the entire
deepening upper mixed layer. The kinetic energy KU of the upper layer is

KU = 1
2

∫ hU

0

∫ 2π

0

∫ R

0
ρ|u(r, θ, z, t) |2 r dr dθdz= 1

2
ρLπR2hUu2

U, (2.12)

using cylindrical polar coordinates, the constant lower-layer density ρL as a reference
density within the Boussinesq approximation, and thus defining uU as a characteristic
integral velocity scale of the inherently turbulent motions within the upper layer,
as evidenced by the very efficient homogenization of the density within that layer.
Although as shown by BDG97 there are significant radial and vertical velocities, our
averaging implicitly defines a characteristic velocity uU constant across each horizontal
plane of cross-sectional area πR2 for a layer of depth hU.

The entire layer is turbulent, and the total dissipation of kinetic energy by those
turbulent motions must depend on the characteristic velocity of the fluid motions, as
well as the total amount of fluid which is in the upper layer. Therefore, the simplest
scaling argument is that the turbulent dissipation should scale like the (local) kinetic
energy, and so the total dissipation throughout the layer is CερLπR2 (u2

UhU/lT)
3/2 where

lT is, as before, an integral length scale of the turbulence (see for example Ivey
& Imberger 1991) and Cε is an empirical constant. Naturally, the actual dissipation
rate varies strongly with space and time, and a full description of the flow would
require integration over the whole flow domain. However, as argued by Niiler &
Kraus (1977), the most natural assumption is to suppose that the (total) dissipation
rate is ‘composed of terms which are individually proportional to the active turbulent
generating processes’, and so we choose this scaling as we believe the dominant
‘turbulent generating process’ is the disordered motion of the deepening mixed layer
itself.

Turning attention to the stratified mixing within the layer, the characteristic time
scale for the combination of entrainment and homogenization to occur should be given
by the reduced gravity and depth of the upper layer, i.e. tρ =

√
hU/g′U. It seems

straightforward that the homogenization time should increase with the depth of the
upper layer, as thorough mixing requires the transport by turbulence of relatively dense
fluid (entrained at the interface) completely throughout the interior. It is not however
immediately obvious that the time scale should increase with decreasing g′U, because
it would appear sensible to say that entrainment would be easier with smaller values
of the density difference across the interface. However, entrainment is only part of the
flow dynamics, and indeed being a relatively fast part, associated typically with either
scouring of the density interface by strong vortices, or overturning at the interface
associated with stratified shear flow instability (see Linden 1979; Fernando 1991;
Woods et al. 2010 for a more detailed discussion).

The dominant component of the stratified mixing, lagging somewhat behind this
initial entrainment process (as postulated by Barenblatt et al. 1993) is the small-scale
irreversible mixing leading to homogenization of the stratified fluid in the upper layer.
This thorough (and particularly efficient) mixing by overturning vortices appears to be
most strongly associated with instances when relatively dense fluid is over light fluid
(see e.g. Caulfield & Peltier 2000) and can indeed be shown to occur more rapidly
when the overall density difference is larger, as demonstrated recently in the model
problem of high-aspect-ratio Rayleigh–Taylor instability by Dalziel et al. (2008). It is
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important to appreciate that this homogenization is not localized in the vicinity of the
interface, but rather extends throughout the entire mixed layer, as evidenced by the fact
that the measured density distribution is very close to uniform throughout the upper
mixed layer. Therefore, it seems reasonable to assume that the total amount of power
MS required to drive both the continual entrainment and homogenization of the upper
layer should scale with PE /tρ .

Of course, tρ is not the only plausible time scale which can be constructed to
describe the entrainment and homogenization of the upper layer. For example, another
plausible choice is tρu = h2

Ug′U/u
3
U. This time scale assumes that it is the characteristic

velocity of the upper layer that plays a fundamental role in the homogenization
process. However from the definition of the potential energy PE (2.6a), choosing tρu

implies that the stratified mixing power demand MS =PE /tρu is independent of both
the reduced gravity and the depth of the upper layer, and depends only on the velocity
of the upper layer, which seems inconsistent with our observations, and indeed our
physical intuition.

To reiterate for clarity then, in this flow, we consider ‘stratified mixing’ to involve
both the entrainment of new dense fluid into the upper layer, and the homogenization
of the upper layer, distributing this entrained fluid evenly, and we expect this
homogenization to dominate both in terms of power consumption and time scale.
Fundamentally, this means that the stratified mixing dynamics of our experiments is
not dominated by the interfacial dynamics, but rather by the non-local homogenization
of the density field throughout the mixed layer. The rotating disk forces this mixed
layer at the upper surface, with a constant angular frequency Ω , which leads to a
forcing power injection Pf . This power must be balanced by the three components
described above, namely the rate of increase of the kinetic energy, IK , the viscous
dissipation of the kinetic energy, DK , and the stratified mixing power demand MS, and
so

Pf = IK +DK +MS

= ρLπR2

[
d
dt

(
u2

UhU

2

)
+ Cl (u

2
UhU)

3/2+CP
(g′UhU)

3/2

2

]
, (2.13)

where Cl and CP are empirically determined constants associated with DK and MS

respectively, and hence Cl = Cε/l
3/2
T . Indeed, this scaling for the dissipation rate

DK is the natural generalization to a cylindrical geometry of that used in the more
complicated model due to Spigel et al. (1986). It is important to note that our model
(unlike for example that presented by Pollard et al. 1973) does not assume a priori
any balance between the rate of change of the turbulent kinetic energy and the
dissipation rate within the flow.

Since g′UhU is constant, within this simple model, the stratified mixing requires
a steady power input of energy. Also, to maintain the characteristic velocity in the
ever-deepening layer at a constant value, as assumed in BDG97, it is apparent that the
kinetic energy of the layer must then increase linearly with time, which also requires
a steady rate of power input. (As an aside, even if we chose to use the alternative
time scale tρu in our definition of MS, the assumption that uU stays constant would
also imply that MS remained constant.) However, as the kinetic energy increases, the
associated turbulent dissipation increases too, as it is completely natural that it takes
more power input to spin up completely a larger volume of fluid, and so unless Pf

increases continually (within this model like h3/2
U ), eventually it becomes impossible
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to maintain the velocity of the ever-deepening layer at a constant value. Therefore,
the BDG97 model does not seem to be appropriate for all times, particularly as the
layer deepens substantially. If the characteristic velocity of the mixed layer uU does
not stay constant, the velocity uI at the interface driving the entrainment definitely is
not constant, and so from (2.7) the rate of increase in the mixed-layer depth is not
constant. This observation is also consistent with the modelling approach of Balmforth
et al. (1998), as their ‘equipartition’ is predicated on the assumption that stratified
mixing will lead to a mismatch between the characteristic forcing velocity and the
characteristic velocity of the turbulent motions.

Indeed, under the simplest assumption that the power input Pf is a constant, there
is a more general possible behaviour of the flow, which for sufficiently small times
agrees with the ‘V’ model discussed above. We shall refer to the model based around
this assumption as the ‘P’ model (for constant power). As the upper layer deepens,
it must eventually become impossible to sustain the constant rate of increase of the
layer’s kinetic energy, and so IK reduces towards zero. Therefore, the rate of increase
of the turbulent dissipation also decreases, until the flow comes into a (stable) balance.
The kinetic energy of the mixed layer is constant, and thus the dissipation is also
constant, although not in precise balance, since there is always a non-zero stratified
mixing power demand MS. Indeed, the steady forcing balances both the dissipation
and the overall stratified mixing, and u2

UhU approaches a constant value, which we
choose to define by

u2
UhU→Ω2R2h0C2

∞, ûU→ C∞
ĥ1/2

U

, (2.14)

for some constant C∞, using the natural scales for the velocity and the layer depth.
Within this ‘P’ model, as the layer deepens, the characteristic velocity reduces in a
particularly simple way. This has a very interesting implication for the time evolution
of the layer depth, particularly if it is assumed that the velocity uI at the interface
can be linearly related to the characteristic velocity uI = CIuU for some constant CI .
Therefore, (2.7) becomes

d
dt

hU = (2Γ cDC3
I )

u3
U

g′UhU
= (ΩR)(2cDΓC3

I C3
∞)

1
RiB

ĥ−3/2
U , (2.15)

so that

d
dτ

ĥU = R

h0
cP

1
RiB

ĥ−3/2
U , ĥU =

(
1+ 5

2
R

h0

cP

RiB
τ

)2/5

, (2.16)

and so the rate of increase of the depth of the well-mixed layer decreases as time
progresses. Analogously to before cP is a combined empirical constant.

The total power requirement for the two aspects of stratified mixing (entrainment
and homogenization) is constant within this ‘P’ model, but since the layer is
deepening, the power required for homogenization is increasing, and so there is
less available to drive entrainment, manifested by the decreasing velocity at the
interface. However, since the local kinetic energy density (per unit area) u2

I hU at
the interface remains constant within this model, the interfacial Richardson number
RiI defined by (2.4) remains constant. Therefore, although it is important to remember
that the interfacial Richardson number is effectively a characteristic value of the local
balance between stratification and shear in the vicinity of the interface, it is reasonable
to suppose that the overall properties of the entrainment and mixing dynamics at
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h0 (cm) Ω (rad s−1) g′0 (cm s−2) RiB cV =
cP (×105)

Symbol

13.5 4 22.7 0.130 2.93 +
8.7 3 22.7 0.150 5.62 ◦

13.5 5.4 73.2 0.234 2.23 ∗
13.5 3 22.7 0.237 2.71 ×

6.1 2 22.7 0.241 6.97 �
18.5 3 17.9 0.260 2.47 �
17.8 3 22.6 0.310 3.38 4
13.5 2 22.7 0.530 2.68 5
20.6 1.8 22.7 1.000 1.34 B
13.5 1 22.7 2.100 3.09 C

TABLE 1. Experimental parameters.

the interface remain similar as the layer deepens. This supposition is more firmly
grounded within this model than with the model originally presented in BDG97, which
has an implied variation of RiI . Indeed, we now have two models with distinguishable
predictions for how the upper-layer depth should vary with time, and thus what is
implied for the time evolution of the characteristic shear velocity uI at the interface.

3. Experimental results
The best way to distinguish between the two models is to consider the results of

a sequence of laboratory experiments. Ten different experiments were conducted for a
range of initial layer depths, initial density differences, and disk angular frequencies.
For simplicity, we typically used filtered sea water as the dense-layer fluid, and fresh
water for the light-layer fluid, and so g′0 = 22.7 cm s−2 in most experiments. As
already noted, we stored experimental fluids in the temperature-controlled laboratory
for several days so that the temperature of the fluids played no significant role in the
flow dynamics. The range of bulk Richardson numbers varied from 0.13 to 2.1, with
all but one being less than 1.5, the parameter regime where BDG97 postulated that
the mixing had the same typical character, dominated by shear-driven overturnings. As
already noted, the flow properties were measured by continual traces of the vertical
profiles of the density, and unsurprisingly, this confirmed that g′UhU remained constant
with time. We list the various flow parameters in table 1.

To compare the quality of the two models, we therefore plot the time dependence of
ĥU in figure 3 for the ten different experiments. Each experiment is represented with
a different symbol, as listed in table 1. On these axes, the uncertainty in the location
of the interface (due to possible alignment issues with our traverse mechanism) and
the time measurement (due to the finite duration of each down pass by the probe)
is substantially smaller than the typical sizes of the symbols we have used. The key
empirical constant cV for the V-model is determined from the initial slope of the
experimental data (appropriately scaled by the initial aspect ratio R/h0 and the bulk
Richardson number RiB), assuming that the initial (relatively rapid) spin-up of the
upper layer (see BDG97 for a more detailed discussion) has already occurred, and that
the layer is thus deepening at a constant rate at least initially. For each experiment, the
initial spin-up of the fluid in the upper layer, after which shearing and entrainment of
the fluid at the interface occurred, was assumed to be completed after three minutes.
This time scale typically involved multiple rotations of the disk, so that the upper layer

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

48
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.488


Stratified mixing in surface-stress-driven flow 513

0

0.10

0.25

0.15

0

0.50

1.00

0.05 0.10 0.15 0.20 0.25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

10–1

100

0.25

0.75

0.20

0.05

10–1 100

(a)

(b)

(c)

FIGURE 3. Plots of experimental measurements (using symbols as listed in table 1) of ĥU − 1
against τ? (as defined in (3.1)) compared with the prediction of the ‘V’ model as defined in
(2.9) (plotted with a dashed line) and the prediction of the ‘P’ model as defined in (2.16)
(solid line) for: (a) small values of τ?; (b) large values of τ?; (c) large values of τ? with
logarithmic axes.

was adequately energised, turbulence was well-developed, and (at least quasi-) steady.
We therefore define the time origin as three minutes after we started driving the disk.
(Typically, this meant that hU(0) > h0, and g′U(0) < g′0 by some small amount, such
that nevertheless g′U(0)hU(0)= g′0h0, and hence RiB took the value as listed in table 1.)
Analogously, we determine the constant cP by assuming the flow is at least initially
evolving consistently with the small-t leading-order form of (2.16), which implies that
cP = cV . For these experiments, the constant cV = cP varied somewhat, particularly
with initial layer depth. The value of this empirically determined constant is also listed
in the table.

To plot all the experiments on one figure, we use the rescaled time variable τ?,
defined as

τ? = R

h0

cV

RiB
τ, (3.1)

Therefore, the ‘V’ and the ‘P’ models (remembering that cV = cP) as defined in (2.9)
and (2.16) reduce to

ĥU = 1+ τ?, ĥU = (1+ 5τ?/2)
2/5, (3.2)

respectively, and we plot these two models with a dashed (‘V’) and solid (‘P’) line.
Several aspects of the experimental results are immediately apparent. Firstly (as

shown in figure 3a), for ‘early times’ (defined as sufficiently small values of τ?),
it is difficult to distinguish between the two models. At early times, the interface
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descends at a constant rate to a good approximation, and so the linear model proposed
in BDG97 seems perfectly reasonable, and the power supplied by the driving disk
appears adequate to ensure a constant rate of increase of the depth of the upper
layer. This issue also applies to the experiments where the initial layer depth h0 was
large (e.g. the experiment with RiB = 1.0), as in those cases the entrainment processes
definitely did not last long enough for the two models to be distinguishable.

However, for experiments where the descent of the interface continued for a
sufficiently large depth or equivalently to a sufficiently large value of τ? (the best
two examples being the experiments for RiB = 0.241, which lasts until τ? ∼ 6, and
is plotted with a square and for RiB = 0.53, plotted with a downward pointing
triangle) it is clear that the ‘P’ model is substantially superior. The rate of increase of
ĥU noticeably and measurably decreases with time, with a rate very well-modelled
by (2.16), as is particularly apparent on figure 3(c), where we have plotted the
experimental results with logarithmic axes. This is very suggestive that the quasi-
steady state discussed in the previous section occurs in these experiments. This
phenomenon occurs for the entire range of RiB considered here and identification
of the fact that the flow is in this regime relies only on the depth of the evolving layer
changing by a sufficiently large amount for the sub-linear growth to be identifiable
and distinguishable from the ‘V’ model. From our experiments, this critical amount
appears to be approximately one quarter of the original layer depth, or equivalently,
when τ? > 1/4.

From (3.2), τ? > 1/4 corresponds approximately to the time when the two models
differ by 3–4 %. At such a time, the dimensional deviation between the two model
predictions is of the order of a centimetre, and so is definitely distinguishable using
the density profile measurements. Since at early times the two predictions are identical
(as is apparent from calculating the Taylor series expansion of the ‘P’ model prediction
in powers of τ?) there are two different flow evolutions which are consistent with
the observed early-time linear increase in depth, and the late-time slower sub-linear
increase in depth of the mixed layer. Firstly, the evidence is consistent with the flow
initially being in the constant-velocity ‘V’ model regime, with a ‘cross-over’ to the
constant-power ‘P’ model flow regime at some later time (which appears to be a time
τ? . 1/4) when the power demand of the mixed layer exceeds that which can be
supplied by the rotating disk. Secondly, the evidence is also consistent with the flow
being in the constant-power ‘P’ flow regime from very early times, due to the fact
that at early times the ‘P’ model prediction reduces to the constant increase in depth
prediction of the ‘V’ model.

Although this second behaviour is physically unlikely, as it seems plausible that
there will be an initial ‘spin up’ phase where the turbulent kinetic energy of the mixed
layer will inevitably increase, the unfortunate consequence is that we are unable to
distinguish between these two different flow evolutions. In particular, there is no way
to determine a specific ‘cross-over’ time between the two flow regimes, just that the
‘P’ model regime certainly appears to occur for τ? > 1/4. From the definitions of τ and
τ? (i.e. (2.2) and (3.1)), this corresponds to the dimensional critical time tc

t > tc = RiBh0

4RΩcV
, (3.3)

which is intuitively reasonable since tc increases with stratification and initial layer
depth, and decreases with disk angular frequency.

Therefore, we believe we have established categorically two key results. Firstly
for sufficiently large changes in the layer depth (and hence long enough periods

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

48
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.488


Stratified mixing in surface-stress-driven flow 515

of flow evolution) the rate of change of layer depth is definitely sub-linear, and so
the modelling assumption of BDG97 that the fluid layer is ‘spun up’ at a constant
velocity which scales with the angular frequency is demonstrably not true for all time.
Secondly, and somewhat more surprisingly because of the sweeping nature of the
underlying assumptions, the data appear to be consistent with the simple ‘P’ model,
suggesting that the dynamics in the evolving flow is in a subtle, yet appealing energy
balance. The external forcing mechanism is injecting a certain amount of power, and
this power is being partitioned into two parts. One part leads to the homogenization of
the evolving upper layer, redistributing the entrained fluid throughout the upper layer.
The other part is ‘lost’ to viscous dissipation, in just the right proportion to maintain
the total kinetic energy of the upper layer at a constant value, and thus implying
that the characteristic velocities in that upper layer (which drive the erosion of the
lower layer for example) decay proportionally to ĥ−1/2, thus inevitably leading to a
reduction in the rate of increase of the upper-layer depth. The entrainment dynamics
at the interface (since it appears to have a constant, and relatively small thickness
throughout the flow evolution) appears not to be dominated by a turbulent diffusion-
type overturning dynamics, but rather a continual ‘scouring’ dynamics as considered
recently by Woods et al. (2010) in a different Taylor–Couette geometry. The data are
very suggestive of the supposition that the rotating disk at the surface is ultimately
unable to ‘spin up’ the entire well-mixed layer, and that this imperfect spin-up leads
to decaying (as the mixed layer deepens) characteristic velocities, definitely different
from the characteristic forcing velocities of the forcing disk.

4. Conclusions
We have considered experimentally and theoretically the mixing induced by a

rotating disk at the surface of a cylindrical tank containing an initially two-layer
density distribution. The turbulent motions induced by this disk prove to be very
efficient at both entraining fluid from the lower layer, and thoroughly homogenizing
the deepening upper layer. We find that the interface between the two layers (at
least to leading order) remains of the same thickness. However, the rate at which the
upper layer deepens does not remain constant with time, at variance with the model
previously presented for this flow in BDG97. We present a model that captures this
key aspect of the flow evolution, essentially assuming that it is not the characteristic
velocity of the upper layer which stays constant during the evolution of the flow, but
rather the total kinetic energy of the upper layer.

This assumption has two corollaries. Firstly, the disk is eventually unable to ‘spin
up’ an arbitrarily deep layer of fluid due to the increased dissipation associated with
this layer, even though it is conceivable that the disk can continue to energise the
initially static fluid from the lower layer that is entrained. Secondly, there appears
to be a constant amount of power required to entrain and (more significantly)
homogenize the density of the upper layer (i.e. the stratified mixing power demand
MS as defined in (2.13)) thoroughly distributing the entrained denser fluid into the
upper layer. The experimental evidence is consistent with the assumption that the
characteristic velocity uU of the entraining layer eventually decreases such that u2

UhU

remains constant, particularly when the layer has deepened by a sufficiently large
amount compared to its original depth.

Finally, there is no evidence that the entrainment processes (in particular the
buoyancy flux) across the interface vary during the flow’s evolution. However, since
the (local) Richardson number RiI (as defined in (2.4)) at the interface is predicted
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to remain constant, it is moot whether the entrainment invariance with (relatively
strong) stratification as identified by Woods et al. (2010) is occurring, though the
relative sharpness of the observed interfacial thickness is suggestive that ‘scouring’
rather than strong shear-induced overturning is the dominant entrainment mechanism.
The natural way to investigate this issue within this flow geometry is to repeat this
experimental approach with an initially linearly stratified layer in the tank. Such an
initial density distribution will lead inevitably to a non-constant interfacial Richardson
number, even if the characteristic length scale of the interface between the deepening
mixed layer and the remaining original linearly stratified layer remains constant. It is
an interesting open question whether our core assumption (i.e. that the kinetic energy
of the deepening mixed layer remains essentially constant) remains valid in such a
qualitatively different flow, particularly in the light of the investigations of closely
related flows by Munro & Davies (2006) and Munro, Foster & Davies (2010). We plan
to report on the results of this study in due course.
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