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Abstract We give a new direct proof of the local Tb theorem in the Euclidean setting and under the
assumption of dual exponents. This theorem provides a flexible framework for proving the boundedness
of a Calderón–Zygmund operator, supposing the existence of systems of local accretive functions. We
assume that the integrability exponents on these systems of functions are of the form 1/p + 1/q � 1,
the ‘dual case’ 1/p + 1/q = 1 being the most difficult one. Our proof is direct: it avoids a reduction to
the perfect dyadic case unlike some previous approaches. The principal point of interest is in the use of
random grids and the corresponding construction of the corona. We also use certain twisted martingale
transform inequalities.
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1. Introduction

Our subject is the local Tb theorem in the classical Euclidean setting. There are many
results under this topic, all of which extend the David–Journé T1 theorem [7] and the
Tb theorem of Christ [6] by giving flexible conditions under which an operator T with
a Calderón–Zygmund kernel extends to a bounded linear operator on L2; the lectures
of Hofmann [10] indicate the range of interest in these types of results. By ‘local’ we
understand that the Tb conditions involve a family of test functions bQ, one for each
cube Q, that should satisfy a non-degeneracy condition on its ‘own’ Q. Furthermore,
both bQ and TbQ are subject to normalized integrability conditions on Q. Symmetric
assumptions are imposed on T ∗.

The goal of this paper is to give a new direct proof of a known local Tb theorem, The-
orem 1.2. This theorem applies, in particular, when the integrability conditions imposed
in the hypotheses are those in duality, namely, 1/p1 + 1/p2 = 1. Our argument is direct
in the sense that it avoids a reduction to the so-called perfect dyadic case such as that
seen in Auscher and Yang [2]. A companion paper [18] addresses a perfect dyadic variant
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of Theorem 1.2 for the full range 1 < p1, p2 < ∞; it contains many of the features of the
argument in the present paper, with significantly fewer technicalities.

We say that T is a Calderón–Zygmund operator if it is a bounded linear operator on
L2(Rn) with the following representation. For every f ∈ L2(Rn),

Tf(x) =
∫

Rn

K(x, y)f(y) dy, x �∈ supp(f),

where the kernel K : Rn ×Rn → C is assumed to satisfy the following estimates for some
η > 0:

|K(x, y)| � |x − y|−n, x �= y; (1.1)

|K(x, y) − K(x′, y)| + |K(y, x) − K(y, x′)| � |x − x′|η
|x − y|n+η

, |x − x′| < 1
2 |x − y|. (1.2)

We define T to be the norm of T as an operator on L2(Rn).

Definition 1.1. Fix 1 < p < ∞. A collection of functions {bQ : Q ⊂ Rn is a cube} is
called a system of p-accretive functions with constant A > 1 if the following conditions
hold for each cube Q:

(1) bQ is supported on Q and
∫

Q
bQ(x) dx = |Q|;

(2) ‖bQ‖p � A|Q|1/p.

We aim to prove the following local Tb theorem. Define p′ = p/(p − 1).

Theorem 1.2. Fix 1 < p1, p2 < ∞ so that 1/p1 + 1/p2 � 1. Suppose that T is a
Calderón–Zygmund operator for which there are systems {bj

Q} of pj-accretive functions,
j ∈ {1, 2}, with a constant A, satisfying the following testing condition: there is a constant
Tloc such that for all cubes Q,∫

Q

|Tb1
Q|p′

2 � T
p′
2

loc|Q|,
∫

Q

|T ∗b2
Q|p′

1 � T
p′
1

loc|Q|.

We then have a quantitative estimate T �n,η,p1,p2,A 1+Tloc for the operator norm of T .

In the case of perfect dyadic operators, the full range 1 < p1, p2 < ∞ of exponents is
allowed, as was shown in [3, p. 48]. It was also hoped that the result could be lifted to the
continuous case. This lifting turned out to be a difficult problem: some of the direct meth-
ods [9,13] to attack it require assumptions that are stronger than the duality assumption.
Theorem 1.2 is due to Auscher and Yang [2] who provide an indirect argument: a reduc-
tion to the perfect dyadic case. The Auscher and Yang paper does not reach the difficult
case 1/p1 + 1/p2 > 1, which is also known as ‘Hofmann’s problem’ as it was emphasized
by Hofmann in [10]. This problem was partially solved by Auscher and Routin [1] via
the adaptation of the Beylkin–Coifman–Rokhlin (BCR) algorithm (see [4,8]) as well as
the martingale transform inequalities; at the same time, Auscher and Routin obtained
a direct proof of Theorem 1.2. An essentially full solution to Hofmann’s problem has
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very recently been obtained by Hytönen and Nazarov [14]. By applying perturbation
techniques for both the operator and the accretive functions, they obtained a variant of
Theorem 1.2 for 1 < p1, p2 < ∞.

Our main contribution is an alternate direct proof of Theorem 1.2. It is desirable to
have such proofs from the viewpoint of the extension of the argument to other settings. As
an example, in the literature [13,15,21] on the local Tb theorem in the non-homogeneous
setting [21] one encounters stronger L∞(Rn) (or BMO) conditions on the TbQs, as well as
on test functions bQ. Some of the techniques in the present paper have been subsequently
applied in order to relax these conditions in the case of square functions [16]. It even
seems plausible that a variant of Theorem 1.2 could be recovered in the non-homogeneous
setting; see [17].

Outline of the proof

Let us turn to a discussion of the proof technique. As is quite common, absorbtion
parameters enter into the proof at several stages, permitting us to resort to the assumed
finite, but non-quantitative, norm bound on T , provided that it is multiplied by a small
absorption parameter. We use the well-known non-homogeneous techniques of [22], in
particular, the powerful technique of ‘good cubes’. In the local Tb setting, there is however
a delicate problem with the typical method of restricting to the good cubes, as is pointed
out by Hytönen–Martikainen [13, Remark 4.1]. An important innovation of the present
paper is the corona construction, which enables us to restrict to good cubes in a natural
way. This construction depends on two random dyadic grids, D1 and D2, that are defined
on independent probability spaces Ωj , j = 1, 2. A cube Q ∈ D1 is called bad if it is close
to the boundary of some significantly larger cube in the other grid, D2. The badness of Q

is an event in Ω2 with probability that can be made arbitrarily small, giving rise to an
absorption parameter. A cube Q is good if it is not bad.

Let us describe the corona construction in three steps. First, by a T1 theorem [7]
it suffices to consider the bilinear form 〈T f̃1, f̃2〉, where |f̃1| = |f̃2| = 1Q0 for a fixed
cube Q0. One projects f̃1 onto the good cubes, calling the result f1, which can be viewed
as a function of Ω1 and Ω2. This also contributes an error term that is small in all Lp

spaces on average and is treated by the first of several absorption arguments. One then
makes a standard selection of stopping cubes S̃j ⊂ Dj and local testing functions bj

S

for S ∈ Sj . The stopping cubes S̃j constitute a sparse collection; in particular, S̃j is a
Carleson sequence of cubes.

In the next step, we construct functions β1
S by projecting b1

S away from those bad cubes
that themselves have S as a parent in S̃1. By doing so, we gain the following desirable
feature: the twisted martingale difference of f1, with respect to β1

S and over a bad cube Q

with S̃1 parent S, will typically be 0. On the downside, β1
S is now a function of Ω1 and

Ω2 and the original collection of stopping cubes S̃1 is not so well adapted to the β1
S . On

the other hand, favourably to us, β1
S can be viewed as a small perturbation of b1

S .
In the last step, to adopt the usage of perturbed functions β1

S in twisted martingale
differences, one cannot run the stopping cube selection process again due to the unac-
ceptable dependencies on Ω1 and Ω2. Instead one invokes absorbtion, arguing that one

https://doi.org/10.1017/S0013091514000340 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091514000340


196 M. T. Lacey and A. V. Vähäkangas

can truncate the stopping tree S̃1 inside a set B1 that is small on average. The corona
construction is now described and its details take up § 2, which is almost half the length
of this paper.

There are also tools in § 3 that are useful, namely martingale transform inequalities
for twisted martingale differences, and the associated half-twisted inequalities that are
universal in that they hold in all Lq-spaces. These inequalities also play a crucial role
in [1, Lemma 5.3] and in [18].

Turning to the remaining part of the argument, one is in a familiar situation [22] in the
sense that only good cubes P ∈ D1 and Q ∈ D2 need to be considered. The double sum
over P , Q is reduced, by symmetry, to the case in which �P � �Q and this sum is further
decomposed into subcases according to the position and size of Q relative to P . The case
of Q deeply inside P admits a direct control by using the twisted martingale transform
inequalities; this ‘inside’ case incorporates the paraproduct term. For experts we remark
that we do not appeal to Carleson measure arguments at any stage of the argument; in
this we follow [1,19,20]. The case of P and Q having the same approximate size and
position requires new perturbation inequalities for the twisted martingale transforms.
This ‘diagonal’ case is the hardest one in many existing arguments, including ours. A
potentially troublesome case is when Q ⊂ 3P \ P and Q is substantially smaller than P ;
however, due to goodness, Q is still relatively far from the boundary of P . We address this
‘nearby’ case by exploiting the smoothness condition on the kernel K, and the universal
half-twisted inequalities. The remaining ‘far’ case depends upon standard off-diagonal
estimates for singular integrals and universal martingale transform inequalities.

Notation

For a cube Q, 〈f〉Q := |Q|−1
∫

Q
f dx and �Q = |Q|1/n is the side length of the cube.

A � B means that A � CB, where C is an unspecified constant which need not be
tracked. The distances in Rn are measured in terms of the supremum norm, |x| = ‖x‖∞
for x ∈ Rn. Given Q ∈ Dj , we denote by ch(Q) the 2n dyadic children of Q. Given
S ⊂ Dj , we write chS(S) for the S-children of S ∈ S: these are the maximal elements S′

of S that are strictly contained in S. For a cube Q ∈ Dj that is contained in a cube in S,
we take πSQ to be the S-parent of Q: this is the minimal element of S that contains Q.

2. The corona

It is a straightforward consequence of the T1 theorem [7] that

T � 1 + sup
Q⊂Rn cube

|Q|−1‖1QT ∗1Q‖L1 + sup
Q⊂Rn cube

|Q|−1‖1QT1Q‖L1 .

Without loss of generality, we can assume that the last term dominates. Fix a cube Q0

for which
T |Q0| � ‖1Q0T1Q0‖L1 . (2.1)

For notational convenience, let us take two functions f̃1, f̃2 such that

|f̃1| = |f̃2| = 1Q0 and ‖1Q0T1Q0‖L1 = 〈T f̃1, f̃2〉.
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The main purpose of the present section is to devise a corona-type decomposition, which
helps us to restrict to good cubes, after which it will be straightforward to complete the
proof of the following lemma.

Lemma 2.1. Fix 0 < υ0 < 1. There are functions f1, f2 and a constant C > 0,
independent of both T and Tloc, such that the following inequalities hold:

‖f̃j − fj‖2 < υ0|Q0|1/2, j = 1, 2; (2.2)

|〈Tf1, f2〉| < {C(1 + Tloc) + υ0T }|Q0|. (2.3)

This lemma and an absorption argument complete the proof of Theorem 1.2. The
construction of the corona is rather complicated. It will be highly dependent upon certain
random constructions and there will be several absorption parameters that lead to the
constant υ0. The main advantage of our corona construction is that it allows us to
restrict to the good cubes in a natural manner; this and other useful features admit a
straightforward proof of inequality (2.3).

2.1. Random grids

We make use of so-called random grids, due to Nazarov et al . [21]. These turned out
to be of fundamental importance; see, for example, [11,12,20,24].

We will have a random grid D1 for the functions f̃1, f1 and a random grid D2 for the
functions f̃2, f2. These random grids are constructed as follows. Let D0 be the standard
dyadic grid in Rn. For a fixed cube Q̂ ∈ D0, let us consider the translated cube

Q := Q̂+̇ω1 := Q̂ +
∑

j : 2−j<�Q

2−jω1
j ,

which is a function of ω1 ∈ Ω1 := ({0, 1}n)Z. Define D1 = {Q̂+̇ω1 : Q̂ ∈ D0}. The natural
uniform probability measure P1 is placed upon Ω1. That is, each component ω1

j , j ∈ Z,
has an equal probability 2−n of taking any of the 2n values and all the components are
independent of each other. The expectation with respect to P1 is denoted by E1. Define Ω2

in the same manner, with an independent copy of Ω1. It will be important to distinguish
between these two copies, so we write ωj ∈ Ωj for the elements of the probability space
that define Dj . The product P1 ⊗ P2 is denoted by P and the corresponding expectation
E1E2 is denoted by E.

We need notation. Define the familiar [11,13,21] and convenient number

ε :=
η

2(η + n)
. (2.4)

Throughout, r � 3/ε should be thought of as a large integer, which satisfies condition
(3) below and whose exact value is assigned later. We say that a cube Q ∈ D1 is bad if
there is P ∈ D2 such that �(P ) � 2r�(Q) and dist(Q, ∂P ) � (�Q)ε(�P )1−ε. Otherwise, Q

is good. The definitions for Q ∈ D2 are similar. The following properties are well known

https://doi.org/10.1017/S0013091514000340 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091514000340


198 M. T. Lacey and A. V. Vähäkangas

for a cube Q ∈ D1:

(1) the goodness/badness of Q is a random variable on Ω2;

(2) the probability πgood := P2(Q is good) is independent of Q;

(3) πbad := 1 − πgood � 2−εr, provided that εr is sufficiently large.

Define the good and bad projections by I = P j
good + P j

bad, where

P j
goodφ :=

∑
Q∈Dj : Q is good

DQφ, j = 1, 2.

Here DQφ =
∑

Q′∈ch(Q){〈φ〉Q′ − 〈φ〉Q}1Q′ is the usual martingale difference associated
with Q.

We have the following proposition on the bad projections; the constant 0 < cq < 1 that
appears in the exponent on the right will be a function of p1 and p2. In the following, we
suppress this dependence in notation, writing only 2−cεr.

Proposition 2.2. If 1 < q < ∞ and {j, k} = {1, 2}, then there is a constant cq > 0
such that

Ek‖P j
badφ‖q

q � 2−cqεr‖φ‖q
q. (2.5)

Here ωj ∈ Ωj is fixed and φ ∈ Lq is any function that is independent of sequences
ωk ∈ Ωk.

Proof. The basic idea is to apply the Marcinkiewicz interpolation theorem to the
linear operator P j

bad : Lq(dx) → Lq(Pk ⊗ dx). The projection to bad cubes is a martingale
transform [5], and hence the following inequality with no decay holds:

Ek‖P j
badφ‖p

p � sup{‖P j
badφ‖p

p : ωk ∈ Ωk} � ‖φ‖p
p, 1 < p < ∞.

Thus, it suffices to verify the claimed decay for q = 2. To this end, by independence,

Ek‖P j
badφ‖2

2 = Ek
∑

Q∈Dj

Q is bad

‖DQφ‖2
2 = πbad

∑
Q∈Dj

‖DQφ‖2
2 = πbad‖φ‖2

2.

Indeed, both Dj and ‖DQφ‖2
2 for Q ∈ Dj are independent of ωk ∈ Ωk and the badness

of Q ∈ Dj is a random variable on Ωk, {j, k} = {1, 2}. �

2.2. Selection of fj

We will prove Lemma 2.1 by averaging over random grids. Fix j ∈ {1, 2}. Let Aj
∗

denote all (at most 2n) cubes Q ∈ Dj such that Q ∩ Q0 �= ∅ and �Q0 � �Q < 2�Q0. Let
Aj be all cubes in Dj that are contained in some Q ∈ Aj

∗. Recall that the function f̃j is
chosen in connection with (2.1) and that it is equal to 1Q0 in absolute value. We define
an approximate fj of this function to be

fj :=
∑

Q∈Aj
∗

〈f̃j〉Q1Q +
∑

Q∈Aj

Q is good

DQf̃j .
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In view of Proposition 2.2, we have

E‖f̃j − fj‖2
2 � 2−cεr|Q0|. (2.6)

Hence, it suffices to estimate E|〈Tf1, f2〉|.
The functions fj lie in BMO: a dyadic variant associated with the grid Dj . It follows

from the associated John–Nirenberg inequality that

‖fj‖q � |Q0|1/q, 1 < q < ∞, (2.7)

with the implied constant independent of sequences ω1 and ω2. The fact that the functions
fj can nevertheless be unbounded creates a minor set of difficulties for us.

2.3. The setup for stopping cubes construction

In order to accommodate the reduction to good cubes, we will need a significant modifi-
cation of the usual selection process of stopping trees and local b functions. The following
definition will help to explain the end result that we are after; it is convenient to denote
T 1 = T and T 2 = T ∗.

Definition 2.3. Fix constants 0 < τ , δ < 1 and let {j, k} = {1, 2}. A collection
of integrable functions {βj

S : S ∈ Sj ⊂ Dj} is a stopping datum (a perturbed stopping
datum) for a collection Gj ⊂ Dj of cubes if the following conditions hold with Aj = 1

2 ,
Bj = δ−1Apj , Cj = δ−1T

p′
k

loc (in the case of perturbed stopping data: Aj = 1
4 , Bj �

δ−1Apj and Cj � δ−1T
p′

k

loc + υ
p′

k
1 T p′

k for some constant 0 < υ1 < 1).

(1) Every Q ∈ Gj is contained in some S ∈ Sj . The same holds for every child Q′ ∈
ch(Q), whose parent πSj Q′ need not equal πSj Q, even if Q is a minimal cube in Gj .

(2) If Q ∈ Gj with πSj Q = S (or Q ∈ ch(R) with R ∈ Gj and πSj Q = S), then

(a) 〈βj
S〉Q � Aj (do not divide by zero),

(b) 〈|Mβj
S |pj 〉Q � Bj (local norm of Mβj

S controlled) and

(c) 〈|T jβj
S |p′

k〉Q � Cj (local norm of T jβj
S is controlled).

(3)
∑

S′∈chSj (S)|S′| � τ |S| for all S ∈ Sj , i.e. Sj is a sparse collection of cubes.

For Q ∈ Gj and φ ∈ L1
loc, we define a twisted martingale difference by

Δβj

Q φ :=
∑

Q′∈ch(Q)

{
〈φ〉Q′

〈βj
πSj Q′〉Q′

βj
πSj Q′ − 〈φ〉Q

〈βj
πSj Q〉Q

βj
πSj Q

}
1Q′ . (2.8)

This is well defined, as Q has an Sj parent, and there is no division by zero; see conditions
(1) and (2) (a). We also define a half-twisted martingale difference by

D̃βj

Q φ :=

{ ∑
Q′∈ch(Q)

πSj Q=πSj Q′

〈φ〉Q′

〈βj
πSj Q′〉Q′

1Q′

}
− 〈φ〉Q

〈βj
πSj Q〉Q

1Q. (2.9)
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Observe that here we do not multiply by a βj function and that the sum over the
children excludes those with a different Sj parent (in particular, there is no change in
the βj function: πSj Q′ = πSj Q).

The following lemma provides the reduction to good cubes. In particular, it helps us
to eliminate the martingale differences that are associated with bad cubes.

Lemma 2.4. Suppose that Λ > 1 and 0 < υ1 < 4−1−n. Fix j ∈ {1, 2}. There is a
collection Gj ⊂ Dj of cubes, and a perturbed stopping datum {βj

S : S ∈ Sj} for Gj , so
that the following four conditions hold.

(1) Every cube Q ∈ Gj is good.

(2) For all Q ∈ Gj , we have 〈|fj |〉Q � Λ.

(3) Suppose that Q ∈ Gj with a child Q′ and that S ∈ Sj with πSj Q ⊂ S. Define a
constant λQ′ by

λQ′1Q′ := 1Q′

∑
P∈Gj : P⊃Q

πSj P=S

D̃βj

P fj . (2.10)

We then have |λQ′ | � Λ.

(4) Assuming Λ−1 + Λυ−1
1 2−cεr < 1, there holds

E

∣∣∣∣〈Tf1, f2〉 −
∑

P∈G1

∑
Q∈G2

〈TΔβ1

P f1, Δ
β2

Q f2〉
∣∣∣∣

� C1{1 + Tloc + (υ1 + Λ−1 + Λυ−1
1 2−cεr)T }|Q0|. (2.11)

Here, C1 = C1(p1, p2, n,A) does not depend upon the absorption parameters υ1,
Λ and r.

Before the lengthy proof of this lemma, let us indicate its usage.

A conditional proof of Lemma 2.1. In order to complete the proof of Lemma 2.1,
it remains to verify Lemma 2.4 and the following inequality:∣∣∣∣ ∑

P∈G1

∑
Q∈G2

〈TΔβ1

P f1, Δ
β2

Q f2〉
∣∣∣∣ � {C2{1 + Tloc} + C3rυ1Λ

2T }|Q0|. (2.12)

We emphasize that inequality (2.12) is uniform in ω1 and ω2 and that it is distinct
from (2.11). The constant C3 = C3(p1, p2, n, η,A), which is independent of absorption
parameters, and the product rυ1Λ

2 of absorption parameters appear on the right. The
constant

C2 = C2(p1, p2, n, η,A, r, Λ, υ1)

is allowed to depend also upon the absorption parameters. Returning to the proof of
Lemma 2.1, let us consider (2.6), (2.11) and (2.12). By taking Λ > 1 sufficiently large
and then choosing r large enough and assigning υ1 = r−2, the proof is complete; apart
from Lemma 2.4 and inequality (2.12). �
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At this stage, let us make several clarifying remarks.

Remark 2.5. Hytönen and Martikainen [13, Remark 4.1] have pointed to serious con-
cerns with some existing approaches to the reduction to good cubes in local Tb theorems.
The substance of the problem arises from the fact that the twisted martingale differences
depend upon the choice of grid and the collection of local b functions, making averaging
arguments, such as the one used in the proof of Proposition 2.2, not transparently true.
Our corona construction establishes a transparent reduction to good cubes in (2.12) and
this is one of our main contributions.

Remark 2.6. The proof of inequality (2.12), taken up in §§ 4 and 5, is now largely
standard in nature, following the lines of [22,25] and including innovations from [19,20]
to avoid auxiliary Carleson measure estimates. However, certain perturbation inequalities
are needed when treating cubes that are nearby, both in size and position. There are also
advantages for us.

(1) We need only consider good cubes, which is the primary goal of the corona con-
struction.

(2) By normalizing both f1 and f2 with a factor Λ−1, the sums (2.10) are bounded
by c � 1, which is related to the telescoping property needed in the control of
paraproduct terms. This normalization, allowing us to set Λ = 1, is assumed while
proving inequality (2.12) in the beginning of § 3 and thereafter.

Remark 2.7. The dependence of the quantitative estimates on the parameters aside
from T and Tloc is not straightforward and typically we do not track it. However, we
need to track the dependence of a constant c on absorption parameters r, Λ and υ1 if it
appears in an expression c · T .

The rest of this section is taken up with the proof of Lemma 2.4.

2.4. Auxiliary stopping data

Fix j ∈ {1, 2}. We construct auxiliary stopping data {bj
S : S ∈ S̃j} for the collection

Aj , which was defined when selecting the function fj . The perturbed stopping data will
be later constructed by using this auxiliary stopping data. The following construction of
S̃j and {bj

S : S ∈ S̃j} is fairly standard and it only depends upon ωj .
Initialize S̃j to be Aj

∗. For each cube S in this collection, consider the function bj
S

given to us by the local Tb hypothesis (see the formulation of Theorem 1.2). Add to S̃j

the maximal dyadic descendants Q ⊂ S, which either fail any of the criteria (a)–(c) in
Definition 2.3 with βj

S := bj
S , or fail the condition

inf
x∈Q

M |bj
S |pj (x) � δ−1Apj . (2.13)

Concerning these stopping conditions, let ES be the union of the maximal descendants
Q of S such that 〈bj

S〉Q < 1
2 . We have, using the higher integrability of bj

S ,

|S| =
∫

S

bj
S dx =

∫
ES

bj
S dx +

∫
S\ES

bj
S dx � 1

2 |S| + A|S \ ES |1/p′
j |S|1/pj .
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Hence, (2A)−p′
j |S| � |S \ES |. Next, let us consider the union FS of the maximal descen-

dants Q of S, failing (2.13) or one of the mentioned criteria (b), (c). By inspection, we
have |FS | � δ|S|. Therefore, with a choice of δ = δ(pj , n,A) and τ = τ(pj , n,A), we can
continue the construction of S̃j inductively to meet conditions (1)–(3) in Definition 2.3.

Below, we will refer to S̃j and its subsets as collections of stopping cubes.

2.5. Perturbation of the b functions

In a departure from standard arguments, we modify the functions bj
S , S ∈ S̃j , that are

already selected. For S ∈ S̃j , we define

βj
S := bj

S − β̃j
S , where β̃j

S :=
∑

Q∈Aj : πS̃j Q=S
Q is bad

DQbj
S . (2.14)

Note that the sum defining β̃j
S is formed by using the classical martingale differences that

are associated with bad cubes in Aj that have the same stopping parent. Particular care
must be taken with these perturbations βj

S as they are now functions of both ω1 and ω2.
Nevertheless, β̃j

S is a small function on average.

Lemma 2.8. For {j, k} = {1, 2} and all S ∈ S̃j , ‖β̃j
S‖BMO � 1 holds and, moreover,

Ek‖β̃j
S‖q

q � 2−cεr|S|, 1 < q < ∞.

Proof. Let Q ∈ Dj be such that πS̃j Q = S. Writing εQ′ := 1Q′⊂Q1πS̃j Q′=S1Q′ is bad,
we obtain( ∫

Q

|β̃j
S − 〈β̃j

S〉Q|pj dx

)1/pj

=
∥∥∥∥ ∑

Q′⊂Q

DQ′ β̃j
S

∥∥∥∥
pj

=
∥∥∥∥ ∑

Q′∈Dj

εQ′DQ′(1Qbj
S)

∥∥∥∥
pj

� ‖1Qbj
S‖pj

� 〈|Mbj
S |p1〉1/pj

Q |Q|1/pj

� |Q|1/pj .

Here, we have appealed to the boundedness of martingale transforms and the stopping
rules. The remaining cases either reduce to this or are trivial. Hence, the BMO assertion
is true.

Concerning the Lq estimate, we apply Proposition 2.2 and the John–Nirenberg inequal-
ity:

Ek‖β̃j
S‖q

q = Ek

∥∥∥∥P j
bad

[ ∑
Q : πS̃j Q=S

DQbj
S

]∥∥∥∥q

q

� 2−cεr

∥∥∥∥ ∑
Q : πS̃j Q=S

DQbj
S

∥∥∥∥q

q

� 2−cεr|S|
∥∥∥∥ ∑

Q : πS̃j Q=S

DQbj
S

∥∥∥∥q

BMO
.

By arguing as above, we finish the proof. �
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2.6. Truncation of the stopping tree

We will use the functions βj
S as the basis of perturbed stopping data (see Lemma 2.4)

but the path to this is not yet clear for the following reasons:

(A) the functions β1
S are not necessarily suitable for forming twisted martingale differ-

ences;

(B) even if defined, the twisted martingale differences associated with bad cubes need
not vanish; and

(C) the functions fj are unbounded.

A truncation of the stopping tree will address all three of these issues.
Concerning point (B), there is a simple sufficient condition for a twisted martingale

difference to be identically 0.

Proposition 2.9. Assume that Q ∈ Aj is bad and that no child of Q is in S̃j . Suppose
that 〈βj

S〉Q �= 0, where S = πS̃j Q. Then both Δβj

Q fj and D̃βj

Q fj are well defined using S̃j

in parent selectors for βj functions, and Δβj

Q fj ≡ 0 ≡ D̃βj

Q fj .

Proof. By assumptions and definitions, the averages of fj and βj
S do not change in

moving from cube Q to a child of Q. By inspection of (2.8) and (2.9), the ratios in the
definition of either martingale difference of fj are all well defined and equal, and hence
they cancel. �

The previous considerations lead to the following three types of undesirable cubes
Q ∈ Aj , where Λ > 1 and 0 < υ1 < 4−1−n are absorption parameters and {j, k} = {1, 2}.

Type A: {〈|Mβ̃j
πS̃j Q|pj 〉Q � υ

pj

1 or 〈|T j β̃j
πS̃j Q|p′

k〉Q � υ
p′

k
1 T p′

k} or Q has a

child S ∈ S̃j such that {〈|Mβ̃j
S |pj 〉S � υ

pj

1 or 〈|T j β̃j
S |p′

k〉S � υ
p′

k
1 T p′

k}.

Type B: Q is not of Type A and Q has a child in S̃j and Q is bad.

Type C: Q is neither of Type A nor of Type B and 〈|fj |〉Q > Λ.

Each of these three types depends upon both ω1 and ω2. Let Bj,α be the collection of
maximal cubes in Aj of Type α, α = A, B, C, and let Bj be the maximal cubes in the
union of these three collections. Define Bj,α :=

⋃
{Q : Q ∈ Bj,α} and Bj := Bj,A ∪Bj,B ∪

Bj,C .
Let us verify that the sets Bj are, on average, small in measure. Certain error terms

coming from the truncation can then be later absorbed.

Lemma 2.10. For {j, k} = {1, 2}, we have

E|Bj | = EjEk|Bj | � {Λ−2pj + υ
−pj

1 2−cεr}|Q0|.
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Proof. We first prove that

Ek|Bj,A| � υ
−pj

1 2−cεr|Q0|, where {j, k} = {1, 2}. (2.15)

Recall that the collection S̃j is only a function of ωj . By sparseness,
∑

S∈S̃j |S| �
|Q0|/(1 − τ) � |Q0|. A cube is of Type A for four potential reasons. First, fix S ∈ S̃j

and let Bj,A1
S be the maximal cubes Q ∈ Aj with πS̃j Q = S and 〈|Mβ̃j

S |pj 〉Q � υ
pj

1 . By
Lemma 2.8,

Ek
∑

Q∈Bj,A1
S

|Q| � υ
−pj

1 Ek

∫
S

|β̃j
S |pj � υ

−pj

1 2−cεr|S|.

Second, let Bj,A2
S be the maximal cubes Q ∈ Aj with πS̃j Q = S, and 〈|T j β̃j

S |p′
k〉Q �

T p′
kυ

p′
k

1 . Then, using the a priori norm bound cT for the operator T j on Lp′
k and inequal-

ity p′
k � pj ,

Ek
∑

Q∈Bj,A2
S

|Q| � υ
−p′

k
1 Ek

∫
S

|β̃j
S |p′

k � υ
−pj

1 2−cεr|S|.

Third, let Bj,A3 be the collection of cubes Q in Aj having a child S ∈ S̃j with
〈|Mβ̃j

S |pj 〉S � υ
pj

1 . Then,

Ek
∑

Q∈Bj,A3

|Q| � υ
−pj

1

∑
S∈S̃j

Ek

∫
S

|β̃j
S |pj � υ

−pj

1 2−cεr
∑

S∈S̃j

|S| � υ
−pj

1 2−cεr|Q0|.

A similar estimate for the remaining collection Bj,A4 of cubes Q in Aj , having a child
S ∈ S̃j such that 〈|T j β̃j

S |p′
k〉S � υ

p′
k

1 T p′
k , finishes the proof of inequality (2.15).

Let us then consider the set Bj,B . The collection S̃j is only a function of ωj and,
holding that variable fixed, the event that S ∈ S̃j has a bad parent is an event in Ωk.
And so,

Ek|Bj,B | � 2nEk
∑

S∈S̃j

|S|1πS is bad � 1
1 − τ

2−εr|Q0| � 2−εr|Q0|. (2.16)

For the remaining set Bj,C , recall that fj is a dyadic BMO function, uniformly over ω1

and ω2. More precisely, by Chebyshev’s inequality and (2.7), we have

|Bj,C | =
∑

Q∈Bj,C

|Q| � |{Mfj > Λ}| � Λ−2pj ‖Mfj‖2pj

2pj
� Λ−2pj |Q0|. (2.17)

The proof is completed by combining inequalities (2.15)–(2.17). �

Next we define the collection Gj and the perturbed stopping data for Gj , whose exis-
tence is stated in Lemma 2.4. This is done by truncating the stopping tree S̃j at Bj .

Definition 2.11. Take Gj to be all good cubes in Aj that are not contained in any
cube in Bj . Set Sj to be S̃j minus all cubes that are strictly contained in some Q ∈ Bj .
For convenience, we also denote by Rj ⊃ Gj all cubes in Aj , both good and bad, not
contained in any cube in Bj . Take the data for Gj to be {βj

S : S ∈ Sj}.

Let us emphasize the fact that Q ∈ Rj is not of any Type α, α = A, B, C. In the
remaining part of this section, we will check all the assertions in Lemma 2.4.
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Verification of the perturbed stopping data

First we show that {βj
S : S ∈ Sj} is indeed a perturbed stopping data for Gj , as

claimed. By construction,

πSj Q = πS̃j Q, πSj Q′ = πS̃j Q
′ (2.18)

if Q ∈ Rj and Q′ ∈ ch(Q). Accordingly, {βj
S : S ∈ Sj} satisfies property (1) in the

Definition 2.3 of perturbed stopping data. Another consequence of (2.18) is that we can
compute the martingale differences Δβj

P and D̃βj

P for the case of P ∈ Rj by using freely
either Sj or S̃j in the parent selectors for βj functions.

The sparseness property (3) is trivial for Sj , since S̃j satisfies it and Sj ⊂ S̃j . The
remaining properties (2) (a)–(c) of the perturbed stopping data follow from the next
lemma.

Lemma 2.12. Fix j ∈ {1, 2} and a cube S ∈ Sj . The following conditions then hold.

(1) 〈βj
S〉S = 1.

(2) 〈|βj
S |pj 〉S � Apj .

(3) Suppose that Q ∈ Rj and πSj Q = S (or Q is a child of a cube in Rj and πSj Q = S).
Then the following hold:

(a) 〈βj
S〉Q � 1

4 ;

(b) 〈|Mβj
S |pj 〉Q � δ−1Apj ;

(c) 〈|T jβj
S |p′

k〉Q � δ−1T
p′

k

loc + υ
p′

k
1 T p′

k , where {j, k} = {1, 2}.

Proof. By Definition (2.14), |S| =
∫

S
bj
S dx =

∫
S

βj
S dx, so property (1) holds. The

boundedness of martingale transforms implies property (2):∫
S

|βj
S |pj dx �

∫
S

|bj
S |pj dx � Apj |S|.

Properties (3) (a)–(c) are a consequence of (2.18) and the failure of the condition
defining Type A cubes. First let us consider property (3) (a). If Q ∈ Rj and πSj Q = S,
then

〈βj
S〉Q � 〈bj

S〉Q − 〈|Mβ̃j
S |pj 〉1/pj

Q � 1
2 − υ1,

which is greater than 1
4 (recall that stopping data is slightly stronger on this point).

If Q is a child of a cube in Rj and πSj Q = S, then either Q ∈ Sj , in which case
〈βj

S〉Q = 〈βj
Q〉Q = 1, or property (3) (a) follows as above by first comparing the average

of |β̃j
S | on Q to its average on πQ. Let us then consider (3) (b) and (3) (c) for Q ∈ Rj .

By sub-linearity and stopping rules,

〈|Mβj
S |pj 〉Q � 〈|Mbj

S |pj 〉Q + 〈|Mβ̃j
S |pj 〉Q � δ−1Apj + υ

pj

1 � δ−1Apj .

Likewise,

〈|T jβj
S |p′

k〉Q � 〈|T jbj
S |p′

k〉Q + 〈|T j β̃j
S |p′

k〉Q � δ−1T
p′

k

loc + υ
p′

k
1 T p′

k .
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These properties for a child Q of a cube in Rj follow by comparing the average on Q to
that on πQ for the case in which Q �∈ Sj , and by the stopping rules for the case in which
Q ∈ Sj . �

Verification of conditions (1)–(3) in Lemma 2.4

Every cube Q ∈ Gj is good by definition and, by construction, 〈|fj |〉Q � Λ (recall
Type C cubes). Let us then consider property (3), concerning the sum of half-twisted
differences in (2.10). For a fixed Q ∈ Gj with a child Q′ and S ∈ Sj with πSj Q ⊂ S, let
us consider the constant λQ′ defined by

λQ′1Q′ := 1Q′

∑
P∈Aj : P⊃Q

πSj P=S

D̃βj

P fj .

In contrast to the series in (2.10), the series above extends over all cubes with the same
Sj parent. Nevertheless, we are not redefining λQ′ . Indeed, if P is a bad cube in the series
above, then P ∈ Rj and it has no stopping children in S̃j due to the construction; by
(2.18) and Proposition 2.9, we find that D̃βj

P fj ≡ 0 so the two series, in fact, coincide.
Then, by inspection of (2.9), the series above on Q′ is telescoping to the difference

of two ratios (or to a single ratio). On the numerator of the ratios are averages of fj ,
which are bounded by the definition of Type C cubes. The denominator of the ratios is
an average of βj

S , which is bounded below by 1
4 because of Lemma 2.12 (3) (a). All in all,

we find that |λQ′ | � Λ.

2.7. Completion of the proof of Lemma 2.4

The proof of (2.11) remains and we need an appropriate representation formula for the
fjs so that we can compute the difference in (2.11). We begin with certain preparations
for the representation Lemma 2.14.

Define φj :=
∑

Q∈Bj φj
Q, where φj

Q = fj1Q if Q ∈ Bj ∩ Aj
∗ and, otherwise,

φj
Q := fj1Q − 〈fj〉Q

〈βj
πSj Q〉Q

βj
πSj Q1Q. (2.19)

For the following lemma, recall that the set Bj is a function of both ω1 and ω2, and it
is of small measure in expectation.

Lemma 2.13. We have ‖φj‖pj
pj � Λpj |Bj | for j ∈ {1, 2}.

Proof. If Q ∈ Bj ∩ Aj
∗, then, by (2.7), ‖φj

Q‖pj � |Q0|1/pj � |Bj |1/pj . There are at
most 2n such cubes. For the remaining terms we notice that, since fj is in BMO and the
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average values of fj are controlled,∥∥∥∥ ∑
Q∈Bj\Aj

∗

φj
Q

∥∥∥∥pj

pj

=
∑
Q

∥∥∥∥fj1Q − 〈fj〉Q

〈βj
πSj Q〉Q

βj
πSj Q1Q

∥∥∥∥pj

pj

�
∑
Q

{
‖fj1Q − 〈fj〉Q1Q‖pj

pj
+

∥∥∥∥〈fj〉Q1Q − 〈fj〉Q

〈βj
πSj Q〉Q

βj
πSj Q1Q

∥∥∥∥pj

pj

}

� Λpj

∑
Q∈Bj\Aj

∗

|Q| � Λpj |Bj |. (2.20)

We used the definition of Type C cubes and Lemma 2.12, along with the observation
that the parent of Q is in Rj if Q ∈ Bj \ Aj

∗. �

Concerning the representation of fj , we have the following lemma.

Lemma 2.14. Fix j ∈ {1, 2}. Then the following equality holds both pointwise almost
everywhere and in Lpj :

fj =
∑

Q∈Aj
∗\Bj

〈fj〉Qβj
Q +

∑
Q∈Gj

Δβj

Q fj + φj . (2.21)

Proof. Let Q be any bad cube, which is not contained in a cube in Bj . By construction
and Proposition 2.9, Δβj

Q fj ≡ 0. It follows that for any x ∈ Bj , the sum above is in fact
finite, and telescoping. By inspection, it is equal to fj(x).

Consider x �∈ Bj . Then, by Proposition 2.9, for any cube P � x,

∑
Q∈Aj

∗\Bj

〈fj〉Qβj
Q(x) +

∑
Q∈Gj : P�Q

Δβj

Q fj(x) =
〈fj〉P

〈βj
πSj

P 〉P

βj
πSj P (x).

Now, since Sj is sparse, almost every x is in only a finite number of cubes S ∈ Sj . Hence,
the proof is finished by appealing to a straightforward modification of [13, Lemma 3.5].

�

We also need a Hardy inequality. For a proof, we refer the reader to [1, § 9].

Lemma 2.15. Let Q be any cube in Rn and let κ > 1. For every 1 < p < ∞,∫
κQ\Q

∫
Q

|g1(y)g2(x)|
|x − y|n dy dx � ‖g1‖p‖g2‖p′ , 1/p + 1/p′ = 1, (2.22)

holds. The implied constant depends upon κ, p, n.

Proof of (2.11). When expanding 〈Tf1, f2〉 by using (2.21), there are a number of
error terms. They are treated by the following estimates and their duals, as applicable,
which we do not directly state. For P ∈ A1

∗ \ B1, the cubes P and Q0 are roughly of the
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same size so that |〈f1〉P | � 1 by inequality (2.7). Furthermore, using the local Tb hypoth-
esis, the definition of Type A cubes and the Hardy inequality stated in Lemma 2.15,

|〈Tβ1
P , f2〉| � |〈Tβ1

P , f21P 〉| + |〈Tβ1
P , f216P\P 〉| � {1 + Tloc + υ1T }|Q0|.

And for P ∈ A1
∗\B1 and Q ∈ A2

∗\B2, likewise, we have |〈Tβ1
P , β2

Q〉| � {1+Tloc+υ1T }|Q0|.
Next, for a cube P as above, there holds, by the assumed norm inequality on T and
Lemmas 2.13 and 2.10,

E{|〈Tβ1
P , φ2〉| + |〈Tφ1, f2〉|} � T {Λ−1 + Λυ−1

1 2−cεr}|Q0|.

Lastly, when Λ−1 + Λυ−1
1 2−cεr < 1, we have E|〈Tφ1, φ2〉| � T {Λ−1 + Λυ−1

1 2−cεr}|Q0|.
When combined with (2.7), these inequalities, and their duals, complete the proof
of (2.11). �

The proof of Lemma 2.4 and the corona construction are both complete.

3. Useful inequalities

3.1. The martingale transform inequalities

We recall essential tools that we will need. Fix a function b supported on a dyadic∗

cube S0, satisfying
∫

b dx = |S0| and ‖b‖p � B|S0|1/p, where 1 < p < ∞ is fixed. We
will consider a fixed but arbitrary collection T of disjoint dyadic cubes inside S0, the
‘terminal cubes’. Let Q be all dyadic cubes contained in S0 but not contained in any
terminal cube T ∈ T . We require that there is σ ∈ (0, 1) such that, for all Q ∈ Q,∣∣∣∣

∫
Q

b dx

∣∣∣∣ � 4−1|Q| and
∫

Q

|b|p dx � σ−1Bp|Q|. (3.1)

For each terminal cube T , we have a function bT supported on T and satisfying
∫

bT dx =
|T | and ‖bT ‖p � B|T |1/p. If the conditions above are met, then we say that the collection,
comprised of functions b and bT , T ∈ T , is admissible. We will not keep track of the
constants σ and B, and the implied constants will depend upon them.

For Q ∈ Q we define the (half-) twisted martingale differences

Db
Qf :=

∑
Q′∈ch(Q)\T

{
〈f〉Q′

〈b〉Q′
− 〈f〉Q

〈b〉Q

}
1Q′ ,

D̃b
Qf :=

{ ∑
Q′∈ch(Q)\T

〈f〉Q′

〈b〉Q′
1Q′

}
− 〈f〉Q

〈b〉Q
1Q,

Δb
Qf :=

∑
Q′∈ch(Q)

{
〈f〉Q′

〈bQ′〉Q′
bQ′ − 〈f〉Q

〈b〉Q
b

}
1Q′ ,

where we set bQ′ = b if Q′ �∈ T and otherwise bQ′ is defined as above.
The following theorem is proved in [1, Lemma 5.3] and [18, § 2].

∗ In our applications, the underlying dyadic grid will be Dj , j ∈ {1, 2}.
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Theorem 3.1. Suppose that b and bT , T ∈ T , constitutes an admissible collection.
Then the following inequalities hold for all selections of constants |εQ| � 1 indexed by
Q ∈ Q: ∥∥∥∥ ∑

Q∈Q
εQD̃b

Qf

∥∥∥∥
q

+
∥∥∥∥ ∑

Q∈Q
εQDb

Qf

∥∥∥∥
q

� ‖f‖q, f ∈ Lq, 1 < q < ∞;

∥∥∥∥ ∑
Q∈Q

εQΔb
Qf

∥∥∥∥
p

� ‖f‖p, f ∈ Lp,

where 1 < p < ∞ is the exponent associated with the admissible function b.

We will recourse to the following theorem several times. As well as Theorem 3.1, it
depends upon the sparseness of the stopping tree Sj .

Theorem 3.2. Fix j ∈ {1, 2}. For each cube Q in Rn and any selection of coefficients
|εP | � 1, ∥∥∥∥ ∑

P∈Gj : P⊂Q

εP Δβj

P fj

∥∥∥∥
pj

� |Q|1/pj . (3.2)

The same statement also holds true with Δβj

P replaced by Δbj

P .

Before the proof of this theorem, let us make the following instructive remark.

Remark 3.3. Of particular importance later will be the following assignments. For a
fixed S0 ∈ Sj that is not contained in a cube in Bj , we set T ⊂ Dj to be maximal cubes
in the collection

chSj (S0) ∪ {T : T ⊂ S0, T ∈ ch(R), R ∈ Bj}.

By construction of our perturbed stopping data, it is straightforward to verify that the
assignments β := βj

S0
and

βT :=

{
bj
T T ∈ ch(R) for some R ∈ Bj ,

βj
T otherwise

yield an admissible collection with p = pj and constants σ � δ and B � A. Likewise,
setting b := bj

S0
and bT := bj

T if T ∈ T yields admissible functions. Observe also that
P ∈ Q if P ∈ Gj satisfies πSj P = S0. Under the same assumption, we also have Δβ

P = Δβj

P

and Δb
P = Δbj

P . Here, the right-hand sides are defined in (2.8). Observe that the terminal
functions βT and bT for T ∈ T ∩ ch(R), R ∈ Bj , do not play any role in these last
identities.

Proof of Theorem 3.2. By considering the disjoint collection of those maximal cubes
in Gj that are contained in Q, we are reduced to the case of Q ∈ Gj . By Theorem 3.1
and Remark 3.3, we first obtain a weaker inequality. Indeed, letting S = πSj Q, we have∥∥∥∥∥ ∑

P : πSj P=S
P⊂Q

εP Δβj

P fj

∥∥∥∥∥
pj

� ‖fj1Q‖pj � |Q|1/pj . (3.3)
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We have the last inequality due to the construction of functions fj : compare to inequal-
ities in (2.20) and recall the normalization of fj by Λ−1.

We apply (3.3) recursively for the remaining terms, for which πSj P � Q. Using the
sparseness of the collection Sj , one can easily complete the proof. �

We need a variant of the q-universal inequality for the half-twisted differences to control
several error terms that arise. For P ∈ Gj , let us define

�βj

P fj := |D̃βj

P fj | + χ̃P , (3.4)

where

χ̃P :=

{
1P if a child of P is in Sj ,

0 otherwise.

The functions �bj

P fj are defined analogously. If the applied function βj or bj is clear
from the context, we omit the superscripts. Now, the following q-universal inequality is
a consequence of the sparseness of the stopping cubes Sj and the half-twisted inequality,
Theorem 3.1, ∥∥∥∥

[ ∑
P∈Gj : P⊂Q

|�βj

P fj |2
]1/2∥∥∥∥

q

� |Q|1/q, 1 < q < ∞. (3.5)

Here Q is any cube in Rn and the corresponding inequality is also true if we use
bj-functions. For further details concerning the proof of (3.5), we refer the reader
to [18, § 5].

3.2. An estimate for perturbations of b

For a later discussion of the diagonal term in § 5.3, we need a novel perturbation inequal-
ity for the twisted martingale differences. The estimate is general in nature, but in the
interest of brevity we state it in the form needed.

Theorem 3.4. For j ∈ {1, 2} and 0 < υ1 < 4−1−n, we have the following inequality:

∥∥∥∥
[ ∑

Q∈Gj

∣∣∣∣{Δβj

Q − Δbj

Q }fj

∣∣∣∣2
]1/2∥∥∥∥

pj

� υ1|Q0|1/pj . (3.6)

Proof. Let R0 = Aj
∗ and inductively set Rk+1 to be the maximal cubes S′ ∈ Sj

strictly contained in any S ∈ Rk. Since Sj is sparse, we have
∑

S∈Rk |S| � τk|Q0| if
k � 0. By disjointness of each collection Rk, the left-hand side of (3.6) is bounded by

∞∑
k=0

[ ∑
S∈Rk

∥∥∥∥∥
[ ∑

Q∈Gj

πSj Q=S

|{Δβj

Q − Δbj

Q }fj |2
]1/2∥∥∥∥∥

pj

pj

]1/pj

.
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Thus, it suffices to show that∥∥∥∥∥
[ ∑

Q∈Gj

πSj Q=S

|{Δβj

Q − Δbj

Q }fj |2
]1/2∥∥∥∥∥

pj

� υ1|S|1/pj , S ∈ Rk, k � 0, (3.7)

for then sparseness will complete the proof. Below, we regard S ∈ Sj as fixed and set
p = pj and f = fj . The basic reduction to a square function involving summation over
a (possibly larger) family of cubes Q ∈ Q and differences Δβ

Q and Δb
Q is described in

Remark 3.3 with S0 := S.
We record useful observations. Without loss of generality, we may assume that the

cube S0 is not contained in any cube in Bj . Thus, a case study using the definition of
Type C cubes shows that ‖f1S0‖p � |S0|1/p and that there is a constant 0 < λ � 1,
independent of the absorption parameters, such that |〈f〉Q| � λ if Q ∈ Q ∪ T . (Recall
that f is in dyadic BMO and the normalization by Λ = 1 takes place, Λ �= λ.)

Let us then quantify that b and β, and the corresponding terminal functions, are ‘close’;
we define υ := 2n/pυ1 < 1

8 . That S0 is not contained in any cube in Bj , combined with
the definition of Type A cubes, yields∫

Q

|b − β|p =
∫

Q

|β̃j
S0

|p � 2nυp
1 |Q| = υp|Q|, Q ∈ Q. (3.8)

We turn to the cubes T ∈ T ; see Remark 3.3. If T is a child of a cube in Bj , then bT = βT .
In the complementary case, T ∈ chSj (S0), and its parent is not contained in any cube
in Bj . Thus,

∫
T

|bT − βT |p =
∫

T
|β̃j

T |p � υp
1 |T | by the definition of Type A cubes. In any

case, ∫
T

|bT − βT |p � υp
1 |T | � υp|T |, T ∈ T . (3.9)

This concludes the ‘close’-type estimates.
We then proceed to estimate the square function in (3.7), but summed over a possibly

larger collection Q. For a cube Q in this collection, we write Δβj

Q f − Δbj

Q f = Δβ
Qf − Δb

Qf

as
{Dβ

Qf − Db
Qf}b + Dβ

Qf · (β − b) +
∑

Q′∈ch(Q)∩T

{F 1
Q′ − F 2

Q′ − F 3
Q′}1Q′ ,

where we have defined

F 1
Q′ := 〈f〉Q′{βQ′ − bQ′},

F 2
Q′ := 〈f〉Q

{
1

〈β〉Q
− 1

〈b〉Q

}
b, F 3

Q′ := 〈f〉Q
1

〈β〉Q
{β − b}.

The main difficulty will be obtaining the following auxiliary estimate without the
b-function, ∥∥∥∥

[ ∑
Q∈Q

|{Dβ
Q − Db

Q}f |2
]1/2∥∥∥∥

p

� υ{‖f1S0‖p + λ|S0|1/p}. (3.10)
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We postpone its proof and first finish the proof of the theorem assuming (3.10). Having
martingale difference inequalities, we can proceed as in [18, § 2]. Let us first consider the
square function of Dβ

Qf · (β − b); to this end, we define

Sf :=
[ ∑

Q∈Q
|Dβ

Q(f1S0)|2
]1/2

and consider the events Et := {|Sf | � t} ⊂ S0 for t > 0. It is important to realize that
we can compare Lebesgue measure estimates and estimates with respect to |β − b|p dx.
Namely, by inequality (3.8), the Lebesgue differentiation theorem, and the fact that Sf

is constant on terminal cubes T ∈ T , we obtain
∫

Et
|β − b|p dx � 2nυp|Et|. Hence, by

the Lebesgue measure estimates in Theorem 3.1,∫
S0

|Sf |p|β − b|p dx = p

∫ ∞

0
tp−1

∫
Et

|β − b|p dxdt � υp‖f1S0‖p
p.

The square function of {Dβ
Qf − Db

Qf}b is estimated analogously by using (3.10), which
also contributes the constant υ. The remaining square functions associated with F i

Q′ ,
i = 1, 2, 3, are estimated by using (3.8) and (3.9), and the facts that T is a disjoint
collection and that the Lebesgue measure is doubling. For the case in which i = 2, we
also use expansion (3.12) and the first inequality in (3.11) below. This concludes the
proof of the theorem except for (3.10).

Let us continue with the following preparations for proving (3.10). Fix Q ∈ Q and
Q′ ∈ ch(Q) \T . Set β̃ = b−β and write βk,Q := (〈β̃〉Q/〈β〉Q)k. Define βk,Q′ analogously.
Observe that the following inequalities hold for every k � 1:

|βk,Q′ | + |βk,Q| � 2(4υ)k, |βk,Q′ − βk,Q| � |β1,Q′ − β1,Q|k(8υ)k−1. (3.11)

Indeed, these follow from (3.1), (3.8) and the fact that Q, Q′ ∈ Q. For the latter inequality
above, one also applies the mean value theorem.

We then write

1
〈β〉Q

− 1
〈b〉Q

=
1

〈β〉Q

{
1 − 〈β〉Q

〈β〉Q + 〈β̃〉Q

}
=

1
〈β〉Q

∞∑
k=1

(−1)k+1βk,Q. (3.12)

Using the same expansion with Q replaced by Q′ yields

|{Dβ
Q − Db

Q}f |1Q′ �
∞∑

k=1

∣∣∣∣ 〈f〉Q′

〈β〉Q′
βk,Q′ − 〈f〉Q

〈β〉Q
βk,Q

∣∣∣∣1Q′ .

Then, for a fixed k, write the summand on the right-hand side as∣∣∣∣βk,QDβ
Qf · 1Q′ +

〈f〉Q′

〈β〉Q′
{βk,Q′ − βk,Q}1Q′

∣∣∣∣
� 2(4υ)k|Dβ

Qf |1Q′ + 4λk(8υ)k−1|β1,Q′ − β1,Q|1Q′ .
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Here we used assumptions and (3.11). Observe that |β1,Q′ − β1,Q|1Q′ = |Dβ
Qβ̃|1Q′ . By

summing the series over k and then summing resulting estimates over Q′ ∈ ch(Q) \ T ,

|{Dβ
Q − Db

Q}f | � υ|Dβ
Qf | + λ|Dβ

Qβ̃| = υ|Dβ
Q(f1S0)| + λ|Dβ

Q(β̃1S0)|.

Inequality (3.10) follows from (3.8) and universal martingale transform inequalities with
q = p; see Theorem 3.1. �

4. The inner product and the main term

During the course of the remaining sections we prove (2.12), namely,∣∣∣∣ ∑
P∈G1

∑
Q∈G2

〈TΔβ1

P f1, Δ
β2

Q f2〉
∣∣∣∣ � {C2{1 + Tloc} + C3rυ1Λ

2T }|Q0|, (4.1)

where C3 is a constant not allowed to depend upon the absorption parameters. This
inequality completes the proof of Lemma 2.1 which, in turn, implies our main result. Let
us recall that the functions fj have been normalized, allowing us to assume that Λ = 1.

The sum above is split into dual triangular sums, one of which is the sum over (P, Q) ∈
G1 × G2 such that �P � �Q. By using goodness this triangular sum is split into different
collections:

Pfar := {(P, Q) ∈ G1 × G2 : 3P ∩ Q = ∅, �Q � �P};

Pdiagonal := {(P, Q) ∈ G1 × G2 \ Pfar : 2−r�P � �Q � �P};

Pnearby := {(P, Q) ∈ G1 × G2 \ Pdiagonal : Q ⊂ 3P \ P};

Pinside := {(P, Q) ∈ G1 × G2 \ Pdiagonal : Q ⊂ P}.

The sums over these collections are handled separately and, aside from the ‘inside’ and
‘diagonal’ terms, one can sum over the absolute value of the inner products. The main
tools to control these terms include the twisted martingale transform inequalities com-
bined with the local Tb hypothesis. All of the cubes are good, which is a point used
systematically. This useful fact is frequently combined with the smoothness condition on
the kernel to conclude that certain maximal functions applied to the β functions appear.
That these maximal functions are controlled will be a consequence of the corona construc-
tion combined with the universal half-twisted martingale inequalities. In the analysis of
the diagonal term, perturbation inequalities in § 3 play a key role.

In this section, we concentrate on the ‘inside’ term, which is the main term. The
conditions for (P, Q) ∈ Pinside are Q ⊂ P , 2r�Q < �P and (P, Q) ∈ G1 × G2; these
conditions are abbreviated to Q � P below. Even though Q is in a different grid from
that of P , a child of P contains Q because of goodness and we denote that child by
PQ. We will write ΔP := Δβ1

P (likewise for Q) and Δ̃P f1 := D̃P f1 · β1
πS1P , where the

half-twisted martingale difference D̃P = D̃β1

P of (2.9) does not sum over the children of
P that have a different stopping parent from that of P .
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In order to control the inside term, it suffices to bound the sum over S ∈ S1 of the
terms∣∣∣∣1{πS∈G1}

∑
Q : Q�πS

〈f1〉S〈Tβ1
S , ΔQf2〉

∣∣∣∣ +
∣∣∣∣ ∑

P : πS1P=S

∑
Q : Q�P

〈T Δ̃P f1, ΔQf2〉

︸ ︷︷ ︸
=:BS(f1,f2)

∣∣∣∣. (4.2)

The point of this step is that, in the left-hand side, the argument of T depends only on
β1

S . And a sufficient cube-wise inequality is

(4.2) � T̃loc|S|, T̃loc := Tloc + υ1T ,

where the implied constant is not allowed to depend upon the absorption parameters.
Since the collection S1 is sparse, this upper bound is summable over S ∈ S1 to a multiple
of T̃loc|Q0|.

The left-hand side of (4.2) is easy to control. First of all, by the local Tb properties
stated in Lemma 2.12 and the twisted martingale inequality (3.2),∣∣∣∣∣1{πS∈G1}

∑
Q : Q�πS

Q⊂S

〈f1〉S〈Tβ1
S , ΔQf2〉

∣∣∣∣∣ � T̃loc|S|1/p′
2

∥∥∥∥ ∑
Q : Q�πS

〈f1〉SΔQf2

∥∥∥∥
p2

� T̃loc|S|.

The remaining part of the left-hand side is a sum over cubes Q � πS for which Q∩S = ∅.
This part is conveniently estimated by using Hardy’s inequality in Lemma 2.15 and the
inequality p′

2 � p1.
In the right-hand side of (4.2) the argument of T is written as follows. If Q � P and

πS1P = S, then

Δ̃P f1 = 〈D̃P f1〉PQ
β1

S1S − 〈D̃P f1〉PQ
β1

S1S\PQ
+ Δ̃P f1 · 1P\PQ

=: Δpara
P f1 − Δstop

P f1 + Δerror
P f1,

where we treat Δ̃P f11PQ
as the main contribution and write 1PQ

= 1S − 1S\PQ
. This

decomposition of Δ̃P f1 leads to a corresponding decomposition of BS(f1, f2), by which
we denote the second term on (4.2) without the absolute values, into the paraproduct
term, the stopping term and the error term, written as

BS(f1, f2) = Bpara
S (f1, f2) − Bstop

S (f1, f2) + Berror
S (f1, f2),

where S ∈ S1 is fixed. The terminology is drawn from [23,25].

4.1. Control of the paraproduct term

This brief argument is in fact the core of the proof. Consider Bpara
S (f1, f2). In this

term, the argument of T is a certain multiple of β1
S1S = β1

S . For the cubes Q ∈ G2, let
us define

εQ :=
∑

P : πS1P=S
Q�P

〈D̃P f1〉PQ
.
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The condition∗ (2.10) of Lemma 2.4, was designed so that the numbers εQ are uniformly
bounded. We can therefore estimate

|Bpara
S (f1, f2)| =

∣∣∣∣ ∑
P : πS1P=S

∑
Q : Q�P

〈D̃P f1〉PQ
〈Tβ1

S , ΔQf2〉
∣∣∣∣

=
∣∣∣∣
〈

Tβ1
S ,

∑
Q : Q�S

εQΔQf2

〉∣∣∣∣
� ‖1STβ1

S‖p′
2

∥∥∥∥ ∑
Q : Q�S

εQΔQf2

∥∥∥∥
p2

� T̃loc|S|,

where we appealed to the local Tb hypothesis, Lemma 2.12 (3) (c) and the martingale
transform inequality (3.2). This completes the analysis of the paraproduct term.

4.2. The stopping term

Recall that

|Bstop
S (f1, f2)| =

∣∣∣∣ ∑
P : πS1P=S

∑
Q : Q�P

〈D̃P f1〉PQ
〈T (β1

S1S\PQ
), ΔQf2〉

∣∣∣∣.
We will bound this by a constant multiple of |S| by appealing to the fact that

(a)
∫

ΔQf2 = 0 and the kernel of T has smoothness and

(b) the universal half-twisted inequality (3.5) is valid.

For integers s > r, we restrict the side length of Q so that 2s�Q = �P and thereby
obtain a geometric decay in s. To accommodate this, let us define

Bstop
S,s (f1, f2) :=

∑
P : πS1P=S

∑
Q : Q�P
2s�Q=�P

〈D̃P f1〉PQ
〈T (β1

S1S\PQ
), ΔQf2〉.

By goodness, dist(S \ PQ, Q) � (�Q)ε(�PQ)1−ε. Therefore, by the smoothness condition
on the kernel and the mean zero property of ΔQf2, we can estimate the inner product
as follows; let xQ be the centre of Q and recall also definition (3.4). Then,

|〈T (β1
S1S\PQ

), ΔQf2〉| �
∫

Q

∫
S\PQ

(�Q)η

|x − y|n+η
|β1

S(y)ΔQf2(x)| dy dx

� 2−η′s inf
x∈Q

Mβ1
S(x)

∫
Q

�Qf2 dx.

This is a standard off-diagonal estimate, obtained by using (1.1) with
∫

ΔQf2 = 0 and
splitting the region of integration into annuli, combined with the goodness of Q and the

∗ The condition applies to the minimal cube in G1, subject to the summation conditions, instead of Q.
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properties of our corona construction. Observe that we gained a geometric decay in s

with η′ = (1 − ε)η > 0.
Since cubes Q with same side length, specified by P , are disjoint, there is a simple

appeal to the Cauchy–Schwarz inequality. Following that, we use the trilinear form of
Hölder’s inequality, with indices p1, 2p′

1 and 2p′
1, and the universal half-twisted inequal-

ity (3.5). By doing so, we obtain

|Bstop
S,s (f1, f2)| � 2−η′s

∑
P : πS1P=S

∑
Q : Q�P
2s�Q=�P

〈|D̃P f1|〉P

∫
Q

Mβ1
S · �Qf2 dx

� 2−η′s

∫
S

Mβ1
S

[ ∑
P : πS1P=S

〈|D̃P f1|〉2P 1P

]1/2[ ∑
Q : Q�S

|�Qf2|2
]1/2

dx

� 2−η′s|S|1/p1

∥∥∥∥
[ ∑

P : πS1P=S

|MD̃P f1|2
]1/2∥∥∥∥

2p′
1

∥∥∥∥
[ ∑

Q : Q�S

|�Qf2|2
]1/2∥∥∥∥

2p′
1

.

(4.3)

The last term is dominated by a constant multiple of 2−η′s|S| and this completes the
analysis of the stopping term.

4.3. The error term

Here we need to control

|Berror
S (f1, f2)| =

∣∣∣∣∣
∞∑

s=r+1

∑
P : πS1P=S

∑
Q : Q�P
2s�Q=�P

〈T (Δ̃P f1 · 1P\PQ
), ΔQf2〉

∣∣∣∣∣.
For a fixed s > r, we call the inner double series in the display above Berror

S,s (f1, f2).
We will obtain a geometric decay in s by using essentially the same argument as in the
treatment of the stopping term.

Indeed,

|〈T (Δ̃P f1 · 1P\PQ
), ΔQf2| =

∣∣∣∣
∫

Q

∫
P\PQ

{K(x, y) − K(xQ, y)}Δ̃P f1(y)ΔQf2(x) dy dx

∣∣∣∣
�

∫
Q

∫
P\PQ

(�Q)η

|x − y|n+η
|Δ̃P f1(y)ΔQf2(x)| dy dx

� 2−η′s〈|D̃P f1|〉P inf
x∈Q

Mβ1
S

∫
Q

�Qf2 dx.

Repeating the inequalities starting from (4.3) gives |Berror
S,s (f1, f2)| � 2−η′s|S|, and this

suffices.

5. The remaining terms

In this section we estimate all the remaining terms ‘nearby’, ‘far’ and ‘diagonal’.
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5.1. The nearby term

The nearby term concerns pairs of cubes (P, Q) ∈ Pnearby, that is, cubes in G1 × G2

with the properties 2r�Q < �P and Q ⊂ 3P\P . This term can be written as a sum over
S ∈ S1 of terms

1{πS∈G1}
∑

Q : Q⊂3πS\πS
2r�Q<�πS

〈f1〉S〈Tβ1
S , ΔQf2〉 +

∑
P : πS1P=S

∑
Q : Q⊂3P\P

2r�Q<�P

〈T Δ̃P f1, ΔQf2〉, (5.1)

where we tacitly assume that P ∈ G1 and Q ∈ G2. For a fixed S ∈ S1, the absolute value
of the double series above is estimated by∑

s>r

∑
P : πS1P=S

∑
Q : Q⊂3P\P

2s�Q=�P

|〈T Δ̃P f1, ΔQf2〉|. (5.2)

By using Lemma 5.1 and following the arguments in (4.3) with obvious changes, we find
that the inner double series in (5.2), with a fixed s > r, is dominated by

2−sη′ ∑
P : πS1P=S

∑
Q : Q⊂3P\P

2s�Q=�P

inf
x∈Q

Mβ1
S(x)〈|D̃P f1|〉P

∫
Q

�Qf2(x) dx � 2−sη′ |S|.

The right-hand side is summable in s to a constant multiple of |S|. Consequently, by
applying the sparseness of S1, we find that (5.2) summed over S ∈ S1 is bounded by
a constant multiple of |Q0|. The same method of proof controls the first term in (5.1).
Alternatively, one may apply the Hardy inequality (see Lemma 2.15).

We now turn to a lemma that is used above. Its proof is a standard off-diagonal
argument using the smoothness condition (1.2) and goodness of Q. We omit the easy
proof.

Lemma 5.1. Let (P, Q) ∈ Pnearby with πS1P = S. Then, with η′ = η(1 − ε) > 0, we
have

|〈T Δ̃P f1, ΔQf2〉| � (�Q/�P )η′
inf
x∈Q

Mβ1
S(x)〈|D̃P f1|〉P

∫
Q

�Qf2 dx. (5.3)

5.2. The far term

The far term concerns pairs of cubes (P, Q) ∈ Pfar satisfying �Q � �P and 3P ∩Q = ∅,
in particular. The goodness of these cubes is irrelevant here. The absolute value of the
far term is bounded by the sum over integers s � 0 and t � 1 of terms∑

P

∑
Q : 2t−1�P�dist(P,Q)<2t�P

2s�Q=�P

1(P,Q)∈Pfar |〈TΔP f1, ΔQf2〉|. (5.4)
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By Lemma 5.2, we obtain the following upper bounds for the term (5.4):

2−ηs−(n+η)t
∫

Rn

∑
P

∑
Q : 2t−1�P�dist(P,Q)<2t�P

2s�Q=�P

〈�P f1〉P 1Q(x)�Qf2(x) dx

� 2−ηs−ηt

∥∥∥∥
[ ∑

P∈G1

|M�P f1|2
]1/2∥∥∥∥

2

∥∥∥∥
[ ∑

Q∈G2

|�Qf2|2
]1/2∥∥∥∥

2

� 2−η(s+t)|Q0|. (5.5)

Observe that in the first estimate we lose a factor 2nt/2 twice because of additional
summation associated with both of the square functions. In order to see this for the first
square function, one changes the order of summation and integration and then applies
inequality |P |−1 ∑

Q |Q| � 2tn for each P inside the P -summation.
The last bound in (5.5) is still summable in s and t so that we are left with the following

lemma. We omit the easy proof that is of standard off-diagonal nature.

Lemma 5.2. Let (P, Q) ∈ Pfar. Then,

|〈TΔP f1, ΔQf2〉| � (�Q/�P )η

(
dist(P, Q)

�P

)−n−η

〈�P f1〉P ·
∫

Q

�Qf2.

5.3. The diagonal term

The diagonal term is the hardest in many local Tb arguments and this is also true in
our situation. The goal is to prove the following inequality:∣∣∣∣∣ ∑

P∈G1

∑
Q∈G2,

Q∩3P 	=∅,
2−r�P��Q��P

〈TΔP f1, ΔQf2〉
∣∣∣∣∣ � {Cr(1 + Tloc) + rυ1T }|Q0|. (5.6)

Note, in particular, that the bound in terms of T has leading absorbing constant rυ1. On
the other hand, Tloc has a leading constant Cr that will be exponential in r. The implied
constant is independent of the absorption parameters.

The first step in the proof is not so straightforward. Its purpose is to avoid terms
{2crυ1T }|Q0| that cannot be absorbed. To explain, let us pass back to the heavier nota-
tion ΔP f1 = Δβ1

P f1; the point of the estimate below is that we will replace β1 in the
twisted differences by b1.

Lemma 5.3. There holds∣∣∣∣∣ ∑
P∈G1

∑
Q∈G2,

Q∩3P 	=∅,
2−r�P��Q��P

〈T (Δβ1

P f1 − Δb1

P f1), ΔQf2〉
∣∣∣∣∣ � {rυ1T }|Q0|.
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Proof. Perturbation inequality is the principal tool here. By introducing independent
Rademacher variables {εP }P∈G1 that are jointly supported on a probability space Ω =
{−1, 1}G1

, we have, for integers 0 � s � r,∣∣∣∣∣ ∑
P∈G1

∑
Q∈G2

Q∩3P 	=∅,
2−s�P=�Q

〈T (Δβ1

P f1 − Δb1

P f1), ΔQf2〉
∣∣∣∣∣

=

∣∣∣∣∣
∫

Ω

〈 ∑
P∈G1

εP T (Δβ1

P f1 − Δb1

P f1),
∑

R∈G1

εR

∑
Q∈G2

Q∩3R 	=∅,
2−s�R=�Q

ΔQf2

〉
dε

∣∣∣∣∣

�
{ ∫

Ω

∥∥∥∥T

( ∑
P∈G1

εP {Δβ1

P − Δb1

P }f1

)∥∥∥∥p1

p1

dε

}1/p1

×
{∫

Ω

∥∥∥∥∥ ∑
P∈G1

∑
Q∈G2

Q∩3P 	=∅,
2−s�P=�Q

εP ΔQf2

∥∥∥∥∥
p′
1

p′
1

dε

}1/p′
1

.

Extract the operator norm from the first factor and after that apply Khintchine’s inequal-
ity and Theorem 3.4. Theorem 3.2 is used to estimate the second factor, but only after
having changed the order of summation and having applied Hölder’s inequality and
inequality p′

1 � p2. Finally, summing the s-series yields the upper bound rυ1T |Q0|. �

It remains to prove Lemma 5.4. Indeed, a straightforward application of (3.5), combined
with the two lemmata 5.3 and 5.4, completes the proof of the diagonal estimate (5.6).

Lemma 5.4. Assume that 3P ∩ Q �= ∅ and that 2−r�P � �Q � �P . Then,

|〈TΔb1

P f1, ΔQf2〉| � {1 + Tloc}〈�b1

P f1〉P 〈�Qf2〉Q|P |.

Proof. The cube P has 2n children P ′. If a child P ′ is not a stopping cube, Δb1

P f1 · 1P ′

is equal to a multiple of b1
S1

1P ′ , where S1 is the S1 parent of P , and the multiple is
given by the value of the half-twisted martingale difference D̃b1

P f1 on P ′. If P ′ is a
stopping cube, then Δb1

P f1 · 1P ′ in addition involves a bounded multiple of b1
P ′ . In both

cases, the constant multiples are bounded in absolute value by 〈�b1

P f1〉P (cf. definition
(3.4)). Similar comments apply to ΔQf2 = Δβ2

Q f2 restricted to a child Q′. By these
considerations, we need to prove the estimate

|〈Tψ1, ψ2〉| � {1 + Tloc}|P |,

where ψ1 = b1
S1

1P ′ and ψ2 ∈ {β2
S2

1Q′ , β2
Q′1{Q′∈S2}}, where S2 is the S2 parent of Q.

A similar estimate is also required when ψ1 = b1
P ′ , on the condition that P ′ ∈ S1. An

obstruction is that, even though the stopping conditions control the local norm of Tb1
S1

,
we may have the restriction b1

S1
1P ′ inside the operator T .
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The case of ψ1 = b1
P ′ , where we require that P ′ ∈ S1, is especially easy since the

obstruction just mentioned does not arise. By the construction of the stopping cubes and
the fact that the Lebesgue measure is doubling, |〈Tb1

P ′ , ψ21P ′〉| � ‖1P ′Tb1
P ′‖p′

2
‖ψ2‖p2 �

Tloc|P |; here we complied to the stopping rules by restricting ψ2 to P ′. Concerning the
contribution outside of P ′, inequality p′

1 � p2 and Hardy’s inequality in Lemma 2.15
together yield |〈Tb1

P ′ , ψ21Q′\P ′〉| � |P |.
For the case in which ψ1 = b1

S1
1P ′ we must face the obstruction. Again, we

write ψ2 = ψ21P ′ + ψ21Q′\P ′ . Hardy’s inequality controls the second term, giving
|〈Tb1

S1
1P ′ , ψ21Q′\P ′〉| � |P |. For the first term, we return to the local Tb hypothesis

and write

ψ21P ′ = 〈ψ2〉P ′b2
P ′ + (ψ21P ′ − 〈ψ2〉P ′b2

P ′) =: 〈ψ2〉P ′b2
P ′ + ψ̃2.

The advantage of the first summand on the right is that the local Tb hypothesis gives us

|〈ψ2〉P ′〈Tb1
S1

1P ′ , b2
P ′〉| = |〈ψ2〉P ′〈b1

S1
1P ′ , T ∗b2

P ′〉| � Tloc|〈ψ2〉P ′ ||P | � Tloc|P |.

The advantage of the second summand is that it has integral zero:
∫

P ′ ψ̃2 dx = 0.
Note also that ‖ψ̃2‖p2 � |P |1/p2 . Take P to be the cubes of the form P ′ � u, where
u ∈ {−1, 0, 1}n \ {(0, 0, . . . )}. Then,

|〈Tb1
S1

1P ′ , ψ̃2〉| � |〈Tb1
S1

, ψ̃2〉| + |〈Tb1
S1

1S1\P ′ , ψ̃2〉|

� |〈Tb1
S1

, ψ̃2〉| +
∑
R∈P

|〈Tb1
S1

1R, ψ̃2〉| + |〈Tb1
S1

1S1\3P ′ , ψ̃2〉|.

The first term is controlled by the stopping rules: |〈Tb1
S1

, ψ̃2〉| � Tloc|P |. The second sum
is finite and each summand is precisely of the type that appears in Hardy’s inequality.
Indeed, although R ∈ P need not be contained in P , by (2.13) we nevertheless have

〈|b1
S1

|p′
2〉1/p′

2
R � 〈|b1

S1
|p1〉1/p1

R �
{

4n inf
x∈P

M |b1
S1

|p1

}1/p1

� 1.

And it follows that∑
R∈P

|〈Tb1
S1

1R, ψ̃2〉| �
∑
R∈P

‖b1
S1

1R‖p′
2
|P |1/p2 � |P |.

Finally, by a similar estimate as in the proof of Lemma 5.2 and the stopping rules,

|〈Tb1
S1

1S1\3P ′ , ψ̃2〉| � inf
x∈P ′

Mb1
S1

∫
|ψ̃2| dx � |P |.

This completes the proof of Lemma 5.4. �
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