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Abstract
In an earlier paper, the present authors (2015) introduced the altermatic number of graphs and used
Tucker’s lemma, an equivalent combinatorial version of the Borsuk–Ulam theorem, to prove that the
altermatic number is a lower bound for chromatic number. A matching Kneser graph is a graph whose
vertex set consists of all matchings of a specified size in a host graph and two vertices are adjacent if
their corresponding matchings are edge-disjoint. Some well-known families of graphs such as Kneser
graphs, Schrijver graphs and permutation graphs can be represented by matching Kneser graphs. In this
paper, unifying and generalizing some earlier works by Lovász (1978) and Schrijver (1978), we determine
the chromatic number of a large family of matching Kneser graphs by specifying their altermatic num-
ber. In particular, we determine the chromatic number of these matching Kneser graphs in terms of the
generalized Turán number of matchings.

2010 MSC Codes: Primary 05C15; Secondary 05C65

1. Introduction
1.1 Main results
In a breakthrough [23], proving a conjecture by Kneser [14], Lovász determined the chromatic
number of Kneser graphs. In his proof, he mainly used algebraic topological tools for the first time
to solve a problem in combinatorics. This marked the beginning of the use of algebraic topology
in combinatorics. Nowadays, the use of algebraic topology as a powerful tool to investigate graph
colouring properties has received considerable attention in combinatorics [1, 4, 7, 8, 9, 10, 18, 23,
24, 26, 27, 30]. In this regard, using Tucker’s lemma, an equivalent combinatorial version of the
Borsuk–Ulam theorem, the present authors [1] introduced the altermatic number of graphs as a
tight lower bound for their chromatic number generalizing the Kneser–Lovász theorem [23], the
Dol’nikov–Kříž theorem [10, 18] and the Schrijver theorem [25]. This lower bound has been used
to investigate the chromatic number of some families of graphs [1, 2, 3].

For a positive integer r and a graph G, thematching Kneser graph KG(G, rK2) is a graph whose
vertex set is the set of r-matchings inG and two vertices are adjacent if their correspondingmatch-
ings are edge-disjoint. Some well-known families of graphs can be represented in the form of
matching Kneser graphs. For instance, the matchingKneser graphs KG(nK2, rK2), KG(Cn, rK2)
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and KG(Km,n, rK2) are isomorphic to the Kneser graph KG(n, r), the Schrijver graph SG(n, r)
and the permutation graph Sr(m, n), respectively. Evidently, computing the chromatic num-
ber of matching Kneser graphs could be of interest. When r= 1, the matching Kneser graph
KG(G, rK2)=KG(G,K2) is isomorphic to the complete graph K|E(G)| and its chromatic num-
ber is equal to |E(G)|. Henceforth, we only deal with r� 2. In general, using a simple greedy
argument, one can see that χ(KG(G, rK2))� |E(G)| − ex (G, rK2), where ex (G, rK2) denotes the
largest number of edges in G avoiding a matching of size r. To see this, let A⊆ E(G) be a set of
edges avoiding a matching of size r. Set E(G) \A= {e1, . . . , et}. To any vertex v of KG(G, rK2),
which is a matching of size r in G, assign the minimum integer i ∈ [t] as its colour so that v
contains ei. By the well-known result of Schrijver [25], we know that the chromatic number
of Schrijver graph SG(n, r)�KG(Cn, rK2) is n−min{n, 2(r− 1)} = |E(Cn)| − ex (Cn, rK2), which
implies that the aforementioned upper bound is tight when G is a cycle. As an interesting ques-
tion, one may ask for the graphs G for which χ(KG(G, rK2))= |E(G)| − ex (G, rk2). As the main
objective of this paper, we set out to explore this question more precisely. In this regard, we
determine the chromatic number of matching Kneser graph KG(G, rK2) provided that G satis-
fies some certain properties (e.g. G is a large dense graph). To simplify the reading of the paper,
we unify the main results of the paper in the next theorem. However, due to the need for some
technical definitions and also for brevity, we postpone the statement of some other interesting
results.

Theorem 1.1. For any positive integer r� 2, the following assertions hold.

(i) (Dense graphs) There exist constants α = α(r), β = β(r) and n0 = n(r) such that, for any
graph G with n� n0 vertices and δ(G)� (1/2− α)n+ β,

χ(KG(G, rK2))= ζ (KG(G, rK2))= |E(G)| − ex (G, rK2).

(ii) (Spanning bipartite dense subgraphs) There exist constants q= q(r) and n0 = n(r) such
that, for all n� n0, if G is a graph with 2n vertices having a bipartite subgraph H = (U,V , E)
such that |U| = |V| = n and δ(H)� n/2+ q, then

χ(KG(G, rK2))= ζ (KG(G, rK2))= |E(G)| − ex (G, rK2).

(iii) (Regular even graphs) If G is a connected k-regular graph with odd-girth g, where k� 1 is
even, |V(G)|� 2r and 2r< g, then

χ(KG(G, rK2))= ζ (KG(G, rK2))= |E(G)| − ex (G, rK2)= |E(G)| − k(r− 1).

(For bipartite graphs, the odd-girth is defined to be infinite.)
(iv) (Expander graphs) Let ν, τ and η be real numbers, where 0< ν � τ � η < 1. If n is

sufficiently large, then, for any robust (ν, τ )-expander graph G with n vertices and δ(G)� ηn,
χ(KG(G, rK2))= ζ (KG(G, rK2))= |E(G)| − ex (G, rK2).

(v) (Random graphs) If 0< p� 1 and γ > 0, then asymptotically almost surely, for any
subgraph G′ of any G ∈G(n, p) with δ(G′)� p(1/2+ γ )n,

χ(KG(G′, rK2))= ζ (KG(G, rK2))= |E(G′)| − ex (G′, rK2).

The quantities ζ (KG(G, rK2)) and ex (G, rK2) appearing in the statement of Theorem 1.1 refer,
respectively, to the ‘altermatic number of graph KG(G, rK2)’ and the ‘generalized Turán number
of r-matching in G’, which will be explicitly introduced in Sections 2.1 and 2.2. Also, the definition
of ‘robust (ν, τ )-expander graph’ can be found in Section 3.2. It should be mentioned that some of
the previously mentioned results will be stated in stronger forms later in the paper.
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It is worth noting that Theorem 1.1 provides a sufficient condition for a graph G to satisfy
the equality χ(KG(G, rK2))= |E(G)| − ex (G, rK2). A question which naturally arises is how far
this result could potentially be generalized. Note that when G is disconnected there are simple
counter-examples to this conjecture. For instance, for n� 2r and G= nK2, by Lovász’s theorem
[23], χ(nK2, rK2)= n− 2(r− 1) while |E(G)| − ex (nK2, rK2)= n− (r− 1). We believe that the
connectivity of G would be sufficient for the aforementioned equality.

Conjecture 1.2. For any connected graph G and positive integer r� 2,
χ(KG(G, rK2))= |E(G)| − ex (G, rK2).

Theorem 1.1 and also some other results stated later in the paper give strong evidence in favour
of Conjecture 1.2.

1.2 Plan
This paper is organized as follows. In Section 2 we set up notation and terminology. In partic-
ular, we will be concerned with the definition of Kneser graphs, altermatic number, and strong
altermatic number of hypergraphs, and we mention some results on them. Next, as a generaliza-
tion of the generalized Turán number, we introduce two types of alternating Turán number of
graphs which will be used for presenting some lower bounds for the chromatic number of some
general Kneser graphs. These lower bounds will be used for the proof of Theorem 1.1 and also
some other results in the paper. In Section 3, we will determine the chromatic number of match-
ing Kneser graphs provided some technical conditions are satisfied. Below, as a generalization
of the well-known result of Schrijver, we will specify the chromatic number of a large family of
matching Kneser graphs in terms of the generalized Turán number of matchings. In particular, we
determine the chromatic number of large permutation graphs.

2. Notation and terminology
In this section, we set up some notation and terminology. Hereafter, the symbol [n] stands for the
set {1, 2, . . . , n}. A hypergraphH is an ordered pair (V(H), E(H)), where V(H) is a set of elements
called vertices and E(H) is a family of non-empty subsets of V(H) called edges. Unless otherwise
stated, we consider simple hypergraphs, that is, E(H) is a family of distinct non-empty subsets of
V(H). A subset T ⊆V(H) which meets every edge of H is called a vertex cover of H. Also, a k-
colouring ofH is a mapping h :V(H)−→ [k] such that, for any edge e, we have |{h(v) : v ∈ e}|� 2,
that is, no edge is monochromatic. The minimum k for whichH admits a k-colouring is called the
chromatic number ofH and is denoted by χ(H). Note that ifH has some edge with cardinality 1,
then it has no k-colouring for each k ∈N. We define the chromatic number of such a hypergraph
to be infinite. The hypergraph H is called k-uniform if |e| = k for each e ∈ E(H). Throughout the
paper, a 2-uniform hypergraph is simply called a graph. Let o(G) denote the number of odd com-
ponents of a graph G. For brevity, we use G�H to denote that there is an isomorphism between
two graphs G and H. Also, if G�H, then we say G and H are isomorphic. A homomorphism from
a graph G to a graph H is a mapping f :V(G)−→V(H) which preserves the adjacency, that is, if
xy ∈ E(G), then f (x)f (y) ∈ E(H). For brevity, we use G→H to denote that there is a homomor-
phism fromG toH. If we have bothG→H andH→G, then we sayG andH are homomorphically
equivalent and show this by G↔H. Note that χ(G) is the minimum integer k for which there is
a homomorphism from G to the complete graph Kk. For a subgraph H of G, the two subgraphs
G \H and G−H are obtained from G by removing the edges and the vertices of H, respectively.
Note that G \H is a spanning subgraph of G while V(G−H)=V(G) \V(H).
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2.1 Altermatic number
For a hypergraph H, the general Kneser graph KG(H) is a graph with vertex set E(H) and two
vertices are adjacent if their corresponding edges are disjoint. For a graph G, if KG(H) and G are
isomorphic,H is termed a Kneser representation of G. It is not difficult to verify that any graph has
infinitely many Kneser representations.

The sequence x1, . . . , xm ∈ {−1,+1} is said to be an alternating sequence if any two consecu-
tive terms of this sequence are different. For any X= (x1, . . . , xn) ∈ {−1, 0,+1}n \ {(0, . . . , 0)},
the alternation number of X, denoted by alt (X), is the length of a longest alternating sub-
sequence of non-zero terms of (x1, . . . , xn). Note that we only consider non-zero entries to
determine the alternation number of X. Also, we set alt (0, . . . , 0)= 0. Let V = {v1, . . . , vn} be
a set of size n and LV be the set of all linear orderings (or orderings for brevity) of V , that is,
LV = {vi1 < · · ·< vin : (i1, . . . , in) ∈ Sn}, where Sn is the permutation group on [n]. For any order-
ing σ : vi1 < · · ·< vin ∈ LV and 1� j� n, define σ (j)= vij . The ordering σ can be represented
by the permutation σ = (vi1 , . . . , vin) as well. We use these two kinds of representations of any
ordering interchangeably. For any X= (x1, . . . , xn) ∈ {−1, 0,+1}n, set

X+σ = {σ (j) : xj =+1} = {vij : xj =+1} and X−σ = {σ (k) : xk =−1} = {vik : xk =−1}.
For any hypergraphH= (V , E) and σ ∈ LV , where |V| = n, we define altσ (H) to be the largest

integer k for which there exists an X ∈ {−1, 0,+1}n with alt (X)= k such that neither X+σ nor X−σ
contains an edge of H, that is, E(H[X+σ ])= E(H[X−σ ])=∅. Similarly, define saltσ (H) to be the
largest integer k for which there is an X ∈ {−1, 0,+1}n with alt (X)= k such that at most one of
X+σ and X−σ contains some edge of H. Note that if each singleton is an edge of H, then alt (H)=
0. Also, altσ (H)� saltσ (H) and equality can hold. Now, set alt (H)=min{altσ (H) : σ ∈ LV}
and salt (H)=min{saltσ (H) : σ ∈ LV}. Define the altermatic number and the strong altermatic
number of a graph G, respectively, as follows:

ζ (G)=max
H
{|V(H)| − alt (H) : KG(H)←→G}

and
ζs(G)=max

H
{|V(H)| + 1− salt (H) : KG(H)←→G}.

It was proved in [1, 2] that each altermatic number and strong altermatic number provides a
tight lower bound for the chromatic number of graphs.

Theorem 2.1 (Theorem 2 of [1]). For any graph G, we have
χ(G)�max{ζ (G), ζs(G)}.

2.2 Alternating Turán number
Let G be a graph and let F be a family of graphs. A subgraph of G is called an F-subgraph if it is
isomorphic to a member of F . The general Kneser graph KG(G,F) has all the F-subgraphs of G
as its vertex set and two vertices are adjacent if the corresponding F-subgraphs are edge-disjoint.
A graph G is celled F-free if it has no subgraph isomorphic to a member of F . For a graph G,
the generalized Turán number of F in G, denoted by ex (G,F), is the maximum number of edges
of an F-free spanning subgraph of G. An F-free spanning subgraph of G is called F-extremal if
it has ex (G,F) edges. We denote the family of all F-extremal subgraphs of G by EX (G,F). It is
usually a hard problem to determine the exact value of ex (G,F). The concept of Turán number
was generalized to alternating Turán number in [2], where it was used to determine the chromatic
number of some families of general Kneser graphs.

Hereafter, by abuse of language, for a given 2-colouring (with two colours red and blue) of a
subset of edges of G, if red or blue colour is assigned to an edge, then it is respectively called a red
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edge or a blue edge. If no colour is assigned to an edge, then it is called a neutral edge. The spanning
subgraph GR (resp. GB) of G whose edge-set consists of all red (resp. blue) edges is termed the red
subgraph (resp. blue subgraph). Let E(G)= {e1, e2, . . . , em}. For any ordering σ = (ei1 , ei2 , . . . , eim)
of edges of G, a 2-colouring of a subset of edges of G is said to be alternating (with respect to
the ordering σ ) if any two consecutive coloured edges (with respect to the ordering σ ) receive
different colours (note that we may assign no colour to some edges of G). In other words, in view
of the ordering σ , we assign two colours red and blue alternately to a subset of edges of G. The
length of an alternating 2-colouring of E(G) is the number of coloured edges, that is, |E(GR)| +
|E(GB)|. It is worth noting that ||E(GR)| − |E(GB)||� 1 for any alternating 2-colouring of E(G).
We use the notation exalt (G,F , σ ) to denote the maximum length of an alternating 2-colouring
of E(G) with respect to σ for which GR and GB are both F-free. Also, we define exsalt (G,F , σ )) to
be the maximum length of an alternating 2-colouring of E(G) with respect to σ for which at least
one of GR and GB is F-free. Note that if we have an alternating 2-colouring with respect to σ and
of length more than exalt (G,F , σ ) (resp. exsalt (G,F , σ )), then at least one of GR and GB (resp.
each of GR and GB) contains a member of F as a subgraph.

Now, we are in a position to define the alternating Turán number exalt (G,F) and the strong
alternating Turán number exsalt (G,F) as follows:

exalt (G,F)=min{exalt (G,F , σ ); σ ∈ LE(G)}
and

exsalt (G,F)=min{exsalt (G,F , σ ); σ ∈ LE(G)}.
For a graph G, let F be a member of EX (G,F) and let σ be an arbitrary ordering of E(G). If we
colour the edges of F alternately with two colours with respect to the ordering σ , no colour class
has a member of F as its subgraph; therefore, ex (G,F)� exalt (G,F , σ ). Also, it is clear that if
we assign two colours to more than 2 ex (G,F) edges, then a colour class has more than ex (G,F)
edges, and accordingly, it contains some member of F as its subgraph. It implies exalt (G,F , σ )�
2 ex (G,F). Consequently

ex (G,F)� exalt (G,F)� 2 ex (G,F).
The next lemma was proved in [2]. For convenience, we briefly repeat the proof, thus making our
exposition self-contained.

Lemma 2.2. ([2]). For any graph G and family F of graphs,
|E(G)| − exalt (G,F)� χ(KG(G,F))� |E(G)| − ex (G,F),

|E(G)| + 1− exsalt (G,F)� χ(KG(G,F))� |E(G)| − ex (G,F).
In particular, if exalt (G,F)= ex (G,F), then

χ(KG(G,F))= ζ (KG(G,F))= |E(G)| − ex (G,F),
and if exsalt (G,F)= ex (G,F)+ 1, then

χ(KG(G,F))= ζs(KG(G,F))= |E(G)| − ex (G,F).

Proof. Let K ∈ EX (G,F). Clearly, any vertex of KG(G,F) contains at least one edge of E(G) \
E(K). This implies χ(KG(G,F))� |E(G)| − ex (G,F). On the other hand, consider the hyper-
graph H whose vertex set is E(G) and its edge-set consists of all subgraphs of G isomorphic to
some member of F . Note that KG(H) is isomorphic to KG(G,F). One can check that alt (H)=
exalt (G,F) and salt (H)= exsalt (G,F). Now, by Theorem 2.1, the assertion holds.

This lemma suggests an approach to determine the chromatic number of KG(G,F). Indeed,
if we present an appropriate ordering σ of the edges of G such that exalt (G,F)= ex (G,F) or
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exsalt (G,F)− 1= ex (G,F), then we would be able to conclude that
χ(KG(G,F))= |E(G)| − ex (G,F).

Using this observation, the chromatic number of several families of graphs was determined in
[2, 3].

3. Matching Kneser graphs
The matching Kneser graphs can be viewed as a generalization of Kneser, Schrijver and per-
mutation graphs since KG(nK2, rK2), KG(Cn, rK2) and KG(Km,n, rK2) are isomorphic to Kneser,
Schrijver and permutation graphs, respectively. Hence, as a generalization of Lovász’s theorem
[23] and Schrijver’s theorem [25] and to unify their results, it would be of interest to study the
chromatic number of matching Kneser graphs. We recall the following classical generalization of
Tutte’s theorem [28] by Berge [5], which will play an essential role in the proofs of some results in
this section.

Theorem 3.1 (Tutte–Berge formula [5, 28]). For a graph G, the maximum number of vertices of
a matching in G is

min
S⊆V(G)

{|V(G)| − o(G− S)+ |S|},
where o(G− S) is the number of odd components in G− S.

The rest of this section mainly concerns the proofs of the main results. In Section 3.1 we will
study the chromatic number of the matching Kneser graph KG(G, rK2) when G is a sparse graph.
In contrast, in Section 3.2 we will determine the chromatic number of KG(G, rK2) provided G is a
large dense graph.

3.1 A generalization of Schrijver’s theorem
The odd-girth of a graph G is the length of a shortest odd-cycle contained in G. For a bipartite
graph, its odd-girth is set to be infinite. Also, a graph is called even if each of its vertices has an
even degree.

Theorem 3.2. Let r� 2 be an integer and let G be either a connected graph or a disconnected
graph with no even component. Also, assume that G has odd-girth at least g, vertex set V(G)=
{v1, v2, . . . , vn} and degree sequence degG(v1)� degG(v2)� · · ·� degG(vn). Moreover, suppose
that

r�max
{
g
2
,
degG(vr−1)+ 1

4

}
and U = {v1, . . . , vr−1} forms an independent set. If degG(vr−1) is an even integer or

degG(vr−1)> degG(vr),
then

χ(KG(G, rK2))= |E(G)| −
r−1∑
i=1

degG(vi).

Proof. Consider the spanning subgraph of G whose edges meet U = {v1, . . . , vr−1} which
is clearly an rK2-free subgraph with

∑r−1
i=1 degG(vi) edges. This concludes that ex (G, rK2)�
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∑r−1
i=1 degG(vi). Thus, by Lemma 2.2, we would have

χ(KG(G, rK2))� |E(G)| −
r−1∑
i=1

degG(vi).

Hence, to prove the theorem, it suffices to show that

χ(KG(G, rK2))� |E(G)| −
r−1∑
i=1

degG(vi).

To this end, in what follows, we introduce an ordering σ of E(G) for which either

exalt (G, rK2, σ )�
r−1∑
i=1

degG(vi)

or

exsalt (G, rK2, σ )� 1+
r−1∑
i=1

degG(vi),

leading us to the desired inequality by using Lemma 2.2.
Let s be the number of vertices with odd degree in {v1, . . . , vr−1}. If G is an even graph, set

H =G; otherwise, add a new vertex w and join it to every odd vertex of G to obtain the graph
H. Clearly, since G is either connected or disconnected with no even component, H is clearly
a connected even graph and hence an Eulerian graph. Let e′1, e′2, . . . , e′m be an Eulerian tour
of H such that if G is an even graph, then it starts with vn; otherwise, it starts with w. Now,
consider the ordering (e′1, e′2, . . . , e′m) and remove all edges incident with w from this order-
ing to obtain the ordering σ of E(G). In other words, if we traverse ei ∈ E(G) before ej ∈ E(G)
in the Eulerian tour, then in the ordering σ we have ei < ej. Now, consider an alternating
colouring (with colours blue and red) of edges of G with respect to the ordering σ and of
length t, where if s �= 0, then t= 1+∑r−1

i=1 degG(vi); otherwise, t= 2+∑r−1
i=1 degG(vi). Recall

that GR and GB are the spanning subgraphs of G whose edge-sets are the sets of red and blue
edges respectively. We show that if s= 0 then both of GR and GB have an r-matching, and
consequently

exsalt (G, rK2, σ )� 1+
r−1∑
i=1

degG(vi),

and if s �= 0 then GR or GB has an r-matching, and consequently

exalt (G, rK2, σ )�
r−1∑
i=1

degG(vi).

Hence, by using Lemma 2.2,

χ(KG(G, rK2))� |E(G)| −
r−1∑
i=1

degG(vi),

as desired.
To do this, first note that, in view of the definition σ , for each vertex x ∈V(G) \ {vn}, each of

colours red and blue is assigned to at most �degG (x)/2
 edges incident with x. For vn, this amount
can be increased by at most one whenever G is an even graph and t is thus odd. Indeed, in this
case, if neither the first nor the last edge in the ordering σ is neutral, then they both have the same
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colour. Since each of these two edges is incident with vn, the number of red (resp. blue) edges
incident with vn is at most

2+ degG(vn)− 2
2

= degG(vn)
2

+ 1.

Now, the proof falls into the two following parts.

Case 1: r� g/2. Note that if G j is an rK2-free subgraph for a j ∈ {R, B}, then, in view of the Tutte–
Berge formula (Theorem 3.1), there exists an S j ⊆V(G j)=V(G) such that

|V(G j)| − o(G j − S j)+ |S j|� 2r− 2.

Let O j
1,O

j
2, . . . ,O

j
tj be the components of G j − S j. Since tj � o(G j − S j),

tj∑
i=1

(|V(O j
i )| − 1)� |V(G j)| − |S j| − tj

� |V(G j)| − |S j| − o(G j − S j)
� 2r− 2− 2|S j|,

which concludes |V(O j
i )|� 2r− 2|S j| − 1� g − 1 for each j ∈ {R, B} and 1� i� tj. Therefore,

every component O j
i contains no odd cycle, and it is thus a bipartite graph. Set O j

i = (X j
i , Y

j
i , E

j
i )

such that |X j
i |� |Y j

i | (X j
i might be an empty set). Set

X j =
tj⋃
i=1

X j
i .

It is clear that any edge of G j intersects Y j = X j ∪ S j. Note that

|X j|�
tj∑
i=1

⌊ |V(O j
i )|

2

⌋

= |V(G
j)| − |S j|
2

− o(G j − S j)
2

� |V(G
j)| − |S j|
2

− |V(G
j)| + |S j| − 2r+ 2

2
= r− |S j| − 1,

which concludes |Y j|� r− 1 for each j ∈ {R, B}. In the following, we will discuss the two cases
s= 0 and s �= 0 separately.

Case 1A: s= 0. Note that in this case G is Eulerian, so t= 2+∑r−1
i=1 degG(vi) is even. Thus,

|E(GR)| = |E(GB)| = 1+ t/2. Clearly, if G j is rK2-free for a j ∈ {R, B}, then, using the facts that
X j ∩ S j =∅, |X j| + |S j|� r− 1, each edge e ∈ E(G j) meets X j ∪ S j, and degG j (x)� degG(x)/2
for each x ∈V(G), we have

1+
r−1∑
i=1

degG(vi)
2

= 1+ t
2

= |E(G j)|
�

∑
x∈X j∪S j

degG j(x)

https://doi.org/10.1017/S0963548319000178 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000178


Combinatorics, Probability and Computing 9

�
∑
x∈X j

degG(x)
2
+

∑
x∈S j

degG(x)
2

�
r−1∑
i=1

degG(vi)
2

,

which is impossible. This means that

exsalt (G, rK2, σ )� 1+
r−1∑
i=1

degG(vi).

Accordingly, by Lemma 2.2,

χ(KG(G, rK2))= ζs(KG(G, rK2))= |E(G)| −
r−1∑
i=1

degG(vi).

Case 1B: s �= 0. For a contradiction, suppose that neither GR nor GB has an r-matching. It is not
difficult to verify the formula

2|(YR ∪ YB)∩U| − |(YR�YB)∩U| + |YR \U| + |YB \U| = |YR| + |YB|� 2(r− 1),

which will be used in the proof of the next inequality. Since each edge e ∈ E(G j) meets Y j = X j ∪
S j and |YR|, |YB|� r− 1,

1+
r−1∑
i=1

degG(vi)=|E(GR)| + |E(GB)|

�
∑

j∈{R,B}

∑
x∈Y j

degG j(x)

�
∑

x∈YR∩YB∩U
degG(x)+

∑
x∈(YR�YB)∩U

⌈
degG(x)

2

⌉

+ (|YR \U| + |YB \U|)
⌈
degG(vr)

2

⌉

�
|YR∩YB∩U|∑

i=1
degG(vi)+

|(YR∪YB)∩U|∑
i=|YR∩YB∩U|+1

⌈
degG(vi)

2

⌉

+ (|YR \U| + |YB \U|)
⌈
degG(vr)

2

⌉

�
|(YR∪YB)∩U|∑

i=1
degG(vi)−

|(YR∪YB)∩U|∑
i=|YR∩YB∩U|+1

⌊
degG(vi)

2

⌋

+ (|YR \U| + |YB \U|)
⌈
degG(vr)

2

⌉

�
|(YR∪YB)∩U|∑

i=1
degG(vi)− |(YR�YB)∩U|

⌊
degG(vr−1)

2

⌋

+ (|YR \U| + |YB \U|)
⌊
degG(vr−1)

2

⌋
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�
r−1∑
i=1

degG(vi)− 2(r− 1− |(YR ∪ YB)∩U|)
⌊
degG(vr−1)

2

⌋

− |(YR�YB)∩U|
⌊
degG(vr−1)

2

⌋
+ (|YR \U| + |YB \U|)

⌊
degG(vr−1)

2

⌋

�
r−1∑
i=1

degG(vi),

a contradiction. Therefore, GR or GB has an r-matching, and consequently

exalt (G, rK2, σ )�
r−1∑
i=1

degG(vi).

Accordingly, by Lemma 2.2,

χ(KG(G, rK2))= ζ (KG(G, rK2))= |E(G)| −
r−1∑
i=1

degG(vi),

completing the proof in this case.

Case 2: r� (degG(vr−1)+ 1)/4. For j ∈ {R, B}, ifG j is rK2-free, in view of the Tutte–Berge formula
(Theorem 3.1), there exists S j ⊆V(G j) such that |V(G j)| − o(G j − S j)+ |S j|� 2r− 2. Note that
|S j|� |V(G)| − o(G j − S j) and hence |S j|� r− 1. LetO j

1,O
j
2, . . . ,O

j
tj be the components ofG j −

S j, where tj � o(G j − S j). We discuss the two different cases s= 0 and s> 0 separately.

Case 2A: s= 0. Note that in this case G is Eulerian, so t= 2+∑r−1
i=1 degG(vi) is even. Thus,

|E(GR)| = |E(GB)| = 1+ t/2. In what follows, we prove that each of GR and GB has a matching
of size r. By similarity, we just prove that Gr has an rK2 subgraph. For a contradiction, suppose
that GR is rK2-free. It is easy to see that(

a
2

)
+

(
b
2

)
�

(
a+ b− 1

2

)
.

We used this inequality in the second succeeding inequality. Since each red edge either intersects
SR or is in E(OR

i ) for some i, we have

1+ t
2
= |E(GR)|

�
∑
x∈SR

degGR(x)+
tR∑
i=1

(|V(OR
i )|

2

)

�
∑
x∈SR

degGR(x)+
(∑tR

i=1 |V(OR
i )| − (tR − 1)
2

)

�
∑
x∈SR

degGR(x)+
(
(|V(G)| − |SR|)− (o(GR − SR)− 1)

2

)

�
∑
x∈SR

degGR(x)+
(
2r− 2|SR| − 1

2

)

�
∑
x∈SR

degGR(x)
2

+ (r− |SR| − 1)
degGR(vr−1)

2
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� 1
2

r−1∑
i=1

degG(vi)

= t
2
,

which is impossible. Thus

exsalt (G, rK2, σ )� 1+
r−1∑
i=1

degG(vi)

and, by Lemma 2.2,

χ(KG(G, rK2))= ζs(KG(G, rK2))= |E(G)| −
r−1∑
i=1

degG(vi),

completing the proof in this case.

Case 2B: s �= 0. In what follows, we will see thatGR orGB has a matching of size r. On the contrary,
suppose that neither GR nor GB has an r-matching. Note that

1+
r−1∑
i=1

degG(vi)= t= |E(GR)| + |E(GB)|.

On the other hand, as in Case 2A, since for each j ∈ {R, B}, each edge of colour j either intersects
S j or is in E(O j

i ) for some i, we have

t= |E(GR)| + |E(GB)|

�
∑

j∈{R,B}

∑
x∈S j

degG j(x)+
∑

j∈{R,B}

tj∑
i=1

(|V(O j
i )|

2

)

�
∑

j∈{R,B}

∑
x∈S j

degG j(x)+
∑

j∈{R,B}

(∑tj
i=1 |V(O j

i )| − (tj − 1)
2

)

�
∑

j∈{R,B}

∑
x∈S j

degG j(x)+
∑

j∈{R,B}
(r− |S j| − 1)(2r− 2|S j| − 1)

�
∑

j∈{R,B}

∑
x∈S j∩U

degG j(x)+
∑

j∈{R,B}

∑
x∈S j\U

⌈
degG(vr)

2

⌉

+
∑

j∈{R,B}
(r− |S j| − 1)

degG(vr−1)− 1
2

�
∑

x∈SR∩SB∩U
degG(x)+

∑
x∈(SR�SB)∩U

⌈
degG(x)

2

⌉

+ (|SR \U| + |SB \U|)
⌈
degG(vr)

2

⌉
+

∑
j∈{R,B}

(r− |S j| − 1)
degG(vr−1)− 1

2
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�
|SR∩SB∩U|∑

i=1
degG(vi)+

|(SR∪SB)∩U|∑
i=|SR∩SB∩U|+1

⌈
degG(vi)

2

⌉

+ (|SR \U| + |SB \U|)
⌈
degG(vr)

2

⌉
+

∑
j∈{R,B}

(r− |S j| − 1)
degG(vr−1)− 1

2

�
|(SR∪SB)∩U|∑

i=1
degG(vi)−

|(SR∪SB)∩U|∑
i=|SR∩SB∩U|+1

⌊
degG(vi)

2

⌋

+ (|SR \U| + |SB \U|)
⌈
degG(vr)

2

⌉
+

∑
j∈{R,B}

(r− |S j| − 1)
degG(vr−1)− 1

2

�
|(SR∪SB)∩U|∑

i=1
degG(vi)− |(SR�SB)∩U|

⌊
degG(vr−1)

2

⌋

+ (|SR \U| + |SB \U|)
⌊
degG(vr−1)

2

⌋
+

∑
j∈{R,B}

(r− |S j| − 1)
⌊
degG(vr−1)

2

⌋

�
|(SR∪SB)∩U|∑

i=1
degG(vi)+ (2(r− 1)− 2|(SR ∪ SB)∩U|)

⌊
degG(vr−1)

2

⌋

�
r−1∑
i=1

degG(vi),

which is impossible. Consequently exalt (G, rK2, σ )�
∑r−1

i=1 degG(vi); accordingly, by Lemma 2.2,

χ(KG(G, rK2))= ζ (KG(G, rK2))= |E(G)| −
r−1∑
i=1

degG(vi),

which completes the proof.

Since KG(Cn, rK2)� SG(n, r), the aforementioned theorem can be viewed as a generalization
of the Schrijver theorem [25].

Theorem 3.3 (Theorem 3 of [25]). For any positive integers n and r, where n� 2r, we have
χ(SG(n, r))= n− 2r+ 2.

Proof of Theorem 1.1(iii) (Regular even graphs). If G= (X, Y , E) is bipartite, then X is an inde-
pendent set satisfying Theorem 3.2 and hence we have the desired assertion. When G is not
bipartite, set C to be a minimal odd cycle in G. Note that C is an induced subgraph of G and
|V(C)|� g. Clearly, it contains an independent set of size �g/2� and the proof thus follows from
Theorem 3.2.

3.2 Matching-dense graphs
In this subsection we determine the chromatic number of matching Kneser graphs KG(G, rK2)
provided that G is a large dense graph. LetH be a graph with V(H)= {v1, . . . , vn}. The graphH is
termed (r, c)-locally Eulerian if there are edge-disjoint non-trivial Eulerian connected subgraphs
H1, . . . ,Hn ofH, such that vi ∈V(Hi) for each i ∈ [n] and degHi(vi)� (r− 1)degHi(u)+ c for each
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u ∈V(Hi) \ {vi}. It is worth noting that the union of edge-disjoint (r, c)-locally Eulerian graphs is
(r, c)-locally Eulerian. The next lemma plays a key role in the rest of the paper.

Lemma 3.4. Let c, r and s be non-negative integers where r� 2 and c�
(r−1

2
)+ (s+ 3)(r− 1).

Also, let G be a graph with n vertices and δ(G)>
(r+2

2
)+ (r− 2)s. If there exists an (r+ s, c)-locally

Eulerian graph H with n+ s vertices containing G as an induced subgraph, then
χ(KG(G, rK2))= ζ (KG(G, rK2))= |E(G)| − ex (G, rK2).

Proof. In view of Lemma 2.2, it suffices to prove the existence of an ordering σ of E(G)
for which exalt (G, rK2, σ )= ex (G, rK2). To this end, in what follows, we will first construct
an ordering σ and then prove that this σ satisfies the aforementioned property. Let V(G)=
{v1, . . . , vn} and V(H)= {v1, . . . , vn+s}. Since H is (r+ s, c)-locally Eulerian, there are pairwise
edge-disjoint non-trivial Eulerian subgraphs H1, . . . ,Hn+s of H such that vi ∈V(Hi) for each
i ∈ [n+ s] and

degHi(vi)� (r+ s− 1) degHi(u)+
(
r− 1
2

)
+ (s+ 3)(r− 1)

for each u ∈V(Hi) \ {vi}.
Constructing the ordering σ . To define the ordering σ , add a new vertex x and join it to all
vertices ofH by two parallel edges (an edge withmultiplicity two) to obtain the graphH′. Precisely,
for any 1� i� n+ s, join x and vi to two distinct edges fi and f ′i . Now, if H′ has no odd vertices,
then set H̄ =H′; otherwise, add a new vertex z and join it to the odd vertices of H′ to obtain the
graph H̄. The graph H̄ is an even connected graph and it is therefore Eulerian. Also, the graph
K = H̄ − x is an even graph; accordingly, each connected component of K′ =K \ (⋃n+s

i=1 Hi
)
is

Eulerian as well. Let K1, . . . ,Kl be the non-trivial connected components of K′. Construct an
Eulerian tour for H̄ as follows. At the ith step, where 1� i� n+ s, start from vertex x and traverse
the edge fi to reach vi. Consider an arbitrary Eulerian tour of Hi starting at vi and traverse it.
Next, if there exists a Kj such that vi ∈V(Kj) and the edges of this Kj is still untraversed, then
consider an Eulerian tour of Kj starting at vi and traverse it. Next, traverse the edge f ′i to reach
x. If i< n+ s, then start the (i+ 1)th step. After terminating this process, we obtain an Eulerian
tour of H̄. Henceforth, this Eulerian tour of H̄ will be fixed and we refer to it as the ‘Eulerian tour
of H̄’. Now, construct an ordering σ of E(G) such that the ordering of edges in E(G) corresponds
to their ordering in the Eulerian tour of H̄, that is, if we traverse the edge ei ∈ E(G) before the edge
ej ∈ E(G) in the Eulerian tour of H̄, then ei < ej in σ .

Note that the proof of the lemmawould be completed once we have proved the following claim.

Claim. exalt (G, rK2, σ )= ex (G, rK2).

Let t� r− 1 be a positive integer. For any t-subset T ⊆V(G), since the spanning subgraph of
G whose edges are the ones incident with an (r− 1)-subset of V(G) is rK2-free, we clearly have

ex (G, rK2)�
∑
v∈T

degG(v)+ (r− 1− t)δ(G)−
(
r− 1
2

)
. (3.1)

Consider an alternating 2-colouring of E(G) with respect to σ and of length ex (G, rK2)+ 1, that
is, the colours red and blue are assigned alternately (with respect to σ ) to ex (G, rK2)+ 1 edges of
G. Hereafter, this alternating 2-colouring of E(G) is also extended to an alternating 2-colouring of
E(H̄) with respect to the ordering imposed by the Eulerian tour of H̄ (chosen in the definition of
σ ), where each edge in E(H̄) \ E(G) is considered neutral. So we can speak of red, blue and neutral
edges in H̄ with no ambiguity.
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To fulfil the claim, we must prove that GR or GB has an r-matching. For a contradiction, sup-
pose that the red spanning subgraph GR and the blue spanning subgraph GB are both rK2-free. In
view of the Tutte–Berge formula (Theorem 3.1), there are two sets TR, TB ⊆V(G) such that

|V(Gj)| − o(Gj − Tj)+ |Tj|� 2r− 2 for each j ∈ {R, B}. (3.2)

For each j ∈ {R, B}, we have |T j|� |V(G)| − o(G j − T j), which concludes |TR|� r− 1 and |TB|�
r− 1. Furthermore, for each j ∈ {R, B}, the number of edges ofGj incident with no vertex of Tj (i.e.
|E(Gj − Tj)|) is at most

(2r−2|Tj|−1
2

)
. To see this, let O j

1,O
j
2, . . . ,O

j
tj be the connected components

of G j − T j and note that
tj∑
i=1
|V(O j

i )| = |V(G j)| − |T j| and tj � o(G j − T j)� |V(Gj)| + |Tj| − 2r+ 2,

resulting in

|E(Gj − Tj)|�
tj∑
i=1

(|V(O j
i )|

2

)

�
(∑tj

i=1 |V(O j
i )| − (tj − 1)
2

)

�
(
2r− 2|T j| − 1

2

)
. (3.3)

For each vertex u ∈V(G) and each j ∈ {R, B},
degG j (u)�

degH̄ (u)
2

� 1
2
(degG(u)+ s+ 3). (3.4)

The second inequality is clear due to the definition of H̄. To prove the first one, we need to estimate
the number of red and blue edges incident with u. Note that the edges incident with u in H̄ can
be partitioned into ( degH̄ (u))/2 pairs of consecutive edges in the Eulerian tour of H̄. Clearly, at
most one of the two edges in each pair is red (resp. blue) which concludes the desired inequality.
We consider three different cases.

Case I: |TR|� r− 2 or |TB|� r− 2. By similarity, assume |TR|� r− 2. Note that each edge ofGR

either intersects TR or is an edge of GR − TR. This observation, along with inequalities (3.1), (3.3)
and (3.4) and the assumption δ(G)>

(r+2
2

)+ (r− 2)s, implies

|E(GR)|� |E(GR − TR)| +
∑
u∈TR

degGR(u)

�
(
2r− 2|TR| − 1

2

)
+

∑
u∈TR

1
2
(degG(u)+ s+ 3)

�
(
2r− 2|TR| − 1

2

)
+ ex (G, rK2)

2
+ 1

2

(
r− 1
2

)
− r− 1− |TR|

2
δ(G)+ (s+ 3)|TR|

2

<
ex (G, rK2)

2
.

For the last inequality, we must prove f (x)< 0 for each x ∈ {0, . . . , r− 2}, where

f (x)=
(
2r− 2x− 1

2

)
+ 1

2

(
r− 1
2

)
− r− 1− x

2
δ(G)+ (s+ 3)x

2
.
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Note that f (x) is a quadratic polynomial with a positive coefficient of x2 and thus its maximum
for x ∈ [0, r− 2] occurs in x= 0 or x= r− 2. Now, using δ(G)>

(r+2
2

)+ (r− 2)s, it is simple to
check that f (0)< 0 and f (r− 2)< 0.

Combining the inequalities |E(GR)|< ex (G, rK2)/2 and |E(GB)|� |E(GR)| + 1, we obtain

ex (G, rK2)+ 1= |E(GR)| + |E(GB)|< ex (G, rK2)+ 1,

which is impossible.

Case II: |TR| = |TB| = r− 1 and TR �= TB. Using Formula 3.2, it is easy to conclude that each
connected component of GR − TR and GB − TB consists of singletons. This means that TR and
TB, respectively, are vertex covers ofGR andGB. Without loss of generality, assume that |E(GR)|�
|E(GB)| and choose a vertex vi ∈ TR \ TB. Set LB = |E(HB

i )|, i.e. the number of blue edges of Hi.
Since TB is a vertex cover of GB, each blue edge of Hi is incident with some vertex in TB. Let
x be an arbitrary vertex in TB. Consider the Eulerian tour of Hi used in the definition of σ and
note that it starts and ends with vi. Since x �= vi (vi �∈ TB), the edges of Hi incident with x can be
partitioned into pairs of consecutive edges in the Eulerian tour ofHi. For each pair, at most one of
its edges is blue. This concludes that for each blue edge ofHi incident with x, there is an edge ofHi
incident with xwhich is not blue (note that this edge might be out of E(G)). Therefore, degHi (x)�
2 degHB

i
(x) and hence

∑
x∈TB∩V(Hi) degHi (x)� 2LB. It implies that there is a vertex z ∈V(Hi) \

{vi} whose degree in Hi is at least 2LB/(r− 1). Using the assumption that for z ∈V(Hi) \ {vi},

degHi(vi)� (r+ s− 1)degHi(z)+
(
r− 1
2

)
+ (s+ 3)(r− 1),

we would have

degHi(vi)� (r+ s− 1)
⌈
2LB

r− 1

⌉
+

(
r− 1
2

)
+ (s+ 3)(r− 1).

Thus, since s� 0,

LB � 1
2

(
degHi(vi)−

(
r− 1
2

)
− (s+ 3)(r− 1)

)
. (3.5)

Since the edges in E(Hi)∩ E(G) are consecutive in σ and between any two consecutive blue (resp.
red) edges there is exactly one red (resp. blue) edge, we must have ||E(HR

i )| − |E(HB
i )||� 1 and

thus

degHR
i
(vi)� |E(HR

i )|� |E(HB
i )| + 1� LB + 1.

If there exists a 1� j� l such that vi ∈V(Kj) and vq �∈ (Kj) for any q< i (the edges of Kj are tra-
versed in no step before the ith step), then set H′i =Hi ∪Kj; otherwise, H′i =Hi. Estimating the
number of red edges incident with vi in the graph H′i , we claim that

degH′i R (vi)� LB + 1+ 1
2
degH′i (vi)−

1
2
degHi(vi). (3.6)

If H′i =Hi, then we have already proved it. So we consider the case H �=H′. As in the discussion
after inequality (3.4),

degKjR (vi)�
degKj (vi)

2
+ 1� 1

2
degH′i (vi)−

1
2
degHi(vi)+ 1.

However, if degHR
i
(vi)= LB + 1, then |E(HR

i )| = |E(HB
i )| + 1 and hence the first and last coloured

edges of Hi are both red. Consequently, since the edges of Ki are consecutive and the first edge of
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Ki is located immediately after the last one of Hi in the Eulerian tour of H̄ used for the definition
of σ , the first edge of Ki in σ which is indeed adjacent with vi cannot be blue, and hence

degKjR (vi)�
degKj (vi)

2
= 1

2
degH′i (vi)−

1
2
degHi(vi).

Thus, in view of the aforementioned discussion, we have

degH′i R (vi)� degHiR (vi)+ degKjR (vi)� LB + 1+ 1
2
degH′i (vi)−

1
2
degHi(vi),

as claimed. Furthermore, it is easy to see that the edges incident with v in E(H̄ \H′i) \ {fi, f ′i } can be
partitioned into ( deg(H̄\H′i ) (vi)− 2)/2 pairs of consecutive edges in the Eulerian tour of H̄. Since
fi, f ′i are neutral and at most one of the edges in each pair is red,

deg(G\H′i )R (vi)�
deg(H̄\H′i ) (vi)− 2

2
� 1

2
(degG(vi)+ s+ 1− degH′i (vi)).

Therefore, by the previous inequality together with inequalities (3.5) and (3.6),
degGR (vi)= degH′i R (vi)+ deg(G\H′i )R (vi)

� LB + 1+ 1
2
degH′i (vi)−

1
2
degHi(vi)+

1
2
(degG(vi)+ s+ 1− degH′i (vi))

� 1
2

(
degG(vi)− (s+ 3)(r− 2)−

(
r− 1
2

))
.

Finally, using this inequality, inequality (3.4) and the fact that TR is a vertex cover of GR, we have

|E(GR)|�
∑
u∈TR

degGR(u)

� 1
2

(
degG(vi)− (s+ 3)(r− 2)−

(
r− 1
2

))
+

∑
u∈TR\{vi}

1
2
(degG(u)+ s+ 3)

�−1
2

(
r− 1
2

)
+

∑
u∈TR

1
2
degG(u)

� #{e ∈ E(G) : e∩ TR �=∅}
� 1

2
ex (G, rK2),

which is impossible since |E(GR)|� |E(GB)| and |E(GR)| + |E(GB)| = ex (G, rK2)+ 1.

Case III: |TR| = |TB| = r− 1 and T = TR = TB. In this case T is a vertex cover for each of GR and
GB. Hence, the number of blue and red edges of G, i.e. |E(GR)| + |E(GB)|, is at most the number
of edges of G incident with T. Note that the set of edges incident with T is rK2-free, which implies

ex (G, rK2)+ 1= |E(GR)| + |E(GB)|� ex (G, rK2),
a contradiction.

LetG be a graph. AG-decomposition of a graphH is a set {G1, . . . ,Gt} of pairwise edge-disjoint
subgraphs of H such that, for each 1� i� t, the graph Gi is isomorphic to G; moreover, the edge-
sets of the Gi partition the edge-set of H. A G-decomposition of H is called monogamous if any
distinct pair of vertices of H appear in at most one copy of G in the decomposition. Note that any
Kt-decomposition of a graph is clearly monogamous. A necessary and sufficient condition for a
complete bipartite graph Km,n to have a monogamous C4-decomposition was provided in [22].
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Theorem 3.5 (Theorem 2.7 of [22]). Let m and n be positive even integers. The complete bipar-
tite graph Km,n has a monogamous C4-decomposition if and only if (m, n)= (2, 2) or 6� n�m�
2n− 2.

Using this theorem, in the following lemma we present a sufficient condition for Kt,t′ to be
locally Eulerian.

Lemma 3.6. Let r, t and t′ be positive integers, where 11� t� t′ � 2t− 2. If c is a non-negative
integer and t� 8r+ 4c+ 2, then the complete bipartite graph Kt,t′ is (r, c)-locally Eulerian.

Proof. Let t= 2p+ q and t′ = 2p′ + q′, where 0� q� 1 and 0� q′ � 1. Extend the complete
bipartite graph G=Kt,t′ to the complete bipartite graph H =KT,T′ , where T = t+ q and T′ =
t′ + q′. In view of Theorem 3.5, consider a monogamous C4-decomposition of H. Call any C4 of
this decomposition a block if it is entirely in G. Construct a bipartite graph with the vertex set
(U,V) where U consists of �(t− 3)/8� copies of each vertex of Kt,t′ and V consists of all blocks.
Join a vertex ofU to a vertex of V if the corresponding vertex of Kt,t′ is a vertex of the correspond-
ing block. Since theC4-decomposition is monogamous, the degree of each vertex in the partU is at
least �(t− 3)/2
 and the degree of any vertex in the part V is 4(�(t− 3)/8�). Using Hall’s theorem,
this bipartite graph has a matching saturating all the vertices in U. Consider such a matching. For
any vertex v ∈Kt,t′ , defineHv to be the subgraph of Kt,t′ formed by the union of �(t− 3)/8
 blocks
assigned to v through this matching. Again, since these blocks came from a monogamous C4-
decomposition, one can see that degHv(v)= 2(�(t− 3)/8�), while the degree of any other vertex
of Hv is 2. In view of these Hv, clearly Kt,t′ is an (r, c)-locally Eulerian graph, as desired.

For a family of graphsF , we say a graphG has anF-factor if there are vertex-disjoint subgraphs
H1,H2, . . . ,Ht of G such that each Hi is a member of F and

⋃t
i=1 V(Hi)=V(G). Note that if a

graph G has an F-factor, where each member of F is an (r, c)-locally Eulerian graph, then G is
also (r, c)-locally Eulerian. Hence, by Lemma 3.6, if a graph G has an F-factor, where the family
F consists of all the Kt,t′ satisfying the condition of Lemma 3.6, then G is (r, c)-locally Eulerian.
Now, we review sufficient conditions for a graph to have a Kt,t′-factor.

Graph expansion has been studied extensively in the literature. Let G be a graph with n vertices
and 0< ν � τ < 1. For S⊆V(G), the ν-robust neighbourhood of S, RNν,G(S), is the set of vertices
v ∈V(G) for which |NG(v)∩ S|� νn. A graph G is called a robust (ν, τ )-expander if |RNν,G(S)|�
|S| + νn for any S⊆V(G) with τn� |S|� (1− τ )n. For more about robust (ν, τ )-expanders see
[15]. Throughout this section, we write 0< a� b� c to mean that we can choose the constants
a, b and c from right to left. More precisely, there are two increasing functions f and g such that,
given c, we can find some b� g(c) and a� f (b). A graph G with n vertices has bandwidth at most
b if there exists a bijective assignment l :V(G)−→ [n] such that, for every edge uv ∈ E(G), we have
|l(u)− l(v)|� b.

Theorem 3.7 (Theorem 1.8 of [15]). Let ν, τ and η be real numbers, where 0< ν � τ � η < 1,
and let� be a positive integer. There exist constants β > 0 and n0 such that the following holds. Let
H be a bipartite graph on n� n0 vertices with�(H)�� and bandwidth at most βn. If G is a robust
(ν, τ )-expander with n vertices and δ(G)� ηn, then G contains a copy of H.

Proof of Theorem 1.1(iv) (Expander graphs). In view of Lemma 3.4, it is sufficient to show that
the graph G is an (r, c)-locally Eulerian graph, where c= (r−1

2
)+ 3(r− 1). Set t= 2r2 + 14r− 6

and let k and t′ be integers such that n= 2tk+ t′ and 2t� t′ � 4t− 1. Now, setH to be a bipartite
graph on n vertices with k+ 1= 1+ (n− t′)/2t connected components such that one component
is isomorphic to K�t′/2
,�t′/2� and any other component is isomorphic to Kt,t . Note that, using
Theorem 3.7, if n is sufficiently large, then H is a spanning subgraph of G. By Lemma 3.6, one
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can see that K�t′/2
,�t′/2� and Kt,t are both (r, c)-locally Eulerian graphs; consequentlyG is an (r, c)-
locally Eulerian graph as well, and thus, by Lemma 3.4, the theorem follows.

For a graph G, if we replace each of its edges with two opposite-direction edges, then we obtain
a digraph whose in-degree and out-degree sequences are the same as the degree sequence of G.
The following lemma is therefore an immediate consequence of Lemma 13 in [21].

Lemma 3.8 (Lemma 13 of [21]). For positive constants τ � η < 1, there exists an integer n0 such
that if G is a graph with n� n0 vertices and the degree sequence d1 � d2 � · · ·� dn such that for
any i< n/2, di � i+ ηn or dn−i−�ηn� � n− i, then δ(G)� ηn and G is a robust (τ 2, τ )-expander.

In view of the previous lemma and Theorem 1.1(iv), we have the next corollary.

Corollary 3.9. For any positive constant γ < 1, there is an integer n0 such that for any n� n0 we
have the following. If G is a connected graph with n vertices and the degree sequence d1 � d2 � · · ·�
dn such that for each i< n/2 we have di � i+ γ n or dn−i−�γ n� � n− i, then χ(KG(G, rK2))=
|E(G)| − ex (G, rK2).

For a graph property P , we say G(n, p) possesses P asymptotically almost surely, or a.a.s. for
brevity, if the probability thatG ∈G(n, p) possesses the propertyP tends to 1 as n tends to infinity.
As noted in [15], one can see that, for constants 0< ν� τ � p< 1, a.a.s. any graph G in G(n, p)
is a robust (ν, τ )-expander graph with minimum degree at least pn/2 and maximum degree at
most 2np. This observation and Theorem 1.1(iv) imply that a.a.s. for any graph G in G(n, p) we
have χ(KG(G, rK2))= |E(G)| − ex (G, rK2). Moreover, Huang, Lee and Sudakov [13] have proved
a more general theorem. Here, we state it in a special case.

Theorem 3.10 (Theorem 1.1 of [13]). For positive integers r,� and reals 0< p� 1 and γ > 0,
there exists a constant β > 0 such that a.a.s. any spanning subgraph G′ of any G ∈G(n, p) with
minimum degree δ(G′)� p(1/2+ γ )n contains every n-vertex bipartite graph H that has maximum
degree at most� and bandwidth at most βn.

Proof of Theorem 1.1(v) (Random graphs). Using the previous theorem, the proof follows
similarly to the proof of Theorem 1.1(iv).

Let H be a graph with h vertices and χ(H)= l. Set cr(H) to be the size of the smallest colour
class over all proper l-colourings of H. In [16], the critical chromatic number χcr(H) is defined as
(l− 1)h/(h− cr(H)). One can check that χ(H)− 1<χcr(H)� χ(H), and equality holds in the
upper bound if and only if, in any l-colouring of H, all colour classes have the same size. Suppose
that H has k connected components C1, C2, . . . , Ck. Define hcfc(H) to be the highest common
factor of integers |C1|, |C2|, . . . , |Ck|. Let f be an l-colouring of H such that x1 � x2 � · · ·� xl are
the sizes of colouring classes in f . Set D(f )= {xi+1 − xi| 1� i� l− 1} and

D(H)=
⋃

D(f ),

where the union ranges over all l-colourings f of H. Now, define hcfχ (H) to be the highest
common factor of the members of D(H). If D(H)= {0}, then we define hcfχ (H)=∞. We say
that

H is in class 1 if

{
hcfχ (H)= 1 when χ(H) �= 2,
hcfχ (H)� 2 and hcfc(H)= 1 when χ(H)= 2,

otherwise, H is in class 2; for more details, see [20]. Generalizing a result by Komlós, Sárközy and
Szemerédi [17], Kühn and Osthus [20] proved the next theorem.
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Theorem 3.11 (Theorem 4 of [20] and Theorem 1 of [17]). For every graph H on h vertices, there
are integers c and m0 such that, for all integers m�m0, if G is a graph on n=mh vertices, then the
following holds. If

δ(G)�

⎧⎪⎪⎨
⎪⎪⎩

(
1− 1

χcr(H)

)
n+ c H is in class 1,(

1− 1
χ(H)

)
n+ c H is in class 2,

then G has an H-factor.

Proof of Theorem 1.1(i) (Dense graphs). Define t= 2r2 + 14r− 6. Set H to be a bipartite graph
with two connected components C1 and C2 isomorphic to Kt,t and Kt+1,t , respectively. One can
check that H is in class 1. Hence, by Theorem 3.11, there are integers c1 and m1 such that, if
|V(G′)|�m1, |V(H)| divides |V(G′)| and

δ(G′)�
(
1− 1

χcr(H)

)
|V(G′)| + c1,

then the graph G′ has an H-factor. Let T be an integer such that 4t+ 1� T < 8t+ 2 and 4t+
1|n− T. It is known that if n is sufficiently large and δ(G)� ηn, where 0<η< 1, then G contains
a copy of the complete bipartite graph K�T/2
,�T/2�. Note that

1
χcr(H)

= 1
2
+ 1

8t+ 2
.

Set α = 1/(8t+ 2) and β = c1 + 8t− 1. If δ(G)� (1/2− α)n+ β and n is sufficiently large, thenG
contains K�T/2
,�T/2� and also the graph G \K�T/2
,�T/2� has anH-factor. Hence, G can be decom-
posed into the complete bipartite graphs Kt,t , Kt+1,t and K�T/2
,�T/2�. In view of Lemma 3.6, these
graphs are (r, c)-locally Eulerian graphs with c= (r−1

2
)+ 3(r− 1). Therefore, G is an (r, c)-locally

Eulerian graph, and consequently, by Lemma 3.4, the assertion holds.

3.3 Permutation graphs
Let m, n, r be positive integers, where r�m, n. For an r-subset A⊆ [m] and an injective map
f :A−→ [n], the ordered pair (A, f ) is said to be an r-partial permutation [11]. Let Sr(m, n)
denote the set of all r-partial permutations. Two partial permutations (A, f ) and (B, g) are said
to be intersecting if there exists an x ∈A∩ B such that f (x)= g(x). Note that Sn(n, n) is the
set of n-permutations. The permutation graph Sr(m, n) has all r-partial permutations (A, σ )
as its vertex set and two r-partial permutations are adjacent if and only if they are not inter-
secting. Note that Sr(m, n)� Sr(n,m), and therefore, for simplicity, we assume that m� n for
all permutation graphs. One can see that the permutation graph Sr(m, n) is isomorphic to
KG(Km,n, rK2).

The next theorem gives a sufficient condition for a balanced bipartite graph to be decomposable
into complete bipartite subgraphs.

Theorem 3.12 (Theorem 1.2 of [29]). For any integer q� 2, there exists a positive integer m0 such
that, for all m�m0, the following holds. If G= (X, Y , E) is a balanced bipartite graph on 2n= 2mq
vertices, i.e. |X| = |Y| =mq, with

δ(G)�

⎧⎨
⎩

n
2 + q− 1 if m is even,
n+3q
2 − 2 if m is odd,

then G has a Kq,q-factor.
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Proof of Theorem 1.1(ii) (Spanning bipartite dense subgraphs). In view of Lemma 3.4, it is
sufficient to show that the graph H (and thus G) is an (r, c)-locally Eulerian graph, where c=(r−1

2
)+ 3(r− 1). Set t= 2r2 + 14r− 6. By Theorem 3.12, there are integers q1 andm1 such that if

n�m1 and t|n, then any balanced bipartite graph H′ with 2n vertices and δ(H′)� n/2+ q1 has a
Kt,t-factor.

Let t′ be an integer, where t� t′ < 2t and t|n− t′. It is known that if n is sufficiently large
and δ(H)� ηn, where 0<η< 1, then H contains a copy of the complete bipartite graph Kt′,t′ .
Define q= q1 + 2t− 1. Note that if n is sufficiently large, then H contains a copy of Kt′,′t and
also, in view of Theorem 3.12, H \Kt′,t′ has a Kt,t-factor. This implies that H can be decomposed
into complete bipartite graphs Kt′,t′ and Kt,t . In view of Lemma 3.6, these graphs are (r, c)-locally
Eulerian graphs, where c= (r−1

2
)+ 3(r− 1). Therefore, H and consequently G are (r, c)-locally

Eulerian graphs. Therefore, by Lemma 3.4, the assertion holds.

In the rest of paper, we focus on the chromatic number of general Kneser graph KG(Km,n, rK2).
In particular, we determine the chromatic number of any permutation graph Sr(m, n) provided
thatm is either even or large enough. For more about permutation graphs, see [6, 12, 19].

Corollary 3.13. Let m, n, r be positive integers, where m� n� r. If m is large enough, then

χ(KG(Km,n, rK2))= ζ (KG(Km,n, rK2))=m(n− r+ 1).

Proof. Using Hall’s theorem, any maximal rK2-free subgraph of Km,n has (r− 1)m edges. Hence,
in view of Lemma 2.2, we have χ(KG(Km,n, rK2))�m(n− r+ 1). In view of Theorem 1.1(ii), ifm
is sufficiently large, then χ(KG(Km,m, rK2))=m(m− r+ 1). Now, we show that for any positive
integer n<m, ifm is sufficiently large, then χ(KG(Km,n, rK2))=m(n− r+ 1). To see this, on the
contrary, suppose that

f : V(KG(Km,n, rK2))−→{1, 2, . . . , χ(KG(Km,n, rK2))}
is a proper colouring of KG(Km,n, rK2), where χ(KG(Km,n, rK2))<m(n− r+ 1). Addm− n new
vertices to the small part of Km,n and join them to all vertices in the other part to construct
Km,m, and call the new edges e1, . . . , e(m−n)m. Extend the colouring f to a proper colouring
g for KG(Km,m, rK2) as follows. If a matching M is a subset of Km,n, then set g(M)= f (M);
otherwise, suppose that i is the smallest positive integer such that ei ∈M, and in this case set
g(M)= i+ χ(KG(Km,n, rK2)). This provides a proper colouring for KG(Km,m, rK2) with less than
m(m− r+ 1) colours, which is a contradiction.

Let s� t be positive integers and let G=G(X, Y) be a connected (s, t)-regular connected
bipartite graph. Theorem 3.2 implies that if s is an even integer, then for any r� |X| we
have χ(KG(G, rK2))= s(|X| − r+ 1). Setting G=Km,n, this result indicates χ(KG(Km,n, rK2))=
χ(Sr(m, n))=m(n− r+ 1) provided that m is an even integer and m� n� r. However, when m
is a small odd value the chromatic number of the permutation graph Sr(m, n) is unknown, we
conjecture that its chromatic number ism(n− r+ 1).

Corollary 3.14. Let m, n, r be positive integers, where m� n� r. If m is even, then

χ(KG(Km,n, rK2))= ζ (KG(Km,n, rK2))=m(n− r+ 1).
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