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BAYESIAN REFERENCE ANALYSIS
OF COINTEGRATION

MATTIAS VILLANI
Sveriges Riksbank
and
Stockholm University

A Bayesian reference analysis of the cointegrated vector autoregression is pre-
sented based on a new prior distributiéimong other propertiest is shown that

this prior distribution distributes its probability mass uniformly over all cointe-
gration spaces for a given cointegration rank and is invariant to the choice of
normalizing variables for the cointegration vectd®gveral methods for comput-

ing the posterior distribution of the number of cointegrating relations and distri-
bution of the model parameters for a given number of relations are proposed
including an efficient Gibbs sampling approach where all inferences are deter-
mined from the same posterior samp&mulated data are used to illustrate the
procedures and for discussing the well-known issue of local nonidentification

1. INTRODUCTION

Many macroeconomic time series behave in a random walk—like fashion and
tend to move around wildlyTypically, such variables move around together
striving to fulfill one or several economic lawser long-run equilibria which
tie them togetherA random walk is often referred to as amtegratedprocess
and integrated processes that move around together have therefore been termed
cointegrated(Engle and Granged987).

The present work is concerned with estimation of bothrthenberof equi-
libria, the so-called cointegration ranknd theform of the equilibria condi-
tional on the rankinferences regarding the error correcting coefficients and
other short-run dynamics are also treated

Several non-Bayesian statistical treatments of cointegration have been pre-
sented during the last two decad@esost notably Ahn and Reinsél990),
Johanseri1991), Phillips (1991), and Stock and Watsof1988.
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More recently a handful of Bayesian analyses of cointegration have been
developegsee Bauwens and Git998, Bauwens and Lubrand 996, Geweke
(1996, Kleibergen and Paaf2002, Kleibergen and van Dijk1994), Strachan
(2003, and Villani (2000; see also Corander and Villag2004 for a frac-
tional Bayes approach and Chao and Phillip899 for an information crite-
rion with a Bayesian flavoPhilosophical issues asida Bayesian approach is
advantageous for many reasoitgproduces whole probability distributions for
each unknown parameter that are valid for any sample giaéfords straight-
forward handling of the inferences on the cointegration rank and tests of restric-
tions on the model paramete(&eweke 1996 Kleibergen and Paa®002
Strachan2003 Villani, 2000, and it makes a satisfactory treatment of the pre-
diction problem possibl¢Villani, 2001h.

The crucial step in a Bayesian analysis is the choice of prior distribution
and in each of the previously mentioned papers a new prior distribution has
been introducedThe degree of motivation of the priors has variéadt the
authors seem to have been more or less focused on vague priors that add only a
small amount of information to the analysise., priors largely dominated by
data

This paper will be less concerned with whether or not a prior is “noninfor-
mative” The aim here is to propose a Bayesian analysis based on a sound prior
that appeals to practitionerSuch a prior must consider several partially con-
flicting aspects of actual econometric practieést, the number of parameters
in cointegration models is usually very largand it is not realistic to demand a
detailed subjective specification of priors on such high-dimensional spates
least not at the current state of elicitation techniques for multivariate distribu-
tions A prior with relatively few hyperparametersach with a clear interpre-
tation is thus mandatorySecond priors will not, or at least should npte
used by practitioners unless they are transparent in the sense that one can eas-
ily understand the kind of information they convéhird, the prior must lead
to straightforward posterior calculations that can be performed on a routine basis
without the need for fine tuning in each new applicatiBmally, the posterior
distribution of the cointegration rank can only be obtained if some parameter
matrices are given proper integrable prigkprior that fulfills these objectives
will probably not coincide with the investigator’s actual prior beliefs but should
nevertheless be useful as point of referemecean agreed standarand is called
a referenceprior accordingly

The organization of the paper is as follawihe cointegrated vector auto-
regressive(VAR) model is presented in Section & reference prior is pro-
posed in Section,3and its properties are discussed in detddctions 4 and 5
treat the posterior distribution conditional on the cointegration rank and the pos-
terior distribution of the rank itsglfespectivelyThe methods are illustrated in
Section 6 and the final section gives some concluding remafikse proofs
have been collected in an Appendi®ome of the more straightforwardut
tedious proofs have been omitted and may be found in Ville20019.
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2. THE MODEL

Let {x,};_, be ap-dimensional process modeled by a cointegrated error correc-
tion (EC) model withr stationary long-run relations
k—1
AXp = TIX_1 + O W AX_; + @, + &, (2.1)
i=1

wherell = aB’, B is thep X r matrix with the cointegration vectors as col-
umns and « is thep X r matrix of adjustment coefficientsSThe number of
long-run relations is equal to the rank Of which has therefore been termed
the cointegration rank Both « and B are assumed to be of full ranklere ¥,
(pXp) (i=1,...,k—1) govern the short-run dynamics of the progeksw X 1)
is a vector of trendseasonal dummiesr other exogenous variables with coef-
ficient matrix® (p X w), ande, (p X 1) contains the disturbances at tirnthat
are assumed to follow thi,(0,%) distribution with independence across time
periods

The lag lengthk, will be assumed known or determined before the analysis
see Villani (20013 for a Bayesian approacilternatively the lag length can
be estimated jointly with the cointegration ra(Rhillips, 1996 Chao and Phil-
lips, 1999 Corander and Villani2004) or even analyzed via its posterior dis-
tribution given that all model parameters have been assigned proper prior
distributions

It is well known that only the space spanned by the cointegration veprs
B), the cointegration spaces identified i.e., 8 is only determined up to arbi-
trary linear combinations of its columnd/e will follow the traditional route in
Bayesian analyses of cointegration by using a linear normalization

Iy
B = <B> (2.2)

to settle this indeterminacyhereB is a(p — r) X r matrix of fully identified
parametersWhen B is used as an argument in density functions it must be
remembered that some of its elements are known with probability one as a result
of the normalization

The linear normalization is very convenient for computational reasees
Sections 4 and)5and the Bayesian analysis in this paper is shown to be invari-
ant to the choice of normalizing variabldsshould be noteghoweverythat the
linear normalization implicitly assumes that the lpst r components ok; are
not cointegrated among themselyege LuukkonenRipatti and Saikkonen
(1999 for a test if this is indeed the cas&lthough this event is of measure
zero it may have some effect on the numerical evaluation of the posterior dis-
tribution in situations where the data are located near this region

The following compact form of the cointegrated EC mode{arl) is useful

Y = XBa' +Z¥ + E, (2.3)
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where thetth row of Y, X, Z, and E is given by Ax{, x{_1, (AX{_4,...,
AX{_«+1,d{) andg{, respectivelyand ¥ = (¥,..., ¥4, ). The expression
D = {Y,X,Z} will be used as shorthand for the available dadad d =
(k—1)p + wdenotes the number of columnsdnWe shall also use the notation

My = Iy — H(H'H)IH’ (2.4)

for anym X s matrix H of full column rank

3. THE PRIOR DISTRIBUTION
The prior distribution is conveniently decomposed as
pa, B, V,%,1) = pla, B, ¥, 2[r)p(r),

whereV = (,...,¥._,,®) andp(r) is any probability distribution over the
possible cointegration ranks = 0,1,...,p.

The essential conceptual difficulty in a Bayesian approach to cointegration
is the prior distribution ofx and 3. Kleibergen and van DijK1994 criticized
the uniform prior onw andg (see Section and suggested the Jeffrefk961)
prior as a plausible alternativ&he Jeffreys prior turns out to be dependent on
the expected value of a data mafrand none of the four ways of computing
this expectation discussed by Kleibergen and van Dijk led to a convenient form
of the posterior distributiorBauwens and Lubran@ 996 worked with a more
general class of identifying restrictions coupled with a uniform priowoend
studentt priors on the free elements of the cointegration vectbng prior was
chosen out of convenience and does not consider the fact that the space of the
cointegration vectors is nonstandard as a result of the identification problem
discussed in Section Beweke(1996 used normal shrinkage priors and obtained
the posterior distribution numerically with the Gibbs samplére choice of
prior is not motivated but seems to have been mainly chosen to assure the con-
vergence of Gibbs sampling algorithiRecently Kleibergen and Paaf2002
proposed a reference prior enandp that is essentially a prior of in the full
rank EC model projected down to the subspace where(fank r; Strachan
(2003 extended this idea to more general identifying restrictidhss an
approach that is rather common and well understood in linear maduoleists
implications in nonlinear modelsuch as the EC model with reduced rank in
(2.1), are not as transparergee also Section.6

The approach taken here differs from the previously mentioned works by
focusing directly on the actual structure of the parameter spaBe\dk intro-
duce the proposed reference prior now and spend the rest of this section moti-
vating its particular formLet etr(H) = exp(— 3 tr H) for any square matrixi.
The prior can then be written

pla, 8,0, 3[r) = ¢ [S[7 P a2 et 1A + vaB'Ba’)], (3.1)
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wherev > 0, g = p, andA, ap X p positive definite matrixare the three hyper-
parameters to be specified by the investigaidie normalizing constant is

I (p) 2-aAp/2 . —p(p—1)/4

= |Alw2
woA (T (r) (27 /v)P72qr (P=01/2
wherel(a) = [I°-3T'[(a — i)/2], for positive integers andb satisfyinga =
b-1

Note that¥ is uniformly distributed oveR P~ Y% which makes the over-
all prior p(a, B, ¥,3|r) improper The prior ona, B8, and3 conditional on¥ is
proper however The uniform prior for¥ is used here for simplicityout a gen-
eral multivariate normal prior on veE (e.g., a structured shrinkage prior as in
Litterman 1986 leads to essentially the same posterior computations

Implicit in (3.1) is the assumption of commoXk g, andwv for all r; the ensu-
ing analysis proceeds in the same manner in the general case with VArgng
andv.

3.1. Marginal and Conditional Prior Distributions

Throughout this sectigrwe will assume thak = 1 andw = 0 for notational
convenienceThe results will still be valid fok > 1 andw > 0 as long as prior
independence betwednand the other parameter matrices is assuigrob-
ability distributions in this section will be conditional on a given cointegration
rank though this will not be written out explicitly

The space 0B is not euclidean because of the nonidentification of the cointe-
gration vectorslt is deceptive to think in terms of the free parameter space of
B under some arbitrarily chosen normalizatiery., the linear normalization in
Section 2without regard to the fact that actual parameter space is non-euclidean
In the following paragraphs we shall describe the true parameter spgge of
and show that the prior if8.1) implies a uniform distribution over this abstract
space

Let X denote the set ob X r real matrices of rank (= p) and define the
group of transformationX — XL, whereX € X andL is any nonsingular X r
matrix. This group defines an equivalence relatignin X such that for any
X,Y € X, X £ Yif and only if sp(X) = sp(Y). Thus the points of the resulting
coset space of equivalence classesially denoted bjRpX’/;p, stand in a 1-1
correspondence with thredimensional subspaces®P. The set ofr-dimensional
subspaces dRP is an analytic manifold of dimensiofp — r)r (James1954),
which has been termed ti@assman manifoléind is denoted by, , ..

The uniform distribution o, ,_, is naturally defined as th@inique invari-
ant distribution under the group of transformationsdf,_, induced by the
group of orthonormal transformations BP (James1954.

As a result of the nonidentification of the cointegration vectors explained in
Section 2the actual parameter space®fs the Grassman manifaliVe shall
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now prove that the distribution if8.1) implies thatB is marginally uniformly
distributed ovel§, ,_,. First we need a definition and a few lemmas

DEFINITION 3.1. An mX s matrix D follows the matrix t distribution, B
txs( 1, Y, ©,0), if its density is given by
I(g+m+s—1)

gt s— Damzjyzgmz |ls+ @ (D~ WY THD — ) Termreh
S

See Box and Tia01973 and Bauwens_ubrang and Richard 1999 for prop-
erties of the matrix distribution

LEMMA 3.2. Let R be a px r matrix of independent N(0,1) variables. Then
sp(R) is uniformly distributed oveg, ;.

Proof See Jame&1954).

LEMMA 3.3. If N; and N, are independent & s and mX s matrices of
independent KD,1) variables, then

N2 Nfl -~ thS(O’ Im’ ls,l)-
Proof See Phillips(1989 and Dickey(1967).

LEMMA 3.4. If B = (I, B")" and B~ t(p—r)x(0, 15—, 1;,1), thensp(B) is
uniformly distributed oveg, ..

With the preceding definitions and lemmas out of the wag are now pre-
pared to state an important property of the distributio3d).

THEOREM 35. g is marginally uniformly distributed oveg, ;.

To illustrate this rather abstract uniform distributjdet us consider the bivar-
iate case with a single cointegration vecfr (1, B)'. According to the proof
of Theorem 3 in the Appendixthe distribution in(3.1) implies a Cauchg0,1)
distribution onB. This is not surprising given tha& is a ratio of two indepen-
dentN(0,1) variates under the uniform distribution ovér ,_, (see Lemmas
3.2-34). A more naturalbut computationally inconvenigntarametrization of
B is the polar parametrization

B cosf T

= . , ——=0<
B sing 2
where 6 is the angle of the cointegration vectdn this parametrization the

distribution in Theorem 3 reduces to a constant density fbfJames1954).
Slightly more generallyin the p-dimensional case with a single cointegration

: (3.2)

N
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vector the distribution in Theorem.3 reduces to the conventional uniform dis-
tribution over thep-dimensional hemisphere with unit radi(idardia and Jupp
2000. In the general caseve may say that the prior i(3.1) assigns equal
probability to every possible cointegration space of dimensiéithough more
informative prior information on the cointegration vectors may be avaijable
the marginal prior orB implied by the prior in(3.1) satisfies all four of the
desiderata stated in the Introduction and should therefore be a suitable refer-
ence prior

It should be noted that the prior {i8.1) is by no means the only distribution
on « andp that implies a uniform distribution on the Grassman manifdloe
prior in (3.1) is especially interestindhowever in that it is both conceptually
relevant andas will be shown latervery convenient from a computational
viewpoint

THEOREM 36. The marginal prior ofS is
3~ IW(Ag),
where IW denotes the inverted Wishart distribution (Zellner, 1971).

Proof This follows directly from the proof of Theorem= u
From (3.1) we immediately obtain
a|B7E ~ NpXI’ [0,(3’3)_1,1/_12], (33)

whereA ~ Npwxs( 1, Q4, Q,) means that veA ~ Ny,(vecu, Q; & Q). The lin-
ear normalization o8 makesa difficult to interpret howevey and the condi-
tional prior in (3.3) may not shed much light on the prior {8.1).

Consider instead the prior ef conditional ong and> whenp is orthonor-
mal. RestrictingB to be orthonormal is not sufficient to identify the mogdel
however as any orthonormal version gfcan be rotated to a new one by post-
multiplying it with anr X r orthonormal matrixThis need not concern us here
asp only entergp(a|B,2) in the formB’B andp(«|B,2) is therefore invariant
under these rotation®efine 3 = B(B’B) 2 and note thap is orthonormal
ForII = a3’ to remain unchanged by the transformatr> 3, we must make
the corresponding transformation of the adjustment matrix feoo @ =
a(B'B)Y2. In the following theoremlet @ denote theith column of& and
note thaiw; describes how thp response variables are affected by itthecointe-
grating relation under the orthonormal normalization

THEOREM 37. &3 " N,(0,07 1), i=12,...,r
The rather restrictive form of the prior in Theorenv 3nust be motivated

First, the restriction to conditional normal priors am (and thereby also
on &) is necessary for an efficient numerical evaluation of the postesiee
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Sections 4 and.5econdnonidentical priors on the columns &fdo not make
sense unless overidentifying restrictions on the column® afe used to give a
unique meaning to each cointegration vectamother way to see this is that
within the class of matrix normal priorg|8,s ~ Npsr (2, Q1,Q5), only the
priors withu = 0, Q4 = |, are invariant to rotations g8. Third, the scale ma-
trix in the conditional prior may be any positive definite magrike posterior
computations remain nearly the sanBy making the conditional covariance
matrix proportional t& we are taking the possibly differing scales of the time
series into accountinally, the reason for centering the conditional prior over
zero is motivated by the invariance requirement just stdtduhs the effect of
centering the prior over = 0, which is often a good starting point in an analy-
sis; see the discussion of the “sum of coefficients” prior in Dohitterman
and Sims(1984) and Section 2.

In his influential development of Bayesian reference tests of sharp null hypoth-
eses Jeffrey$1961 Ch. 5) argued that the prior on the parameters under the
alternative hypothesis should be centered over the point in the null and that the
prior spread around this point should be an increasing function of the model’s
scale parametesee also Berge(1985 Sect 4.3.3). Although the situation is
quite a bit more complex herthe prior in Theorem .3, which is centered over
the hypothesi$l = 0, or r = 0, with a prior scale depending @ has the same
flavor and should therefore be appropriate for inference on the cointegration
rank see Section 5

Further clarification of the hyperparametésq, andv is obtained from the
marginal prior of&. By multiplying p(&|3) with the marginal inverted Wishart
prior of 3 and integrating with respect t, we obtain

@~y (0,07 A l,,q — p +1). (3.4)
Results in Box and Tia¢1973 pp. 446—447 then give
E(@)=0 and Coyveca)=1 @ v 1E(D),

whereE(X) = A/(q — p — 1) is the expected value & a priori; see e.g.,
Bauwens et al(1999 p. 306).

The hyperparametek is determined fronE(X) andq, and the investigator
thus faces subjective specification(@f the expected value &, (ii) the degree
of certainty regardin@ (large values ofj imply large certainty, and iii ) the
tightness around the point zero f@r(large values ob give high concentration
of probability mass around zerd\ote that whether a value feris large or not
depends orE(2), which should therefore be specified befare

The main difficulty for the investigator is likely to be the specification of
E(X). If interest only centers on the posterior @f 3, ¥, conditional on a
given cointegration rankhenA may be set equal to the zero matrix aet 0.
This corresponds to using the usual improper pg@x) oc ||~ (P92 |f we
also aim at analyzing the cointegration rabkit are either unable or unwilling
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to state our beliefs aboit, thenA = 3 andq = p + 2 may be usedvheres is

the maximum likelihood estimate & in the full rank model note that this
implies thatE(3) = 3. This suggestion is of course not a proper Bayesian solu-
tion as the prior then becomes dependent on the observed Tdataconse-
quences of this side step are minimized by the choice of the smallest pagsible
(maximum uncertaintysubject to a finite expected value Bf

3.2. Prior Stability

Define
Ip + aBI + lI,l \Ifz - lI’j_ ces \Ifk,l - \Ifk,Z _\I}k*l
I 0o . 0 0
e = 0 I, 0 0
0 0 I 0

p

The assumption of rarfkl) = r implies thatr of the eigenvalues ofl. are
equal to oneA cointegrated process is stable if all the remaining eigenvalues
of Tl are smaller than one in modulus is clearly of interest to know what
prior probability is implicitly being placed on the set of stable processes if the
prior in (3.1) is used This could be investigated either by analytical approxi-
mation or by simulation methods for different models., by varyingp, r, and

k. We shall here be content with simulating the special gase 2 andr =

k= 1. Table 1 displays the prior probability that the process is stabléferl,

as a function ofy ando = v~¥? (note thato is on a standard deviation scale
Experiments with other choices éfwith strong positive and negative correla-
tion structure did not have a large impact on the probabilityte also that it is
unnecessary to increase the magnitude of the diagonal elemehtsithis has
the same effect as increasing

TaBLE 1. Implied prior probability that the process is stable

o

001 01 025 05 075 1 5 10 50 100
qg=2 048 046 040 035 030 026 008 Q04 001 000
q=4 049 049 047 046 042 040 015 008 002 001
g=10 050 050 049 048 047 045 026 014 003 002
g=20 050 049 049 048 047 047 033 019 005 002

Note: r=k =1 andA = I,.
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0.6

0.2+

FiGcure 1. Implied prior distribution on the unrestricted eigenvalue for= |, and
g=4. Hereoc =025(-~.—), 0 = 05(—),ando =1 (- — 2.

Densities of the unrestricted eigenvalug are displayed in Figure 1 for dif-
ferent values ofr. The densities are symmetric around the modal valuel.
A nonsymmetric density fok that places more mass to the leftlof 1 than to
the right of this point would perhaps better represent actual belidfs gain
from a nonsymmetric prior is probably less than the loss in computational effi-
ciency in the posterior calculationsowever

A crude way to obtain a nonsymmetric prior is to simply exclude explosive
processes a priofior “too explosive” processe®.g., with eigenvalues larger
than 11 in modulus by restricting the domain of the prior i13.1) to the space
of a, B, and¥ where the process is stablehis is neatly handled in the poste-
rior calculations for a given cointegration rank by simply rejecting the draws
from the posterior corresponding to nonstable processss Section 4Note
that the latter region will be small if the process actually is stable and data
informative and most draws will then be acceptéde posterior distribution of
the rank will require heavier numerical computatiphewever

4. THE POSTERIOR DISTRIBUTION CONDITIONAL ON THE RANK
4.1. Normalization Issues

The choice of variables used for normaliziggmay be somewhat arbitrary
and it is important to show that the posterior distribution corresponding to the
prior in (3.1) is invariant to this choicelLet NV} = {is,...,i;} denote the set of
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indices for ther variables used to normaliz& Consider the change in normal-
ization V7 — N>, where N, equals\; with jth variable in the normalized set
replaced by théth variable in the nonnormalized séthis change in normal-
izing variables is accomplished by the transformafign(«, 8,3) — (@, 3,3),
wherea = aU’, 8 = U "%, andU is anr X r invertible transformation matrix
whose elements are functions of tkih row of B. The exact form ofU need
not concern us for the momerit is sufficient to note that such a matrix always
exists and is uniqueif the kth variable in the nonnormalized set has a nonzero
coefficient in thejth cointegrating vectorsee the proof of Theorem2in the
Appendix Such a change of normalizing variables will be ternvadid. It is
important to note thall = @B’ is unchanged by the transformation

The next definitionadapted from Dréze and Richa(t983, formalizes the
idea that the inference should not depend on whethe(iweork directly with
N7 or (i) start with\, and then transform ta/;.

DEFINITION 4.1. A density e, 8,%) is said to beinvariant with respect
to normalizationif and only if its functional form is invariant with respect to
the valid parameter transformation,T(«, 8,3) — (@, 3,3).

THEOREM 42. The posterior distribution corresponding to the prior (3.1)
is invariant with respect to normalization.

The main advantages of the linear normalization are that the prior that assigns
the same probability to every cointegration space is of rather simple form and
that easily implemented numerical methadee Sections.d and 5 can be
used to compute the posterior resultbote also that we are free to transform
the posterior distribution of andB as long as the space spanned by the col-
umns ofB and the matrix of long-run multiplierH = a8’ remain unchanged
i.e, the class of allowable transformations(is, 8) — (aV’,BV 1), for any
invertibler X r matrix V. For examplean orthonormap is obtained withV =
(B'B)Y¥?. The transformation is conveniently performed directly on the poste-
rior draws ofa andB. Thus as long as the initial linear normalization is valid
(dubious normalizations may be excluded with the test of Luukkonen.et al
1999, the restriction to the linear normalization is no restriction at all as the
final results may be transformed to any desired normalization

4.2. Marginal Posterior Distribution of 8

The next result gives the marginal posterior of the cointegration vectors

THEOREM 43. The marginal posterior distribution g8 is

|B,Clﬁ | (T+q—d—p)/2
BCpT

p(BID,r) o (4.1)
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where G = X'M,X + vl,, C, = vl, + X'Q[Iy — Z(2'QZ)"22'Q]X, and Q=
It — Y(A+ YY)y,

The expressiop(B|D,r) in Theorem 43 is a 1-1 poly-matrix-density(Bau-
wens and van Dijk1990. Theorem 3L in Bauwens and Lubrand 996 is the
limiting special case of Theorem3iwith A = 0 andq = v = 0 (which corre-
sponds to a constant prior @handB). Contrary to the family of multivariate
poly-t densities(seg e.g., Dickey, 1968 Dreze 1977 Bauwens et a] 1999,
poly-matrix+t densities have remained largely unexplor€de following result
can be shownhowever

THEOREM 44. The marginal posterior of B is integrable but possesses no
finite integer moments.

Proof The result follows from a trivial modification of the proof of Corol-
lary 3.2 in Bauwens and Lubran@996.

The nonexistence of integer moments is not a consequence of the prior dis-
tribution in (3.1) but rather of the linear normalization @& where each ele-
ment of B is a matrix quotient with the uppar X r submatrix ofg in the
denominatarPhillips (1994 makes the same point about the distribution of the
maximum likelihood estimator in the linear normalizatievhich he shows has
Cauchy-like tails

It is also possible to derive the marginal posterior distributiorvadis in
Kleibergen and van DijK1994 eq (29)) in closed form It is a complicated
nonstandard distributiofsee Section 6 for further discussjaand is not con-
veniently used in the numerical posterior evaluations discussed in the next
section

4.3. Numerical Posterior Evaluation

The marginal posterior distribution of the cointegration vectors in Theor8m 4
is of the same 1-1 poly-matrixform as the distribution in Theorem.13in
Bauwens and Lubran@996. Bauwens and Lubrano discuss both importance
sampling(Kloek and van Dijk 1978 and Gibbs samplingSmith and Roberts
1993 approaches to evaluating such a dendiguwens and Giotl 998 imple-
ment the Gibbs sampling approach and give details on convergence. ishaes
key properties used in those exercises(@réhe conditional distribution of one
of the cointegration vectors conditional on all other cointegration vectors is a
vector 1-1 polyt, (ii) the 1-1 polyt is amenable to direct simulation using the
algorithm of Bauwens and Richafd985, and(iii ) the posteriors of, ¥, and

3 conditional onB are all standardOnce the marginal posterior @f has been
evaluated by sampling methods the marginal posteriorg,of, and 3 may
therefore be computed by averaging their posteriors condition@ owver the
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posterior sample g8. We refer the reader to Bauwens and Lubr&ab®96 and
Bauwens and Giot1998 for details

A major disadvantage of building the numerical posterior evaluations on the
analytical form ofp(B|D, r) is the inability to handle posterior distributions of
quantities with intractable posterior distribution conditionaj®such as impulse
response functions or forecasihe Gibbs sampler is a convenient algorithm
for sampling from the joint posterior distribution of 8, ¥, and> and may
thus be used in such situatigrGeweke(1996 seems to have been the first to
use Gibbs sampling in cointegration modétgurns out that the posterior dis-
tribution for the prior in(3.1) is amenable to an algorithm similar to the one in
Geweke(1996. The Gibbs sample may also be used to efficiently compute the
posterior distribution of the cointegration rarf&ection 5 and Theorem.@}
which follows).

The Gibbs sampler is an easily implemented method for generating observa-
tions from complex multidimensional distributions by sampling iteratively from
the so-called full conditional posterior distributiofi$e full conditional poste-
rior distribution of a subset of parameters in a model is the posterior distribu-
tion of the subset conditional on all other parameténdial values for all
parameters are needed to start up the Gibbs sanfflermaximum likelihood
estimates in Johansdi995 are natural candidateIhe sampled parameter
values are not independent but can be shown to converge in distribution to the
target posterior distribution independently of the choice of initial valdésr-
ney 1994). Furthermorethe expected value of any well-behaved transforma-
tion of the parameters may be consistently estimated by sampling averages

The full conditional posteriors af, 8, ¥, andX are given in the next theorem

THEOREM 45.
e The full conditional posterior ok
3|a, B, 9, D,r ~ IW,(E'E+ A+ vap'Ba’\T+q+r),
where E= Y — XBa' — ZV.
» The full conditional posterior of
Yla, B,%,D, 1 ~ Nysp[ . 3,(2'2) 1],
whereuy = (Z2'2)712'(Y — XBa').
» The full conditional posterior o
alBW, 3, D1 ~ Nowd o, [B/ (XX + 01) B 743,

wherep, = (Y — Z¥)'XB[ B’ (vl, + X'X)B]~*.
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» The full conditional posterior of B
B‘a’ lI,7 27 D; r—~ N(pfr)Xr [MB’(arzila)il’(xéXZ + Ulp*r)il]’

wherepg = (X5X; + vl ) ' X5(Y — Xpa' — Z¥)3 a ('S )™t and
X, denotes the r first columns of X and ¥e p— r last ones.

Most of the model parameters are locatedlirands, and the Gibbs updat-
ing steps for these two matrices usually dominate the total computing time
The time to convergence of the Gibbs sampler also increases as the dimensions
of ¥ andX grow The next theorem gives the conditional posteriors necessary
to perform a(margina) Gibbs sampler to generate samples directly from
p(a, B|D,r). This Gibbs sampler is also used in Section 5 to calculate the pos-
terior distribution of the rank

THEOREM 46.
» The posterior ofx conditional ong and r
alB,D,r ~ tyx, [@, A+ Y'MZ(Y = XBa'),(B'CLB)
T+g—-(d+p +1],
wherea = Y'MzXB(B8'C,8)7 .
» The posterior of B conditional oa and r
Bla, D,r ~ t(pr)x [B,G3s — G4G11G,,Ca, T+ q+r1 — (d+ p) + 1],

where 8 = 'S 'a(a’S™ %)™, 11 = Y'M,XCrY, S= A + Y'M,Y —
IIC,I1', B, contains the r first rows o and 3, the p— r remaining ones,

and
G, G,
Cl—l + ﬁ/s—lﬁ _BAa/S—laﬁ/ — rxr rx(p—r)
G Gs

(p=n)Xxr  (p=rX(p-r)

is decomposed conformablys & (I, — 3,)'G; *(I; — B1) + ('S *a)™?
and B = Bz + GéGil(lr - Bl)

The posterior densities df and> are obtainable by marginalizing their den-
sities conditional orx andB, which belong to the matrikand inverted Wishart
family, respectively using draws from the marginal Gibbs sampler in Theo-
rem 46; Bauwens and Lubran@ 996 and Bauwens and Gi@fi998 provide
the details
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5. THE POSTERIOR DISTRIBUTION OF THE COINTEGRATION RANK

The posterior distribution of the cointegration rank is
P(D[r)p(r)

p(riD) = - ; (5.1)
> p(DIr)p(r)
r=0

wherep(r) is the prior probability ofr cointegrating relations and

o0l = [[[[ PPl .5, rptar .. 31r) ax0wdacs (5.2)

is the marginal likelihood of the data given raik) = r.

The marginal likelihoods for = 0 andr = p are analytically tractable if the
prior in (3.1) is used also for the zero and full rank moddlkese priors agree
with our earlier prior in the reduced rank case and do not introduce any new
prior hyperparameter$f r = 0, thena = 8 = 0 and the prior in(3.1) becomes

P, 3[r) = Co| X[ (PHa* D 2 etr(371A), (5.3)

which is anlW(A,q) prior on 3, andp(P) is a constant densityForr = p,
IT = aB’ is of full rank and

P(ILW,3[r) = ¢,|S[~@Prarb/Z e[S~ H(A + olIIl')], (5.4)

which impliess ~ IW(A,q), vecll|> ~ Np2(0, 1, ® v~13) and a constant prior
on V. If the Kronecker structure on the prior covariance matrixibfs too
restrictive a general normal-Wishart distribution may be used as a priofifor
andX.

The marginal likelihoods for = 0 andr = p are given in the next theorem

THEOREM 11. For the priors in (5.3) and (5.4)
P(D|r = 0) oc [(T+q—d)|A+ Y'MY| (THa=d/Z
P(DIr = p) oc (T + g — d)o 72|~ Tra-D/2|Cy| P2
where S is defined in Theorem 4.6 andi€given in Theorem 4.3.

The proportionality signs in TheoremI5are used to denote that the multi-
plicative constan{A|¥?|Z'Z| P27z~ (T-9P211(q) has been discarded as it
enters all marginal likelihoods af This practice is followed throughout this
section

For1=r = p — 1 at least one of the integrals {8.2) must be handled by
numerical methodsWe shall here discuss three possible simulation-based
approachesMonte Carlo integrationimportance samplingand the marginal
likelihood identity approach of Chiti1995.
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5.1. Monte Carlo Integration

The integrals in(5.2) with respect tow, ¥, and3 may be computed analyti-
cally, leading to the 1-1 poly-matrixdensity in Theorem 8, which is repeated
here(along with its proportionality constant

(P, (T + g — d)o P2 (P12
L(r)|A+Y'M,Y|Tra-d)/2

p(Dlr) =

x [ lgrc,pimaanegic,p-maerzgn

The final integral with respect t8 must be computed numericallf Monte
Carlo integration approach is suggested by the following lemwhich is proved
by expanding3’'C,8 in B and completing the squaksee the proof of Corol-
lary 3.2 in Bauwens and Lubrand996.

LEMMAS.2 Forl=r=p-1

L(PIL(T+g—d)L(T+g+r—p—dwvP/2E(|p'C,p|Trad-p/2)
LNOT(T+g—d)|A+ Y'MY|Tra-d/2|K 72|y |(Tratr-d-p/2 >

P(DIr) o

where the expectation is taken with respect to glaer;xr(é, K;LUT+q-
p — d + 1) distribution, G (see Theorem 4.3) is partitioned as

Ky K
rxr rx(p—r)

CZ = ) )
K2 Ks

(p—=r)xr  (p=nx(p-r)
B = —K;'K}, and U= K; — K,K; K},

The expected value in Lemma2smay be computed by generating variates
from the t<p,r)x,(l§>, KsLUT + q — p — d + 1) distribution computing
|B'C,B|(Tta-9-P/2 for each drawand averaging over all draws

5.2. Importance Sampling

Another method that may be used to approximate the integral with respgct to
in (4.1) is importance samplingKloek and van Dijk 1978 Geweke 1989. In

cases where the importance function well approximates the target integrand
importance sampling can be quite efficient as it produces independent draws
without wasting an initial burn-in sampl&he fact that the draws are indepen-
dent makes a central limit theorem directly applicalalied the precision of the
estimates is easily assesg@keweke 1989.
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Given the heavy tails of the marginal posteriorTheorem 44), a natural
suggestion for an importance function is the matrix Cauchy density max-
imum likelihood estimate oB and an estimate of its asymptotic covariance
matrix (Johansen1995 Theorem 134) may be used as location and scale
matrigg respectively That is we suggest the density,_, ), [B,(X5X,)™%,
(Ta'> &)1 1] as an importance functiofrurther fine tuning may be intro-
duced by multiplying(X3X,)™! by a scale factor

Poly+ densities may be substantially skew and even bimddatuch cases
the matrix Cauchy may not perform well as an importance func#eonalter-
native may be to generate each of theintegration vectors conditional on the
maximum likelihood estimates of the remaining- 1 vectors These condi-
tional posteriors are 1-1 polytBauwens and Lubrand996 and may be gen-
erated by one of the algorithms in Bauwens and Richag85.

5.3. Marginal Likelihood Identity Approach

By a slight rearrangement of Bayes’ theorem we obtain what Ct995 has
termed thebasic marginal likelihood identity

P(Dla,B,r)p(e,B[r) _ p(Dla,B,r)p(a,BJr)
p(a,B|D,r) p(Ble, D,r)p(a|D,r)’

p(DIr) = (5.5)
Chib (1995 suggested using this identity in combination with a Gibbs sampler
to estimate the marginal likelihoo@he expression fop(D|r) in (5.5) clearly
holds for anya andB. Let (&, B) be the point wherg(D|r) is evaluatedAs
explained in Chil{1999, this point should preferably be of high posterior den-
sity; the posterior mode and median are good candiddles posterior mean
does not existsee Theorem.4). The termp(B|«, D, r) in (5.5) is given in the
second part of Theorem.@} and the next result gives the expression for the
numerator of(5.5).

LEMMAS 3.

Fp(T+ q+r— d)l_}(p)
Fr(r)ﬂ_(Zprfrz)/vapr/z

P(Dla,B,r)p(a, Blr) o

X |A+vap'Ba’ + WM W|~(Tratr=d)r/z,
where W=Y — XBa'.

The final term of the marginal likelihood identity(«|D,r) is not available
in closed form but its value in a pointx = &, which is all we needcan be
computed from a posterior samp@?, ...,B™ of B by

12 .
p(aID.r) = ~ 3 p(alBY. D),
i=1
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wherep(a|B, D, r) is given in the first part of Theorem@ From the ergodic
theorem(Tierney 1994, p(&|D,r) — p(&|D,r) almost surelyThis procedure
for computingp(D|r) will be named the marginal likelihood identityMLI )
algorithm

The posterior sample from(B|D,r) needed in the MLI approach can be
obtained from(i) a Gibbs sampler for the 1-1 poly-matrixdensity in(4.1) as
described in Bauwens and Lubrafi®96 and Bauwens and Gidfi998), (ii)
the marginal Gibbs sampler in Theoren6,Avhich samples fronp(a, B|D, 1),
and (iii) the full Gibbs sampler in Theorem.5 which samples from
p(a, B, ¥,3|D,r).

The matrixt conditional posteriorp(B|a,D,r) and p(«|B,D,r) in Theo-
rem 46 are easily sampled usingg., the algorithm in Bauwens et.al1999.
Even though the second approach sampléis addition tog it is likely to be
faster than the first approacWwhich requires draws from a 1-1 potydistribu-
tion for each of the cointegration vectoff®r an algorithm see Bauwens and
Richard 1985. The third approach is clearly not as fast as the second but has
the advantage of yielding both the posterior distribution of the cointegration
rank and the joint posterige(a, 8, V,3|D,r) at the same time

6. AN ILLUSTRATION

A single data set of length = 100 was simulated from a bivariate mogdeith-
out short-run dynamics and constant temmith parametersy = (0,0.1), 8 =
(1,—1), andX = I,. Note thata is close to the zero vector and the model is
thus close to the zero rank modehis difficult setup has been chosen to accen-
tuate some features of the posterior distribution in cointegration models that
were initially raised by Kleibergen and van Dijd994. The simulated time
series are displayed in Figure 2

The sequential testing procedure based on the so-called tra¢ddabansen
1995 estimates the cointegration rankite= 0 andr = 2 on the 1% and 5%
significance levelsrespectivelyThe maximum eigenvalue teglohansenl995
fails to reject the zero rank hypothesis at the 5% level but rejeets when
tested against = 2. The Bayesian information criteriofBIC) derived by
Schwarz(1978 favorsr = 0. The zero rank model is also favored by the pos-
terior information criterion( PIC) (Chao and Phillips1999, whereas two other
well-known information criteriathe Akaike information criteriotAIC) (Akaike,
1974 and the Hannan and Quinn information criteriodQ) (Hannan and
Quinn 1979, are both in favor of the full rank modeThe inconclusive evi-
dence regarding the cointegration rank is of course expected as we purposely
simulated data from a very difficult parametric setup

To compute the posterior distribution of the cointegration raakiniform
distribution on the ranks was used a prjariwas set to 4and the maximum
likelihood estimate
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FiGuURE 2. The simulated bivariate process

R 0.83 -0.10

> = <—o.1o 102)

was used foA as discussed in Sectionl3 other choices oA with larger pos-
itive and negative off-diagonal elements had only minor effects on the results
Note that as ~ |,, & = v~%/2 corresponds roughly to the prior standard devi-
ation of @ as can be seen fro3.4).

Figure 3 displays the posterior probabilities of the three possible cointe-
gration ranks as a function ef. The MLI algorithm based on 2800 draws
from the marginal Gibbs sampler in Theorent 4see Section 8) was used
for the computationsFor small values ofr, the full rank model is most prob-
able a posterioyriand asr grows the posterior mass shifts rather quickly first in
favor ofr = 1 and subsequently to the zero rank modéle behavior ofg(r |D)
as a function ofo follows the usual pattern in Bayesian analysis where the
prior distributions of the model parameters in the larger modeigher rank
are centered over the smallest moget 0); see the discussion following Theo-
rem 37. For such priorsthe logic of Bayesian inference dictates the following
intuitively reasonable behavior at the extremesop(r|D) — p(r) for all r as
o — 0 (all modelg’hypotheses approach the zero rank mpded
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Ficure 3. Posterior probabilities of the three possible cointegration ranks0 (—,
r=1(=.-),andr = 2 (-~ — J as a function obr = v=Y2.

1 forr=0

p(r|D) — {0 forr > 0 aso — o
(all models withr > 0 give too much weight to regions in parameter space that
are grossly at odds with the dathoth of which are clearly borne out in Figure 3

Note also from Figure 3 that the unit rank model is the most probable model
only in the rather narrow intervat € (0.16, 0.37). This fits well with the behav-
ior of the traditional methods discussed earlighich all favored either = 0
orr =2

To investigate the efficiency of the three methods for computing the poste-
rior distribution of the cointegration rank proposed in Section 5 we compute
the marginal likelihood of = 1 for different number of iterations of the respec-
tive algorithm The matrix Cauchy density is used as importance functonl
the marginal Gibbs sampler is used in the MLI algorithRor each pair of
methods and number of iterations we repeated the estimati@Q@imes The
upper graph in Figure 4 displays the evolution of the mean of the estimates
P(D|r = 1) over the 10000 replicationsThe lower graph gives the numerical
standard error of the estimatorwo main observations from Figure 4 are
(i) the Monte Carlo integration approach converges extremely slowly toward
the true value andii) the MLI algorithm outperforms the importance sampling
method despite the fact that the marginal posterioiBois symmetric and uni-
modal (see Figure band is therefore favorable for the importance sampling
algorithm Even if we adjust for the faster execution time of the importance
sampling approackroughly three times faster than the MLI algorithm when
the number of iterations exceeds0@0), the MLI algorithm is still the pre-
ferred method
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Fi1GURE 4. (a) Mean andb) standard error of the estimatpdD|r) as a function of the
number of iterations used in the three numerical algorithklente Carlo integration
(=.-), importance sampling——), and MLI approach— — o

To discuss the issue of local nonidentificatioine simulated data set is ana-
lyzed conditional orr = 1. The solid curves in Figure 5 display the inferences
for a4, a,, and B. Figure 6 gives the prior and posterior distribution of the
unrestricted eigenvalue of the companion matsiege Section .2.

The local mode at point zero in the marginal posteriagoin Figure 5(which
is actually an asymptote and thereby a global madéct not visible in the
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FIGURE 5. The posterior distribution o and B for o = 0.5 conditional onr = 1 in
both the linea——) and the orthonormal- — - normalizationsHere§ = arctan(B)
is the angle of the cointegration vector in the orthonormal normalizaliothe density
estimation 2% of the draws from each tail of the posterior distributioiBafiere excluded

figure because of the numerical approximation of the postesies the discus-
sion that follows is an effect of the local nonidentification discussed in Kleiber-
gen and van Dijk1994). They pointed out that whea = (0,0)’, 8 drops out

of the likelihood function and the likelihood is then constant alongBkexis
(which has infinite lengthand all values foB are observationally equivalent
B is said to bdocally nonidentifiedvhena = (0,0)'. The posterior distribution
based on the prior if3.1) has the same property as it is flat in the direction of
B whene is the zero vectorThis is illustrated in Figures 7 and &hich show
the joint posterior density at, andB for the simulated data setlote how the
conditional variance oB grows asx, — 0. The posterior variance @ given

a = 0 is actually infinite as can be seen from the second part of Theordn 4
This of course is as it should bé the processes do not react at all to past
deviations from the equilibriumthen the data are necessarily uninformative
regarding the cointegration vector
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FIGURE 6. Prior (o = 0.5, — — 9 and posteriof——) distribution of the unrestricted

eigenvalue of the companion matrix

Kleibergen and van Dijk1994) argue that this local nonidentification causes
problems for a Bayesian analysis with uniform improper priorsaoand B.

Their argument is as followsghe marginal posterior od is obtained by inte-

grating the posteriop(a, B|D) with respect tdB. As the posterior under a uni-

FiGuURE 7. Joint posterior density o, andB for o = 0.5 conditional onr = 1.
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Ficure 8. Contours of equal density height in the joint posterior distributiorpand
B for o = 0.5 conditional onr = 1.

form prior is flat along theB-axis whena = (0,0)’, the marginal posterior density
of @ in the pointa = (0,0)" is proportional to the integral of a constant over an
unbounded regiofi—co < B < ), i.e,, infinity. The marginal posterior of is
thus expected to have an asymptote in the p@r)’ that is entirely created
by the local nonidentification

Kleibergen and van Dijk suggest the Jeffreys prior to counterattack the
unwanted asymptote as this prior is zero in the locally nonidentified points
The prior in Kleibergen and Pad@002 has the same property

Our view on the local nonidentification problem is best illustrated by trans-
forming the posterior results so thatis restricted to a half-circle with unit
radius i.e., parameterizingd as in(3.2). This change in normalization is accom-
plished by the transformatioth= arctanB anda = (1 + B?)Y2; note that the
productaf’ is unchangedThe dashed curves in Figure 5 display the marginal
posteriors in the new normalizatioiote that there is no longer a mode at
@, = 0 after the transformation

To explain this effegtnote thatB is a ratio of the two elements ¢ and that
the tails in the marginal posterior @ are therefore heavyHeavy tails in
p(B|D,r) correspond to very small values fex; in the sense that a large
must be matched by a smailto keep the produckl = a8’ at a reasonable
magnitude When we transform to the more natural orthonormal normalization
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we are multiplyinga with (1 + B?)Y2, which is large ifB is drawn far out in
the tails ofp(B|D, r) and has the effect of spreading out the extra mode at
(0,0) and thereby producing a more well-behaved surface

Alternatively because the value of the marginal posteriowah the point
zero is proportional to the volume of the parameter regiog,dhis is a finite
number if the normalization g8 in (3.2) is used a® is boundedMore gener-
ally, the volume of the Grassman manifold is finitdames 1954 and there
will be no asymptotes in the marginal posterioraf

Theorem 3 and the proof of TheoremBtogether show that the prior ¢f)
the orthonormal matrix of cointegration vectpis uniformly distributed over
the Grassman manifold independentlyafThis means that the prior g con-
ditional on@ = 0 is still uniform over the Grassman manifolthus given the
information that@ = 0, the prior in(3.1) represents the belief that every possi-
ble cointegration space of dimensiorhas the same probability a priofihis
seems sensihle

One of the referees correctly pointed out that although the marginal prior on
a is integrableit has an asymptote in the poiat= 0. This is entirely natural
using the same argument as before for the postea®ithe heavy tails in the
implied matrix Cauchy prior o8 (a consequence of the uniformity of (¥)
over the Grassman manifgldnust again be matched by very small values on
a to keepll = aB’ (whose interpretation does nat contrast tax andg, depend
on the chosen normalizatipat a reasonable magnitud®s mentioned earlier
the linear normalization is a computationally convenjdnit rather unnatural
way to solve the identification problerand we have argued that the properties
of the prior distribution are more clearly understood in the orthonormal normal-
ization With this in mind note that the marginal prior o& follows a well-
behaved matrix distributiony see Section 3.

7. CONCLUDING REMARKS

This paper has introduced a practicable Bayesian analysis of cointegration based
on a prior that is convenient both in elicitation and computation and could serve
as a standard for inference reportifithe posterior distributions of both the
cointegration rank and the model parameters conditional on the rank are obtained
from the same Gibbs sampler

Although a reference prior provides a good starting point in an anabysd
usually ends up in the final communication of results as a benchnitaik
clearly important to move beyond the reference case and consider more infor-
mative priors Several informative distributions on the Grassman manifold are
available for this purposésee e.g., Mardia and Jupp2000, and the major
challenge is the construction of numerical algorithms for evaluating the poste-
rior distribution

The focus here has been on the case of just-identifying restrictioBs Bime
special case where the same overidentifying restrictions are imposed on each
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of the cointegration vectors has the same geometry of the parameter space as
the just-identified caseand all the results in this paper thus ape are cur-

rently working on the extension to general overidentifying restrictionggon

and a Bayesian analysis of the validity of such restrictions within the frame-
work proposed here
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APPENDIX: PROOFS

Proof of Lemma 3.4. From Lemma 33,

1\ 4 I,
SPlg) = °P N,N; L/’

where 2 denotes equality in distribution and; and N, are independent X r and
(p —r) X r matrices of independei(0,1) variables Postmultiplication of an arbitrary
matrix A by a nonsingular matrix does not affect(#p. Thus postmultiplying
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I
No Nt

by Nz, which is nonsingular with probability ongields

I, N,
sp NZNfl =Ssp N2 ’

almost surelyThe result now follows from Lemma.2 n
Proof of Theorem 3.5. To obtain the marginal distribution ¢@, we first derive the
marginal distribution oB. The joint prior of B andX is

p(B,3) = Jp(a, B,3) da = ¢, |3| (Prriatn/2 etr(E’lA)fetr(E’lva,B’Ba’)da.

Substituting the relatiofHarville, 1997, Theorem 16.2)
tr(3 vaB’'Ba’) = veda)' (B'B ® v~ 1)veda)
and integrating with respect @ using properties of the normal distribution we obtain
P(B,3) = ¢, [S| P+ 4+ D2 etr(s TLA) (27) P72 | BB @ v H| 2
=G (2m/v)P72|3|"(Prat 2 etr( A, + B'B| P2

This shows thaB andX are independent and marginaBy~ t p—ryx (0, lo—r, I+, 1). Thus
using Lemma 34, 8 is uniformly distributed oveg, ;.

Proof of Theorem 3.7. From (3.3)
a|B,% ~ Now [0,(B'B) Hv 2]
As @ = a(B'B8)Y? we have(seg e.g., Bauwens et a] 1999 p. 302
&|B,3 ~ Ny, (0,1,,0713).

The densityp(@|3,3) is not a function of3, and we may write¥|S ~ Npx, (0, I;,v~13).
The statement of the theorem now follows from the usual independence property of the
multivariate normal distribution u

Proof of Theorem 4.2. It is well known that the likelihood function is invariant with
respect to normalizatiofdohansen1995. It is therefore sufficient to prove that the
prior is invariant Let A; denote tha is normalized on the first variables andV, that
B is normalized on variables,4,...,r — 1 andr + 1, i.e, the change in normalizing
variables from\; to A, is accomplished by replacing the last variable of the normaliz-
ing set with the first variable in the nonnormalizing.détvill be evident that the lemma
holds generally under any valid change of normalizing variaBlés shall first prove
thatd(a, 8,3 — «,B3,3) = 1. Let
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bl,l b:LZ bl,r
b2,1 b2,2 bz,r
B= . . .
bp— r,l bp—r,2 l:.)p— rr

denote the matrix of free coefficients ;under\j;. The transformation matrix in this
case is

[

whereJ denotes the — 1 first rows ofl,. It is easy to see thatJ| = b, , and

o

Note that the restriction tealid changes in normalizing variables is equivalent to the
conditionb; , # 0, which ensures the existence Of 1. It is straightforward to check
that U actually produces the intended change in normalization and that the matrix of
free coefficients undel is

J

U > ifr>1 and U=Db,; ifr=1

b11,012,..0, 00

J
_bl,lbirly_blzbirl,---,big

>, ifr>1 and U t=by] ifr=L1

—byabi} —by,bit byt
_ b2,1 - bz,r b1,1 bfrl bz,z - bz,r bLZ bfrl bz,r bfrl
B= . . . (A1)
bp—r,l - bpfr,r b:l,lbjl:iL bpfr,z - bpfr,r b1,2b:l::rL bpfr,r b:l:r1

The change in normalization from, to A; is thus given by the transformatien B,> —
a,B,2, wherea = aU’. The Jacobian of this transformation is

dveda) dveda)
~ dveda) dvedB) dvedB)
a « = = p| ——— 7 ]
1@pE>apz) dvedB) dvedB) vl ‘dveo(B)' ' (A-2)
dveda) dvedB)

asy is unaffected by the transformatictveoB)/d ved(a)’ = 0 andd ved @)/d ved «)’ =
U ® Ip. Let b andb; denote théth columns ofB and B, respectivelylt is easily seen
from (A.1) thatdb; /dly = O fori > j, and thus

dvedB) db, || db, db,

dvedB) |~ |db, || db, || dn | (A.3)
dved(B)’ db, || db, dh,
where

B e fori=1 L oang oDy (A4)
Th , fori=1...,r—1, and — = —b; )
dh . Ip—r—l dq dbl 1,
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and the dot replaces an expression that is unnecessary to calthlaerom (A.2)—(A.4)

db,

db,

db, | B | L, o,
—< ... =L = r r=1.
‘dbz ‘dbr b, (b} (byh)

Now, because the transformatidp is one-to-one and differentiahléne implied prior
obtained from the transformation fron, to A is

pNz—)Nl(a7ﬁ’E) = p(&7ﬂ_72)J(&7 B?E % a’ﬁ7z)

= ¢ [S[T P2 etr[ S TH(A + vaU U YBR/BU M Ua)]

J(@B,2 = a,p3)=|UlP

= ¢ |3|7(Prr a2 e[S H(A + vaB'Ba’)],

which is exactly the same density as would have been obtained by specifying the prior
directly in the A; normalization u

Proof of Theorem 4.5. All full conditional posteriors are proportional to the likeli-
hood function multiplied with the prior i163.1), i.e., proportional to

|3 |~ (Trprr+atl/2 e[S ~HE'E + A+ vaB'Ba’)], (A.5)

whereE =Y — XBa' — ZV.

It follows directly from(A.5) that the full conditional posterior &f is thelW,(E'E +
A+ vaB’'Ba’,T + q + r) density

The full conditional posterior of¢ follows from the treatment of the multivariate
regression in Zellnef1971); see also Gewekgl996.

To obtain the full conditional posterior @&, let X = (X4, X,), whereX; contains the
r first columns ofX and X, contains thep — r remaining onesandW =Y — X;a' —
Z¥. The full conditional likelihood ofB is then

p(Dla, B,V,3,1) oc eti[S~H(W — X, Ba') (W — X,Ba’)]
1
= exp{—a [vedWs1Y2) — HvecB]'[ved WS ¥2) — H vecB]},
whereH = (37 Y2a ® X,). Thus

1 ~ X«
p(D|a, B, ¥,3,1) o< exp{fE (vecB — vecB) (a'S ta ® X5X,)(vecB — vecB)},

(A.6)
where after some simplifications
vecB = ved(X5X,) X WS ta(a’S  Ta) 1.
The prior in(3.1) can be rewritten as
p(a, B,2, ¥|r) o exp{—% (vecB)' (a'S ta ® vlp,,)(vecB)}. (A7)
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By multiplying (A.6) by p(«, B, =, ¥|r) in (A.7) and completing the square in the expo-
nential (see Box and Tiaol973 Lemma 1 p. 418), it is seen that

1
p(Bla, ¥,3,D,r) o exp{fz (vecB — vecug) Qgt(vecB — vec,uB)},

whereQg' = a’S7'a ® (XX, + vl,—r) and
vecug = ved(XpX, + vly ) IXSWSE ta(a’s ta) 1.
Thus B|a7qf’27 D~ N(p—r)><l' [MB’(a,E_la)_l’(xéXZ + vlp—r)il]'
The full conditional posterior of is derived in essentially the same way as the full
conditional posterior oB. |
Proof of Theorem 4.6. Integrating(A.5) with respect to¥ andX yields
p(a|B,D,r) o [(Y = XBa') Mz(Y = XBa') + A+ vaf’Ba’ [~ THaFr=dr/2
= |A+ Y'Mz(Y=XBa') + (@' — &) (B'CB)(a’ —&')|~(Tratr—d)/2

where &' = (B'C18) 1B'X'MzY. Thus a’ ~ txpld’,(B'C18) LA + Y'Mz(Y —
XBa'), T+ q — (d + p) + 1]. From Box and Tiao(1973 p. 442, a ~ tox[d, A +
Y'Mz(Y = XBa'),(B'C:B) LT+ q— (d+p) +1].
Becausdl = af’, the posterior of3 conditional on«e can be written
p(Bla,D,r) oc [(Y— XITI') M, (Y — XIT') + A + oIIIl’ |~ (Tra+r—d)/2
=[S+ (I = M) Cy(1m — [y |~Trarr=a)/2
whereS= A + Y'MzY — IIC; I’ andIl = Y'M, XC; . Thus
p(Bla,D,r) e |Cyt+ (aB’ — T1)'S H(aB' — ID)|~(Tratrd)r2
= [R+ (B =) (a'S ) (B — y | Trarravz
o |(a'S™ )™t + (B = BYRHB = B)|-TrarTm2 (A.8)
where = II'SYa(a'S )t andR = C; + II'S™M1 — B(a'S la)B’. Let B =

(B4, B), whereB; contains the first rows of 3 and3, the p — r remaining ones and
Ris conformably decomposed as

G, G,
rxr rx(p—r)
R=
G5 Gs
(p—n)xr  (p—nX(p—r)

By using the resultsee e.g., Harville, 1997)

Rt=

(G, — G,G3'Gy ™t —(G; — G,G3'Gy) 'G,G5t
—G3'Gy(G; — G,G3*Gy) ! (G3— G3G'Gy) ™t
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it is straightforward to show that

(B=BYRHB=PB)=(l, = B1)Gi (I, — B1) + (B~ B) (G~ G3G, *G,) *(B~B),
whereB = B, + G,G,(I, — B1). From (A.8)

P(Bla,D,r) o< |Cs + (B B)(G3 — G3G1 ' G,) *(B— B)| (Trarrd/2

whereCs = (I, — 3,)'Gr (I, — B1) + (a'S~a)~L. This is proportional to the matri
density in Theorem 4. |
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