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Maritime traffic has significantly increased in recent decades due to its advantageous costs,
delivery rate and environmental compatibility. With the advent of the new generation of marine
radars, based on the solid-state transmitter technology that calls for much longer transmitted
pulses, the interference problem can become critical. Knowing the positions and the heights of
the ships, the mean number of the vessels in radar range can be estimated to evaluate the effects
of their mutual radar interferences. This paper aims to estimate the probability density function
of the mutual distances. The truncation of the density function within a limited area related to
horizon visibility leads to a simple single-parameter expression, useful to classify the ships as
either randomly distributed or following a defined route. Practical results have been obtained
using Automatic Identification System (AIS) data provided by the Italian Coast Guard in the
Mediterranean Sea.
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1. INTRODUCTION. Maritime traffic levels are related to economic growth: the inter-
national shipping industry is responsible for delivering about 90% of all trade worldwide
by volume (with 7 to 9 billion tons loaded per year), and it is vital for bulk transport
of raw materials, oil and gas. The linear regression between the economic growth of the
nations in the Organisation for Economic Cooperation and Development (OECD) shows a
4% increase of imports and exports for a 1% increase in Gross Domestic Product (GDP).
So, marine transportation is an integral, although sometimes less visible, part of the global
economy. Other important marine activities include passenger transportation (ferries and
cruise ships), national defence and fishing. If we also consider pleasure boats, even forget-
ting the millions of smaller leisure boats worldwide, the spatial density of marine traffic
increases significantly, especially in areas close to harbours and coasts.

To improve the safety and the efficiency of marine traffic, as well as to protect the envi-
ronment, Vessel Traffic Service (VTS) definitions and regulations were introduced by the
International Maritime Organization (IMO) in 1985 and then updated in 1997 with the
Resolution A.857(20) (IMO, 1997). VTS makes use, among other sensors, of powerful
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coastal radars to obtain an up-to-date marine traffic image. Vessels themselves can carry
radars for navigation purposes. For decades these navigation radars have been designed as
cheap pulsed magnetron devices emitting very short (e.g. less than 10−1 μ s) pulses with
high peak power of the order of tens of kW. More recently, new solid-state technology
has entered marine radar design (Zhang et al., 2013; Amato et al., 2010; Nelander and
Tòth-Pàl, 2009). With a solid-state power amplifier, marine radars are becoming more and
more sophisticated and agile in frequency as well as in waveform in order to get better
performance by pulse compression, all features that were not possible with the old mag-
netron transmitter. Since the solid-state amplifiers’ power is of the order of tens of W,
significantly less than magnetrons’, they have to transmit longer pulses (e.g. up to 90–
100 μ s) in order to achieve the same energy on target, i.e. keep the detection probability
unchanged with respect to magnetron radars. Their longer pulses cause a time-domain over-
lapping (interference) of several returns belonging to different radars, that is to different
vessels. The main factors that affect interference between radars are: frequency, pulse rate,
rotation rate and distance. The time-domain asynchronous interference in the older mag-
netron radar can be treated using simple Interference Rejection (IR) techniques. With the
“long pulse” of solid state radars, the interference problem is much more marked and calls
for a more complex interference mitigation technique (Galati et al., 2015). The various
above-mentioned factors are included in a mathematical model which is fully described in
Galati et al. (2016).

In this paper we focus on the distance between radars. Using real-world AIS data for
the Mediterranean Sea, a statistical model of the mutual distances between vessels has
been evaluated. By this it is possible to estimate the mean number of nearby ships in radar
range, where the visibility depends on the radar antennae’s heights.

The problem of knowing the statistical mutual distance distribution between vessels
has not been addressed in literature so far. Rather, the typically addressed problem is the
modelling of vessel traffic by means of fuel savings and flow prediction through both neural
networks (Haiyan and Youzhen, 2015) and weighted graphs (Hang et al., 2015). Image pro-
cessing techniques have also been used for marine traffic applications, although most aimed
to detect anomalies (Kraiman et al., 2001; Riveiro, 2011) or vessel movements (Willems
et al., 2009). Other works are related to high-risk spot identification from an AIS reports
database (Chang et al., 2010) as well as to traffic flow composition and vessel arrival or
passage time. Within this paper we do not need to take account of the time parameter since
the main goal is the evaluation, at a given time, of the mean number of nearby vessels.
Of course this number depends on temporal traffic flow evolution but, from a radar design
point of view, only the maximum value is significant, i.e. the value related to the time
instant with the maximum number of sailing vessels.

Knowing the mutual distance distribution will also lead to a kind of marine traffic topol-
ogy classification, i.e. to decide whether ships, at a given time, are following a route or
whether they are “randomly” sailing over a finite region. An interesting related work by
Su and Chang (2008) aimed at detecting the presence of fishing vessel spatial clusters for
over-fishing prevention. The added value of the mutual distance approach is the detection
of routes in addition to the distributed clusters.

The main goal of this paper is to classify traffic topology by using a single statistical
parameter estimated from the observed real-world AIS data. Figure 1 presents the workflow
chart of the proposed statistical approach.
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Figure 1. Workflow chart: from the AIS data to the traffic topology classification.

Starting from the full AIS reports database, the mean number of nearby ships is obtained,
finally the traffic topology is classified through a single parameter (β) estimation.

In Section 2 AIS data is shown with the related statistical analysis in which the param-
eters of the Gamma and Generalised Gamma models are estimated. Section 3 considers
the truncation of the statistical distribution of the mutual distances in order to evaluate the
mean number of ships in a given region. The relationship between the statistical model
parameters and the topology of the traffic has been investigated. In the Appendix a more
general theoretical Poisson-like model is described for the sake of comparison. Note that
all distances are in nautical miles (NM).

2. THE MARINE TRAFFIC MODEL. In this section the statistical model for the
mutual distances is derived from AIS data.

2.1. AIS data and their distribution. The General Command of the Italian Coast
Guard kindly provided the AIS data for the week 23 February – 1 March 2015 related
to six areas: (1) Central Adriatic, (2) Otranto Canal, (3) Central Tyrrhenian, (4) Messina
Strait, (5) Canal of Sicily and (6) Dardanelles/Bosphorus (see Figure 2 and Table 1(a) for
more details).

Each area was originally sampled at a rate of one minute, then the huge AIS reports
database has been reduced to a rate of four hours from midnight. We have taken the
four-hour interval in which maximum traffic appears, neglecting what happens in each
other four-hour time period. From data inspection, however, we did not perceive a signif-
icant deviation from the maximum traffic situation within the interval, so our analysis is
conservative (Galati et al., 2015; Galati and Pavan, 2015).

From the first analysis of the AIS data, we derived the time interval having the maximum
number of ships in each area, as shown in Table 1(b). In the following we refer to the
area with the highest traffic as the area with the highest number of ships. The density z
[ships/NM2] of en-route ships is computed as the number of ships over the sea surface
(Table 1(a)) in the highest traffic condition. We extrapolated the position of ships from the
AIS data related to Table 1(b) (i.e. highest traffic condition) for each area. We used the flat
earth approximation for distance due to the small-sized areas (max distance in area (6) is
about 370 NM).
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Figure 2. View of the six Mediterranean areas.

Table 1(a). Main characteristics of the six areas.

Area N-E Point S-O Point Total Surface Sea Surface Sea [%]
[NM2] [NM2]

(1) 44◦10’18.40”N 42◦09’26.58”N 22632 13600 60
Central Adriatic 15◦55’16.71”E 12◦43’13.25”E (164 x 138)
(2) 41◦12’57.47”N 39◦31’42.97”N 17712 12300 69
Otranto Canal 20◦01’18.74”E 17◦12’28.32”E (144 x 123)
(3) 41◦07’27.98”N 39◦46”07.02”N 8455 6700 79
Central Tyrrhenian 14◦40’34.17”E 12◦55’19.09”E (95 x 89)
(4) 38◦55’08.47”N 37◦13’27.60”N 20384 13700 67
Messina Strait 17◦33’00.99”E 14◦10’22.01”E (182 x 112)
(5) 37◦56’26.98”N 35◦59’03.12”N 30186 22800 75
Canal of Sicily 14◦14’01.89”E 09◦56’44.44”E (258 x 117)
(6) 41◦21’26.79”N 39◦05’16.24”N 60112 21700 36
Dardenelles Bosphorus 31◦32’03.49”E 24◦09’53.99”E (442 x 136)

Table 1(b). Maximum number of ships per each area and their density z. Data for the week 23 February – 1
March 2015.

Area Day and Time (in Feb 2015) Max number of ships, N Ships’ density

z
[

ships
NM2 × 10−3

]

(1) Central Adriatic Tue 24 04:00 285 20.88
(2) Otranto Canal Tue 24 08:00 46 3.74
(3) Central Tyrrhenian Fri 27 08:00 45 6.72
(4) Messina Strait Fri 27 16:00 74 5.40
(5) Canal of Sicily Fri 27 08:00 104 4.56
(6) Dardenelles/Bosphorus Thu 26 12:00 53 2.44
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Table 2(a). Estimated parameters of the Gamma model for the six areas.

Area Gamma Model m̂R =
b̂ML

λ̂ML
[NM]

m̂R

z

b̂ML λ̂ML[NM−1] × 10−3

(1) 2.1542 38.7 55.66 2.66
(2) 1.9371 47.2 41.04 11.0
(3) 2.0472 62.4 32.80 4.88
(4) 2.4059 42.9 56.08 10.4
(5) 1.8674 34.7 53.81 11.8
(6) 1.5753 27.4 57.50 23.5

Table 2(b). Estimated parameters of the Generalised Gamma model for the six areas.

Area Generalised Gamma Model m̂R =
�(b̂ML + 1

μ̂ML
)

λ̂ML�(b̂ML)

b̂ML μ̂ML λ̂ML[NM ] × 10−3

(1) 0.6061 2.287 11.9 55.63
(2) 0.8303 1.709 19.1 41.01
(3) 0.3334 3.576 16.5 33.04
(4) 0.3939 3.525 10.6 55.89
(5) 0.3848 3.03 10.3 53.63
(6) 0.7918 1.559 13.1 57.63

The number of mutual distances is:

N =
n · (n − 1)

2
(1)

in which n is the total number of ships in the area in a given time interval (e.g. with the
highest traffic condition). It is worth noting that the N distances are not statistically inde-
pendent because they are among ships: given n ships, if only one of them is moved, n − 1
distances do change.

2.2. Statistical analysis of inter-ship distances. The ship-to-ship distance R can be
fitted with a probability density function fR(r) having the following properties: fR(r) = 0 for
r ≤ 0 and limr→∞ fR(r) = 0.

A suitable candidate for this positive random variable is the Gamma model (Papoulis,
1990) defined by two parameters (i.e. the scale parameter λ and the shape parameter b):

fR(r) =
λb

Γ (b)
rb−1e−λr r ≥ 0 (2)

where �(b) =
∫ +∞

0 yb−1e−ydy is the Gamma function. To improve the model, a third param-
eter μ can be added into Equation (2) obtaining a Generalised Gamma model (Stacy,
1962):

f GEN
R (r) =

μ · λbμ

�(b)
rbμ−1e−(λr)μ r ≥ 0 (3)

When μ = 1 the Generalised Gamma density function equals the Gamma model. These
parameters can be estimated by the Maximum Likelihood (ML) method, which leads to a
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Figure 3. The derivative of the Likelihood function for the estimation of the Generalised Gamma parameter μ.
The μ̂ML is obtained posing f (μ) = 0.

system of non-linear equations whose solutions are the values in Table 2(a) and Table 2(b),
where the estimated mean values m̂R (in NM) are shown.

The sample size for each area varies from 990 distances with average value of 32.80 NM
(Area 3) to 40,470 distances with average value of 55.66 NM (Area 1). Day and time are
listed in Table 1(b). For the Gamma model the ratio m̂R

z [ NM3

ships ] gives an idea about the topol-
ogy of the traffic on the considered sea surface (e.g. en-route or randomly distributed): low
ratio values correspond to a distributed, or random, topology (i.e. Central Adriatic, Area
(1)), while higher values are related to a route or more regular topology (for example, in
Otranto Canal (2), Messina Strait (4) and Canal of Sicily (5)). Moreover, we observe that
the ML estimation of μ leads to a system of three non-linear equations where the μ-th
power of the sample values (i.e. the measured distances) is present. Therefore, it is nec-
essary to find that value of μ whereby the derivative of the Likelihood function, f (μ), is
equal to zero (see Figure 3). However, as shown in Figure 3, the values of f (μ) in the range
of practical interest, i.e. 0 < μ < 3, are close to zero, i.e. there are sub-optimal solutions
(values of μ̂) that can be considered, including μ̂ = 1. The use of μ̂ = 1 simplifies the model
leading back to the Gamma model that looks more convenient than its generalisation (see
also in the following).

To validate the estimated parameters b̂ML, μ̂ML, λ̂ML the Kolmogorov-Smirnov test and
the χ2 test (Papoulis, 1990) should be applied with the null hypothesis being (respectively
for the Gamma and the Generalised Gamma distribution): H0 : F(r) = FR(r) or H0 : F(r) =
FGEN

R (r). However, since the N distances are not statistically independent, the tests too
often reject the null hypothesis H0 (Gleser and Moore, 1983), and cannot be effectively
applied in the present case. However, a visual inspection gives a fairly good idea of the
goodness of fit of the measured mutual distances with these distributions.

In Figures 4(a)–(4(f)) the histograms of distances for all areas are presented with the
overlapped Gamma and Generalised Gamma estimated models. In some cases, e.g. Areas
(3) and (5), the Generalised Gamma model is not the best fit because the third parameter
μ improves the fit only locally. Hence, a first result of this study is that when considering
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Figure 4(a). Histogram and densities of R for Area (1).

Figure 4(b). Histogram and densities of R for Area (2).

Figure 4(c). Histogram and densities of R for Area (3).

the ship-to-ship distances a three parameters distribution such as the Generalised Gamma
does not practically improve the goodness of fit with respect to a simpler, straightforward
distribution such as the Gamma. Therefore, the Gamma model with parameters λ and b
will be used in this work.
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Figure 4(d). Histogram and densities of R for Area (4).

Figure 4(e). Histogram and densities of R for Area (5).

Figure 4(f). Histogram and densities of R for Area (6).

3. VISIBILITY. In the previous section we have shown that the distances between pairs
of ships can be represented by a random variable R distributed according to a Gamma model
with parameters b and λ.

As explained before, it is useful to consider, for a generic ship, the mean number of
vessels in its surroundings within a specific area (Galati et al., 2015). The radar horizon
– with the 4/3 earth propagation model – and the heights of ships must be considered to
compute the maximum distance at which two on board radars may interfere. Radar horizon
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Figure 5. Radar horizon between ships k and i.

for two ships labelled “i” and “k” is related to the heights of on board radars hk and hi (see
Figure 5).

In the standard atmosphere, making use of the equivalent earth radius re = 4
3 rearth

∼=
8500 km, the horizon Rki is:

Rki = Rk + Ri
∼=

√
2re · (

√
hk +

√
hi) (4)

The antenna height, not being included in AIS data, must be estimated. Based on the
AIS information of the ship and on photos of the various types of ship, we have empirically
estimated the relationship between the length (as provided by AIS) of the ship and the radar
antennae height (Galati et al., 2015). For example, if we consider two cargo ships with their
radar antennae at 30 m above sea level, the optical horizon is about rMAX = 35 NM, while
it becomes rMAX = 10 NM for small and pleasure boats, because of the antenna heights
of the order of 4 m. In this section we focus only on the latter case (rMAX = 10 NM). Let
us consider an all-sea circular section with diameter rMAX . It is possible to calculate the
average number of ships (randomly) distributed in this circular sea surface through the
probability P that the mutual distances do not exceed rMAX :

P{R ≤ rMAX } =
1

�(b)

∫ x

0
e−ttb−1dt = γ (b, x) (5)

where γ (b, x) is the Incomplete Gamma Function (Abramowitz and Stegun, 1964) with
x = λ · rMAX . The parameters b and λ have been estimated with the Maximum Likelihood
method for each area (Tables 2(a) and 2(b)). Multiplying the probability in Equation (5) by
the total number of ships in the area (nTOT) we obtain the expected number of ships inside
this circular sea surface:

nships = P{R ≤ rMAX } · nTOT (6)

The probability density of the random variable R, i.e. the mutual distances among the
nships vessels in the area (with 0 ≤ R ≤ rMAX ) is given by the conditional density function
of Equation (2):

fR(r|R ≤ rMAX ) =

⎧⎨
⎩

fR(r)
FR(rMAX )

0 < r < rMAX

0 r ≥ rMAX

(7)

This approach would use the same parameters as estimated for the original model and
therefore might not be fully reliable. Using Equation (7) to compute the conditional density
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Table 3. Estimation of b, μ, λ for rMAX = 10 NM.

Area Truncated Gamma Truncated Generalised Gamma

b̂ML λ̂ML[NM−1] b̂ML μ̂ML λ̂ML[NM−1]

(1) 1.46 9.3 × 10−12 1.46 1 9.5 × 10−14

(2) 1.58 2.7 × 10−12 1.59 1 2.7 × 10−12

(3) 1.25 3.6 × 10−12 1.26 1 3.7 × 10−12

(4) 1.02 0.012 0.19 5.25 6.9 × 10−4

(5) 0.99 0.017 1.21 0.82 0.015
(6) 1.74 0.078 0.22 7.10 0.09

model from the Gamma model with parameters b, λ we can readily obtain:

fR(r|R ≤ rMAX ) =

⎧⎨
⎩

λbxb−1e−λx

γ (b, λrMAX )
0 < r < rMAX

0 r ≥ rMAX

(8)

In Equation (8) we have added the third parameter rMAX named “truncation parameter”
which takes into account the maximum distance at which the model should be considered
(e.g. the optical horizon).

To estimate b and λ in Equation (8), having fixed the value of rMAX , a closed-form
solution such as the well-known one for the Gamma and Generalised Gamma distributions
does not exist. The problem of finding the maximum for the Likelihood function must be
solved by a non-linear optimisation method. We have used the Nelder-Mead algorithm
(Nelder and Mead, 1965). This estimation often gives very low values for λ, as shown in
Table 3 for Areas (1) – (4).

For this reason a different model, when λ → 0, has been considered for the short range
distance between a pair of vessels, i.e. r < rMAX , having set rMAX = 10 NM.

3.1. Short Range Model. In Equation (8) when λ is close to zero, the only significant
remaining term is xb−1 multiplied by a constant c depending on b. Posing β = b − 1 we
obtain:

fR(r|R ≤ rMAX ) = c · xβ 0 < r < rMAX (9)

The unity area condition for Equation (9) leads to:

c =
β + 1

rβ+1
MAX

(10)

Therefore, the conditional density for truncated distances with a single parameter β is:

fR(r|R ≤ rMAX ) =

⎧⎪⎨
⎪⎩

β + 1

rβ+1
MAX

· rβ 0 < r < rMAX

0 r ≥ rMAX

(11)

Normalising with respect to rMAX , i.e. posing r̂ = r
rMAX

in Equation (11) and multiplying
Equation (11) for rMAX , results in:

rMAX · fR(r|R ≤ rMAX ) =

{
(β + 1) · r̂β 0 < r̂ < 1
0 r ≥ 1

(12)
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Figure 6. Normalised conditioned density model.

Figure 6 shows Equation (12) for different values of β (0 < β ≤ 1). If λ → 0 (see
Table 3) the Gamma model leads to Equation (11) and if β → 0 the model converges
to the uniform model:

fR(r|R ≤ rMAX ) =
1

rMAX
0 < r < rMAX (13)

In the following, we show the results related to Central Adriatic, Canal of Sicily and
Strait of Messina. It is known that the traffic in the Central Adriatic is mainly due to fishing
boats whose positions include a large number of randomly distributed clusters. In the Canal
of Sicily the vessel traffic can be classified as traffic near the coast (where normally fishing
boats are the majority with some possible localised clusters) and traffic along the sea routes
where cargo ships, container ships and tankers prevail. The difference in ship type leads us
to evaluate the rMAX limit: the bigger the ship, very likely the higher is its radar antenna,
and so the wider is its interference area. Figure 7(a) and (b) show the estimated values of β

using all data during the week 23 February – 1 March 2015 (42 values in total) versus the
ship’s density (number of ships per unit area) for Area (1) and Area (5) respectively.

From Figures 7(a) and 7(b) we can deduce the following:

(i) If the density of ships is much lower than 2.5 × 10−3 ships/NM2 (in Central Adriatic
it occurs mostly during the weekend when the fishery is strongly reduced), the low
number of samples does not allow us to estimate β correctly.

(ii) For Area (1) increasing the density, i.e. when the density is greater than 2.5 ×
10−3 ships/NM2, the estimated β increases to around 0.5. For the maximum den-
sity of 20.88 × 10−3 ships/NM2, β is 0.461 (dashed circle in Figure 7(a)); this case
corresponds to the traffic shown in Figure 8 where the scenario is shown on the left
(251 fishing boats and 33 other vessels). On the right the estimated truncated density
function is plotted. The latter agrees with the data (see histogram).
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(a) (b)

Figure 7. Estimated values of : (a) Area (1); (b) Area (5).

Figure 8. Scenario of traffic for Area (1) Central Adriatic, Tuesday 24 at 08:00 and the estimated truncated
density function. Fishing boats: 251 (88 %), others: 33 (12 %).

(iii) For Area (5) the density always remains below 5 × 10−3 ships/NM2. Considering
the two higher observed densities, i.e. 4.56 × 10−3 and 4.47 × 10−3 ships/NM2, cor-
responding to the traffic shown in Figures 9(a) and 9(b) respectively, the estimated
β is 6.1 × 10−8 and 0.4558 (dashed circles in Figure 7(b)). The different condi-
tioned distribution is due to the fact that in the first case (h: 08:00), in comparison
with the second one (h: 00:00), the presence of a greater number of fishing ves-
sels (close to each other) implies an increase of the short ranges into the interval (0,
rMAX = 10 NM). In the second case the decrease of fishing boats in a few localised
clusters and the increase of the others (cargo ships, container ships and tanks) cause
an increase of the higher ranges as shown in Figure 9(b).

For the Canal of Sicily, a third case (Saturday 28 at 08:00) is shown in Figure 9(c) when
cargo ships, container ships and tankers are predominant in comparison with the fishing
boats. The density of ships is low, z = 2.46 × 10−3 ships/NM2, and no clusters of fishing
vessels are present. The other vessels, i.e. cargo ships, container ships and tankers, are more
uniformly distributed along the routes. The resulting value of β = 0.7265.
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Figure 9(a). Distributed traffic of Area (5) Canal of Sicily, Friday 27 at 08:00 and estimated truncated density
function. Fishing boats: 62 (60%), others: 42 (40%).

Figure 9(b). Distributed traffic of Area (5) Canal of Sicily, Friday 27 at 00:00 and estimated truncated density
function. Fishing boats: 31 (30%), others: 71 (70%).

Figure 9(c). Distributed traffic of Area (5) Canal of Sicily, Saturday 28 at 08:00 and estimated truncated
density function. Fishing boats: 8 (14%), others: 48 (86%).
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Figure 10. Distributed traffic of Area (4) Messina Strait, Friday 27 at 16:00 and estimated truncated density
function. Fishing boats: 9 (12%), others: 65 (88%).

Table 4. Maximum Likelihood Estimate of β with rMAX = 10 NM.

Area (1) Area (2) Area (3) Area (4) Area (5) Area (6)

β̂ML 0.461 0.589 0.257 1.9 × 10−6 6.1 × 10−8 0.455

The traffic in the Strait of Messina (Friday 27 at 16:00) is shown in Figure 10, where
it is mainly due to large vessels and no localized clusters of fishing boats are present. The
parameter β resulting is close to zero.

Table 4 reports the ML estimate of β for the six marine areas considering the maximum
observed density of ships for each area with rMAX = 10 NM.

From Table 4 we can find very low values for β in Areas (4) and (5). It is worth noting
that in Area (6) β is comparable with that in the Central Adriatic although the area provides
a main route. This effect is due to the presence, in Area (6), of two different seas (Aegean
Sea and Sea of Marmara) as well as of the Dardanelles, one of the world’s narrowest straits
used for international navigation, with the likely effect of strongly distorting the behaviour
of ships’ distances with respect to the open sea. In general, the sea percentage in Table 1
also gives an idea about the reliability of the β values.

From the previous results we can maintain that when the density of ships is high enough
to validate the results, the values of β are strongly dependent on the topology of the
observed traffic and on the geographic area: β close to 0.5 represents many clusters of
ships uniformly distributed over the sea, mainly due to small boats near to the coast (fish-
ing boats). Values of β close to zero denote the absence of groupings of small boats, i.e. in
this case large vessels are present away from the coast along the routes. Special evaluations
should be done near harbours or close to the straits as they occur near Messina or in the
Dardanelles areas.

In the Appendix, for comparison, a mathematical model is shown, based on a general
bi-dimensional Poisson model. However, the use of the model is limited by the conditions
of the real scenario that imposes a different topology of traffic (near to and far from the
coast) that are non-uniformly distributed over the sea and, sometimes, strong limitations
due to the geography of the area (presence of coasts, islands, straits, canals and harbours).
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4. CONCLUSIONS. A full AIS report database has been provided by the Italian Coast
Guard for six marine areas of the Mediterranean Sea. The sampled real-world AIS data
have been used to create a statistical model for vessel-to-vessel mutual distances. A
Gamma distribution fits the empirical vessel-to-vessel mutual distances well while the more
complicated Generalised Gamma distribution does not improve the goodness of fit.

The need to know the mutual distance distribution arises due to the advent of the new
solid state pulse compression marine radars whose operation is based on long pulses that are
very likely to time-overlap each other. One promising radar interference rejection technique
exploits the matched filter’s pulse compression and provides for the transmission of several
orthogonal radar signals, one for each radar. The number of needed orthogonal signals must
be evaluated according to the number of nearby interfering ships. The statistical distribution
of the mutual distances allows us to find it provided the area is limited to a maximum value
rMAX , which in turn is related to the ships’ type size which is strongly correlated to the
radar antenna height. The higher the radar antenna, the wider the interference area rMAX ,
the higher the number of interfering vessels. In this paper we have mostly focused on the
small to medium vessels with rMAX = 10 NM.

By truncating the mutual distances distribution to rMAX it is possible to get a type of
traffic topology classification which is easily handled by the single parameter β. The said
classification is aimed to qualitatively evaluate the way in which the ships are positioned at
a given time, whether randomly distributed (e.g. β ≈ 0) or in a line (e.g. β → 1) following
some route.

From a more theoretical point of view, a mathematical approach based on the 2D Poisson
points model leads to a more complex, polynomial truncated density function which, for
a truncation distance much less than the dimension of the marine area, converges to a
triangular density function, i.e. the same as the empirical model with β = 1.

More generally, the model is not aimed to predict any marine traffic behaviour, nor to
optimise routes and fuel consumption.

The presented work is preliminary. The found model might lead to a powerful analysis of
marine radar interferences from a statistical point of view, also leading to a change in solid
state radar design starting from the proposed use of the orthogonal signals as a possible
interference rejection technique. Moreover, other significant case studies may be analysed
to prevent the model being affected by a particular coast’s morphology or fishing vessel
behaviour.
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APPENDIX. GENERAL POISSON MODEL

A possible mathematical model for the distribution of ships in marine traffic can start from the bi-
dimensional points of Poisson inside a rectangle. It supposes that the ships are uniformly placed over
the sea within a rectangle. Let us consider a rectangle with sides L1 and L2 (L2 < L1) and a pair of
random points (P1, P2) inside it (see Figure A1). It is supposed that the coordinates (U1, U2) of each
point Pi are uniformly distributed in (0, L1) and (0, L2) respectively.

Then the distance R = P1P2 has a probability density function given by (Philip, 1991):

fR(r) =
2πr
L1L2

− 4r2

L1L2
2

− 4r2

L2
1L2

+
2r3

L2
1L2

2
0 < r ≤ L2 (A1)

fR(r) = − 2r
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Figure A1. Two random points inside the rectangle (L2 < L1).
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fR(r) = 0 elsewhere (A4)

Without loss of generality we pose L1 = cL2 with the constant c ≥ 1.
For c = 1 and c = 20 the density functions fR(r) are shown in Figures A2(a) and A2(b) respectively

(continuous line).
When L2 � L1 (at limit L2 → 0 with a finite value of L1) the density fR(r) converges to a triangu-

lar shape (dashed line). In Figures A2(a) and A2(b) the histograms of data (obtained by simulation,
i.e. randomly allocating a large number of vessels in the rectangular area (12,686 for Figure A2(a)
and 12,294 for Figure A2(b)) and measuring their mutual distances) are also shown.

For 0 < r ≤ L2 the density fR(r) can be rewritten as:

fR(r) =
2πr
cL2

2
− 4r2

cL3
2

− 4r2

c2L3
2

+
2r3

c2L4
2

0 < r ≤ L2 (A5)

and the corresponding distribution function in the interval (0, L2) is:

FR(r) =
πr2

cL2
2

− 4r3

3cL3
2

− 4r3

3c2L3
2

+
r4

2c2L4
2

0 < r ≤ L2 (A6)

If we suppose rMAX ≤ L2, the conditioned density to the event {R < rMAX } results:

fR(r|R < rMAX ) =
fR(r)

FR(rMAX )
0 < r ≤ rMAX (A7)

Substituting Equations (A5) and (A6) we obtain:

fR(r|R < rMAX ) =
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⎪⎪⎪⎩
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(A8)

When L1 = L2 = L (c = 1):

fR(r|R < rMAX ) =
2πr − 8r2

L + 2r3

L2

πr2
MAX − 8r3

MAX
3L + r4

MAX
2L2

0 < r ≤ rMAX (A9)
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Figure A2(a). Density function of R for c = 1 (L1 = L2 = 80 NM).

Figure A2(b). Density function of R for c = 20 (L1 = 100 NM, L2 = 5 NM).

Posing L = rMAX
α

with 0 < α ≤ 1

fR(r|R < rMAX ) =
2πr − 8α

rMAX
r2 + 2α2

r2
MAX

r3

πr2
MAX − 8

3 αr2
MAX + 1

2 α2r2
MAX

0 < r ≤ rMAX (A10)

and normalising with respect to rMAX , i.e. posing r̂ = r
rMAX

and multiplying Equation (A10) by rMAX :

rMAX · fR(r|R < rMAX ) =
2π r̂ − 8αr̂2 + 2α2r̂3

π − 8
3 α + 1

2 α2
0 < r̂ ≤ 1 (A11)

For α → 0, i.e. rMAX � L, Equation (A11) converges to the straight line:

lim
a→0

rMAX · fR(r|R < rMAX ) = 2r̂ 0 < r̂ ≤ 1 (A12)

This means that when rMAX < L (i.e. for a relatively large sea traffic area, as compared to the
visibility distance of pairs of vessels) the (truncated) density function is the same as Equation (12)
with β = 1, see Figure 5, i.e. a truncated Gamma with b = 2.
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Figure A3. Normalised conditioned density function with L = α · rMAX .

While for α → 1 (L = rMAX ) Equation (A11) becomes:

lim
a→1

rMAX · fR(r|R < rMAX ) =
2π r̂ − 8r̂2 + 2r̂3

π − 13
6

0 < r̂ ≤ 1 (A13)

with rMAX · fR(r|R < rMAX ) = 0 elsewhere.
Figure A3 shows Equations (A11), (A12) and (A13) varying α = 1, 0.8, 0.45, 0.001, and must be

compared with Figure 5.

https://doi.org/10.1017/S0373463317000169 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463317000169

	A GENERAL POISSON MODEL

