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Abstract Many experiments investigating different decision theories have relied
heavily on pairwise choices between lotteries. These are easy to incentivise, but often
yield only limited dichotomous information. This paper considers whether respon-
dents’ judgments about their strength of preference (SoP) for one alternative over
another can usefully supplement standard choice data. We report extensive evidence
that such judgments show sensitivity to variations in question format and parameter
values in the directions we should expect, not only within-subject but also between-
sample. We illustrate how such judgments can usefully supplement standard pairwise
choice data and enrich our understanding of observed behaviour.
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538 D. Butler et al.

1 Introduction

During the course of the last five decades, data from laboratory experiments have
challenged the descriptive validity of Expected Utility Theory (EUT) and have stim-
ulated the development of numerous alternative models, which in their turn have been
subjected to further experimental examination in the (so far unfinished) search for an
adequate descriptive model (see Starmer 2000).

Much of this work has used pairwise choices between lotteries. This is natural
enough, since most theories of choice under risk are formulated in terms of choices
over primitives that take the form of lotteries over consequences, and lotteries with
monetary payoffs can easily be produced under incentive-compatible laboratory con-
ditions. However, while dichotomous choices show which alternative an individual
chose, they do not reveal much more about the relative evaluation of the alterna-
tives. Moreover, if individuals are heterogeneous in their preferences, any given set
of predetermined alternatives may only discriminate between competing theories for
a (possibly small) subset of the sample. As a consequence, choice-only experiments
may only give an incomplete picture of the effects of interest.

In this paper, we consider a possible way to supplement the information pro-
vided by choice data. We propose a method that not only elicits incentive-compatible
choices, but also asks participants to provide judgments about the strength of prefer-
ence (SoP) for the alternative they choose. Such judgments are meant to provide some
indication of the relative degree of difference between the two options as perceived
by the decision maker. What is of interest is not the absolute value of SoP reported
by the respondent but rather how SoP varies for the same individual across related
decision problems. In the next section we expand on the theoretical status of the SoP
concept and how it might add to our understanding of observed behaviour.

Our purpose here is to investigate the performance of an instrument which is sim-
ple to use and which might—perhaps after some further refinement—contribute to a
large-scale comparison of various alternative theories in future experimental studies.
However, since this instrument cannot be incentivised in the usual way, the creden-
tials of this method need to be established empirically.

Thus our first objective is to investigate the sensitivity and validity of the new in-
strument. We do this by looking at how the self-reported SoP measures respond to
unambiguous improvements in one of the options in a pair. These tests are particu-
larly robust, as the kind of broad responsiveness we look for is predicted by all main
competing theories. To preview our results, we find that the SoP judgments we elicit
are very sensitive to within-subject manipulations and, somewhat to our surprise, even
show sensitivity to between-sample manipulations.

Our second objective is to examine the usefulness of these SoP data. As examples
of how the instrument might be deployed, we shall consider what additional insights
it might provide into some issues of interest to decision theory: the stochastic ele-
ment in people’s preference; the robustness—or otherwise—of the notion of simple
scalability in choice behaviour; and the status of the independence axiom of EUT.

The paper is organised as follows. Section 2 considers in more detail the concept
of SoP and some possible implications for observable behaviour. Section 3 describes
the instrument we used to elicit some measure of SoP. Sections 4 to 6 present our
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Fig. 1 Mosteller and Nogee’s
Fig. 2

extensive sensitivity tests, illustrating some of the extra insights that SoP judgments
can offer. Section 7 discusses the main limitations of our SoP instrument in its current
form. Section 8 concludes.

2 Strength of preference: theoretical background

In their review of deterministic and probabilistic theories as they existed at that time,
Luce and Suppes (1965) wrote: “. . . the intuitive idea of representing the strength of
preference in terms of a numerical utility function—in terms of a subjective scale—is
much too appealing to be abruptly dropped. Indeed, no-one has yet dropped it at all;
every theory that we examine includes such a notion. . . ” (pp. 332–333).

Early attempts to estimate individuals’ utility functions—see, for example,
Mosteller and Nogee (1951)—produced evidence of the probabilistic nature of those
preferences. They found that if they made a gamble progressively better, the typical
individual did not switch at some point from refusing the gamble 100 % of the time
to accepting the gamble 100 % of the time—as would be supposed by deterministic
theories with a single indifference point—but rather became increasingly likely (but
not certain) to take the gamble over some range. Figure 1 reproduces the example
Mosteller and Nogee reported of one individual who was repeatedly offered a gam-
ble giving a 2/3 chance of winning X cents and a 1/3 chance of losing 5c, with X

varied from one question to another. In the case in Fig. 1, the values of X were var-
ied between 7c and 16c inclusive, with each value offered on 14 separate occasions.
When X = 7c, the participant never accepted the bet. When X = 16c, he always
took the bet. For values of X in between, the individual sometimes accepted the bet
and sometimes rejected it, with the probability of accepting the bet increasing as X

increased.
On this basis, Mosteller and Nogee estimated the value of X which would have

led to the bet being accepted 50 % of the time and rejected 50 % of the time. As Fig. 1
shows, this rather primitive ‘fitting’ yielded an estimate of 10.6. However, for values
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of X between 9c and 12c inclusive, there was some chance that the individual would
accept the gamble on some occasions and reject exactly the same gamble on others.

One way of accounting for such behaviour is by supposing that on any particular
occasion when he is asked whether to take the gamble or turn it down, the individual
consults his preferences as he perceives them at that moment, with that perception
consisting of some ‘central tendency’ difference between the subjective values of the
alternatives, plus some variability of the kind that seems to be inherent to human
judgment processes.1

For example, in the class of ‘constant utility’ models discussed by Luce and Sup-
pes (1965, Sect. 5.2), the central tendency difference can be thought of as the dif-
ference between the EUs of the alternative options being considered.2 However, the
‘noisiness’ of human judgment means that sometimes the direction of this difference
is reversed.

With such a characterisation of the decision-maker’s behaviour, Fig. 1 can be in-
terpreted as follows. When X = 10.6, there is no difference between the individual’s
central tendency subjective values of rejecting or accepting the gamble. In this case,
the actual choice is entirely decided by random noise in the judgmental process (mod-
elled as an ‘error term’ with a median of 0). As the value of X becomes increasingly
different from 10.6, the central tendency difference between the two options increases
and thus is progressively less likely to be reversed by noise. So when X is 7c, the un-
derlying difference favouring rejection is large enough that it is not reversed on any
of the 14 presentations. And when X = 16c, the difference favouring acceptance is
large enough that it is not reversed on any of the 14 presentations of the gamble with
that payoff.

By asking people not only to record their choice but also to report their SoP for the
option they are choosing, we are asking for an estimate of their perceived preferences
at that moment, with that perception consisting of the central tendency difference
between the subjective values of the options in conjunction with noise.

If an individual can make SoP judgments of this kind,3 we might expect that suf-
ficient repetition of the choice will allow us to cancel out the noise component and
home in on a judgment about the core difference between the two alternatives. By do-
ing this for a number of related pairs of alternatives, we can build up a picture of how
core preferences are behaving, not only for the subset of individuals whose patterns
of actual choices differ in the particular pairs considered, but also for all remaining

1Such patterns have been observed in many other judgmental contexts investigated by psychophysical
experiments ever since Fechner (1860): for example, the probability of judging the lighter of two objects
to be heavier increases as the true difference between their weights gets progressively smaller. Hence this
class of models may be referred to as Fechnerian. There are other ways to make choices the outcome of
a stochastic process—most notably the random preference approach (e.g. Becker et al. 1963; Loomes and
Sugden 1995)—but for simplicity of exposition, we will restrict our attention to Fechnerian models, which
have been particularly prominent in applied work.
2Although it seemed natural in 1965 to take EU as the ‘core’ deterministic theory, this is not the only
possibility: the same broad idea can be applied to many of the numerous alternative core theories developed
in the years since then.
3In fact, in decision analysis, it has been quite usual to elicit such judgments (see, for example, Von
Winterfeldt and Edwards 1986).
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individuals whose final choices may be the same but who can be differentiated in
ways that dichotomous choice alone would miss.

At the same time, we may be able to learn about the ways in which the noisiness
of judgment varies with (or is independent of) the characteristics of the choices being
made. Such knowledge may guide choices of stochastic specification when econo-
metric methods are being used to try to compare the fit of different core theories.
For example, Hey and Orme (1994) fitted a number of alternative core functions to
their dataset on the assumption that the variance of the error term was constant across
all pairs of lotteries in their experiment, whereas Buschena and Zilberman (2000)
proposed a heterogeneous error structure. In Sect. 4, we shall begin to explore this
issue in the context of pairs in which one lottery first-order stochastically dominates
the other and where we can systematically vary each dimension of the differences
between the alternatives.

Figure 1 reveals another interesting way in which SoP judgments can be used.
In a Fechnerian model, the slope of the fitted line depends on the variance of the
error term, the curve becoming flatter as the variance increases. Suppose the constant
loss in each of the gambles offered by Mosteller and Nogee was increased to 7c. If
we assumed that the error term has constant variance, we would expect the resulting
curve to be just a parallel shift to the left, with an important implication: for any
value of the win on the horizontal axis, the probability of taking the gamble with a
loss of 7c would be strictly less than the probability of taking the gamble with a loss
of 5c. This property is known as ‘simple scalability’, or ‘independence principle in
probabilistic choice’ (see Tversky and Russo 1969). The property would not hold if,
for instance, the variance of the error term was larger for the loss of 7c than for the
loss of 5c. In that case, the curve for the loss of 7c would be flatter, allowing for the
possibility that, for some values of the winning amount, the probability of taking the
gamble with the larger loss would be greater than that of taking the gamble with the
smaller loss.

More formally, let Pr(J,K) = f[v(J),v(K)] denote the probability that lottery J is
chosen over lottery K as an increasing function of the subjective value/utility assigned
to J, v(J), and a decreasing function of the subjective value/utility of K, v(K). Simple
scalability implies that Pr(J,L) > Pr(K,L) iff Pr(J,M) > Pr(K,M) for all L and M:
that is, order independence from the comparators L and M. Under the assumption of
constant variance of the noise component, SoP(J,K) can be treated as a proxy for
f[v(J),v(K)], allowing us to use individual-level data to check if simple scalability
is satisfied. If simple scalability is not respected, our SoP judgments would indicate
that the assumption of constant variance is inappropriate.4 We present an application
along these lines in Sect. 5.

Finally, SoP measures may give us greater information with which to discrimi-
nate between competing models. To illustrate, consider two lotteries which involve

4Systematic violations of simple scalability have been widely documented in the literature using sample
proportions as proxies for choice probabilities of a representative agent (see Busemeyer and Townsend
1993 and references therein). With SoP judgments it is easier, with just a few observations, to form a
picture of whether simple scalability is satisfied at the individual level, which is harder to do using binary
choices alone (for an early example, see Busemeyer 1985).
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Fig. 2 How the lotteries were displayed

some probability p of a payoff X that is common to both of them. For example, sup-
pose lottery S offers a 0.5 chance of £12 and a 0.5 chance of 0—more compactly,
S = (£12,0.5;£0,0.5)—while lottery R = (£25,0.4;£0,0.6), so that they have in
common a 0.5 chance of 0. The core difference between them is v(S) − v(R). EUT
implies that if we create two new lotteries by replacing the 0.5 chance of 0 with a
0.5 chance of £25, to give S′ = (£25,0.5;£12,0.5) and R′ = (£25,0.9;£0,0.1), the
difference is unaffected—i.e. [v(S′)− v(R′)] = [v(S)− v(R)]. However, a number of
alternative theories to EUT entail [v(S′)−v(R′)] > [v(S)−v(R)]. If we rely solely on
observing one-off choices, the only cases which we can use to discriminate between
EUT and those alternative theories are cases where the difference changes from pos-
itive to negative or from negative to positive—that is, where an individual chooses
S′ over R′ but chooses R over S, or else where an individual chooses R′ over S′ but
chooses S over R. Both of these depart from EUT whereas the first but not the second
is compatible with those alternative models. However, if the total number of these
cases is small and/or the asymmetry is not very pronounced, it may be difficult to
rule out the possibility that these observations are produced purely by the noise in
people’s judgments.

On the other hand, if we can elicit repeated SoP measures for each pair, we may be
able to get less noisy estimates of the core differences and compare those estimates
of the differences [v(S′) − v(R′)] and [v(S) − v(R)] for all respondents and not just
for the subset of cases where the sign changes. We illustrate how SoP judgments can
be employed in comparisons of this kind in Sect. 6.

3 Our strength of preference instrument

The properties of our SoP instrument were investigated in an experiment run in 12
sessions at the University of East Anglia in May 2009. The sample consisted of
138 individuals who were randomised between two subsamples (which we label V
and W). Each participant made 100 choices between pairs of lotteries on the under-
standing that when they had completed all 100, one would be picked at random and
played out for real, with the entire payment for their participation depending on how
their decision in that one question played out (i.e. there was no ‘show-up’ fee or any
other source of monetary reward). The experiment took less than an hour to complete,
and participants earned an average of £10.25.

The pairs of lotteries were displayed using the format illustrated in Fig. 2. It was
explained that the outcome for any lottery would be determined by the respondent
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Fig. 3 The ‘strength of preference’ instrument

drawing at random a disc from an opaque bag containing 100 discs each with a dif-
ferent number inscribed upon it.5 So, for example, if lottery A in Fig. 2 were being
played out, the individual would receive £13 if the randomly-drawn disc bore a num-
ber between 1 and 65 inclusive (as displayed above the sum) or would receive £7
if the disc bore a number in the 66–100 range. The chances of winning any sum of
money were given in percentage form underneath each sum—in this case, 65 % and
35 % respectively.

For each pair, the respondent was asked not only to choose the alternative he pre-
ferred, but also to use the bar shown in Fig. 3 to record his perceived SoP for the
chosen alternative.

The instrument worked as follows. When a fresh pair of lotteries was first pre-
sented, the button sat at the centre of the bar. It was moved by clicking on it and
dragging it either to the left to signify a preference for the lottery labelled with a red
A, or to the right to signify a preference for the lottery labelled with a blue B. The re-
spondent was told: “If you feel that both alternatives are almost equally good so that
you think the one you are choosing is only SLIGHTLY better than the other one, just
move the button a little way in the direction of your choice. However, if you think
the one you are choosing is VERY MUCH BETTER than the other one, move the
button a long way along the bar in the direction of your choice, possibly as far as the
end if you feel very strongly indeed. Once you have moved the button to the position
that shows which alternative you choose and how much better you think it is, press
OK. Then you will be asked to confirm your choice (or change it, if you change your
mind) before moving to the next decision.”

In fact, as participants saw when they moved the cursor, some accompanying text
appeared and changed with the position of the button. Although it was not apparent
to participants, the bar on each side of the centre was calibrated to 100 points, corre-
sponding to a score ranging from 0 to 200 from one end to the other. When the button
was located at any of the first 25 points to each side of the centre, text appeared which
read ‘You think A(B) is SLIGHTLY better’. When the button was moved to anywhere
on the next 25 % of the bar, the text changed to ‘You think A(B) is BETTER’. For
the next quarter of the bar the text read ‘You think A(B) is MUCH better’. And for
the quarter furthest from the centre, it read ‘You think A(B) is VERY MUCH better’.
When they confirmed their decision, the exact position of the cursor on the 200-point
scale was recorded.

Because of this feature of the instrument, we anticipated that some participants
might use the slider as an 8-point scale, with four levels on each side. Figure 4 shows
a histogram of the SoP values recorded by the 138 participants in the 100 tasks (a
total of 13,800 decisions), normalised over a 100-point scale to represent the SoP in
favour of the chosen lottery in a pair.

5The full text of the instructions is reproduced in the electronic supplementary material (ESM).
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Fig. 4 Aggregate distribution
of normalised SoP score

Those who are concerned that the lack of direct incentives might result in par-
ticipants using the slider in a minimalist or random way should be reassured by the
evidence that the whole scale was used. On the other hand, there are clear spikes
just after 25 and 50, suggesting that many participants were sensitive to the verbal
descriptions and more often ceased moving the slider soon after a change of wording
had been triggered.6 In the next three sections, we will take this aspect of the data into
account by coding the SoP scores recorded in the experiment to map onto an 8-point
scale. Where necessary, we will refer to the four levels of SoP on each half of the
scale as ‘vmb’ (standing for ‘very much better’), ‘mb’ (‘much better’), ‘b’ (‘better’)
and ‘sb’ (‘slightly better’).

When information about the individual decision is required, we simply assign the
score recorded for that decision on the 200-point scale to the corresponding category
on the 8-point scale. However, as explained above, repetition of the SoP judgments
can give a more accurate picture of the central tendency difference between the sub-
jective values of the two lotteries involved. For this reason, the great majority of
lottery pairs were faced by participants at least twice. Whenever information about a
particular pair is required, in order to determine which of the eight categories each
participant’s SoP for that pair falls into, we first compute the average of the SoP score
recorded on the original 200-point scale for the various occasions in which the pair
was faced by the participant. We then assign the resulting average to the correspond-
ing category. This gives a less noisy representation of the participant’s preferences,
and ensures the independence of observations across participants for our statistical
tests.7 However, it should be born in mind that the distributions of SoP categories that
we present are to be interpreted as reflections of the participants’ estimated balance of
preference for one alternative over the other, even though they may sometimes have
chosen differently on different occasions. For simplicity, we will sometimes find it

6This suggests that people’s ability to discriminate their SoP level may be confined to a limited number of
categories, a tendency that has been found in many other domains since Miller (1956).
7This procedure results in a missing value whenever the average falls exactly at the midpoint of the scale,
where the slider was started. However, this happens very rarely (in fewer than 0.7 % of the cases).
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convenient to refer to the distributions as if they were choices, but what we really
mean is the preference implied by averaging the SoP responses.

There is also a very prominent spike at 100 that occurs with a frequency of 1359.
However, 883 (almost two thirds) of the cases in which maximal SoP was recorded
correspond to pairs in which one of the lotteries first-order stochastically dominates
the other, suggesting that some participants may have used the slider not simply to in-
dicate their SoP but also to express their confidence that they made the right decision.
The relationship between SoP and confidence will be considered in the discussion.

We do not suppose that all individuals interpret the wording of these SoP tasks
in the same way. As we shall see, the data suggest that different individuals show
different sensitivity when using the SoP scale. We suppose only that any particular
individual will display a degree of internal consistency in the way he/she interprets
and applies the SoP scale.

With our instrument, SoP judgments are recorded on a bounded scale. We took
this option because we felt that allowing for SoP to be reported on an open-ended
scale would not have bought us much extra: for the range of payoffs in most experi-
ments, a simple bounded scale would appear adequate. More sophisticated arguments
could be adduced—for example, a more elaborate way of justifying boundedness
would be to introduce some kind of scaling of the error term along the lines proposed
by Blavatskyy (2011) or Wilcox (2011).8 We hope it will become evident that the
bounded nature of the scale does not represent a serious limitation of the instrument.

4 The first-order stochastic dominance pairs and variability in SoP judgments

In this Section, we focus on 20 of the pairs presented, in which one of the two lot-
teries first-order stochastically dominates the other. We use these ‘FOSD’ pairs for
two main goals. The first is to explore to what extent the SoP instrument responds
to unambiguous improvements in one of the options when, arguably, there is a cor-
rect answer. The second is to illustrate how SoP judgments can shed light on the
characteristics of the noise component in people’s preferences.

Table 1 summarises the design. There were two ‘baseline’ lotteries, as shown in
the left-hand column: one offered a p = 15 % chance of receiving payoff b = £15 and
an 85 % chance of 0, while the other offered a p = 35 % chance of b = £35 and a
65 % chance of 0. These were paired with alternatives that dominated them in some
way: either by holding the probability of winning at p but increasing the payoff by
an increment m, with m being either £1 or £10; or else holding the positive payoff at
b but increasing the probability of winning it by an increment q, with q being either
1 % or 10 %. This part of the design was primarily intended to see whether the SoP
instrument was sensitive to different values of m and/or q, given the same baseline.

We were also interested to see whether the immediacy/transparency of the domi-
nance relationship had an impact on subjects’ responses. For half of the displays, the

8A bounded SoP can also be achieved in the random preference framework by, for example, assuming that
preferences are represented by a family of utility functions with risk aversion coefficients drawn from a
closed interval.
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Table 1 Summary of the FOSD
pairs

O = Overlapping display;
D = Disjoint display

Baseline Increment Repetitions

m (£) q (%) O/D sub. V sub. W

b = £15, p = 15 % 1 0 O 2 1

1 0 D 2

0 1 O 2 1

0 1 D 2

10 0 O 2 1

10 0 D 2

0 10 O 2 1

0 10 D 2

b = £35, p = 35 % 1 0 O 1 2

1 0 D 2

0 1 O 1 2

0 1 D 2

10 0 O 1 2

10 0 D 2

0 10 O 1 2

0 10 D 2

two states offering the positive payoffs were lined up so that respondents could see
either that every numbered disc which would pay b in the baseline lottery would also
pay b + m in the dominanting lottery, or else that every numbered disc which would
pay b in the baseline lottery would also pay b in the dominanting lottery but that an-
other q adjacent numbered discs would also pay b in the dominanting lottery rather
than 0 in the dominated lottery: we refer to displays in this form as overlapping, in-
dicated by an O in Table 1. For the other half of the FOSD pairs, the positive payoffs
were at opposite ends of the displays, so that they required more care and attention in
order to identify the stochastic dominance relationship: we refer to these displays as
disjoint—D in Table 1.

Finally, in the majority of cases each pair was presented twice, with the A-B or-
dering reversed: this is indicated by a 2 in one of the last two columns of Table 1, and
was intended to control for any effect the A-B ordering might have on responses.9

Repeating the tasks also allows us to tap into the intrinsic variability that charac-
terises reported SoP judgments. There were some instances where a particular pair
was presented to members of one subsample just once in a particular format that was
identical to one of the pairs presented to the other subsample, in order to allow a
direct check that both subsamples were answering those questions in a way that was

9These 20 FOSD pairs were interspersed among the 100 pairs. We ensured that each of these pairs was
faced once before any of them was presented for the second time. The sequence of pairs was predetermined,
but differed for the two subsamples.
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not systematically different:10 these cases are indicated by a 1 in the last two columns
of Table 1.

The results of the sensitivity tests are summarised in Table 2, which reports, sep-
arately for the two subsamples, the distributions of responses classified according
to the different SoP categories. The data are arranged so that +vmb, +mb, +b and
+sb reflect decreasing preference for the dominating alternative. Similarly, −sb, −b,
−mb and −vmb reflect increasing preference for the dominated alternative. Each
row refers to one of the pairs that were presented twice. For example, the row with
Base = 15, m = 1, q = 0, D—that is, the second row for Subsample V—shows the
distribution of average SoP judgments for the pair in which the baseline (dominated)
option offered a 15 % chance of £15 while the dominanting alternative offered a
15 % chance of £16, and where the display was in disjoint format, so that the positive
payoffs were at opposite ends of the display. To give another example, the row with
Base = 35, m = 0, q = 10, O—the penultimate row for Subsample W—shows the
distribution of SoP judgments for the pair in which the baseline was a 35 % chance
of £35 while the dominanting alternative was a 45 % chance of £35, and where the
display was in overlapping format, so that the positive payoffs were at the same end
of the display.

When dominance is easiest to spot—i.e. in the overlapping displays—there are
only a small minority of violations: for the eight cases, four from each subsample,
when there are overlapping displays, there are 8 responses which violate dominance,
constituting roughly 1.4 % of the observations. When dominance is less immediately
transparent—in the disjoint displays—the number of violations rises to 55, constitut-
ing roughly 10 % of the observations.11

The sensitivity of SoP responses to the magnitude of the difference, either on the
payoff dimension or on the probability dimension, is strongly indicated by the aggre-
gate patterns in Table 2, but Table 3 presents the relevant within-person data. Each
column shows the number of categories between the SoP registered by an individual
in the case involving the greater m or q and the SoP registered by that same individual
in the corresponding case involving the smaller m or q. For example, the row labelled
15, q = 25 − 16, O shows how each individual’s SoP for a 25 % chance of £15 over
a baseline 15 % chance of £15 compared with that same individual’s SoP for a 16 %
chance of £15 over the same baseline, when the displays in both cases were overlap-
ping. Absent violations of dominance, the maximum number of categories between
the two SoP values should be 3 (if the dominating lottery is rated vmb than the dom-
inated lottery for the larger increment and is rated sb for the smaller increment), with
values between +1 and +3 being associated with the expected responsiveness of the
SoP measures to the size of the increment in money or probability. Values greater
than 3 mean that dominance has been violated in the pair with the smaller increment.

10The evidence—reported in more detail in the ESM—suggests that the random assignment of participants
to subsamples V and W was effective in ensuring that there were no systematic differences between the
two subsamples.
11Due to the way the data in Table 2 are coded (by assigning the average SoP score over the two repeti-
tions to the corresponding SoP category), these numbers differ from the raw count of separate violations.
In O pairs, we observed a total of 27 violations (out of a total of 1104 observations). In D pairs, the
corresponding number was 133.
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Table 3 SoP sensitivity in FOSD pairs

Comparison SoP difference (cat. based on average) Sig.a

<0 0 1 2 3 >3

Subsample V

15, m = 25 − 16, O 1 32 22 2 11 0 ∗∗∗
15, m = 25 − 16, D 6 26 22 5 6 2 ∗∗∗
15, q = 25 − 16, O 4 29 18 14 3 0 ∗∗∗
15, q = 25 − 16, D 7 25 21 6 3 4 ∗∗∗

Subsample W

35, m = 45 − 36, O 4 30 24 9 2 0 ∗∗∗
35, m = 45 − 36, D 4 25 21 13 2 1 ∗∗∗
35, q = 45 − 36, O 7 32 18 10 2 0 ∗∗∗
35, q = 45 − 36, D 6 19 24 15 3 0 ∗∗∗

aSignificance in a one-tail Wilcoxon test on category based on average SoP: ∗10 %, ∗∗ = 5 %, ∗∗∗ = 1 %

Negative numbers do not necessarily reflect violations of dominance, but may be as-
sociated with cases in which, contrary to our expectation, a stronger preference is
registered for the smaller increment. The last column of the table reports tests of the
null hypothesis that the distributions of SoP are not different for the two pairs against
the alternative that they are more skewed towards the dominating lottery in the pair
with the larger increment.12

These data clearly show movements in the direction we should expect. In every
comparison, except 35, q = 45 − 36, O, the majority of the observations for which
the SoP for the smaller and the SoP for the larger increment differ are in the range
between +1 and +3, which is consistent with participants reporting a stronger pref-
erence for the dominating option when the increment is larger. All differences are
significant in the predicted direction at the 1 % level. Moreover—and arguably, even
more strikingly—the appropriate patterns of movement are not only evident within
sample but also between samples. That is, if we splice together the responses from
both subsamples we find that as the EV differences increase from £0.15 to £0.35 to
£1.50 to £3.50, the numbers of +sb responses go steadily down, while the numbers
of responses reporting greater levels of SoP systematically rise. This same trend is
observable for all four combinations of money/probability increments and overlap-
ping/disjoint displays. The fact that we find this pattern even when the difference is
quite small (£0.35 vs £0.15) and when these two differences are being evaluated by
different and independent subsamples, is a clear sign of the sensitivity of the SoP
instrument in this context.

As we explained in Sect. 2, SoP judgments can shed light on the behaviour of the
noise element that characterises people’s preferences. The second and third to last
columns of Table 2 report the mean and standard deviation of a statistic called SoP

12These Wilcoxon signed-rank tests are based on the distributions of SoP categories obtained using the
average SoP in the two observations of each pair.
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Table 4 Variability of SoP in FOSD pairs

Money vs. Probability Small vs. Large Overlapping vs. Disjoint

Sub V Sub W Sub V Sub W Sub V Sub W

FOSD pair set 1 Money Small Overlapping

Mean range 0.78 0.76 0.70 0.78 0.73 0.66

Std. dev. range 0.92 0.62 0.81 0.80 0.86 0.59

FOSD pair set 2 Probability Large Disjoint

Mean range 0.96 0.91 1.04 0.89 1.00 1.01

Std. dev. range 0.84 0.68 0.93 0.71 1.00 0.80

Sig.a ∗ ∗ ∗∗∗ ∗∗ ∗∗∗

aSignificance in a two-tail Wilcoxon signed-rank test: ∗ = 10 %, ∗∗ = 5 %, ∗∗∗ = 1 %

range. For each of the FOSD pairs which were repeated twice, this statistic is obtained
by taking the sample average of the absolute difference between the SoP categories
recorded in the two instances each pair was faced by each participant. If the assump-
tion of constant variance is appropriate, we should see no difference in this statistic
between cases in which the increment was small and those in which it was large, no
difference between cases in which the increment was on the money rather than on the
probability dimension, and no difference between overlapping and disjoint displays.
The data in Table 2 show a different picture. Within each subsample, SoP judgments
are more variable for cases involving the larger increment than for the correspond-
ing cases involving the smaller increment in all eight possible comparisons; they are
more variable when dominance is obtained by altering the probability rather than the
money dimension in seven out of eight cases; and are also more variable for overlap-
ping than for disjoint displays in seven out of eight cases.

Table 4 reports some relevant statistical tests. For each of the three comparisons
(money vs. probability, small vs. large and overlapping vs. disjoint), we compute
the average of the SoP range for the four pairs corresponding to each level of the
relevant dimension (e.g. four money pairs and four probability pairs), separately for
each sample. We then test the hypotheses that the corresponding average variables
do not differ between the two levels of that dimension. We reject the null hypothesis
in five out of six cases (twice at the 1 %, once at the 5 %, and twice at the 10 %
level), in the direction that one would expect. There are, however, some qualitative
differences between the two subsamples: the greatest contributor to SoP variability
is the increment size in Subsample V (an average difference of 0.34 SoP categories),
while the display format has greatest influence in Subsample W (also a difference of
0.34 categories on average).

Thus our SoP judgments reveal that a model in which noise is assumed to have
constant variance across lottery pairs may be erroneous, and suggest ways in which
variance should be modelled to achieve a better description of the data.

Downloaded from https://www.cambridge.org/core. 16 Mar 2025 at 22:10:51, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Beyond choice: investigating measures of strength of preference 551

5 The preference reversal pairs and simple scalability

52 of the pairs faced by participants were built around lotteries with the structure
of those commonly used in studies of the Preference Reversal (PR) phenomenon.
The classic preference reversal phenomenon (see Lichtenstein and Slovic 1971; and
for a survey, Seidl 2002) revolves around two lotteries: one—the $-bet13—offers a
relatively high payoff with a fairly small probability of receiving it; while the other—
the P-bet—offers a much greater probability of a more modest payoff. A ‘standard’
reversal occurs when individuals place a higher certainty equivalent value on the $-
bet than on the P-bet but prefer the P-bet over the $-bet when asked to make a straight
choice between the two. The opposite reversal—placing a higher value on the P-bet
but picking the $-bet in a straight choice—is relatively rarely observed. A different
asymmetry has also been reported, although fewer studies have looked for it. This
involves individuals being asked to report their probability equivalents for each bet—
i.e. the smaller probability of some payoff higher than the payoff of the $-bet that
they regard as exactly as good as a given bet—as well as making a straight choice
between the two: in these tasks, it is more common to observe someone who chooses
the $-bet place a higher probability equivalent on the P-bet than choose the P-bet
and place a higher probability equivalent on the $-bet (see, for example, Butler and
Loomes 2007).

These 52 choices were made up as follows. On four different occasions respon-
dents were asked to choose between a $-bet and a P-bet. For both subsamples, the
$-bet was always the same: $ = (£40, 0.25; £0, 0.75). For subsample V, the P-bet
was P1 = (£10, 0.9; £0, 0.1), while for subsample W, it was the unambiguously less
attractive P2 = (£10, 0.65; £0, 0.35). We also asked each respondent to choose be-
tween each bet and four levels of sure amount (£10, £8, £6 and £4) and four prospects
offering different chances of winning £60, which we denote by R0.25 = (£60, 0.25;
£0, 0.75), R0.20 = (£60, 0.2; £0, 0.8), R0.15 = (£60, 0.15; £0, 0.85) and R0.10 =
(£60, 0.1; £0, 0.9) and which we shall refer to in this context as the R-bets. Each of
those choices was presented to respondents on three different occasions within the
session. Thus, in total, each respondent was asked to make: 4 choices between $ and
P; 12 choices between $ and four levels of sure amount; 12 choices between the rele-
vant P-bet and four levels of sure amount; 12 choices between the $-bet and the four
R-bets; and 12 choices between the relevant P-bet and the four R-bets.14

This design allows us to see how the SoP instrument responds to changes in one
prospect while the other is held constant. For instance, one should expect that as the
certainty is progressively reduced in £2 steps from £10 to £4, the SoP for a particular
$- or P-bet should progressively increase. Since we used two different P-bets in the
two subsamples, our design also allows for between-subject comparisons.15

The data are reported in Table 5, using the convention that the first lottery of each
pair {S, R} is relatively safe (S), while the second is relatively risky (R). For all cases
in which S (R) is chosen, the number of instances in which the average SoP results in

13From now on, we will use the words ‘lottery’, ‘bet’ and ‘prospect’ interchangeably.
14As with the FOSD pairs, these pairs were interspersed among the 100 pairs and their order was prede-
termined and different for the two subsamples. We ensured that each pair was faced once before it was
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Table 5 SoP distributions in PR pairs

Pair {S, R} S preferred R preferred S (%)

vmb mb b sb sb b mb vmb

{£10, P2} 55 7 6 0 0 1 0 0 99 %

{£8, P2} 11 18 25 12 0 2 1 0 96 %

{£6, P2} 4 10 15 29 9 1 0 0 85 %

{£4, P2} 3 1 7 24 27 6 1 0 51 %

{£10, P1} 45 11 8 4 1 0 0 0 99 %

{£8, P1} 5 4 25 14 17 3 1 0 70 %

{£6, P1} 1 2 12 13 21 14 3 3 41 %

{£4, P1} 0 0 4 7 24 22 6 6 16 %

{£10, $} 8 16 45 47 15 4 0 2 85 %

{£8, $} 4 7 27 61 28 7 3 1 72 %

{£6, $} 2 5 24 59 35 9 1 2 66 %

{£4, $} 2 3 7 49 44 21 9 3 44 %

{P1, $} 2 4 15 31 11 4 0 2 75 %

{P2, $} 1 0 7 40 17 3 1 0 70 %

{P1, R0.10} 4 6 17 32 5 3 0 2 86 %

{P1, R0.15} 1 1 15 37 10 3 1 1 78 %

{P1, R0.20} 0 2 16 29 15 5 1 1 68 %

{P1, R0.25} 1 0 12 29 17 7 2 1 61 %

{P2, R0.10} 1 0 15 44 9 0 0 0 87 %

{P2, R0.15} 1 0 7 47 12 2 0 0 80 %

{P2, R0.20} 1 1 6 32 21 7 1 0 58 %

{P2, R0.25} 0 0 6 31 22 9 1 0 54 %

{$, R0.10} 4 8 45 72 8 0 0 1 93 %

{$, R0.15} 3 3 22 85 18 5 1 1 82 %

{$, R0.20} 1 0 5 49 50 20 11 2 40 %

{$, R0.25} 0 0 1 2 9 33 39 54 2 %

it being rated vmb, mb, b and sb than R (S) are reported. The final column of the table
reports the percentage of the sample whose preference is in favour of the safer lottery
in the pair. Note that the data for pairs involving the $-bet and the certainties or the

presented for the second time, and twice before it was presented for the third time. Which lottery was
presented as A was kept constant in all repetitions.
15We checked for any systematic changes in the SoP distributions when tasks are repeated several times.
A non-parametric test comparing the average SoP for the first presentation of all PR pairs with the average
SoP for the last repetition finds no evidence of systematic trends over time.
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Fig. 5 SoP distributions in PR pairs

R-bets are pooled as the two subsamples reported SoP distributions which were not
significantly different in any of the eight comparisons.16

The data are depicted in Fig. 5. For each of $, P1 and P2, the figure shows the SoP
distributions (taken from Table 5) for choices between the lottery and an alternative

16Two-tailed Mann-Whitney tests: see ESM for details.
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that is made progressively more attractive (moving from £4 to £10 in the left side
of the figure, or from R0.10 to R0.25 in the right side). In order to ease comparisons
between the various diagrams, the vertical axis of each graph reports relative frequen-
cies obtained from the numbers in Table 5 by normalising with respect to the total
number of observations (recall that the data for the $-bet are pooled across the two
subsamples).

The SoP distributions show clear responsiveness to changes in parameters.17 The
trends are particularly strong for the comparisons involving the P-bets and certain-
ties (panels c and e in Fig. 5), and for the pairs involving the $-bet and the R-bets
(panel b). They are also apparent but perhaps less pronounced for the $-bet and the
certainties (panel a) and evident—although less easy to see instantly—in the com-
parisons between the two P-bets and the R-bets (panels d and f). In general, and in
line with expectations from earlier work (e.g., Butler and Loomes 2007), it seems
that the distinctions become less sharp when the comparisons are between alterna-
tives that are more dissimilar. So, for {P1, $} and {P2, $} (not shown in Fig. 5, but
reported in Table 5), there is still a systematic trend, but it is less pronounced than in
the comparisons with sure amounts. As the comparator becomes even more distanced
from the P-bets, as in the case of the choices between P-bets and R-bets, the trend,
while still discernible, becomes somewhat fuzzier. However, all differences between
the SoP distributions involving the certainties and the R-bets, except for the compar-
isons between {P1, R0.20} and {P1, R0.15}, are strongly significant in the predicted
direction in within-subject comparisons of the SoP distributions.18

There is also a substantial degree of between-subject responsiveness. Recall that
we used two different P-bets in the two subsamples, P2 being dominated by lot-
tery P1. When these lotteries are compared with a common alternative, it seems not
unreasonable to expect that the common alternative will be preferred more strongly
to P2 than to P1. Such patterns are clearly visible in panels c and e in Fig. 5. For each
level of certainty (£X), the distribution for {£X, P1} lies to the left of that for {£X,
P2}. A similar tendency, though not equally pronounced, can be observed in panels
d and f for comparisons with the R-bets.19

The responsiveness we have just highlighted relates to the issue of simple scala-
bility that we mentioned in Sect. 2. Previous studies reporting evidence of systematic
violations of simple scalability using choice proportions have suggested that differing
degrees of similarity are often implicated in such violations. And so it is in our data.

Since the P-bets are considerably more similar to certainties than is the $-bet, we
see in Table 5 and Fig. 5 the SoP scores being much more responsive to the changes
in the sure amounts when these are being compared with P-bets than when they are
being compared with the $-bet. In the first four rows of Table 6, the subsample av-
erage SoP responses are reported for comparisons between £8 and each bet and be-

17The spikes at vmb in the distributions for pairs {£10, P1}, {£10, P2} and {$, R0.25} are due to the fact
that these are pairs in which one of the two lotteries dominates the other. See Fig. 4 and Sect. 7.
18These comparisons are based on the Wilcoxon signed-rank test and use the SoP distribution obtained
from averaging the score recorded in the three presentations of each task. See ESM for details.
19Five out of eight of these between-subject differences are large enough to reach statistical significance
(see ESM).
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Table 6 SoP and violations of simple scalability

Sub V Sub W

Average SoP($, £8) 4.02 3.91

Average SoP(P, £8) 3.69 2.71

Average SoP($, £4) 4.77 4.81

Average SoP(P, £4) 5.60 4.39

Average SoP($, R0.20) 3.11 3.02

Average SoP(P, R0.20) 3.86 3.61

Average SoP($, R0.10) 4.46 4.58

Average SoP(P, R0.10) 4.36 4.23

[SoP($,£8) − SoP(P,£8)] > [SoP($,£4) − SoP(P,£4)] 52 48

[SoP($,£8) − SoP(P,£8)] = [SoP($,£4) − SoP(P,£4)] 7 7

[SoP($,£8) − SoP(P,£8)] < [SoP($,£4) − SoP(P,£4)] 10 14

[SoP($,R0.20) − SoP(P,R0.20)] > [SoP($,R0.10) − SoP(P,R0.10)] 13 11

[SoP($,R0.20) − SoP(P,R0.20)] = [SoP($,R0.10) − SoP(P,R0.10)] 5 4

[SoP($,R0.20) − SoP(P,R0.20)] < [SoP($,R0.10) − SoP(P,R0.10)] 51 54

SoP measures increasing preference for PR lottery from 1 to 8; 1–4 for comparator, 5–8 for PR lottery

tween £4 and each bet.20 When the comparator is £8, the average SoP for the $-bet
is higher than the average SoP for the P-bet in both subsamples, from which we infer
a stronger average preference for the $-bet. However, when both bets are paired with
£4, the inferred preference is the opposite for subsample V, where the average SoP
for the P-bet is now nearly one category higher than for the $-bet. For subsample W,
where the P-bet is substantially less attractive than the P-bet presented to subsample
V, the average SoP for the P-bet remains lower than for the $-bet, but the difference
has fallen from 1.20 to 0.42 categories.

However, comparisons with R-bets give a very different picture (see rows five to
eight in Table 6). In these cases, it is the $-bet which is more similar to the compara-
tors than either of the P-bets and so we see the average SoP($, R) responses changing
much more than the average SoP(P, R) responses. In rows 5–8 of Table 6, we see that
when the comparator is R0.20, the average SoPs for the P-bets are higher than for
the $-bet in both subsamples, from which we infer a stronger average preference for
the P-bet. However, when both bets are paired with R0.10, the inferred preference
is reversed for both subsamples, contrary to the constant variance assumption that
underpins simple scalability.

These patterns in the subsample means are also clearly evident at the individual
level. Some relevant data are presented in the bottom half of Table 6. For both pairs

20We have coded the SoP categories so that they range from 1 to 8, with 1 representing the strongest SoP
for the comparator and 8 representing the strongest SoP for the bet in question. We could have reported the
SoP for all eight comparators, but taking just £4 and £8 from the certainties, and R0.20 and R0.10 from
the R-bets is quite sufficient to illustrate the points we are making.
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of comparators, we count cases in which the SoP difference favours the $-bet more
for the better comparator, cases in which it favours it to the same extent, and cases
in which it favours it less. For example, in the ninth row of Table 6, we report cases
in which [SoP($,£8)− SoP(P,£8)] > [SoP($,£4)− SoP(P,£4)], that is, as we move
from £8 to £4 the relative SoP for the $-bet is reduced. Asymmetric patterns are the
rule. For certainties, 52 (48) subjects in subsample V (W) report relatively weaker
preference for the $-bet as the certainty is decreased from £8 to £4, while just 10 (14)
do the opposite. By contrast, for the R-bets, 13 (11) subjects report relatively weaker
preference for the $-bet as we move from R0.20 to R0.10, while 51 (54) do the op-
posite. For all comparisons, if changes in the two directions were equally probable,
the probability of such asymmetric splits happening by chance would be vanishingly
small. So, our individual-level SoP data provide further evidence against the constant
variance assumption of models that satisfy simple scalability.21

6 The Marshak-Machina pairs and the independence axiom

The remaining 28 tasks of the experiment involved 14 pairs of lotteries (with each pair
presented twice) that can be represented in the Marschak-Machina (M-M) triangle
(e.g. Machina 1982) shown in Fig. 6 below. We will refer to these as M-M pairs.

The vertical edge of the triangle shows the probability of the highest payoff, h,
and the horizontal edge shows the probability of the lowest payoff, l. The probability
of the middle payoff, m, is given by 1 − pr(h) − pr(l). So the points A, B and C
on the vertical edge represent progressively worse probability mixes of h and m:
for example, C = (h,0.25;m,0.75). D is the certainty of m, while E, F and G are
progressively inferior mixes of m and l. The points H to N on the hypotenuse all
represent different mixes of h and l, becoming unambiguously worse as we move
south-east along the hypotenuse. For both subsamples, we used h = £25 and l = 0:
the only difference was the value of m, which was £12 for Subsample V and £8 for
Subsample W. The fourteen ways in which prospects were paired are shown by the
14 lines connecting pairs of labelled points.

Pairs such as those in Fig. 6 have played a major role in tests of the independence
axiom of EUT, which implies that an agent’s preferences can be represented in the
M-M triangle by a map of indifference curves taking the form of parallel straight
lines. For any pair of prospects on a given line, the one to the south-west can be
regarded as safer (S) than the riskier (R) one to the north-east. If EUT is interpreted
as a deterministic model, the implication is clear: for all {S, R} pairs connected by
straight lines with the same gradient, an expected utility maximiser should always
choose S, or else always choose R. Under EUT, switching from S to R or from R
to S can only occur as a result of some noise or imprecision in people’s behaviour.
Any asymmetric pattern between S to R (SR) and R to S (RS) switches that cannot
be explained by a purely stochastic component in people’s judgments is liable to be
counted as a violation of the independence axiom.

21These results strengthen our conclusion, reported in Butler et al. (2012) on the basis of the choice data
of the same tasks, that the constant variance assumption is inappropriate in decision problems of this kind.
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Fig. 6 The M-M pairs

Many experiments have presented participants with pairs such as {D, J} and {F, L}
in Fig. 6, where the second pair can be obtained by scaling the probabilities of the two
highest payoffs down by a constant factor (0.5 in this example), thereby preserving
the ratio between the two. Since at least Kahneman and Tversky (1979), the typical
pattern in such cases has been for a larger percentage of participants to choose D from
{D, J} than choose F from {F, L}, making the frequency of SR switches far larger
than that of RS switches. Such a tendency has been dubbed the Common Ratio Effect
(CRE) and has widely been interpreted as a systematic violation of EUT’s indepen-
dence axiom, motivating the development of various alternative theories which relax
independence in one way or another. But how far the change in the proportions of
safe choices really reflects non-EU preferences and how far it may be due to noise is
an open question (see Loomes and Sugden 1995; and more recently Bardsley et al.
2009, Chap. 7).

As previewed in Sect. 2, this is an issue that SoP judgments may help us to address,
especially if we also bring {B, H} into play. B and H are the same distance apart as F
and L and are also connected by a line with a gradient of 4, which means that under
EU assumptions there would be the same subjective value difference for {B, H} as
for {F, L}, so that the direction and strength of preference should be the same for
both of these pairs, while for {D, J} the direction of preference should be the same
but the SoP should be substantially higher (note that {D, J} and {F, L} for subsample
V correspond exactly to {S, R} and {S′,R′} in the example of Sect. 2). A parallel
implication holds for {B, K}, {D, M} and {F, N}, where all three pairs are joined by
lines with a gradient of 1/4 and where the distance between B and K is the same as
that between F and N, with both being half of the distance between D and M. We can
use the SoP responses to examine these implications.

The data produced in these pairs and in another eight pairs within the same triangle
are reported in Table 7. The pairs are organised into groups joined by lines with the
same slope. Each row reports the number of observations for each of the eight SoP
categories obtained by assigning the mean SoP score recorded in the two repetitions
of each task to the category corresponding to the verbal description that was shown
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Table 7 SoP distributions in M-M pairs

Pair {S, R} SoP categories based on average score Sop SoP range S (%)

S preferred R preferred Mean Std. dev. Mean Std. dev.

vmb mb b sb sb b mb vmb

Subsample V

Gradient = 4

{B, H} 11 7 14 10 10 7 3 2 3.69 1.92 1.57 1.83 66 %

{D, J} 1 3 10 12 20 15 4 4 4.86 1.54 0.97 1.25 38 %

{E, K} 0 0 3 21 28 9 4 2 4.94 1.07 0.61 1.06 36 %

{F, L} 1 0 0 13 31 16 4 3 5.24 1.12 0.80 1.08 21 %

{G, M} 1 0 1 18 25 15 3 4 5.13 1.23 0.81 0.81 30 %

Gradient = 3/2

{B, J} 14 12 17 13 6 2 1 2 3.07 1.69 1.35 1.43 84 %

{D, K} 5 8 19 15 16 2 3 0 3.69 1.45 1.04 1.33 69 %

Gradient = 2/3

{D, L} 5 12 19 23 6 2 2 0 3.39 1.32 0.97 0.98 86 %

{F, M} 1 4 12 43 6 1 1 1 3.88 1.02 0.58 0.91 87 %

Gradient = 1/4

{A, J} 26 20 10 8 2 1 2 0 2.29 1.47 0.99 1.53 93 %

{B, K} 20 24 16 3 3 0 1 1 2.32 1.39 1.09 1.34 93 %

{C, L} 11 25 22 7 2 1 1 0 2.58 1.19 1.30 1.25 94 %

{D, M} 11 10 27 15 3 1 0 2 3.03 1.43 0.75 1.02 91 %

{F, N} 3 4 23 32 5 0 0 2 3.61 1.17 0.67 0.87 90 %

Subsample W

Gradient = 4

{B, H} 4 4 9 9 17 15 8 3 4.78 1.78 1.30 1.45 38 %

{D, J} 1 1 5 10 20 18 13 1 5.29 1.37 0.90 1.14 25 %

{E, K} 0 0 1 7 30 23 5 1 5.40 0.89 0.67 1.01 12 %

{F, L} 0 0 0 2 32 20 9 4 5.72 0.95 0.83 0.79 3 %

{G, M} 0 0 0 5 29 23 9 2 5.62 0.91 0.59 0.75 7 %

Gradient = 3/2

{B, J} 3 10 23 16 10 4 2 1 3.65 1.44 1.22 1.44 75 %

{D, K} 2 6 8 20 21 8 3 0 4.29 1.36 1.07 1.09 53 %

Gradient = 2/3

{D, L} 1 6 10 38 10 3 1 0 3.91 1.04 0.58 0.79 80 %

{F, M} 1 0 5 42 17 4 0 0 4.25 0.79 0.64 0.82 70 %

Gradient = 1/4

{A, J} 14 21 17 12 3 0 2 0 2.67 1.36 1.04 1.39 93 %

{B, K} 17 10 22 17 1 1 1 0 2.74 1.32 0.88 1.37 96 %

{C, L} 6 14 31 11 5 2 0 0 3.01 1.13 1.14 1.23 90 %

{D, M} 2 6 22 30 8 1 0 0 3.57 0.96 0.49 0.70 87 %

{F, N} 1 2 15 42 6 3 0 0 3.86 0.84 0.59 0.73 87 %
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underneath the SoP bar.22 The remaining five columns report, respectively: the mean
and standard deviation of SoP for each pair measured on a scale from 1 to 8, where 1
represents strongest preference for S, and 8 strongest preference for R; the mean and
standard deviation of SoP range, that is, the number of SoP categories between the
two presentations of the task; and the percentage of the subsample whose SoP reveals
a preference for the safer lottery in the pair.

These 14 pairs allow multiple within-sample comparisons to see how the distribu-
tions of SoP responses alter as one prospect is held constant while the prospects with
which it is paired are varied. For example, comparing {B, H} with {B, J} and {B, K}
should produce distributions which move in favour of B as the alternative on the hy-
potenuse gets steadily worse. Likewise, comparing {E, K}, {D, K} and {B, K}, we
should expect the distributions to move against K and in favour of the safer options as
these improve; and that is what we see. Other comparisons tell a similar story: ESM
provides further details of the within-sample responsiveness of the SoP distributions
in the expected direction.

There is also substantial evidence of between-sample differences consistent with
the fact that the middle payoff was higher in subsample V than in subsample W.
The final column in Table 7 shows that the percentage of participants who prefer the
safer option was higher in V than in W for 12 out of 14 pairs, equal in one pair and
slightly lower in one pair, with these last two involving cases where at least 93 %
of participants prefer the safer option. Further to the left, the SoP Mean column of
Table 7 shows that members of subsample V favour the safer option more strongly
in every one of the 14 comparable pairs:23 in this sense, the SoP data exhibit sharper
between-sample sensitivity than pairwise choice proportions alone.

Turning specifically to the triples {B, H}, {D, J}, {F, L} and {B, K}, {D, M},
{F, N}, we see clear evidence at odds with EUT’s independence axiom. For the first
of these triples, the violations can be seen in binary choices alone, with the propor-
tions of S choices reducing strongly and progressively as we move from {B, H} to
{F, L}. The SoP responses provide further reinforcement: for example, even those
B-choosers who stuck with the safer D option tended to give lower SoP responses,
despite the distance between D and J being double the distance between B and H.

However, for the pairs joined by a gradient of 1/4, binary choices alone do not
tell us much, since the overwhelming majority of participants choose S in all three
pairs.24 Yet it is clear from Table 7 that, for both subsamples, SoP reduces greatly as
we move from {B, K} to {D, M} even though EU implies it should rise; and is much
lower for {F, N} than for {B, K} even though it should, according to EU, be the same.

22For these tasks too we investigated whether there were any systematic trends in the patterns of answers
between the first and second presentation of the questions. We used a test analogous to the one we used
with the PR pairs. In subsample V, the average SoP did not change significantly between the first and
second presentation, while in subsample W there was a tendency, in some of the pairs, for the riskier
option to be more strongly preferred when the same task was faced for the second time.
23Recall that in our coding system, stating that the safer option is vmb is coded as 1, stating that the safer
option is mb is coded as 2, and so on through to assigning 8 to cases where the riskier option is stated to
be vmb. Thus higher Mean SoPs signify shifts in responses, either reducing the SoP for the safer option in
any pair, or increasingly favouring the riskier option, or both.
24This imbalance in preference direction is not a bias against observing the CRE per se, as would have
been the case had preferences in that pair been strongly in favour of the risky option.
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There is something else that the SoP data allow us to look at: namely, the amount
of noise surrounding the various choices. Since we have two SoP responses from
each participant for every binary choice, we can derive a measure of the noise associ-
ated with any pair by computing the distributions of individuals’ differences between
those two SoP responses. Such measures are reported in the third to last column of
Table 7. If the judgmental noise is much the same for all pairs, we should not see any
significant trends in the distributions of the differences from one pair to another. But
if the variance of the noise term is some function of the magnitudes of the subjective
values of the prospects and/or the size of the SoP, we might expect to see this reflected
by changes in those distributions. What we find is that there is more noise for pairs
such as {B, H} and {B, K}, which are associated with both greater subjective values
and larger SoP responses. These few comparisons alone do not allow us to disentan-
gle the contributions of different factors to the noise, but the extended use of SoP
responses might help us to do so. In line with our findings in the rest of the paper, our
SoP data suggest that the assumption that the error term has constant variance may
be highly questionable.

7 General discussion

Our study was motivated by a desire to explore decisions in a richer way than is pos-
sible with choice-only data. As we have seen, presenting the same preset alternatives
to samples of heterogeneous individuals and relying on binary choices alone can give
an inadequate and sometimes misleading picture of the phenomena of interest. In an
attempt to address these issues, we have tried to produce more fine-grained data by
eliciting self-reported SoP judgments. In this section, we reflect on the main limita-
tions of our instruments, and outline ways in which it may be improved.

A first possible reason for concern is the inherent discretisation of our data, high-
lighted by the spikes in Fig. 4. If the objective is to get richer information about
preferences, this aspect may be seen as a disappointment, as the resulting data may
not be as rich as one would like them to be for certain kinds of applications. For our
instrument, that discretisation seems to be a direct result of changing the wording at
various points along the slider. A possible solution would be to avoid the wording
altogether and just anchor the ends of the SoP scale. We have experimented with
something similar in other studies in which we have measured the SoP for the chosen
option on an 11-point Likert scale anchored so that 11 points represent the difference
between what participants regarded as the best and the worst lotteries in the set from
which pairs were constructed. The general finding is that many participants’ ability
to discriminate seems confined to a subset of the scale provided, in line with results
from cognitive psychology (e.g. Miller 1956).25

So would it be possible to use a different metric? In other research, we have exper-
imented with a candidate that many would regard as appealing: money. If SoP could
be measured in units of money, several problems would be solved at the same time:
the resulting measures would be meaningful to participants (and researchers); they

25These studies are still unpublished. More details are available from the authors upon request.
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would provide continuous data on a ratio scale; and it would be possible to directly
link them to monetary incentives. Unfortunately, our extended efforts in this direc-
tion have highlighted some serious difficulties with such instruments, which result in
systematic discrepancies between monetary SoP measures and choice behaviour.26

A second possible reason for caution relates to the difference between SoP and
confidence. While the two are theoretically distinct concepts, they may not be very
easy to disentangle. Conceptually, SoP refers to what we have called the central ten-
dency difference between the subjective values of the options, whereas confidence
reflects the strength of the participant’s belief that he has chosen the option that really
is best for him, with this ‘strength of belief’ judgment depending at least in part on
the noisiness of his preferences.

In our dominance pairs, it was quite easy for respondents to identify the option
that was unambiguously better, so that they could be completely confident about their
choice even when the incremental difference was small. The high frequency of maxi-
mal SoP responses by some respondents in such cases suggests that those individuals
may have confounded confidence with SoP. We have found in subsequent studies that
an introductory example, illustrating the distinction between the two concepts, seems
to help participants isolate SoP more effectively in dominance pairs.

There are other cases, however, in which SoP and confidence may be more tightly
intertwined. Consider a case in which two alternatives are finely balanced, so that
the central tendency difference between their subjective values is close to zero, and
therefore the probability that one is chosen over the other is close to 0.5. In this
case, both SoP and confidence are low. More generally, in cases where neither op-
tion dominates, SoP and confidence may often be quite highly correlated.27 Making
progress in disentangling these key constructs may require a theoretical framework
that moves beyond standard economic analysis to include aspects inherent in the pro-
cess through which decisions are made. Psychologists have already produced process
models that make explicit predictions about confidence (e.g. Pleskac and Busemeyer
2010), which may illuminate the distinction and perhaps suggest ways of eliciting the
two constructs separately. But in undertaking such an exercise, a further complication
should be borne in mind: once it is accepted that choice behaviour is characterised by
a considerable amount of noise, it must be expected that SoP and confidence judg-
ments will also be noisy in their own ways, making it even more difficult to separate
them.

Before concluding, we turn to another important issue in taking this research pro-
gramme forward. Can SoP judgments be used to improve fitting-and-prediction ex-
ercises? As we have noted repeatedly, a particularly crucial challenge in this respect
is to get the stochastic specification right, as the wrong specification may misidentify
people’s core preferences and lead to incorrect predictions. Since SoP data are mea-
sured on a richer scale than choice data, they may have the potential to give more
insights with fewer observations.

26Our attempts to elicit SoP on a money scale are documented in Butler et al. (2013), where we report
what appear to be strong and systematic biases.
27In other experiments, we have elicited both confidence (and sometimes decision difficulty) and SoP, and
found them to be highly correlated.
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8 Concluding remarks

Our study had two main objectives: testing whether our SoP instrument produces
sensible data despite the lack of monetary incentives; and illustrating the additional
insights that can be obtained from the extra degree of granularity. How far have these
objectives been achieved? We have shown that the SoP responses display consider-
able sensitivity to variations in the parameters of the lotteries, not only at the within-
subject level—the one that is essential for the instrument to be informative in most
of the applications we have considered—but also at the between-sample level. This
latter result provides grounds for thinking that what the instrument is tapping into is
something which is meaningful to most subjects and which appears to travel quite
well across different sets of binary choices, allowing broad comparability. The fact
that almost all individuals use the full range of the bar (rather than simply nudging it
a minimal amount to indicate choice, or pushing it straight to one end or the other)
suggests that intrinsic motivation, activated by a simple request, is sufficient to yield
a great deal of useful additional information about preferences.

We have also provided examples of how one can use the information provided by
SoP judgments. By looking at the variability of these judgments when the same task is
repeated a number of times, we can learn something about the stochastic component
of preferences. SoP judgments can be used to investigate whether subjective value
differences behave as implied by simple scalability, or whether properties such as
EUT’s independence axiom hold at the individual level. On balance, we think that
there is a case for SoP judgments to be a useful addition to an experimenter’s toolbox.

As we have highlighted in the previous section, there are various ways in which
our SoP instrument might be improved. And there may be other measures that could
further supplement our datasets: for example, individuals’ judgments of the difficulty
of deciding, their confidence that they have made the right decision, and the response
times involved, which are regarded as key elements in the understanding of decision-
making processes (see Pleskac and Busemeyer 2010). Such measures may or may not
turn out to be robust and useful—that remains to be seen—but if they can be shown
to pass various consistency checks, they may, in conjunction with choices and SoP
judgments, help to provide a multi-faceted description of behaviour that can improve
our understanding and our models. Moreover, if it turns out that such measures are
robust and useful in the context of individual decision making under risk, it may
be possible to extend their use to other areas of economics such as intertemporal
decisions or the study of beliefs and actions in strategic situations.
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