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A Bayesian reference analysis of the cointegrated vector autoregression is pre-
sented based on a new prior distribution+ Among other properties, it is shown that
this prior distribution distributes its probability mass uniformly over all cointe-
gration spaces for a given cointegration rank and is invariant to the choice of
normalizing variables for the cointegration vectors+ Several methods for comput-
ing the posterior distribution of the number of cointegrating relations and distri-
bution of the model parameters for a given number of relations are proposed,
including an efficient Gibbs sampling approach where all inferences are deter-
mined from the same posterior sample+ Simulated data are used to illustrate the
procedures and for discussing the well-known issue of local nonidentification+

1. INTRODUCTION

Many macroeconomic time series behave in a random walk–like fashion and
tend to move around wildly+ Typically, such variables move around together,
striving to fulfill one or several economic laws, or long-run equilibria, which
tie them together+ A random walk is often referred to as anintegratedprocess,
and integrated processes that move around together have therefore been termed
cointegrated~Engle and Granger, 1987!+

The present work is concerned with estimation of both thenumberof equi-
libria, the so-called cointegration rank, and theform of the equilibria condi-
tional on the rank+ Inferences regarding the error correcting coefficients and
other short-run dynamics are also treated+

Several non-Bayesian statistical treatments of cointegration have been pre-
sented during the last two decades, most notably Ahn and Reinsel~1990!,
Johansen~1991!, Phillips ~1991!, and Stock and Watson~1988!+
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More recently, a handful of Bayesian analyses of cointegration have been
developed; see Bauwens and Giot~1998!, Bauwens and Lubrano~1996!, Geweke
~1996!, Kleibergen and Paap~2002!, Kleibergen and van Dijk~1994!, Strachan
~2003!, and Villani ~2000!; see also Corander and Villani~2004! for a frac-
tional Bayes approach and Chao and Phillips~1999! for an information crite-
rion with a Bayesian flavor+ Philosophical issues aside, a Bayesian approach is
advantageous for many reasons: it produces whole probability distributions for
each unknown parameter that are valid for any sample size, it affords straight-
forward handling of the inferences on the cointegration rank and tests of restric-
tions on the model parameters~Geweke, 1996; Kleibergen and Paap, 2002;
Strachan, 2003; Villani , 2000!, and it makes a satisfactory treatment of the pre-
diction problem possible~Villani , 2001b!+

The crucial step in a Bayesian analysis is the choice of prior distribution,
and in each of the previously mentioned papers a new prior distribution has
been introduced+ The degree of motivation of the priors has varied, but the
authors seem to have been more or less focused on vague priors that add only a
small amount of information to the analysis, i+e+, priors largely dominated by
data+

This paper will be less concerned with whether or not a prior is “noninfor-
mative+” The aim here is to propose a Bayesian analysis based on a sound prior
that appeals to practitioners+ Such a prior must consider several partially con-
flicting aspects of actual econometric practice+ First, the number of parameters
in cointegration models is usually very large, and it is not realistic to demand a
detailed subjective specification of priors on such high-dimensional spaces, at
least not at the current state of elicitation techniques for multivariate distribu-
tions+ A prior with relatively few hyperparameters, each with a clear interpre-
tation, is thus mandatory+ Second, priors will not, or at least should not, be
used by practitioners unless they are transparent in the sense that one can eas-
ily understand the kind of information they convey+ Third, the prior must lead
to straightforward posterior calculations that can be performed on a routine basis
without the need for fine tuning in each new application+ Finally, the posterior
distribution of the cointegration rank can only be obtained if some parameter
matrices are given proper integrable priors+ A prior that fulfills these objectives
will probably not coincide with the investigator’s actual prior beliefs but should
nevertheless be useful as point of reference, or an agreed standard, and is called
a referenceprior accordingly+

The organization of the paper is as follows+ The cointegrated vector auto-
regressive~VAR! model is presented in Section 2+ A reference prior is pro-
posed in Section 3, and its properties are discussed in detail+ Sections 4 and 5
treat the posterior distribution conditional on the cointegration rank and the pos-
terior distribution of the rank itself, respectively+ The methods are illustrated in
Section 6, and the final section gives some concluding remarks+ The proofs
have been collected in an Appendix+ Some of the more straightforward, but
tedious, proofs have been omitted and may be found in Villani~2001c!+
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2. THE MODEL

Let $xt %t51
T be ap-dimensional process modeled by a cointegrated error correc-

tion ~EC! model withr stationary long-run relations

Dxt 5 Pxt21 1 (
i51

k21

Ci Dxt2i 1 Fdt 1 «t , (2.1)

whereP 5 ab ' , b is the p 3 r matrix with the cointegration vectors as col-
umns, and a is the p 3 r matrix of adjustment coefficients+ The number of
long-run relations is equal to the rank ofP, which has therefore been termed
the cointegration rank+ Both a andb are assumed to be of full rank+ HereCi

~ p3 p! ~i 51, + + + , k21! govern the short-run dynamics of the process, dt ~w31!
is a vector of trend, seasonal dummies, or other exogenous variables with coef-
ficient matrixF ~ p 3 w!, and«t ~ p 3 1! contains the disturbances at timet that
are assumed to follow theNp~0,S! distribution with independence across time
periods+

The lag length, k, will be assumed known or determined before the analysis;
see Villani ~2001a! for a Bayesian approach+ Alternatively, the lag length can
be estimated jointly with the cointegration rank~Phillips, 1996; Chao and Phil-
lips, 1999; Corander and Villani, 2004! or even analyzed via its posterior dis-
tribution given that all model parameters have been assigned proper prior
distributions+

It is well known that only the space spanned by the cointegration vectors~sp
b!, the cointegration space, is identified, i+e+, b is only determined up to arbi-
trary linear combinations of its columns+We will follow the traditional route in
Bayesian analyses of cointegration by using a linear normalization

b 5 SIr

BD (2.2)

to settle this indeterminacy, whereB is a ~ p 2 r ! 3 r matrix of fully identified
parameters+ When b is used as an argument in density functions it must be
remembered that some of its elements are known with probability one as a result
of the normalization+

The linear normalization is very convenient for computational reasons~see
Sections 4 and 5!, and the Bayesian analysis in this paper is shown to be invari-
ant to the choice of normalizing variables+ It should be noted, however, that the
linear normalization implicitly assumes that the lastp 2 r components ofxt are
not cointegrated among themselves; see Luukkonen, Ripatti, and Saikkonen
~1999! for a test if this is indeed the case+ Although this event is of measure
zero it may have some effect on the numerical evaluation of the posterior dis-
tribution in situations where the data are located near this region+

The following compact form of the cointegrated EC model in~2+1! is useful:

Y 5 Xba ' 1 ZC 1 E, (2.3)
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where the tth row of Y, X, Z, and E is given by Dxt
' , xt21

' , ~Dxt21
' , + + + ,

Dxt2k11
' ,dt

'! and «t
' , respectively, and C 5 ~C1, + + + ,Ck21,F!' + The expression

D 5 $Y,X, Z% will be used as shorthand for the available data, and d 5
~k21!p1 w denotes the number of columns inZ+We shall also use the notation

MH 5 Im 2 H~H 'H !21H ' (2.4)

for any m 3 s matrix H of full column rank+

3. THE PRIOR DISTRIBUTION

The prior distribution is conveniently decomposed as

p~a,b,C,S, r ! 5 p~a,b,C,S6r !p~r !,

whereC 5 ~C1, + + + ,Ck21,F!' andp~r ! is any probability distribution over the
possible cointegration ranks, r 5 0,1, + + + , p+

The essential conceptual difficulty in a Bayesian approach to cointegration
is the prior distribution ofa andb+ Kleibergen and van Dijk~1994! criticized
the uniform prior ona andb ~see Section 6! and suggested the Jeffreys~1961!
prior as a plausible alternative+ The Jeffreys prior turns out to be dependent on
the expected value of a data matrix, and none of the four ways of computing
this expectation discussed by Kleibergen and van Dijk led to a convenient form
of the posterior distribution+ Bauwens and Lubrano~1996! worked with a more
general class of identifying restrictions coupled with a uniform prior ona and
studentt priors on the free elements of the cointegration vectors+ The prior was
chosen out of convenience and does not consider the fact that the space of the
cointegration vectors is nonstandard as a result of the identification problem
discussed in Section 2+ Geweke~1996! used normal shrinkage priors and obtained
the posterior distribution numerically with the Gibbs sampler+ The choice of
prior is not motivated but seems to have been mainly chosen to assure the con-
vergence of Gibbs sampling algorithm+ Recently, Kleibergen and Paap~2002!
proposed a reference prior ona andb that is essentially a prior onP in the full
rank EC model projected down to the subspace where rank~P! 5 r; Strachan
~2003! extended this idea to more general identifying restrictions+ It is an
approach that is rather common and well understood in linear models, but its
implications in nonlinear models, such as the EC model with reduced rank in
~2+1!, are not as transparent; see also Section 6+

The approach taken here differs from the previously mentioned works by
focusing directly on the actual structure of the parameter space ofb+We intro-
duce the proposed reference prior now and spend the rest of this section moti-
vating its particular form+ Let etr~H ! 5 exp~2 1

2
_ tr H ! for any square matrixH+

The prior can then be written

p~a,b,C,S6r ! 5 cr 6S62~ p1r1q11!02 etr@S21~A 1 vab 'ba ' !# , (3.1)
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wherev . 0, q $ p, andA, a p 3 p positive definite matrix, are the three hyper-
parameters to be specified by the investigator+ The normalizing constant is

cr 5 6A6q02
Gr ~ p!

Gp~q!Gr ~r !

22qp02p2p~ p21!04

~2p0v! pr02p~ p2r !r02 ,

whereGb~a! 5 ) i50
b21 G@~a 2 i !02# , for positive integersa andb satisfyinga $

b 2 1+
Note thatC is uniformly distributed overR~ p21!k1w, which makes the over-

all prior p~a,b,C,S6r ! improper+ The prior ona, b, andS conditional onC is
proper, however+ The uniform prior forC is used here for simplicity, but a gen-
eral multivariate normal prior on vecC ~e+g+, a structured shrinkage prior as in
Litterman, 1986! leads to essentially the same posterior computations+

Implicit in ~3+1! is the assumption of commonA, q, andv for all r; the ensu-
ing analysis proceeds in the same manner in the general case with varyingA, q,
andv+

3.1. Marginal and Conditional Prior Distributions

Throughout this section, we will assume thatk 5 1 andw 5 0 for notational
convenience+ The results will still be valid fork . 1 andw . 0 as long as prior
independence betweenC and the other parameter matrices is assumed+ All prob-
ability distributions in this section will be conditional on a given cointegration
rank, though this will not be written out explicitly+

The space ofb is not euclidean because of the nonidentification of the cointe-
gration vectors+ It is deceptive to think in terms of the free parameter space of
b under some arbitrarily chosen normalization, e+g+, the linear normalization in
Section 2, without regard to the fact that actual parameter space is non-euclidean+
In the following paragraphs we shall describe the true parameter space ofb
and show that the prior in~3+1! implies a uniform distribution over this abstract
space+

Let X denote the set ofp 3 r real matrices of rankr ~# p! and define the
group of transformationsX r XL, whereX [ X andL is any nonsingularr 3 r
matrix+ This group defines an equivalence relation5

sp

in X such that for any
X,Y [ X, X 5

sp

Y if and only if sp~X ! 5 sp~Y!+ Thus, the points of the resulting
coset space of equivalence classes, usually denoted byRp3r05

sp

, stand in a 1-1
correspondence with ther-dimensional subspaces ofRp+ The set ofr-dimensional
subspaces ofRp is an analytic manifold of dimension~ p 2 r !r ~James, 1954!,
which has been termed theGrassman manifoldand is denoted byGr, p2r +

The uniform distribution onGr, p2r is naturally defined as the~unique! invari-
ant distribution under the group of transformations ofGr, p2r induced by the
group of orthonormal transformations ofRp ~James, 1954!+

As a result of the nonidentification of the cointegration vectors explained in
Section 2, the actual parameter space ofb is the Grassman manifold+ We shall
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now prove that the distribution in~3+1! implies thatb is marginally uniformly
distributed overGr, p2r + First we need a definition and a few lemmas+

DEFINITION 3+1+ An m3 s matrix D follows the matrix t distribution, D;
tm3s~m,Y,Q, g!, if its density is given by

Gs~g 1 m1 s2 1!

Gs~g 1 s2 1!pms02 6Y6s02 6Q6m02
6 Is 1 Q21~D 2 m!'Y21~D 2 m!62~g1m1s21!02+

See Box and Tiao~1973! and Bauwens, Lubrano, and Richard~1999! for prop-
erties of the matrixt distribution+

LEMMA 3 +2+ Let R be a p3 r matrix of independent N(0,1) variables. Then
sp~R! is uniformly distributed overGr, p2r .

Proof+ See James~1954!+

LEMMA 3 +3+ If N1 and N2 are independent s3 s and m3 s matrices of
independent N~0,1! variables, then

N2 N1
21 ; tm3s~0, Im, Is,1!+

Proof+ See Phillips~1989! and Dickey~1967!+

LEMMA 3 +4+ If b 5 ~Ir B'!' and B; t~ p2r !3r ~0, Ip2r , Ir ,1!, then sp~b! is
uniformly distributed overGr, p2r .

With the preceding definitions and lemmas out of the way, we are now pre-
pared to state an important property of the distribution in~3+1!+

THEOREM 3+5+ b is marginally uniformly distributed overGr, p2r .

To illustrate this rather abstract uniform distribution, let us consider the bivar-
iate case with a single cointegration vectorb 5 ~1,B!' + According to the proof
of Theorem 3+5 in the Appendix, the distribution in~3+1! implies a Cauchy~0,1!
distribution onB+ This is not surprising given thatB is a ratio of two indepen-
dent N~0,1! variates under the uniform distribution overGr, p2r ~see Lemmas
3+2–3+4!+ A more natural, but computationally inconvenient, parametrization of
b is the polar parametrization

Db 5 Scosu

sinuD, 2
p

2
# u ,

p

2
, (3.2)

where u is the angle of the cointegration vector+ In this parametrization the
distribution in Theorem 3+5 reduces to a constant density foru ~James, 1954!+
Slightly more generally, in the p-dimensional case with a single cointegration
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vector, the distribution in Theorem 3+5 reduces to the conventional uniform dis-
tribution over thep-dimensional hemisphere with unit radius~Mardia and Jupp,
2000!+ In the general case, we may say that the prior in~3+1! assigns equal
probability to every possible cointegration space of dimensionr+ Although more
informative prior information on the cointegration vectors may be available,
the marginal prior onb implied by the prior in~3+1! satisfies all four of the
desiderata stated in the Introduction and should therefore be a suitable refer-
ence prior+

It should be noted that the prior in~3+1! is by no means the only distribution
on a andb that implies a uniform distribution on the Grassman manifold+ The
prior in ~3+1! is especially interesting, however, in that it is both conceptually
relevant and, as will be shown later, very convenient from a computational
viewpoint+

THEOREM 3+6+ The marginal prior ofS is

S ; IW~A,q!,

where IW denotes the inverted Wishart distribution (Zellner, 1971).

Proof+ This follows directly from the proof of Theorem 3+5+ n

From ~3+1! we immediately obtain

a6b,S ; Np3r @0, ~b 'b!21, v21S# , (3.3)

whereA ; Nm3s~m,V1,V2! means that vecA ; Nms~vecm,V1 J V2!+ The lin-
ear normalization ofb makesa difficult to interpret, however, and the condi-
tional prior in ~3+3! may not shed much light on the prior in~3+1!+

Consider instead the prior ofa conditional onb andS whenb is orthonor-
mal+ Restrictingb to be orthonormal is not sufficient to identify the model,
however, as any orthonormal version ofb can be rotated to a new one by post-
multiplying it with an r 3 r orthonormal matrix+ This need not concern us here
asb only entersp~a6b,S! in the formb 'b andp~a6b,S! is therefore invariant
under these rotations+ Define Db 5 b~b 'b!2102 and note that Db is orthonormal+
For P 5 ab ' to remain unchanged by the transformationb r Db, we must make
the corresponding transformation of the adjustment matrix froma to Ja 5
a~b 'b!102+ In the following theorem, let Jai denote thei th column of Ja and
note that Jai describes how thep response variables are affected by thei th cointe-
grating relation under the orthonormal normalization+

THEOREM 3+7+ Jai 6S ;
iid Np~0, v21S!, i 5 1,2, + + + , r+

The rather restrictive form of the prior in Theorem 3+7 must be motivated+
First, the restriction to conditional normal priors ona ~and thereby also
on Ja! is necessary for an efficient numerical evaluation of the posterior; see
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Sections 4 and 5+ Second, nonidentical priors on the columns ofJa do not make
sense unless overidentifying restrictions on the columns ofb are used to give a
unique meaning to each cointegration vector+ Another way to see this is that
within the class of matrix normal priorsJa6 Db,S ; Np3r ~m,V1,V2!, only the
priors with m 5 0, V1 5 Ir are invariant to rotations ofDb+ Third, the scale ma-
trix in the conditional prior may be any positive definite matrix; the posterior
computations remain nearly the same+ By making the conditional covariance
matrix proportional toS we are taking the possibly differing scales of the time
series into account+ Finally, the reason for centering the conditional prior over
zero is motivated by the invariance requirement just stated+ It has the effect of
centering the prior overP 5 0, which is often a good starting point in an analy-
sis; see the discussion of the “sum of coefficients” prior in Doan, Litterman,
and Sims~1984! and Section 3+2+

In his influential development of Bayesian reference tests of sharp null hypoth-
eses Jeffreys~1961, Ch+ 5! argued that the prior on the parameters under the
alternative hypothesis should be centered over the point in the null and that the
prior spread around this point should be an increasing function of the model’s
scale parameter; see also Berger~1985, Sect+ 4+3+3!+ Although the situation is
quite a bit more complex here, the prior in Theorem 3+7, which is centered over
the hypothesisP 5 0, or r 5 0, with a prior scale depending onS, has the same
flavor and should therefore be appropriate for inference on the cointegration
rank; see Section 5+

Further clarification of the hyperparametersA, q, andv is obtained from the
marginal prior of Ja+ By multiplying p~ Ja6S! with the marginal inverted Wishart
prior of S and integrating with respect toS, we obtain

Ja ; tp3r ~0, v21A, Ir ,q 2 p 1 1!+ (3.4)

Results in Box and Tiao~1973, pp+ 446–447! then give

E~ Ja! 5 0 and Cov~vec Ja! 5 Ir J v21E~S!,

whereE~S! 5 A0~q 2 p 2 1! is the expected value ofS a priori; see, e+g+,
Bauwens et al+ ~1999, p+ 306!+

The hyperparameterA is determined fromE~S! andq, and the investigator
thus faces subjective specification of~i! the expected value ofS, ~ii ! the degree
of certainty regardingS ~large values ofq imply large certainty!, and ~iii ! the
tightness around the point zero forJa ~large values ofv give high concentration
of probability mass around zero!+ Note that whether a value forv is large or not
depends onE~S!, which should therefore be specified beforev+

The main difficulty for the investigator is likely to be the specification of
E~S!+ If interest only centers on the posterior ofa,b,C,S conditional on a
given cointegration rank, thenA may be set equal to the zero matrix andq 5 0+
This corresponds to using the usual improper priorp~S! @ 6S62~ p11!02+ If we
also aim at analyzing the cointegration rank, but are either unable or unwilling
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to state our beliefs aboutS, thenA 5 ZS andq 5 p 1 2 may be used, where ZS is
the maximum likelihood estimate ofS in the full rank model; note that this
implies thatE~S! 5 ZS+ This suggestion is of course not a proper Bayesian solu-
tion as the prior then becomes dependent on the observed data+ The conse-
quences of this side step are minimized by the choice of the smallest possibleq
~maximum uncertainty! subject to a finite expected value ofS+

3.2. Prior Stability

Define

PC 5 1
Ip 1 ab ' 1 C1 C2 2 C1 J Ck21 2 Ck22 2Ck21

Ip 0 J 0 0

0 Ip 0 0

I L I I

0 0 J Ip 0

2 +
The assumption of rank~P! 5 r implies thatr of the eigenvalues ofPC are
equal to one+ A cointegrated process is stable if all the remaining eigenvalues
of PC are smaller than one in modulus+ It is clearly of interest to know what
prior probability is implicitly being placed on the set of stable processes if the
prior in ~3+1! is used+ This could be investigated either by analytical approxi-
mation or by simulation methods for different models, i+e+, by varyingp, r, and
k+ We shall here be content with simulating the special casep 5 2 and r 5
k 5 1+ Table 1 displays the prior probability that the process is stable forA 5 I2

as a function ofq ands 5 v2102 ~note thats is on a standard deviation scale!+
Experiments with other choices ofA with strong positive and negative correla-
tion structure did not have a large impact on the probability+ Note also that it is
unnecessary to increase the magnitude of the diagonal elements inA as this has
the same effect as increasings+

Table 1. Implied prior probability that the process is stable

s

0+01 0+1 0+25 0+5 0+75 1 5 10 50 100

q 5 2 0+48 0+46 0+40 0+35 0+30 0+26 0+08 0+04 0+01 0+00
q 5 4 0+49 0+49 0+47 0+46 0+42 0+40 0+15 0+08 0+02 0+01
q 5 10 0+50 0+50 0+49 0+48 0+47 0+45 0+26 0+14 0+03 0+02
q 5 20 0+50 0+49 0+49 0+48 0+47 0+47 0+33 0+19 0+05 0+02

Note: r 5 k 5 1 andA 5 I2+
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Densities of the unrestricted eigenvalue~l! are displayed in Figure 1 for dif-
ferent values ofs+ The densities are symmetric around the modal valuel 5 1+
A nonsymmetric density forl that places more mass to the left ofl 5 1 than to
the right of this point would perhaps better represent actual beliefs+ The gain
from a nonsymmetric prior is probably less than the loss in computational effi-
ciency in the posterior calculations, however+

A crude way to obtain a nonsymmetric prior is to simply exclude explosive
processes a priori~or “too explosive” processes, e+g+, with eigenvalues larger
than 1+1 in modulus! by restricting the domain of the prior in~3+1! to the space
of a, b, andC where the process is stable+ This is neatly handled in the poste-
rior calculations for a given cointegration rank by simply rejecting the draws
from the posterior corresponding to nonstable processes; see Section 4+ Note
that the latter region will be small if the process actually is stable and data
informative and most draws will then be accepted+ The posterior distribution of
the rank will require heavier numerical computations, however+

4. THE POSTERIOR DISTRIBUTION CONDITIONAL ON THE RANK

4.1. Normalization Issues

The choice of variables used for normalizingb may be somewhat arbitrary,
and it is important to show that the posterior distribution corresponding to the
prior in ~3+1! is invariant to this choice+ Let N1 5 $i1, + + + , ir % denote the set of

Figure 1. Implied prior distribution on the unrestricted eigenvalue forA 5 I2 and
q 5 4+ Heres 5 0+25 ~_ _ _!, s 5 0+5 ~_!, ands 5 1 ~_ _ _!+
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indices for ther variables used to normalizeb+ Consider the change in normal-
izationN1 r N2, whereN2 equalsN1 with j th variable in the normalized set
replaced by thekth variable in the nonnormalized set+ This change in normal-
izing variables is accomplished by the transformationTU : ~a,b,S! r ~ Ta, Nb,S!,
where Ta 5 aU ' , Nb 5 bU 21, andU is anr 3 r invertible transformation matrix
whose elements are functions of thekth row of B+ The exact form ofU need
not concern us for the moment; it is sufficient to note that such a matrix always
exists, and is unique, if the kth variable in the nonnormalized set has a nonzero
coefficient in thej th cointegrating vector; see the proof of Theorem 4+2 in the
Appendix+ Such a change of normalizing variables will be termedvalid+ It is
important to note thatP 5 ab ' is unchanged by the transformation+

The next definition, adapted from Drèze and Richard~1983!, formalizes the
idea that the inference should not depend on whether we~i! work directly with
N1 or ~ii ! start withN2 and then transform toN1+

DEFINITION 4+1+ A density p~a,b,S! is said to beinvariant with respect
to normalizationif and only if its functional form is invariant with respect to
the valid parameter transformation TU : ~a,b,S! r ~ Ta, Nb,S!.

THEOREM 4+2+ The posterior distribution corresponding to the prior (3.1)
is invariant with respect to normalization.

The main advantages of the linear normalization are that the prior that assigns
the same probability to every cointegration space is of rather simple form and
that easily implemented numerical methods~see Sections 4+3 and 5! can be
used to compute the posterior results+ Note also that we are free to transform
the posterior distribution ofa andb as long as the space spanned by the col-
umns ofb and the matrix of long-run multipliersP 5 ab ' remain unchanged,
i+e+, the class of allowable transformations is~a,b! r ~aV ',bV21!, for any
invertible r 3 r matrix V+ For example, an orthonormalb is obtained withV 5
~b 'b!102+ The transformation is conveniently performed directly on the poste-
rior draws ofa andb+ Thus, as long as the initial linear normalization is valid
~dubious normalizations may be excluded with the test of Luukkonen et al+,
1999!, the restriction to the linear normalization is no restriction at all as the
final results may be transformed to any desired normalization+

4.2. Marginal Posterior Distribution of b

The next result gives the marginal posterior of the cointegration vectors+

THEOREM 4+3+ The marginal posterior distribution ofb is

p~b 6D, r ! @
6b 'C1b 6~T1q2d2p!02

6b 'C2 b 6~T1q2d !02 , (4.1)

336 MATTIAS VILLANI

https://doi.org/10.1017/S026646660505019X Published online by Cambridge University Press

https://doi.org/10.1017/S026646660505019X


where C1 5 X 'MZX 1 vIp, C2 5 vIp 1 X 'Q@IT 2 Z~Z 'QZ!21Z 'Q#X, and Q5
IT 2 Y~A 1 Y 'Y!21Y '.

The expressionp~b 6D, r ! in Theorem 4+3 is a 1-1 poly-matrix-t density~Bau-
wens and van Dijk, 1990!+ Theorem 3+1 in Bauwens and Lubrano~1996! is the
limiting special case of Theorem 4+3 with A 5 0 andq 5 v 5 0 ~which corre-
sponds to a constant prior ona andb!+ Contrary to the family of multivariate
poly-t densities~see, e+g+, Dickey, 1968; Drèze, 1977; Bauwens et al+, 1999!,
poly-matrix-t densities have remained largely unexplored+ The following result
can be shown, however+

THEOREM 4+4+ The marginal posterior of B is integrable but possesses no
finite integer moments.

Proof+ The result follows from a trivial modification of the proof of Corol-
lary 3+2 in Bauwens and Lubrano~1996!+

The nonexistence of integer moments is not a consequence of the prior dis-
tribution in ~3+1! but rather of the linear normalization ofb, where each ele-
ment of B is a matrix quotient with the upperr 3 r submatrix ofb in the
denominator+ Phillips ~1994! makes the same point about the distribution of the
maximum likelihood estimator in the linear normalization, which he shows has
Cauchy-like tails+

It is also possible to derive the marginal posterior distribution ofa as in
Kleibergen and van Dijk~1994, eq+ ~29!! in closed form+ It is a complicated
nonstandard distribution~see Section 6 for further discussion! and is not con-
veniently used in the numerical posterior evaluations discussed in the next
section+

4.3. Numerical Posterior Evaluation

The marginal posterior distribution of the cointegration vectors in Theorem 4+3
is of the same 1-1 poly-matrix-t form as the distribution in Theorem 3+1 in
Bauwens and Lubrano~1996!+ Bauwens and Lubrano discuss both importance
sampling~Kloek and van Dijk, 1978! and Gibbs sampling~Smith and Roberts,
1993! approaches to evaluating such a density; Bauwens and Giot~1998! imple-
ment the Gibbs sampling approach and give details on convergence issues+ The
key properties used in those exercises are~i! the conditional distribution of one
of the cointegration vectors conditional on all other cointegration vectors is a
vector 1-1 poly-t, ~ii ! the 1-1 poly-t is amenable to direct simulation using the
algorithm of Bauwens and Richard~1985!, and~iii ! the posteriors ofa, C, and
S conditional onb are all standard+ Once the marginal posterior ofb has been
evaluated by sampling methods the marginal posteriors ofa, C, and S may
therefore be computed by averaging their posteriors conditional onb over the
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posterior sample ofb+We refer the reader to Bauwens and Lubrano~1996! and
Bauwens and Giot~1998! for details+

A major disadvantage of building the numerical posterior evaluations on the
analytical form ofp~b 6D, r ! is the inability to handle posterior distributions of
quantities with intractable posterior distribution conditional onb, such as impulse
response functions or forecasts+ The Gibbs sampler is a convenient algorithm
for sampling from the joint posterior distribution ofa, b, C, and S and may
thus be used in such situations; Geweke~1996! seems to have been the first to
use Gibbs sampling in cointegration models+ It turns out that the posterior dis-
tribution for the prior in~3+1! is amenable to an algorithm similar to the one in
Geweke~1996!+ The Gibbs sample may also be used to efficiently compute the
posterior distribution of the cointegration rank~Section 5 and Theorem 4+6,
which follows!+

The Gibbs sampler is an easily implemented method for generating observa-
tions from complex multidimensional distributions by sampling iteratively from
the so-called full conditional posterior distributions+ The full conditional poste-
rior distribution of a subset of parameters in a model is the posterior distribu-
tion of the subset conditional on all other parameters+ Initial values for all
parameters are needed to start up the Gibbs sampler+ The maximum likelihood
estimates in Johansen~1995! are natural candidates+ The sampled parameter
values are not independent but can be shown to converge in distribution to the
target posterior distribution independently of the choice of initial values~Tier-
ney, 1994!+ Furthermore, the expected value of any well-behaved transforma-
tion of the parameters may be consistently estimated by sampling averages+

The full conditional posteriors ofa, b, C, andS are given in the next theorem+

THEOREM 4+5+

• The full conditional posterior ofS

S6a,b,C,D, r ; IWp~E 'E 1 A 1 vab 'ba ',T 1 q 1 r !,

where E5 Y 2 Xba ' 2 ZC.

• The full conditional posterior ofC

C6a,b,S,D, r ; Nd3p @mC ,S, ~Z 'Z!21# ,

wheremC 5 ~Z 'Z!21Z '~Y 2 Xba '!.

• The full conditional posterior ofa

a6b,C,S,D, r ; Np3r $ma , @b '~X 'X 1 vIp!b#21,S%,

wherema 5 ~Y 2 ZC!'Xb@b '~vIp 1 X 'X !b#21.
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• The full conditional posterior of B

B6a,C,S,D, r ; N~ p2r !3r @mB, ~a 'S21a!21, ~X2
'X2 1 vIp2r !21# ,

wheremB 5 ~X2
'X2 1 vIp2r !21X2

' ~Y 2 X1a ' 2 ZC!S21a~a 'S21a!21 and
X1 denotes the r first columns of X and X2 the p2 r last ones.

Most of the model parameters are located inC andS, and the Gibbs updat-
ing steps for these two matrices usually dominate the total computing time+
The time to convergence of the Gibbs sampler also increases as the dimensions
of C andS grow+ The next theorem gives the conditional posteriors necessary
to perform a~marginal! Gibbs sampler to generate samples directly from
p~a,B6D, r !+ This Gibbs sampler is also used in Section 5 to calculate the pos-
terior distribution of the rank+

THEOREM 4+6+

• The posterior ofa conditional onb and r

a6b,D, r ; tp3r @ [a,A 1 Y 'MZ~Y2 Xb [a ' !, ~b 'C1b!21,

T 1 q 2 ~d 1 p! 1 1# ,

where [a 5 Y 'MZXb~b 'C1b!21.

• The posterior of B conditional ona and r

B6a,D, r ; t~ p2r !3r @ ZB,G3 2 G2
'G1

21G2,C3,T 1 q 1 r 2 ~d 1 p! 1 1# ,

where Zb 5 ZP'S21a~a 'S21a!21, ZP 5 Y 'MZ XC1
21, S 5 A 1 Y 'MZY 2

ZPC1 ZP', Zb1 contains the r first rows of Zb and Zb2 the p2 r remaining ones,
and

C1
21 1 ZP'S21 ZP 2 Zba 'S21a Zb ' 5 1

G1
r3r

G2
r3~ p2r!

G2
'

~ p2r!3r

G3
~ p2r!3~ p2r!

2
is decomposed conformably, C3 5 ~Ir 2 Zb1!'G1

21~Ir 2 Zb1! 1 ~a 'S21a!21

and ZB 5 Zb2 1 G2
'G1

21~Ir 2 Zb1!.

The posterior densities ofC andS are obtainable by marginalizing their den-
sities conditional ona andb, which belong to the matrixt and inverted Wishart
family, respectively, using draws from the marginal Gibbs sampler in Theo-
rem 4+6; Bauwens and Lubrano~1996! and Bauwens and Giot~1998! provide
the details+
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5. THE POSTERIOR DISTRIBUTION OF THE COINTEGRATION RANK

The posterior distribution of the cointegration rank is

p~r 6D! 5
p~D6r !p~r !

(
r50

p

p~D6r !p~r !

, (5.1)

wherep~r ! is the prior probability ofr cointegrating relations and

p~D6r ! 5EEEEp~D6a,b,C,S, r !p~a,b,C,S6r ! dSdCdadb (5.2)

is the marginal likelihood of the data given rank~P! 5 r+
The marginal likelihoods forr 5 0 andr 5 p are analytically tractable if the

prior in ~3+1! is used also for the zero and full rank models+ These priors agree
with our earlier prior in the reduced rank case and do not introduce any new
prior hyperparameters+ If r 5 0, thena 5 b 5 0 and the prior in~3+1! becomes

p~C,S6r ! 5 c06S62~ p1q11!02 etr~S21A!, (5.3)

which is anIW~A,q! prior on S, and p~C! is a constant density+ For r 5 p,
P 5 ab ' is of full rank and

p~P,C,S6r ! 5 cp6S62~2p1q11!02 etr@S21~A 1 vPP' !# , (5.4)

which impliesS ; IW~A,q!, vecP6S ; Np2~0, Ip J v21S! and a constant prior
on C+ If the Kronecker structure on the prior covariance matrix ofP is too
restrictive, a general normal-Wishart distribution may be used as a prior forP
andS+

The marginal likelihoods forr 5 0 andr 5 p are given in the next theorem+

THEOREM 5+1+ For the priors in (5.3) and (5.4)

p~D6r 5 0! @ Gp~T 1 q 2 d!6A 1 Y 'MZY62~T1q2d !02,

p~D6r 5 p! @ Gp~T 1 q 2 d!v p202 6S62~T1q2d !02 6C162p02,

where S is defined in Theorem 4.6 and C1 is given in Theorem 4.3.

The proportionality signs in Theorem 5+1 are used to denote that the multi-
plicative constant6A6q02 6Z 'Z62p02p2~T2d !p02Gp

21~q! has been discarded as it
enters all marginal likelihoods ofr+ This practice is followed throughout this
section+

For 1# r # p 2 1 at least one of the integrals in~5+2! must be handled by
numerical methods+ We shall here discuss three possible simulation-based
approaches: Monte Carlo integration, importance sampling, and the marginal
likelihood identity approach of Chib~1995!+
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5.1. Monte Carlo Integration

The integrals in~5+2! with respect toa, C, and S may be computed analyti-
cally, leading to the 1-1 poly-matrix-t density in Theorem 4+3, which is repeated
here~along with its proportionality constant!

p~D6r ! 5
Gr ~ p!Gp~T 1 q 2 d!v pr02p2~ p2r !r02

Gr ~r !6A 1 Y 'MZY6~T1q2d !02

3 E6b 'C1b 6~T1q2d2p!02 6b 'C2 b 62~T1q2d !02 dB+

The final integral with respect toB must be computed numerically+ A Monte
Carlo integration approach is suggested by the following lemma, which is proved
by expandingb 'C2b in B and completing the square~see the proof of Corol-
lary 3+2 in Bauwens and Lubrano, 1996!+

LEMMA 5 +2+ For 1 # r # p 2 1

p~D6r ! @
Gr ~ p!Gp~T 1 q 2 d!Gr ~T 1 q 1 r 2 p 2 d!v pr02E~6b 'C1b 6~T1q2d2p!02!

Gr ~r !Gr ~T 1 q 2 d!6A 1 Y 'MZY6~T1q2d !02 6K36r02 6U 6~T1q1r2d2p!02 ,

where the expectation is taken with respect to the t~ p2r !3r ~ DB,K3
21,U,T 1 q 2

p 2 d 1 1! distribution, C2 (see Theorem 4.3) is partitioned as

C2 5 1
K1
r3r

K2
r3~ p2r!

K2
'

~ p2r !3r

K3
~ p2r!3~ p2r!

2 ,
DB 5 2K3

21K2
' , and U5 K1 2 K2 K3

21K2
'.

The expected value in Lemma 5+2 may be computed by generating variates
from the t~ p2r !3r ~ DB,K3

21,U,T 1 q 2 p 2 d 1 1! distribution, computing
6b 'C1b 6~T1q2d2p!02 for each draw, and averaging over all draws+

5.2. Importance Sampling

Another method that may be used to approximate the integral with respect tob
in ~4+1! is importance sampling~Kloek and van Dijk, 1978; Geweke, 1989!+ In
cases where the importance function well approximates the target integrand,
importance sampling can be quite efficient as it produces independent draws
without wasting an initial burn-in sample+ The fact that the draws are indepen-
dent makes a central limit theorem directly applicable, and the precision of the
estimates is easily assessed~Geweke, 1989!+
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Given the heavy tails of the marginal posterior ofb ~Theorem 4+4!, a natural
suggestion for an importance function is the matrix Cauchy density+ The max-
imum likelihood estimate ofB and an estimate of its asymptotic covariance
matrix ~Johansen, 1995, Theorem 13+4! may be used as location and scale
matrix, respectively+ That is, we suggest the densityt~ p2r !3r @ ZB, ~X2

'X2!21,
~T [a ' ZS21 [a!21,1# as an importance function+ Further fine tuning may be intro-
duced by multiplying~X2

'X2!21 by a scale factor+
Poly-t densities may be substantially skew and even bimodal+ In such cases

the matrix Cauchy may not perform well as an importance function+ An alter-
native may be to generate each of ther cointegration vectors conditional on the
maximum likelihood estimates of the remainingr 2 1 vectors+ These condi-
tional posteriors are 1-1 poly-t ~Bauwens and Lubrano, 1996! and may be gen-
erated by one of the algorithms in Bauwens and Richard~1985!+

5.3. Marginal Likelihood Identity Approach

By a slight rearrangement of Bayes’ theorem we obtain what Chib~1995! has
termed thebasic marginal likelihood identity:

p~D6r ! 5
p~D6a,B, r !p~a,B6r !

p~a,B6D, r !
5

p~D6a,B, r !p~a,B6r !

p~B6a,D, r !p~a6D, r !
+ (5.5)

Chib ~1995! suggested using this identity in combination with a Gibbs sampler
to estimate the marginal likelihood+ The expression forp~D6r ! in ~5+5! clearly
holds for anya andB+ Let ~ Ja, DB! be the point wherep~D6r ! is evaluated+ As
explained in Chib~1995!, this point should preferably be of high posterior den-
sity; the posterior mode and median are good candidates~the posterior mean
does not exist; see Theorem 4+4!+ The termp~B6a,D, r ! in ~5+5! is given in the
second part of Theorem 4+6, and the next result gives the expression for the
numerator of~5+5!+

LEMMA 5 +3+

p~D6a,B, r !p~a,B6r ! @
Gp~T 1 q 1 r 2 d!Gr ~ p!

Gr ~r !p~2pr2r 2!02v2pr02

3 6A 1 vab 'ba ' 1 W 'MZW62~T1q1r2d !02,

where W5 Y 2 Xba '.

The final term of the marginal likelihood identityp~a6D, r ! is not available
in closed form, but its value in a pointa 5 Ja, which is all we need, can be
computed from a posterior sampleB~1!, + + + ,B~n! of B by

[p~ Ja6D, r ! 5
1

n (
i51

n

p~ Ja6B~i !,D, r !,
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wherep~a6B,D, r ! is given in the first part of Theorem 4+6+ From the ergodic
theorem~Tierney, 1994!, [p~ Ja6D, r ! r p~ Ja6D, r ! almost surely+ This procedure
for computingp~D6r ! will be named the marginal likelihood identity~MLI !
algorithm+

The posterior sample fromp~B6D, r ! needed in the MLI approach can be
obtained from~i! a Gibbs sampler for the 1-1 poly-matrix-t density in~4+1! as
described in Bauwens and Lubrano~1996! and Bauwens and Giot~1998!, ~ii !
the marginal Gibbs sampler in Theorem 4+6, which samples fromp~a,B6D, r !,
and ~iii ! the full Gibbs sampler in Theorem 4+5, which samples from
p~a,B,C,S6D, r !+

The matrix t conditional posteriorsp~B6a,D, r ! and p~a6B,D, r ! in Theo-
rem 4+6 are easily sampled using, e+g+, the algorithm in Bauwens et al+ ~1999!+
Even though the second approach samplesa in addition tob it is likely to be
faster than the first approach, which requires draws from a 1-1 poly-t distribu-
tion for each of the cointegration vectors~for an algorithm, see Bauwens and
Richard, 1985!+ The third approach is clearly not as fast as the second but has
the advantage of yielding both the posterior distribution of the cointegration
rank and the joint posteriorp~a,b,C,S6D, r ! at the same time+

6. AN ILLUSTRATION

A single data set of lengthT 5 100 was simulated from a bivariate model, with-
out short-run dynamics and constant term, with parametersa 5 ~0,0+1!, b 5
~1,21!, and S 5 I2+ Note thata is close to the zero vector and the model is
thus close to the zero rank model+ This difficult setup has been chosen to accen-
tuate some features of the posterior distribution in cointegration models that
were initially raised by Kleibergen and van Dijk~1994!+ The simulated time
series are displayed in Figure 2+

The sequential testing procedure based on the so-called trace test~Johansen,
1995! estimates the cointegration rank tor 5 0 andr 5 2 on the 1% and 5%
significance levels, respectively+ The maximum eigenvalue test~Johansen, 1995!
fails to reject the zero rank hypothesis at the 5% level but rejectsr 5 1 when
tested againstr 5 2+ The Bayesian information criterion~BIC! derived by
Schwarz~1978! favorsr 5 0+ The zero rank model is also favored by the pos-
terior information criterion~PIC! ~Chao and Phillips, 1999!, whereas two other
well-known information criteria, the Akaike information criterion~AIC ! ~Akaike,
1974! and the Hannan and Quinn information criterion~HQ! ~Hannan and
Quinn, 1979!, are both in favor of the full rank model+ The inconclusive evi-
dence regarding the cointegration rank is of course expected as we purposely
simulated data from a very difficult parametric setup+

To compute the posterior distribution of the cointegration rank, a uniform
distribution on the ranks was used a priori, q was set to 4, and the maximum
likelihood estimate
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ZS 5 S 0+83 20+10

20+10 1+02D
was used forA as discussed in Section 3+1; other choices ofA with larger pos-
itive and negative off-diagonal elements had only minor effects on the results+
Note that as ZS ' I2, s 5 v2102 corresponds roughly to the prior standard devi-
ation of Ja as can be seen from~3+4!+

Figure 3 displays the posterior probabilities of the three possible cointe-
gration ranks as a function ofs+ The MLI algorithm based on 25,000 draws
from the marginal Gibbs sampler in Theorem 4+6 ~see Section 5+3! was used
for the computations+ For small values ofs, the full rank model is most prob-
able a posteriori, and ass grows the posterior mass shifts rather quickly first in
favor of r 5 1 and subsequently to the zero rank model+ The behavior ofp~r 6D!
as a function ofs follows the usual pattern in Bayesian analysis where the
prior distributions of the model parameters in the larger models~higher rank!
are centered over the smallest model~r 5 0!; see the discussion following Theo-
rem 3+7+ For such priors, the logic of Bayesian inference dictates the following
intuitively reasonable behavior at the extremes ofs: p~r 6D! r p~r ! for all r as
s r 0 ~all models0hypotheses approach the zero rank model! and

Figure 2. The simulated bivariate process+
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p~r 6D! r H1 for r 5 0

0 for r . 0
ass r `

~all models withr . 0 give too much weight to regions in parameter space that
are grossly at odds with the data!, both of which are clearly borne out in Figure 3+

Note also from Figure 3 that the unit rank model is the most probable model
only in the rather narrow intervals [ ~0+16, 0+37!+ This fits well with the behav-
ior of the traditional methods discussed earlier, which all favored eitherr 5 0
or r 5 2+

To investigate the efficiency of the three methods for computing the poste-
rior distribution of the cointegration rank proposed in Section 5 we compute
the marginal likelihood ofr 5 1 for different number of iterations of the respec-
tive algorithm+ The matrix Cauchy density is used as importance function, and
the marginal Gibbs sampler is used in the MLI algorithm+ For each pair of
methods and number of iterations we repeated the estimation 10,000 times+ The
upper graph in Figure 4 displays the evolution of the mean of the estimates
[p~D6r 5 1! over the 10,000 replications+ The lower graph gives the numerical

standard error of the estimators+ Two main observations from Figure 4 are
~i! the Monte Carlo integration approach converges extremely slowly toward
the true value and~ii ! the MLI algorithm outperforms the importance sampling
method, despite the fact that the marginal posterior ofb is symmetric and uni-
modal ~see Figure 5! and is therefore favorable for the importance sampling
algorithm+ Even if we adjust for the faster execution time of the importance
sampling approach~roughly three times faster than the MLI algorithm when
the number of iterations exceeds 1,000!, the MLI algorithm is still the pre-
ferred method+

Figure 3. Posterior probabilities of the three possible cointegration ranks: r 5 0 ~_!,
r 5 1 ~_ _ _!, andr 5 2 ~_ _ _! as a function ofs 5 v2102+
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To discuss the issue of local nonidentification, the simulated data set is ana-
lyzed conditional onr 5 1+ The solid curves in Figure 5 display the inferences
for a1, a2, and B+ Figure 6 gives the prior and posterior distribution of the
unrestricted eigenvalue of the companion matrix; see Section 3+2+

The local mode at point zero in the marginal posterior ofa2 in Figure 5~which
is actually an asymptote and thereby a global mode, a fact not visible in the

Figure 4. ~a! Mean and~b! standard error of the estimatedp~D6r ! as a function of the
number of iterations used in the three numerical algorithms: Monte Carlo integration
~_ _ _!, importance sampling~_!, and MLI approach~_ _ _!

346 MATTIAS VILLANI

https://doi.org/10.1017/S026646660505019X Published online by Cambridge University Press

https://doi.org/10.1017/S026646660505019X


figure because of the numerical approximation of the posterior; see the discus-
sion that follows! is an effect of the local nonidentification discussed in Kleiber-
gen and van Dijk~1994!+ They pointed out that whena 5 ~0,0!' , b drops out
of the likelihood function and the likelihood is then constant along theB-axis
~which has infinite length! and all values forB are observationally equivalent;
B is said to belocally nonidentifiedwhena 5 ~0,0!' + The posterior distribution
based on the prior in~3+1! has the same property as it is flat in the direction of
B whena is the zero vector+ This is illustrated in Figures 7 and 8, which show
the joint posterior density ofa2 andB for the simulated data set+ Note how the
conditional variance ofB grows asa2 r 0+ The posterior variance ofB given
a 5 0 is actually infinite, as can be seen from the second part of Theorem 4+6+
This of course is as it should be: if the processes do not react at all to past
deviations from the equilibrium, then the data are necessarily uninformative
regarding the cointegration vector+

Figure 5. The posterior distribution ofa and b for s 5 0+5 conditional onr 5 1 in
both the linear~_! and the orthonormal~_ _ _! normalizations+ Hereu 5 arctan~B!
is the angle of the cointegration vector in the orthonormal normalization+ In the density
estimation, 2% of the draws from each tail of the posterior distribution ofB were excluded+
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Kleibergen and van Dijk~1994! argue that this local nonidentification causes
problems for a Bayesian analysis with uniform improper priors ona and B+
Their argument is as follows: the marginal posterior ofa is obtained by inte-
grating the posteriorp~a,B6D! with respect toB+ As the posterior under a uni-

Figure 6. Prior ~s 5 0+5, _ _ _! and posterior~_! distribution of the unrestricted
eigenvalue of the companion matrix+

Figure 7. Joint posterior density ofa2 andB for s 5 0+5 conditional onr 5 1+
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form prior is flat along theB-axis whena 5 ~0,0!', the marginal posterior density
of a in the pointa 5 ~0,0!' is proportional to the integral of a constant over an
unbounded region~2` , B , `!, i+e+, infinity+ The marginal posterior ofa is
thus expected to have an asymptote in the point~0,0!' that is entirely created
by the local nonidentification+

Kleibergen and van Dijk suggest the Jeffreys prior to counterattack the
unwanted asymptote as this prior is zero in the locally nonidentified points+
The prior in Kleibergen and Paap~2002! has the same property+

Our view on the local nonidentification problem is best illustrated by trans-
forming the posterior results so thatb is restricted to a half-circle with unit
radius, i+e+, parameterizingb as in~3+2!+ This change in normalization is accom-
plished by the transformationu 5 arctanB and Ja 5 a~11 B2!102; note that the
productab ' is unchanged+ The dashed curves in Figure 5 display the marginal
posteriors in the new normalization+ Note that there is no longer a mode at
Ja2 5 0 after the transformation+

To explain this effect, note thatB is a ratio of the two elements ofb and that
the tails in the marginal posterior ofB are therefore heavy+ Heavy tails in
p~B6D, r ! correspond to very small values fora, in the sense that a largeb
must be matched by a smalla to keep the productP 5 ab ' at a reasonable
magnitude+When we transform to the more natural orthonormal normalization

Figure 8. Contours of equal density height in the joint posterior distribution ofa2 and
B for s 5 0+5 conditional onr 5 1+
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we are multiplyinga with ~1 1 B2!102, which is large ifB is drawn far out in
the tails ofp~B6D, r ! and has the effect of spreading out the extra mode ata 5
~0,0!' and thereby producing a more well-behaved surface+

Alternatively, because the value of the marginal posterior ofa in the point
zero is proportional to the volume of the parameter region ofb, this is a finite
number if the normalization ofb in ~3+2! is used asu is bounded+ More gener-
ally, the volume of the Grassman manifold is finite~James, 1954! and there
will be no asymptotes in the marginal posterior ofJa+

Theorem 3+5 and the proof of Theorem 3+7 together show that the prior onDb,
the orthonormal matrix of cointegration vectors, is uniformly distributed over
the Grassman manifold independently ofJa+ This means that the prior onDb con-
ditional on Ja 5 0 is still uniform over the Grassman manifold+ Thus, given the
information that Ja 5 0, the prior in~3+1! represents the belief that every possi-
ble cointegration space of dimensionr has the same probability a priori+ This
seems sensible+

One of the referees correctly pointed out that although the marginal prior on
a is integrable, it has an asymptote in the pointa 5 0+ This is entirely natural,
using the same argument as before for the posterior, as the heavy tails in the
implied matrix Cauchy prior onB ~a consequence of the uniformity of sp~b!
over the Grassman manifold! must again be matched by very small values on
a to keepP 5 ab ' ~whose interpretation does not, in contrast toa andb, depend
on the chosen normalization! at a reasonable magnitude+ As mentioned earlier,
the linear normalization is a computationally convenient, but rather unnatural,
way to solve the identification problem, and we have argued that the properties
of the prior distribution are more clearly understood in the orthonormal normal-
ization+ With this in mind, note that the marginal prior onJa follows a well-
behaved matrixt distribution; see Section 3+1+

7. CONCLUDING REMARKS

This paper has introduced a practicable Bayesian analysis of cointegration based
on a prior that is convenient both in elicitation and computation and could serve
as a standard for inference reporting+ The posterior distributions of both the
cointegration rank and the model parameters conditional on the rank are obtained
from the same Gibbs sampler+

Although a reference prior provides a good starting point in an analysis, and
usually ends up in the final communication of results as a benchmark, it is
clearly important to move beyond the reference case and consider more infor-
mative priors+ Several informative distributions on the Grassman manifold are
available for this purpose~see, e+g+, Mardia and Jupp, 2000!, and the major
challenge is the construction of numerical algorithms for evaluating the poste-
rior distribution+

The focus here has been on the case of just-identifying restrictions onb+ The
special case where the same overidentifying restrictions are imposed on each
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of the cointegration vectors has the same geometry of the parameter space as
the just-identified case, and all the results in this paper thus apply+ We are cur-
rently working on the extension to general overidentifying restrictions onb
and a Bayesian analysis of the validity of such restrictions within the frame-
work proposed here+
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APPENDIX: PROOFS

Proof of Lemma 3.4. From Lemma 3+3,

spSIr

BD 5
d

spS Ir

N2 N1
21D,

where 5
d

denotes equality in distribution andN1 and N2 are independentr 3 r and
~ p 2 r ! 3 r matrices of independentN~0,1! variables+ Postmultiplication of an arbitrary
matrix A by a nonsingular matrix does not affect sp~A!+ Thus, postmultiplying
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S Ir

N2 N1
21D

by N1, which is nonsingular with probability one, yields

spS Ir

N2 N1
21D 5 spSN1

N2
D,

almost surely+ The result now follows from Lemma 3+2+ n

Proof of Theorem 3.5. To obtain the marginal distribution ofb, we first derive the
marginal distribution ofB+ The joint prior ofB andS is

p~B,S! 5Ep~a,B,S! da 5 cr 6S62~ p1r1q11!02 etr~S21A!Eetr~S21vab 'ba ' ! da+

Substituting the relation~Harville, 1997, Theorem 16+2+2!

tr~S21vab 'ba ' ! 5 vec~a!'~b 'b J vS21!vec~a!

and integrating with respect toa using properties of the normal distribution we obtain

p~B,S! 5 cr 6S62~ p1r1q11!02 etr~S21A!~2p! pr02 6b 'b J vS21 62102

5 cr ~2p0v! pr02 6S62~ p1q11!02 etr~S21A!6 Ir 1 B'B62p02+

This shows thatB andS are independent and marginallyB ; t~ p2r !3r ~0, Ip2r , Ir ,1!+ Thus,
using Lemma 3+4, b is uniformly distributed overGr, p2r + n

Proof of Theorem 3.7. From ~3+3!

a6b,S ; Np3r @0, ~b 'b!21, v21S# +

As Ja 5 a~b 'b!102 we have~see, e+g+, Bauwens et al+, 1999, p+ 302!

Ja6 Db,S ; Np3r ~0, Ir , v21S!+

The densityp~ Ja6 Db,S! is not a function of Db, and we may write Ja6S ; Np3r ~0, Ir , v21S!+
The statement of the theorem now follows from the usual independence property of the
multivariate normal distribution+ n

Proof of Theorem 4.2. It is well known that the likelihood function is invariant with
respect to normalization~Johansen, 1995!+ It is therefore sufficient to prove that the
prior is invariant+ Let N1 denote thatb is normalized on ther first variables andN2 that
b is normalized on variables 1,2, + + + , r 2 1 andr 1 1, i+e+, the change in normalizing
variables fromN1 to N2 is accomplished by replacing the last variable of the normaliz-
ing set with the first variable in the nonnormalizing set+ It will be evident that the lemma
holds generally under any valid change of normalizing variables+ We shall first prove
that J~ Ta, Nb,S r a,b,S! 5 1+ Let
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B 5 1
b1,1 b1,2 J b1, r

b2,1 b2,2 J b2, r

I I L I

bp2r,1 bp2r,2 J bp2r, r

2
denote the matrix of free coefficients inb underN1+ The transformation matrix in this
case is

U 5 S J

b1,1,b1,2, + + + ,b1, r
D, if r . 1 and U 5 b1,1 if r 5 1,

whereJ denotes ther 2 1 first rows of Ir + It is easy to see that6U 6 5 b1, r and

U 21 5 S J

2b1,1b1, r
21,2b1,2b1, r

21, + + + ,b1, r
21D, if r . 1 and U21 5 b1,1

21 if r 5 1+

Note that the restriction tovalid changes in normalizing variables is equivalent to the
conditionb1, r Þ 0, which ensures the existence ofU 21+ It is straightforward to check
that U actually produces the intended change in normalization and that the matrix of
free coefficients underN2 is

OB 5 1
2b1,1b1, r

21 2b1,2b1, r
21 J b1, r

21

b2,1 2 b2, r b1,1b1, r
21 b2,2 2 b2, r b1,2b1, r

21 J b2, r b1, r
21

I I L I

bp2r,1 2 bp2r, r b1,1b1, r
21 bp2r,2 2 bp2r, r b1,2b1, r

21 J bp2r, r b1, r
21
2 + (A.1)

The change in normalization fromN2 to N1 is thus given by the transformationTa, OB,S r

a,B,S, where Ta 5 aU ' + The Jacobian of this transformation is

J~ Ta, Nb,S r a,b,S! 5 *
d vec~ Ta!

d vec~a!'
d vec~ Ta!

d vec~B!'

dvec~ OB!

d vec~a!'
d vec~ OB!

d vec~B!'
*5 6U 6 p* d vec~ OB!

d vec~B!' *, (A.2)

asS is unaffected by the transformation, d vec~ OB!0d vec~a!'5 0 andd vec~ Ta!0d vec~a!'5
U J Ip+ Let bi and Nbi denote thei th columns ofB and OB, respectively+ It is easily seen
from ~A+1! that d Nbi 0dbj 5 0 for i . j, and thus

* d vec~ OB!

d vec~B!' * 5 * d Nb1

db1
** d Nb2

db2
*{{{* d Nbr

dbr
*, (A.3)

where

d Nbi

dbi

5 S2b1, r
21 0

{ Ip2r21
D, for i 5 1, + + + , r 2 1, and

d Nbr

dbr

5
d Nb1

db1

b1, r
21 (A.4)
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and the dot replaces an expression that is unnecessary to calculate+ Thus, from ~A+2!–~A+4!

J~ Ta, Nb,S r a,b,S! 5 6U 6 p* d Nb1

db1
** d Nb2

db2
*{{{* d Nbr

dbr
*5 b1, r

p ~b1, r
21!r ~b1, r

21! p2r 5 1+

Now, because the transformationTU is one-to-one and differentiable, the implied prior
obtained from the transformation fromN2 to N1 is

pN2rN1
~a,b,S! 5 p~ Ta, Nb,S!J~ Ta, Nb,S r a,b,S!

5 cr 6S62~ p1r1q11!02 etr@S21~A 1 vaU 'U 21'b 'bU 21Ua ' !#

5 cr 6S62~ p1r1q11!02 etr@S21~A 1 vab 'ba ' !# ,

which is exactly the same density as would have been obtained by specifying the prior
directly in theN1 normalization+ n

Proof of Theorem 4.5. All full conditional posteriors are proportional to the likeli-
hood function multiplied with the prior in~3+1!, i+e+, proportional to

6S62~T1p1r1q11!02 etr@S21~E 'E 1 A 1 vab 'ba ' !# , (A.5)

whereE 5 Y 2 Xba ' 2 ZC+
It follows directly from~A+5! that the full conditional posterior ofS is theIWp~E 'E 1

A 1 vab 'ba ',T 1 q 1 r ! density+
The full conditional posterior ofC follows from the treatment of the multivariate

regression in Zellner~1971!; see also Geweke~1996!+
To obtain the full conditional posterior ofB, let X 5 ~X1,X2!, whereX1 contains the

r first columns ofX andX2 contains thep 2 r remaining ones, andW 5 Y 2 X1a ' 2
ZC+ The full conditional likelihood ofB is then

p~D6a,b,C,S, r ! @ etr@S21~W2 X2 Ba ' !'~W2 X2 Ba ' !#

5 expH2
1

2
@vec~WS2102! 2 H vecB# ' @vec~WS2102! 2 H vecB#J ,

whereH 5 ~S2102a J X2!+ Thus,

p~D6a,b,C,S, r ! @ expH2
1

2
~vecB 2 vec ZB!'~a 'S21a J X2

' X2!~vecB 2 vec ZB!J ,
(A.6)

where, after some simplifications,

vec ZB 5 vec@~X2
' X2!21X2

'WS21a~a 'S21a!21# +

The prior in~3+1! can be rewritten as

p~a,B,S,C6r ! @ expH2
1

2
~vecB!'~a 'S21a J vIp2r !~vecB!J + (A.7)
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By multiplying ~A+6! by p~a,B,S,C6r ! in ~A+7! and completing the square in the expo-
nential~see Box and Tiao, 1973, Lemma 1, p+ 418!, it is seen that

p~B6a,C,S,D, r ! @ expH2
1

2
~vecB 2 vecmB!'VB

21~vecB 2 vecmB!J ,
whereVB

21 5 a 'S21a J ~X2
' X2 1 vIp2r ! and

vecmB 5 vec@~X2
' X2 1 vIp2r !21X2

'WS21a~a 'S21a!21# +

Thus, B6a,C,S,D ; N~ p2r !3r @mB, ~a 'S21a!21, ~X2
' X2 1 vIp2r !21# +

The full conditional posterior ofa is derived in essentially the same way as the full
conditional posterior ofB+ n

Proof of Theorem 4.6. Integrating~A+5! with respect toC andS yields

p~a6b,D, r ! @ 6~Y2 Xba ' !'MZ~Y2 Xba ' ! 1 A 1 vab 'ba ' 62~T1q1r2d !02

5 6A 1 Y 'MZ~Y2 Xb [a ' ! 1 ~a ' 2 [a ' !'~b 'C1b!~a ' 2 [a ' !62~T1q1r2d !02,

where [a ' 5 ~ b 'C1b!21b 'X 'MZY+ Thus, a ' ; tr3p@ [a ', ~ b 'C1b!21,A 1 Y 'MZ~Y 2
Xb [a '!,T 1 q 2 ~d 1 p! 1 1# + From Box and Tiao~1973, p+ 442!, a ; tp3r @ [a,A 1
Y 'MZ~Y 2 Xb [a '!, ~b 'C1b!21,T 1 q 2 ~d 1 p! 1 1# +

BecauseP 5 ab ' , the posterior ofb conditional ona can be written

p~b 6a,D, r ! @ 6~Y2 XP' !'MZ~Y2 XP' ! 1 A 1 vPP' 62~T1q1r2d !02

5 6S1 ~P 2 ZP!C1~P 2 ZP!' 62~T1q1r2d !02,

whereS5 A 1 Y 'MZY 2 ZPC1 ZP' and ZP 5 Y 'MZ XC1
21+ Thus,

p~b 6a,D, r ! @ 6C1
21 1 ~ab ' 2 ZP!'S21~ab ' 2 ZP!62~T1q1r2d !02

5 6R1 ~b 2 Zb!~a 'S21a!~b 2 Zb!' 62~T1q1r2d !02

@ 6~a 'S21a!21 1 ~b 2 Zb!'R21~b 2 Zb!62~T1q1r2d !02, (A.8)

where Zb 5 ZP'S21a~a 'S21a!21 and R 5 C1
21 1 ZP'S21 ZP 2 Zb~a 'S21a! Zb ' + Let Zb 5

~ Zb1
' , Zb2

' !' , where Zb1 contains ther first rows of Zb and Zb2 the p 2 r remaining ones and
R is conformably decomposed as

R 5 1
G1
r3r

G2
r3~ p2r!

G2
'

~ p2r!3r

G3
~ p2r!3~ p2r!

2 +
By using the result~see, e+g+, Harville, 1997!

R21 5 S ~G1 2 G2G3
21G2

' !21 2~G1 2 G2G3
21G2

' !21G2G3
21

2G3
21G2

' ~G1 2 G2G3
21G2

' !21 ~G3 2 G2
'G1

21G2!21 D
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it is straightforward to show that

~b 2 Zb!'R21~b 2 Zb! 5 ~Ir 2 Zb1!'G1
21~Ir 2 Zb1! 1 ~B2 ZB!'~G3 2 G2

'G1
21G2!21~B2 ZB!,

where ZB 5 Zb2 1 G2
'G1~Ir 2 Zb1!+ From ~A+8!

p~B6a,D, r ! @ 6C3 1 ~B 2 ZB!'~G3 2 G2
'G1

21G2!21~B 2 ZB!62~T1q1r2d !02,

whereC3 5 ~Ir 2 Zb1!'G1
21~Ir 2 Zb1! 1 ~a 'S21a!21+ This is proportional to the matrixt

density in Theorem 4+6+ n
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