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The shear instability occurring at the interface between a slow water layer and a fast air
stream is a complex phenomenon driven by momentum and viscosity differences across
the interface, velocity gradients as well as by injector geometries. Simulating such an
instability under experimental conditions is numerically challenging and few studies exist
in the literature. This work aims at filling a part of this gap by presenting a study of
the convergence between two-dimensional simulations, linear theory and experiments, in
regimes where the instability is triggered by the confinement, i.e. finite thicknesses of gas
and liquid streams. It is found that very good agreement between the three approaches is
obtained. Moreover, using simulations and linear theory, we explore in detail the effects
of confinement on the stability of the flow and on the transition between absolute and
convective instability regimes, which is shown to depend on the length scale of the
confinement as well as on the dynamic pressure ratio. In the absolute regime under study,
the interfacial wave frequency is found to be inversely proportional to the smallest injector
size (liquid or gas).

Key words: aerosols/atomization, absolute/convective instability, shear layers

1. Introduction

The process leading to the atomization of a slow liquid stream assisted by a fast air stream
is often described using the concept of ‘instability cascade’ (Marmottant & Villermaux
2004). A first shear instability creates a wave that develops farther downstream, leading
to the generation of liquid ligaments that are then stretched and broken into small
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droplets. This process, called primary atomization, is followed by droplets–droplets and
droplets–turbulence interactions, i.e. the secondary atomization, see Lefebvre (1989) for
an extensive review.

The primary wave occurring due to the shear instability is created by means of a
Kelvin–Helmholtz-like instability. The parallel, or quasi-parallel, nature of the flow close
to the injector makes it an idealized framework for linear stability analysis. In the limit
of a large gas velocity Ug, the wave frequency f scales as (Raynal 1997; Marmottant &
Villermaux 2004)

f ∼ U3/2
g . (1.1)

This scaling has been extensively observed in experiments (Ben Rayana 2007; Matas,
Marty & Cartellier 2011) and simulations at reduced density ratio (Fuster et al. 2013).
In Raynal (1997) and Ben Rayana (2007), the wave velocity is found to be in very good
agreement with (Dimotakis 1986)

UD =
√

ρlUl + √
ρgUg√

ρl + √
ρg

, (1.2)

from which the wavelength can be estimated,

λ ∼ UD/f , (1.3)

where Ul, ρl and ρg are the liquid velocity and the liquid and gas densities, respectively.
The convergence between linear stability analysis and experimental measurements for

wave frequencies has been the subject of active research in the last 20 years. Depending
on conditions, the flow can be convectively unstable, i.e. a system behaving as a noise
amplifier, or absolutely unstable, i.e. a system behaving as an oscillator (see Huerre &
Monkewitz (1990) for a review of these concepts).

In the convective mode, the instability is triggered by viscosity differences across the
interface (Yih 1967; Hooper & Boyd 1983; Boeck & Zaleski 2005). This mechanism
has been described phenomenologically by Hinch (1984): viscosity differences and
continuity of tangential stresses at the interface can lead to the amplification of interfacial
perturbations. The absolute regime can be triggered by two different mechanisms: surface
tension (Otto, Rossi & Boeck 2013) or confinement, i.e. finite thicknesses of gas and liquid
streams (Matas 2015).

The absolute regime triggered by surface tension is due to a mechanism of resonance
between a downstream-propagating shear instability wave and an upstream-propagating
capillary wave (Matas, Delon & Cartellier 2018). The condition for this instability to
appear is typically a sufficiently low interfacial velocity. In particular, this mechanism
is found to occur when an interfacial velocity deficit is introduced (Otto et al. 2013). This
deficit is expected to exist very close to the splitter plate which separates the gas and liquid
streams (Fuster et al. 2013). Such destabilizing effect of surface tension has been explored
for planar flows by Rees & Juniper (2009), Biancofiore & Gallaire (2010), Tammisola,
Lundell & Söderberg (2011) and Biancofiore et al. (2014). The results of Tammisola et al.
(2011) have been confirmed by linear and nonlinear simulations (Schmidt et al. 2021).
The physical mechanism behind this instability has also been explained in terms of two
counter-propagating (inertial and capillary) wave interactions in Biancofiore, Gallaire &
Heifetz (2015). This mode of instability, as well as the viscous convective mode described
previously, and a Tollmien–Schlichting mode (whose growth rate is smaller than the other
modes) are all located at high wavenumbers, whereas for most experimental conditions the
instability wavenumber is smaller (Otto et al. 2013).
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Stability of an air–water mixing layer

As shown for the stability of wakes/jets (Juniper & Candel 2003; Juniper 2006;
Biancofiore, Gallaire & Pasquetti 2011; Juniper, Tammisola & Lundell 2011), boundary
layers (Healey 2007) or homogeneous mixing layers (Healey 2009), the confinement of
a flow can have an effect on its stability, and can favour a transition from convective to
absolute instability. The impact of confinement, induced by a solid plate below the liquid
stream and the finite gas stream thickness, on the stability of an air–water mixing layer has
been described in Matas (2015), and allows, in combination with the previously cited flow
regimes, a very satisfactory convergence between predicted and experimentally measured
low wave frequencies.

The confinement instability is a form of cross-stream resonance, as explained in Healey
(2007), Juniper (2007) and Juniper (2008). Triggering of the streamwise shear instability
will generate velocity and pressure perturbations in the cross-stream direction that are
reflected by the finite thicknesses of gas and/or liquid streams. If the spatial oscillations of
the cross-stream perturbations, which are controlled by the shear instability growth rate,
match the cross-stream confinement length, constructive interferences (i.e. a resonance)
will occur.

Note that the value of δd, which quantifies the amplitude of the velocity deficit, still has
an impact on the regime where the instability is triggered by the confinement. A map of
the different regimes has been proposed (Matas et al. 2018). Finally, the turbulence rate
in the gas phase is found to be a potential source of repeatability issues in experimental
studies (Matas et al. 2015) and its influence is confirmed by recent simulations at moderate
density ratio (Jiang & Ling 2020, 2021).

Focusing now on numerical simulations, in addition to the references cited above that
simulate moderate density ratio mixing layers, a few studies simulate the stability of an
air–water mixing layer. Bagué et al. (2010) simulate the case of the aforementioned viscous
convective mode and show that a very high resolution is needed to correctly capture the
sharp variations of the eigenfunctions close to the interface. Fuster et al. (2013) simulate
a case of absolute instability triggered by surface tension. They obtain a satisfactory
agreement between their simulation, experimental results and linear stability analysis for
the value of the wave frequency. Desjardins et al. (2013) simulate an air–water mixing
layer and show a good agreement for the liquid cone length and the wavelength with
the experiments of Ben Rayana (2007) for two values of the dynamic pressure ratio M,
with M = ρgU2

g/ρlU2
l . Agbaglah, Chiodi & Desjardins (2017) and Chiodi & Desjardins

(2017) demonstrate good agreement with experiments for the frequency, the wave speed,
the growth rate and the liquid cone length for several values of M. They also present
the effect of the splitter plate angle on the stability of the flow, in addition to providing
flow statistics in two-dimensions and three-dimensions. Vaudor et al. (2017) obtain a good
agreement with experimental results concerning the length of the liquid cone.

Note also that, if fully resolved three-dimensional (3-D) simulations in air–water
conditions are still far beyond current computational capacities, the direct numerical
simulation (DNS) of a mixing layer at moderate density ratio has been obtained by Ling
et al. (2017, 2019), elucidating the link between interfacial instability development and
downstream turbulence, as well as the mechanisms behind spray formation under those
conditions.

For the air–water case, only a few studies provide a comparison of numerical results
with linear stability analysis and experiments. The absence of a systematic validation
of the instability characteristics, i.e. frequency, growth or wave speed, means that the
range of resolution needed to accurately simulate an air–water mixing layer is not
known. In air–water conditions, all previously cited studies include a splitter plate in
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their configuration. Contact line dynamics occurs at the splitter plate, as revealed by
simulations (Fuster et al. 2009), and simulating this process is challenging and expensive,
and depends on closure models. The effect of confinement on the stability of the
flow has been demonstrated theoretically (Matas 2015) and provides an explanation
for the low frequencies observed in the experiments, but it has never been observed
numerically.

The present study aims at filling this gap. Using numerical and analytical approaches,
we provide a detailed study of the stability of an air–water mixing layer in regimes where
the instability is triggered by confinement, as well as a study of our ability to capture the
effects of the detailed velocity profile on the stability of the flow. We demonstrate the
convergence between simulations, linear stability analysis and the experimental results of
Matas et al. (2011) for a large number of injection conditions. Finally, we explore the
effect of confinement on the stability of the flow and on the nature of the instability.
By carrying out stability analysis and simulations in parallel, we are able to understand
for each set of conditions the physical mechanisms driving the instability, and to relate
the variety of observed behaviours to changes in these mechanisms. Moreover, using
numerical simulations we gain new insights into the development of the instability, i.e.
its nonlinear evolution, something which is out of reach for the linear stability analysis. A
similar approach has been previously employed by Biancofiore et al. (2011) on moderate
Reynolds number wake flow.

The interests behind this study are multiple. The careful analysis of the numerical solver
performance that we obtain by comparing its results against reference values could serve
as a basis for the development and validation of future methods, as well as to understand
the limits of the current methods before their use in optimization algorithms such as
multiphase adjoints (Fikl, Le Chenadec & Sayadi 2020; Vu et al. 2020). The convergence
between simulations, linear stability analysis and experiments serves as a cross-validation
of the confinement role in the stability of an air–water mixing layer. Finally, the study
of the confinement effect could improve the understanding of injector size selection in
industrial applications.

The paper is organized as follows. In § 2, the configuration under study is presented.
In § 3, the numerical solver is presented. An assessment of the numerical methods and
the convergence between simulations, linear stability analysis and experiments is shown
in § 4. We provide a detailed study of the impact of confinement in § 5.

2. Configuration

We study a wall-bounded air–water mixing layer corresponding to the configuration
studied experimentally in Matas et al. (2011). The description of the numerical domain
is presented in figure 1(a). A slow liquid stream with velocity Ul, located above a wall,
is placed below a fast gas stream with velocity Ug. Liquid and gas streams both have a
finite thickness, Hl and Hg, respectively. The domain is two-dimensional (2-D), with a
velocity field defined as u = (u, v), where u, v are the velocity components in the x and y
directions, respectively, with 0 ≤ x ≤ Lx and 0 ≤ y ≤ Ly.

The choice of a 2-D domain is motivated by the associated reduction of computational
time and is justified at moderate gas velocity by the 2-D nature of the waves at their onset.
Indeed, it can be seen in Ben Rayana, Cartellier & Hopfinger (2006) (figure 3 of their
paper), Fuster et al. (2013) (figure 3 of their paper) and Matas et al. (2015) (figure 1 of their
paper) that no significant transverse modulations of the waves can be seen at their onset.
This, however, seems to be less the case at higher gas velocities, as seen in figure 7(a) of
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Figure 1. (a) Sketch of the configuration. The deficit value δd controls the initial shape of the velocity profile
close to the interface. (b) Typical picture of the flow displaying the liquid–gas interface (blue line) and the
velocity magnitude (greyscale).

Matas et al. (2015). Note that purely spanwise modes are explored in Náraigh et al. (2014)
for density-matched periodic flows.

As suggested previously, we choose not to include the splitter plate separating the
gas and liquid streams. This has two advantages: firstly, we avoid the simulation of the
contact line dynamics on the splitter plate, which is expensive given the typical scales of
the splitter plate; secondly we retain full control over the shape of the initial velocity
profile. Linear stability (Otto et al. 2013; Matas 2015) has shown that the details of
the velocity profile close to the interface and the finite thickness of the streams control
the transition between convective and absolute regime, as well as the transition from
confinement-induced to surface tension-induced absolute instability. In this study, we
compare the results obtained using simulations, i.e. a fully nonlinear and global approach
that allows for the development of the base flow, and linear stability analysis, i.e. a highly
idealized approach that performs a local analysis of a parallel base flow subjected to
infinitesimal perturbations. Both approaches are connected as the inlet velocity profile
in simulations is also used as the base flow in the linear stability analysis.

The inlet velocity profiles are expressed as uin = u(x = 0, y) = (u( y), 0). The
expression for u( y) depends on the vertical position. For y ≤ Hl,

u( y) =
{

Ulerf
(

Hl − y
δl

)
+ Ui

(
1 + erf

(
y − Hl

δdδl

))}
× erf

(
y
δl

)
, (2.1)

for Hl < y ≤ Hg + Hl,

u( y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{
Ugerf

(
y − Hl

δg

)
+ Ui

(
1 − erf

(
y − Hl

δdδl

))}

× erf
(

Hg + Hl − y
δg

)
+ Usm

(
1 + erf

(
y − (Hg + Hl)

δg

)) (2.2)

and for y > Hg + Hl,

u( y) = Usm

(
1 − erf

(
y − (Hg + Hl)

δg

))
+ Ucf erf

(
y − (Hg + Hl)

δg

)
. (2.3)
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ρl ρg μl μg σ

(kg m−3) (kg m−3) (Pa s) (Pa s) (N m−1)

1000 1.2 10−3 1.8 × 10−5 0.072

Table 1. Physical properties of air and water.

In the previous expressions, δg is the gas vorticity thickness, δl is the liquid vorticity
thickness, δd is the dimensionless deficit parameter, Ui is the interfacial velocity, Ucf =
0.1Ug is the coflow velocity and Usm = (Ucf + Ug)/2 is the single-phase mixing layer
velocity. The gas vorticity thickness is computed using the experimental correlation given
in Matas et al. (2011): δg = 6Hg/

√
ρgUgHg/μg. Note that, in the following, when Hg

is varied we do not vary δg but instead keep the value obtained using the previous
relation for Hg = 1 cm. The liquid vorticity thickness is constant and equal to 5 × 10−4 m.
Following Otto et al. (2013), the interfacial velocity is defined based on tangential stresses
continuity, Ui = (Ugμg/δg + Ulμl/δl)/(μl + μg)δdδl, with μl and μg the liquid and
gas dynamic viscosities, respectively. The deficit parameter δd is used to control the
magnitude of the interfacial velocity, therefore, the shape of the velocity profile around
the liquid gas interface: if δd = 1, there is no velocity deficit, while a reduction of δd
will induce a decrease of the interfacial velocity, as seen in figure 1(a). This velocity
profile only differs from the one used for linear stability by the presence of a coflow used
to provide the mass entrained by the high-speed gas (as in da Silva & Métais (2002)).
Note that one will exactly recover the velocity profiles used for linear stability analysis
with Ucf = 0.

The inlet velocity profile described by (2.1)–(2.3) is imposed at x = 0. Except stated
otherwise, a uniformly random temporal perturbation of maximum amplitude α =
10−5 m s−1 is introduced at x = 0 on both components of the velocity in a band of
width δg around the interface. A convective outlet boundary condition is imposed at
x = Lx (Orlanski 1976). The convective velocity used in that condition is taken as the
maximal speed in the vicinity of the outlet plane. The bottom boundary condition at
y = 0 is a no-slip wall, while the top boundary condition y = Ly is a slip wall. The
physical properties of air and water, as well as σ , the surface tension coefficient at an
air–water interface, are taken as constant throughout this study and are presented in
table 1. Gravity is taken into account, with g = (0, −9.81) m s−2 the gravity vector. The
numerical domain is discretized with a uniform cell size, �x = �y = δg/n, with n to be
specified later, for y ≤ 6Hl. In the upper part of the domain, the mesh is progressively
stretched in the vertical direction up to y = Ly = 1.3Lx using a constant stretching ratio
of 1.05.

Finally, all the combinations of injection velocities used in this paper, as well as relevant
non-dimensional parameters, are summarized in table 2 for the case where Hg = Hl =
1 cm. In all of § 4, we take Hg = Hl = 1 cm. The additional non-dimensional parameters
presented in table 2 are the gas stream Reynolds number, Reg,Hg = ρgUgHg/μg, the liquid
stream Reynolds number, Rel,Hl = ρlUlHl/μl, and the gas stream Weber number, Weg,δg =
ρgU2

gδg/σ .
Note that, as there are several mechanisms behind the instability and several relevant

velocity and spatial scales, wave frequency results are presented in a dimensional way in
the rest of the paper.
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Stability of an air–water mixing layer

Case Ug Ul M Reg,Hg Rel,Hl Weg,δg

(m s−1) (m s−1) (−) (−) (−) (−)

A1 22 0.50 2.32 14 667 5000 3.99
A2 22 0.37 4.24 14 667 3700 3.99
A3 22 0.26 8.59 14 667 2600 3.99
B1 27 0.50 3.49 18 000 5000 5.43
B2 27 0.37 6.39 18 000 3700 5.43
B3 27 0.26 12.94 18 000 2600 5.43

Table 2. Summary of injection conditions and relevant non-dimensional parameters for Hg = Hl = 1 cm.

3. Numerical methods

Fluid dynamics is governed by conservation laws. Assuming flow incompressibility (∇ ·
u = 0), conservation of mass gives

∂ρ

∂t
+ ∇ · (ρu) = ∂ρ

∂t
+ u · ∇ρ = 0, (3.1)

where ρ is the density field and t is time. Multiphase momentum conservation is written
in the framework of the one-fluid formulation: a single equation with space-varying
material properties is used to describe the dynamics of both phases, e.g. see Tryggvason,
Scardovelli & Zaleski (2011).

The effect of surface tension is added through a singular force, T σ , acting at the
interface. Momentum conservation thus gives

∂ρu
∂t

+ ∇ · (ρu ⊗ u) = −∇p + ∇ · (
μ

[∇u + ∇uT]) + T σ + ρg, (3.2)

where p is the pressure and μ is the dynamic viscosity. In absence of phase change,
the application of the momentum equation on the interface results in the classical jump
condition for normal stress,

[p]Γ = σκ + 2[μ]Γ nT
Γ · ∇u · nΓ , (3.3)

where κ and nΓ are the curvature and the normal vector to the interface Γ , respectively.
The notation [·]Γ represents the interfacial jump from liquid to gas. These equations are
solved using NGA, a finite volume, staggered-grid flow solver (Desjardins et al. 2008).

Mass conservation, (3.1), is ensured through an unsplit semi-Lagrangian volume of
fluid advection method (Owkes & Desjardins 2014) which allows us to obtain liquid
volume fraction in each cell of the computational domain. Density and viscosity fields are
computed from liquid volume fraction and the properties of each phase using arithmetic
and harmonic averaging, respectively. The normal to the interface is computed using
ELVIRA (Pilliod & Puckett 2004) and the interface is reconstructed using a piecewise
linear interface calculation (Rider & Kothe 1998).

Momentum conservation, (3.2), is computed in a way consistent with mass transport and
with the presence of interfacial discontinuities (Palmore & Desjardins 2019). Particularly,
second-order centred schemes are used for spatial discretization for all terms but the
convective term at the interface, where the consistent strategy is used (see Palmore
& Desjardins (2019) for more details). The coupling between velocity and pressure is
enforced using an incremental pressure projection method (Goda 1979) and time is
advanced through an iterative Crank–Nicolson scheme (Teukolsky 2000).
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Interface boundary conditions, (3.3), are included in the pressure through the use of a
continuum-surface-force method (Francois et al. 2006). Interfacial curvature is computed
using a combination of height function method (Popinet 2009) and least squares fit, in a
way similar to Owkes et al. (2018).

The present framework allows exact mass, momentum and kinetic energy conservation
within each phase, while mitigating momentum and kinetic energy conservation errors at
the interface even in the presence of high density or viscosity ratio, high shear or large
exchange of kinetic energy.

Finally, the base flow for stability analysis is the inlet velocity profile, with Ucf = 0.
The method used is the same as in Matas (2015). After superposition of a perturbation to
the base flow and linearization, the perturbations are expanded into normal modes of the
form ũ(k, y, ω)ei(kx−ωt), with k and ω the complex wavenumber and complex frequency,
respectively. Gravity is taken into account. Integration of the resulting equations with a
Runge–Kutta method is carried out from the solid wall in the liquid, and from a solid wall
located at a distance Lg in the gas phase, with Lg much larger than the stream thicknesses,
namely Lg = 30 max(Hg, Hl). The dispersion relation results from the connection of these
integrated liquid–gas solutions at the interface via appropriate continuity of normal and
tangential stresses.

The dispersion relation is solved for complex k using a shooting method, for fixed
complex ω. The absolute modes are then tracked using the Briggs criterion (Briggs 1964):
we look for a pinching between branches (controlled by shear, confinement or surface
tension) located in opposite sides of the k half-plane at large ωi, with ωi the imaginary
part of the complex frequency. Particularly, this pinching must occur at positive ωi for the
instability to be considered as absolute, and ∂ωr/∂kr, the group velocity, is equal to zero at
the pinching point, with ωr and kr the real part of the complex frequency and wavenumber,
respectively. The imaginary part of k, ki, is the spatial growth rate.

4. Stability of an air–water mixing layer

4.1. General description
A typical flow picture displaying the liquid–gas interface and the velocity magnitude is
presented in figure 1(b). Initially flat, the interface progressively deforms into a wavy
shape. The liquid strongly interacts with the high-speed jet in the downstream part of
the flow: the liquid jet gets thinner due to the transfer of momentum from gas to liquid
and flow rate conservation, but one can also see large amplitude waves deviating the
gas jet, as well as ligaments and liquid fragments pulled out by the jet. The gas–gas
mixing layer shows the triggering of a Kelvin–Helmholtz instability. No recirculation is
observed in the top part of the domain, showing that the coflow actually provides the mass
entrained by the high-speed jet. The vertical position of the interface is sampled for all
positions downstream of the inlet at a frequency of 10 000 Hz, allowing the study of the
spatiotemporal development of the instability.

In figure 2(a), we show the spatial evolution of the wave amplitude, and in figure 2(b)
the spectrogram of the interface height for case A2, with n = 2 and δd = 1. The wave
amplitude is computed using the method presented in Matas et al. (2011): for a given
downstream position, we construct a histogram of the interface positions over the sampling
time and exclude the lowest and highest 0.5 %. The remaining width of the histogram is
taken as the amplitude A of the waves. Several zones can be distinguished. Focusing on
figure 2(a), one can see that for 20 ≤ x/δg ≤ 50, the computed amplitude (◦, blue) seems
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Figure 2. Spatiotemporal development of the instability for the case A2 with n = 2, δd = 1. (a) Spatial
evolution of the wave amplitude with: computed wave amplitude (◦, blue); (4.1), with A0/δg = 3.8 × 10−4

and ki = ki,exp = 323.2 m−1 (orange dashed line); (4.2), with C0 = 0.21 (orange solid line). The insert shows
the same data in a log scale, with a close-up of the exponential growth region. (b) Spectrogram of the interface
height. P∗ is the normalized spectral power.

to increase exponentially with downstream distance,

A = A0ekix, (4.1)

with, for figure 2(a), ki = ki,exp = 323.2 m−1, where ki,exp is the value obtained
experimentally (Matas et al. 2011), as represented with a dashed line in figure 2(a).

This observation has to be taken cautiously. The stability analysis predicts that the
instability is absolute for these conditions, as seen on figure 3, where we see the pinching
between the confinement branch, located close to the ki axis, and the shear branch.
Nonlinearity is therefore expected to quickly dominate, as the instability will grow
exponentially in time and space. As the group velocity at the pinching point is zero, the
predicted spatial growth rate has no clear meaning for the waves travelling downstream of
the injector (Huerre & Monkewitz 1990).

However, as said in the introduction, the predicted spatial growth rate controls the scale
of oscillations in the cross-stream direction. The confinement branch is crossing the ki axis
around −nπ/(2L), with L the cross-stream characteristic length and n = {1, 2, 3, . . .}. At
the pinching point shown in figure 3, ki,LSA = −180 m−1, which is close to −π/(2Hl) =
−157 m−1, showing the matching between cross-stream perturbations and cross-stream
confinement that leads to resonance, i.e. to absolute instability.

An exponential growth zone has been seen experimentally and numerically (Agbaglah
et al. 2017; Ling et al. 2019). Figure 2(a) shows that the wave growth obtained numerically
is in agreement with the wave growth observed experimentally. The insert in figure 2(a)
shows that the zone of exponential growth rate is extremely short, as seen in experiments.

The end of the previous zone occurs when the amplitude is of the order of the vorticity
thickness, as observed in experiments. For x/δg ≥ 75, the amplitude is growing linearly
with downstream distance, following well the self-similar model of Hoepffner, Blumenthal
& Zaleski (2011),

A = C0
√

ρg/ρlUgτ, (4.2)

with the characteristic time taken as τ = x/UD, as in Marty (2015), UD is obtained
using (1.2) and C0 is a model constant to be specified. This model is represented by the
continuous line in figure 2(a).
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Figure 3. Spatial branches for case A2. (a) Pinching between confinement and shear branches, at ωi = 30 s−1.
The confinement branch is located close to the ki axis. The arrows indicate the direction in which ωr increases.
(b) Zoomed-out view of the pinch point showing the behaviour of the shear branch at low and large kr for
ωi = 30 s−1, and for two additional values of ωi. At large ωi, the shear branch is located in the ki > 0 half-plane,
while the confinement branch remains close to the imaginary axis in the ki < 0 half-plane: the two colliding
branches therefore originate from opposite half-planes, in agreement with the Briggs criterion.

In figure 2(b), one can see the spatial evolution of the interface height spectra. For
each location downstream of the inlet, we obtain the interface height spectrum and then
normalize the spectral power by its local maximum. Note that we use the Welch method
(Welch 1967) to facilitate the extraction of the most amplified frequency, i.e. before taking
its Fourier transform, we split the signal in 10 parts with a 60 % overlap between them, the
resulting spectra are then averaged. A very clear frequency peak is observed and remains
unchanged over a large extent of the domain, which may suggest the presence of a global
mode of instability. Close to the outlet, lower frequency peaks are appearing.

In the next section, we detail the influence of the numerical parameters and the
integration time on these results.

4.2. Assessment of the numerical methods
In figure 4(a), we show the influence of integration time on the most amplified frequency
obtained at three downstream locations for two sets of injection conditions. The most
amplified frequency is presented as a function of the normalized duration of the signal
�Tfth, with �T the signal duration and fth the predicted wave frequency obtained by linear
stability analysis. Note that the statistics are collected once the averaged height is stabilized
over time. One can see that as soon as �Tfth is larger than 10, i.e. approximately 10 waves
have been generated, the variations of the most amplified frequency in time and space are
of the order of the spectral resolution. This is in agreement with the results of Agbaglah
et al. (2017). For both cases, the most amplified frequency is stable in time, and with the
increase of spectral resolution all measured frequencies become perfectly independent of
the position, providing that the latter is in the interval 25 ≤ x/δg ≤ 150. In order to reduce
the uncertainty on the frequency value an integration time of �Tfth ≥ 40 would be ideal,
but this choice will be more difficult to achieve for 3-D simulations, or even very resolved
2-D simulations. The present analysis shows that even an integration time of �Tfth ∼ 10
is sufficient to obtain a good estimate of the frequency.
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Figure 4. Dependence of frequency measurements on integration time and domain length for n = 2, δd = 1.
(a) Spatiotemporal convergence of the most amplified frequency with: Blue, case B1; magenta, case A2; x/δg =
44 (◦); x/δg = 67 (	); x/δg = 89 (�). The error bars represent the spectral resolution. Horizontal dashed
lines are the theoretical frequency for each case. (b) Dependence of frequency spectra on domain length for
�Tfth = 40, x/δg = 89 with: case B1 (Blue); case A2 (magenta); continuous line, Lx/δg = 240; dotted line,
Lx/δg = 320.

In figure 4(b), we show the impact of domain length on the frequency spectra for two
sets of injection conditions. Our tests show that, for the cases of figure 4(b), the most
amplified frequency is not affected by the position of the outlet boundary condition once
Lx/δg is larger than 240, which has been confirmed for other cases (results not shown). We
will therefore ensure that this condition is met for all cases.

In figure 5, we show the effect of resolution on the spatiotemporal development of the
instability for case B1 and two values of the deficit parameter. In figure 5(a) is presented
the evolution of the frequency spectra with n (= �x/δg = �y/δg), the resolution, for
δd = 1. We see that, as the mesh is refined, the most amplified frequency approaches
the theoretical value. The error on the finest mesh, here n = 8, is only 4.6 %, while the
error for the coarsest resolution, n = 2, is 12 %. In figure 5(b), the convergence of the
amplitude with mesh resolution for δd = 1 is shown. From n = 2 (	, black) to n = 16
(+, red) the amplitude is mostly affected by the resolution in the area close to the injector,
where the amplitude is small. Far from the inlet, i.e. x/δg ≥ 75, the amplitude is essentially
not affected by resolution and closely follows the self-similar model. Mesh resolution
mostly affects the location at which the amplitude reaches this self-similar region. This
location is shifted closer to the injector as the mesh is refined. Note that the amplitude is
essentially not modified between n = 8 and n = 16, meaning that we reach independence
from mesh resolution. Note also that, close to the injector, we do again see a zone of
exponential growth, with a slope equal to the one observed experimentally for these
injection conditions. As the mesh is refined, the transition between the inlet of the domain
and the zone of exponential growth progressively disappears, which is not the case in
experiments (Matas et al. 2011) or simulations including a splitter plate (Agbaglah et al.
2017; Ling et al. 2019).

In figure 5(c), we present the evolution of the frequency spectra with mesh resolution
for δd = 0.5 and the same B1 case. Again, one can see that, as the mesh is refined, the
most amplified frequency converges towards the predicted value, but the error on the finest
resolution, n = 10, is still 12 %. The evolution of amplitude with resolution for δd = 0.5
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Figure 5. Effect of mesh resolution on the instability characteristics for case B1 and two values of the deficit
parameter. In the zone of interest, �x = �y = δg/n. All spectra are taken at x/δg = 67, with �Tfth ≥ 20.
(a) Convergence of frequency with mesh resolution for δd = 1. The vertical dashed line represents the
corresponding theoretical frequency. (b) Convergence of wave amplitude with mesh resolution for δd = 1 with:
(range dashed line), (4.1), with A0/δg = 0.016 and ki = ki,exp = 569.9 m−1; (orange solid line) (4.2), with
C0 = 0.21. (c) Similar to (a), with δd = 0.5. (d) Similar to (b), with δd = 0.5, A0/δg = 0.046 and C0 = 0.27.
Note that in (b,d), only one data point every six is shown to enhance readability.

is shown in figure 5(d). Similarly to the case without velocity deficit, we can see that as
the mesh is refined, the position at which the amplitude enters the self-similar region is
shifted towards the inlet. In the exponential growth region, we are again in very good
agreement with the slope measured experimentally by Matas et al. (2011). Note that we do
observe that the self-similar growth region is affected by the reduction of δd as we had to
increase C0 from 0.21 to 0.27 in order to obtain a good agreement between the computed
amplitude and (4.2) in the downstream area. This is consistent with our observation of a
decrease in the wave speed with the decrease of δd (results not shown). This suggests, as
already pointed out by Marty (2015), that one needs to adjust the velocity scale used in
(4.2) to the variations of the interfacial wave speed, therefore, to the details of the velocity
profile, in order to obtain a good self-similarity of the wave amplitude.
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Figure 6. Absolute value of the stream function eigenfunction for case B1 with Hg = Hl = 1 cm: Dotted line,
δd = 1 (k = 140 + 170i m−1, ω = 209 + 30i s−1); continuous line, δd = 0.5 (k = 135 + 195i m−1, ω = 272 +
35i s−1); red, liquid side; blue, gas side. The horizontal axis is shifted so that the y = 0 location corresponds to
the interface location.

Overall, we find that the influence of the velocity deficit δd is expensive to capture and
the systematic study of its influence on the simulation results is left for future work. For
the rest of this work, we will only consider the δd = 1 case in simulations. Nonetheless,
we wish to comment on the reason for this difficulty. As pointed out by Otto et al. (2013),
and seen in figure 1(a), the presence of an interfacial velocity deficit induces the presence
of a minimum in the velocity profile, in our case on the liquid side, around which the
shear changes sign. Depending on the value of δd and other injection parameters, this
minimum can move very close to the interface. In our case this minimum is located at
a distance of 238 μm from the interface, hence a distance two times smaller than the
vorticity thickness. Reducing δd or M can make this minimum move even closer to the
interface (Otto et al. 2013). The position of this minimum and the associated shear are very
expensive to capture in simulations, hence the difficulty to capture the effect of δd. Unlike
the case of convective modes presented in Bagué et al. (2010), we do not observe the
presence of extremely sharp variations of the eigenfunctions associated with the mode of
instability, as can be seen on figure 6, where we show |Φ|, the norm of the stream function
computed by the stability analysis for case B1 and for two values of δd: δd = 1 (dashed
line) and δd = 0.5 (continuous line), as a function of the vertical coordinate. The stream
function is related to the vertical velocity perturbation: ∂Φ/∂x = ṽ(k, ω, y)ei(kx−ωt). No
significant difference is observed between both cases, except a slightly higher value of
|Φ| in the gas stream for δd = 1. Thus, we think that the difficulty associated with the
resolution of the velocity deficit is solely due to the difficulty of resolving the velocity
minimum position and the associated shear, rather than to an increase in the eigenfunctions
sharpness. Note that this comment only applies to confinement-induced absolute modes
which occur at low wavenumbers (Matas 2015).

This mesh convergence study shows that, focusing on the case where no interfacial
velocity deficit is introduced, a resolution n = 8 allows a converged amplitude and a very
low error on the frequency value. We will therefore choose this resolution in § 4.3 where
we will compare simulation results obtained for all cases presented in table 2. However, the
previous mesh convergence study also shows that a resolution n = 2 leads to an acceptable
error on the frequency, as well as an amplitude that follows the self-similar growth model.
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Figure 7. (a) Most amplified frequency of the interface height signal as a function of the dynamic pressure
ratio for all cases of table 2 with: experimental results (Matas et al. 2011) (�, black); linear stability analysis
results (	, magenta); simulation results with n = 2 (∗, orange); simulation results with n = 8 (◦, blue).
(b) Spectrogram of the interface height signal for case A1, with n = 8. The horizontal magenta line represents
the predicted wave frequency.

We will therefore choose n = 2 in § 5, devoted to the analysis of the effect of confinement
on the stability of the flow.

We have thus established the performance and the limits of our numerical methods,
which could be useful for the development and validation of future methods. We now
switch to the use of the solver to demonstrate convergence between simulations, linear
theory and experiments on confinement-induced absolute modes.

4.3. Convergence between simulation, linear theory and experiments
In figure 7(a), we show the evolution of the most amplified frequency obtained
numerically, for n = 8 (◦, blue) and n = 2 (∗, orange), as a function of the dynamic
pressure ratio and for all cases of table 2. We plot the numerical results along with the most
amplified frequency obtained with linear stability analysis (	, magenta). For all cases of
table 2, the stability analysis predicts that the instability is absolute, driven by a resonance
of the shear instability within the confined streams (confinement mechanism). We also add
for reference the experimental results of Matas et al. (2011) (�, black).

The frequency values obtained by simulations (n = 8), stability analysis and
experiments are summarized in table 3, along with the error level between the different
approaches and the values for each case of the temporal growth rate at the pinching point,
ωi,0, also called the absolute growth rate.

The comparison between stability analysis, simulations and experiments has to be split
in two parts. First, the comparison between stability analysis and simulations, which are
directly connected as the inlet velocity profile in simulations is the base flow used in
stability analysis, presents a maximal level of error of 11.6 %. This is very satisfactory.
The remaining difference might be explained by nonlinearities, spatial variations of the
velocity profile or by subtle numerical errors.

Secondly, the comparison of the two previous approaches (simulations and stability
analysis) with experiments presents a maximum error of 36.5 % on wave frequency
value. Many choices in the modelling can explain such discrepancies, e.g. shape of the
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M (−) 2.32 3.49 4.24 6.39 8.59 12.94
fDNS,n=8 (Hz) 28.5 35.3 22.8 33 25.8 27.7
fLSA (Hz) 28.2 33 25.8 30.7 23.5 28.3
fEXP (Hz) 29.4 39.8 23.5 32.4 18.9 28.8
ErrorDNS/LSA (%) 1 6.9 11.6 7.5 9.8 2.1
ErrorLSA/EXP (%) 4 17 9.8 5.2 24 1.7
ErrorDNS/EXP (%) 3.1 11.3 3 1.85 36.5 3.8
ωi,0 (s−1) 1 27 26 53 50 78

Table 3. Comparison between wave frequency values obtained using simulations, stability analysis and
experiments, error between the three approaches, and absolute growth rates for each case.

velocity profile (which includes velocity deficit value, vorticity thicknesses values, use of
erf functions), turbulence intensity, nonlinearities, 3-D effects, as well as measurements
errors. Given the complexity of the phenomenon, we consider that an average error level of
10 % and a maximum error level of less than 40 % between simulations/stability analysis
and experiments is satisfactory.

As shown in table 3, we note that the case with the lowest absolute growth rate
corresponds to a case where the agreement between the three approaches is extremely
satisfactory. An absolute instability growing exponentially in space and time, the previous
observation is not surprising as the case with the lowest absolute growth rate may
correspond to the case where nonlinear effects will take the longest before they dominate
(as will also be seen in the study of wave amplitude). For the other cases, no correlation
seems to emerge between ωi,0 and the error between the three approaches, but we note that
these five cases are farther from the neutral boundary curve (ωi,0 = 0 s−1).

To go further in the comparison, one could attempt a global stability study, or several
local stability analyses, by taking into account the spatial variations of the base flow, as
done for example in Juniper et al. (2011) and Biancofiore et al. (2011), or directly using
nonlinear mean flows, as done for example in Oberleithner, Rukes & Soria (2014). This
is something that we have attempted, but we faced difficulties in fitting velocity profiles
obtained from simulations by velocity profiles that would still be in the family of velocity
profiles described by (2.1)–(2.3). We therefore leave this approach for future work.

This favourable comparison between all approaches is a significant result because it
shows that, while the level of error may vary between cases, we do observe convergence
between simulation, linear stability analysis and experiment on cases where the instability
is triggered by confinement.

The inclusion of the finite thickness of liquid and gas streams in the stability analysis
has been shown to allow the convergence between experiments and linear stability analysis
(Matas 2015; Matas et al. 2018); here we confirm for the first time its impact through
simulations. Our work is, therefore, highly complementary to the one presented in Fuster
et al. (2013), which showed convergence between simulation, linear stability analysis and
experiments on surface tension-induced absolute instabilities. In § 5, we will give further
evidence of the destabilizing influence of confinement.

In figure 7(b), we show a spectrogram of the interface height signal for case A1 with
n = 8. One can see that the most amplified frequency is not perfectly constant with
downstream distance, but that it matches the theoretical value for more than half of the
spatial locations. We can thus question the appearance of such small spatial variations of
the most amplified frequency. A possibility would be to question the local or global nature
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of the mode of instability (Huerre & Monkewitz 1990). The frequencies predicted by linear
stability analysis correspond to the stability property of the inlet velocity profile, but do
not give information of whether the predicted absolute mode is local or global. However,
it is observed experimentally that the most amplified frequency does not vary with
downstream distance (Matas et al. 2011), i.e. that the absolute mode is global. We observed
in our simulations that those spatial frequency variations are increasing with resolution.
Therefore, we postulate instead that this is an effect of the 2-D nature of the simulation,
and particularly of the 2-D nature of the turbulence. Note that a decrease of frequency
with downstream distance has already been observed for similar 2-D configurations
with moderate density ratios, and was attributed to vortex pairing (Fuster et al. 2009)
or wave merging (Valluri et al. 2010). A way to improve the understanding of spatial
frequency variations would be to perform a mesh convergence in three dimensions under
experimental conditions, but this task is made difficult by its very high computational cost.

In figure 8, we present a comparison of the wave amplitude evolution for the cases of
table 2. In figure 8(a), one can see that for all cases studied, the amplitude follows a similar
evolution as the one described in § 4.1. The main differences in terms of amplitude are
found for x/δg ≤ 50, where we see that, for the range of injection conditions under study,
the amplitudes are sorted with the dynamic pressure ratio, as detailed by the insert in
figure 8(a). Interestingly, one can also note that the absolute growth rate is also increasing
with M, see table 3. This relation between downstream wave amplitude evolution and
absolute growth rate is not surprising as an absolute instability is growing exponentially in
space and time. This effect of the dynamic pressure ratio on the near injector amplitude is
coherent with the creation of a potential liquid cone that shortens with M (Raynal 1997).
Downstream of this zone, the amplitudes are closer to each other, but clearly follow a
linear growth with downstream distance, as predicted by (4.2). To further examine this
zone of linear growth, we present in figures 8(b) and 8(c) the evolution of the amplitude
at fixed gas Reynolds number, Reg = 14 667 and Reg = 18 000, respectively, and for the
three values of the liquid Reynolds number used in this study. In both of those figures, we
add the self-similar growth model, (4.2), for comparison. The agreement with simulation
results is very good. Remarkably, C0 is constant for all plots, and the differences in the
slopes are only due to the change in injection conditions, showing a clear self-similarity of
the wave amplitude. This was not the case in the experiments of Marty (2015), where C0
had to be adjusted to fit the experimental results. This is consistent with our observation
of § 4.2: when the wave speed changes, some corrections have to be applied to the
velocity scale used in (4.2). Since all the cases simulated in this section correspond
to confinement-induced absolute modes, the wave velocity is close to UD, which is in
agreement with the inviscid mechanism driving the instability (Matas 2015), therefore, no
correction is needed in the self-similar growth model.

In figure 8(d) we present the position of entry in the self-similar region as a function of
the dynamic pressure ratio. For the range of injection conditions studied here, one can see
that the position of entry in the self-similar zone appears to scale as 1/M. We also plot
this position as a function of the gas Reynolds number, which shows that the impact of the
liquid Reynolds number increases when the gas Reynolds number is reduced. Note that, in
figure 5(d), one can observe that the decrease of δd seems to induce an earlier entry in the
nonlinear growth region.

In summary, we have demonstrated the agreement between linear theory, simulations
and experiments on wave frequency value in case of confinement modes, which validates
the role of confinement in the stability of an air–water mixing layer. We have also
shown the consistency between simulations and experiments on wave growth, as well as a
verification of the self-similar model for nonlinear wave growth of Hoepffner et al. (2011).
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Figure 8. Comparison of wave amplitude for all cases of table 2, for n = 8 with A1 (◦, blue); A2 (◦, red); A3
(◦, magenta); B1 (◦, orange); B2 (◦, green), B3 (◦, black). (a) evolution of the amplitude for all 6 cases. The
insert shows the same data with a zoom in on the inlet area. (b) Evolution of the amplitude for Reg = 14 667.
(c) Evolution of the amplitude for Reg = 18 000. In (b,c), the solid lines correspond to the self-similar growth
model, (4.2), with the same colour code as the symbols and C0 = 0.21. (d) Evolution of the position of entry
in the nonlinear regime as a function of the dynamic pressure ratio for all cases of table 2 (�, orange). The
dashed black line corresponds to a 1/M scaling. The insert shows the same data plotted as a function of the gas
Reynolds number with: Rel = 2600 (�); Rel = 3700 (×); Rel = 5000 (	). Note that in (a–c), only one data
point in every six is shown to enhance readability.

5. Exploring the effect of confinement

In this section we explore in greater detail the effect of gas and liquid stream confinement
on the stability of the flow. We first prove that confinement is indeed one of the
mechanisms driving the transition between convective and absolute instabilities (along
with the interfacial velocity value). We then discuss the effects of confinement, symmetric
or non-symmetric, on the characteristics of the instability. For this part, we exclusively
study cases A1 and B2. All parameters but Hg and Hl are kept constant and equal to the
values used in the previous section. In particular, note that the gas vorticity thickness δg is
kept constant equal to its value obtained for Hg = 1 cm.

5.1. Convective/absolute transition
As already said in the introduction, convectively unstable flows behave as noise amplifiers,
i.e. the response of the system depends on the injected perturbations, whereas absolutely
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Figure 9. Spatial branches for case B2 with: H = 1 cm (•) and H = 0.25 cm (∗, blue).

unstable flows behave as oscillators, i.e. the response of the system does not depend on the
injected perturbations (Huerre & Monkewitz 1990).

In order to apply those notions to our study, we first focus on case B2, with Hg =
Hl = H, i.e. a symmetric confinement. We study two values of H, namely H = 1 cm and
H = 0.25 cm. We show in figure 9 that the flow is predicted by linear stability analysis
to be absolutely unstable for H = 1 cm (•) and convectively unstable for H = 0.25 cm
(∗, blue). In the case of the absolute mode, a pinching occurs at low wavenumber (and
positive ωi) between confinement and shear branches. For the convective mode, the most
unstable mode of the shear branch, corresponding to the largest |ki|, is located at a higher
wavenumber. For H = 0.25 cm (∗, blue), the confinement branch can be seen close to the
imaginary axis but no pinching occurs with the shear branch.

In figure 10, we examine the spectrograms of the instability for these two values of
H and different injected perturbations. We choose a uniformly random, low-amplitude
perturbation (figure 10a,b), as in the previous section, and a deterministic perturbation
f ′ = 10−3 sin(2πfpertt) (figure 10c–f ), with fpert, the perturbation frequency to be specified
later.

One can see that when the mode is predicted to be absolute (H = 1 cm, figure 10a,c,e),
the spectrograms are barely modified by the injected perturbations. The injected
deterministic perturbation can be seen in figures 10(c) and 10(e), only very close to the inlet
(x/δg ≤ 5). Farther downstream, the flow has its own dynamics, and the most amplified
frequency and its variations are not affected by the injected perturbation.

On the other hand, when the mode is predicted to be convective (H = 0.25 cm,
figure 10b,d, f ), the spectrograms look very different depending on the injected noise.
In the case of a random, low-amplitude perturbation, shown in figure 10(b), the most
amplified frequency is more difficult to extract as it varies spatially. This behaviour
had already been seen in Fuster et al. (2009), where it is also said that for the case of
convectively unstable flows, the comparison between local linear stability analysis and
simulations has to be restricted to the linear growth region, i.e. where the linear stability
analysis makes sense. In this area, around x/δg = 25, the most amplified frequency is of
73 Hz. Farther downstream, the most amplified frequency is progressively decreasing. For
the cases with a deterministic perturbation injection, shown in figures 10(d) and 10( f ), one
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Figure 10. Noise amplifier versus oscillator behaviour; case B2, n = 2. Spectral resolution is 0.56 Hz for all
spectrograms. Here (a,c,e) H = Hg = Hl = 1 cm and (b,d, f ) H = Hg = Hl = 0.25 cm. (a,b) Random noise of
amplitude 10−5. (c–f ) Deterministic noise of amplitude 10−3 and fpert = 15; 40; 60; 80 Hz for the cases (c–f ),
respectively. The colour scale corresponds to the normalized spectral power.

can see that the forcing frequency is the most amplified in more than half of the domain,
showing that the stability of the flow does actually depend on the injected perturbation.

Another way to illustrate that we capture a convective/absolute transition driven by
confinement is by constructing a spatiotemporal diagram of the interface height, also
called a Hovmöller diagram, as used in Odier et al. (2015) and Odier, Balarac & Corre
(2018). As shown in figure 9, in the confinement-induced absolute mode, the pinching
point occurs at a low wavenumber, whereas in the case of convective mode, the most
amplified wavenumber is much higher. This difference can also be seen through the
Hovmöller diagram of the instability. In figure 11, we show, for case B2 and a random inlet
forcing, two spatiotemporal diagrams of the interface height for the same time window
and two values of H: H = 1 cm (figure 11a) and H = 0.25 cm (figure 11b). One can see
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Figure 11. Spatiotemporal diagrams of the interface height. Case B2, n = 2 with a low amplitude random
forcing at the inlet. Here (a) H = Hg = Hl = 1 cm; (b) H = Hg = Hl = 0.25 cm. The magenta line
corresponds to a wave speed equal to UD, i.e. Uφ = UD = 1.30 m s−1.

that the main difference between both plots is in the wavelength. The waves are much
shorter for H = 0.25 cm than for H = 1 cm which is consistent with the much larger
predicted wavenumber for these conditions. For H = 1 cm we have λ ≈ 4H, whereas for
H = 0.25 cm we have λ ≈ 0.25H.

According to the energy budget presented in Matas (2015), the absolute mode induced
by confinement is driven by inviscid stresses, whereas the convective mode is fed by the
work of tangential viscous stresses on the interface. This difference can also be seen by
examining the effect of H on the wave speed. In figure 11, we add on both plots a magenta
line corresponding to a wave speed equal to UD. For H = 1 cm (figure 11a), this value is in
agreement with the numerical result, which may be interpreted as an argument in favour of
an inviscid mechanism, as suggested by Matas (2015). On the other hand, for H = 0.25 cm
(figure 11b), the agreement between the numerical results and UD is less favourable.

These three previous arguments (noise amplifier versus oscillator behaviour;
wavenumber value; wave speed) demonstrate that the transition from the convective to the
absolute mode is indeed induced by confinement, as predicted by linear stability analysis,
and is fully captured numerically. A large wavelength of the order of the injector size and
a wave speed close to Dimotakis’ may be good indicators of the presence of confinement
modes.

5.2. Effect of confinement on the stability of the flow
In the previous section we confirmed the transition between convective and absolute modes
due to flow confinement. We now study the impact of confinement, symmetric or not, on
the characteristics of the instability, i.e. frequency and amplitude. We remind the reader
that we focus on cases A1 and B2, where we only vary the thicknesses of the gas and
liquid streams, Hg and Hl, respectively, while keeping all other parameters constant. We
first start by considering the effect of H for a symmetric confinement, Hg = Hl = H, on
the most amplified frequency, shown in figure 12.

First, one can observe that the overall agreement between linear stability analysis and
simulations is very satisfactory, in convective as well as in absolute regimes.

One can observe that, when reducing H, case A1 (M = 2.32) presents a transition from
absolute to convective regimes for H between 0.75 cm and 1 cm. On the other hand,

933 A14-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
69

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1069


Stability of an air–water mixing layer
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Figure 12. Case of a symmetric confinement: effect of H on the most amplified frequency (n = 2).
(a) Simulation results for case A1 (◦, black), (b) simulation results for case B2 (◦, blue). In both plots the
triangles correspond to the frequency predicted by linear stability, with an open symbol for a convective mode
and a filled symbol for an absolute mode due to confinement. Spectral resolution is of 0.56 Hz for all simulation
results. Dashed lines correspond to a 1/H scaling.

case B2 (M = 6.39) presents the same behaviour for H between 0.25 cm and 0.35 cm.
These results suggest that the transition from convective to confinement-induced absolute
instabilities does depend on the injection condition, i.e. the value of M, as well as on
the confining geometry. In other words, when increasing M, the flow may be absolutely
unstable for a larger range of stream thicknesses.

In figure 13, we show the evolution of the most amplified frequency in the case of
non-symmetric streams, i.e. we keep one stream thickness constant while varying the other
one. In figure 8 of Matas (2015), it is shown through stability analysis that both thicknesses
have symmetric effects on the location of the pinching point, which may be surprising as
a flow with a thin gas stream and a large liquid stream could seem very different from a
flow with a thick gas stream and a thin liquid stream. This can be related to the symmetry
found in the dispersion relation for the sinuous mode of a double shear layer in Juniper
(2006). Here we do confirm this symmetric behaviour through simulations: one can see in
figure 13 that in most cases, the results for Hg = 1 cm, Hl = H (symbols ◦ and ◦, blue) and
Hg = H, Hl = 1 cm (symbols � and �, blue) are in agreement. For H ≤ 1 cm, the most
amplified frequencies are very similar to the ones presented in figure 12 for the case of
symmetric streams, i.e. Hg = Hl. Above H = 1 cm, and in case of absolute mode, the most
amplified frequency appears to be constant with H, which is not the case for a symmetric
confinement (see figure 12).

For case A1, Hg = 1 cm and Hl = 2 cm, as well as for Hl = 1 cm and Hg = 2 cm,
the mode is predicted to be convective, hence the high value (71 Hz) for the frequency
predicted by linear stability analysis, whereas for both non-symmetric cases we find
numerically a resonance at low frequency (26 Hz). Compared with the case of a symmetric
confinement, the fact that a non-symmetric confinement may favour a transition to a
convective instability is explained by a decrease in the absolute growth rate at the pinching
point. Physically speaking, the absolute instability driven by confinement being similar to a
mechanism of resonance, as described in the introduction, we postulate that this resonance
will be stronger when both gas and liquid streams have the same thicknesses, since velocity
and pressure perturbations in both streams can contribute to the feedback needed for the
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Figure 13. Case of a non-symmetric confinement: effect of H on the most amplified frequency (n = 2).
(a) Case A1, simulation results with Hg = 1 cm and Hl = H (◦, black); simulation results with Hg = H and
Hl = 1 cm (�, black). (b) Case B2, simulation results with Hg = 1 cm and Hl = H (◦, blue), simulation results
with Hg = H and Hl = 1 cm (�, blue). In both plots the triangles correspond to the frequency predicted by
linear stability for Hg = 1 cm and Hl = H, with an open symbol for a convective mode and a filled symbol for
an absolute mode due to confinement. The spectral resolution is of 0.56 Hz for all simulation results. Dashed
lines correspond to a 1/ min(Hg, Hl) scaling.

resonance to occur. Healey (2009) has also seen that a symmetric confinement could
favour absolute instabilities compared with an asymmetric confinement. For this case,
the pinching between shear and confinement branches occurs at a frequency of 26 Hz, i.e.
the value found numerically, but at an absolute growth rate of −20 s−1. The predicted
instability can therefore not be considered as absolute and the value retained for the
prediction is therefore that corresponding to the largest |ki|, namely 71 Hz. Note that we
refined the mesh, up to n = 8, but still captured the absolute mode. This discrepancy
between numerics and linear stability analysis in the transition from convective to absolute
modes may be due to nonlinearities, spatial variations of the base flow, or even to subtle
numerical errors (Cossu & Loiseleux 1998).

Note again that the linear stability results presented in figure 13 correspond to the case
Hg = 1 cm and Hl = H, as the symmetric case gives the same result, which has been
carefully checked, see also figure 8 of Matas (2015).

One important observation is that the gas stream thickness, Hg, has its own effect
on the instability via the triggering of this absolute instability. It does not only affect
the instability through its effect on the gas vorticity thickness δg, unlike what has been
observed in Matas et al. (2011) based on the results of Ben Rayana (2007). However, both
effects are related in the experiments and controlling one independently of the other may
not be technically feasible.

In figure 14, we present the effect of confinement on wave amplitude. We start by
studying in figure 14(a) the effect of a reduction of H for a symmetric confinement, from
H = 2 cm (+, red) to H = 0.15 cm (�, magenta). One can see that the reduction of H
induces a global decrease of the amplitude in the downstream region. The growth close to
the inlet, i.e. x/δg ≤ 25, does not seem to be affected until the amplitude is of the order
of the gas vorticity thickness. Farther downstream, the lower the value of H, the earlier
the amplitude seems to depart from the self-similar growth model, and stabilize up to a
constant value increasing with H.
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Figure 14. Effect of confinement on the amplitude for case B2 with n = 2. (a) Effect of the reduction of H
for a symmetric confinement (Hg = Hl = H): H = 2 cm (+, red); H = 1 cm (◦, blue); H = 0.5 cm (◦, green);
H = 0.25 cm (	, black); H = 0.15 cm (�, magenta). (b) Evidence of the non-symmetric effect of the gas
and liquid thicknesses on the amplitude: Hl = Hg = 1 cm (◦, blue); Hg = 0.15 cm and Hl = 1 cm (◦, green);
Hl = 0.15 cm and Hg = 1 cm (	, black); Hl = Hg = 0.15 cm (�, magenta). In both plots, only one data point
in every four is shown to enhance readability. Here (4.1), with A0/δg = 0.0003 and ki = 614.6 m−1 (orange
dashed line); (4.2), with C0 = 0.21 (Orange solid line); (4.2), with (a): C0 = 0.045, and (b): C0 = 0.032 (Cyan
solid line).

To clarify the effect of each stream thickness on the wave amplitude, we present in
figure 14(b) the effect of a reduction of Hg only (◦, green), Hl only (	, black) and both
(�, magenta). One can see that, although the effect of both stream thicknesses on the
frequency is symmetric, the effect on the amplitude is non-symmetric. It seems that the
decrease in amplitude observed in figure 14(a) between H = 2 cm (symbol +, red) and
H = 0.15 cm (symbol �, magenta) is mainly due to the decrease of Hl since the same
decrease is observed when only Hl is reduced (symbol 	, black in figure 14b). It also
seems that when Hl only is reduced, the growth is slower in the region close to the injector,
which agrees with the experimental observations of Marty (2015).

Similarly, the departure from the self-similar model seems to be due to the reduction
of Hg. Following the derivation of the self-similar model in Hoepffner et al. (2011), the
amplitude increase in the nonlinear area is due to the aerodynamic suction created by
the acceleration in the gas stream when deviated by the wave. When the wave amplitude
becomes large compared with the gas stream, there is no longer a sufficient acceleration
to induce wave growth.

5.3. Scaling law for confinement modes
The destabilizing effect of confinement has been demonstrated and explored by means of
numerical simulations and linear stability analysis in previous subsections. In Matas et al.
(2018), a scaling law derived from the linearized equations was proposed for the wave
frequency in confinement-induced absolute modes,

f ∼

√
ρg

ρl

δl

δg
Ug + Ul

L
, (5.1)
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where L is a characteristic length related to the confinement. This scaling has recently
been found to account very well for the effect of the nozzle size in experiments on a
coaxial configuration (Singh et al. 2020). Equation (5.1) predicts a linear evolution of the
frequency with the liquid velocity, which has been observed experimentally (Matas et al.
2011; Singh et al. 2020). In the case of large gas velocity, δg � δl, and for δg varying
as U−1/2

g , the frequency is proportional to U5/4
g , which is close to the scaling predicted

by inviscid theory (Raynal 1997; Marmottant & Villermaux 2004), see § 1. Note that the
scaling of (5.1) is only valid for absolute modes due to confinement.

In order to compare our results to the scaling of (5.1), we add lines enhancing the scaling
of the frequency with H in absolute regimes in figure 12. In the confinement-induced
absolute regime, we find that the most amplified frequency follows a ∼1/H scaling in
the case of symmetric confinement. For Hg /= Hl, as seen in figure 13, it seems that the
frequency scales with the most restrictive confining length, i.e.

f ∼ 1/ min(Hg, Hl). (5.2)

Thus, our results match very well with the scaling of (5.1) and we evidence that L is
of the order of the smallest injector size. This is different from what has been observed
experimentally by Delon, Cartellier & Matas (2018) for a coaxial geometry, where the
frequency is found to always scale with 1/Hl. The shear branch being barely affected
by the value of H, frequency is expected to be independent of the confining size in the
convective regime.

6. Conclusion

The confinement of the air–water mixing layer has previously been found to be the missing
element allowing us to reconcile experimental wave frequencies with viscous linear theory.
In this paper, we have shown for the first time the convergence between linear theory,
experiments and numerical simulations on the values of the wave frequency, in regimes
where the absolute instability is predicted to be due to confinement. We have shown
that, in those conditions, waves are self-similar in the downstream area following the
model of Hoepffner et al. (2011). We proved that the confinement is indeed a mechanism
for the transition between convective and absolute regimes and described precisely the
characteristics of the instability in both regimes. The gas and liquid streams thicknesses are
found to have symmetric effects on wave frequency, as first suggested in Matas (2015), but
not on the wave amplitude. A symmetric confinement and a high dynamic pressure ratio
can favour the triggering of an absolute instability, hence enlarging the range of validity
of the scaling law given in (5.1). Finally, it seems that the most amplified frequency scales
with the most restrictive confining length, i.e. the thinnest stream, in the absolute regime,
which is different from what has been observed on a coaxial configuration.

Note that the characteristics of confinement modes presented in § 5.1 (large wavelength
of the order of, or larger than injector size, and wave speed close to Dimotakis’) have also
been found in moderate density ratio simulations (Jiang & Ling 2021), which suggests that
the results of the present paper may apply to a wide range of injection conditions.

These conclusions only focus on the transition between convective and confinement-
induced absolute regimes. As shown in Otto et al. (2013), Fuster et al. (2013) and Matas
et al. (2018), a surface tension-induced absolute regime is dominant as soon as the
interfacial wave speed is low enough so that capillary waves are able to send information
upstream. This transition is driven by δd, the deficit parameter, and in fine by the presence
of the splitter plate between gas and liquid streams. The configuration we chose to simulate
would allow a precise study of the impact of δd on the instability and on the flow statistics.
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This task would be an essential step to understand how the spatial development of the flow
affects the instability regime, through the selection of δd. However, we have shown that
this is a very expensive task, even in two dimensions, that we leave for future work. Our
results also suggest that the use of fine meshes in 2-D simulations can give rise to some
unphysical effects due to 2-D turbulence. A 3-D mesh convergence would be needed to
study spatial frequency variations and to study the global, or not, nature of the instability,
but this, again, is an highly expensive task that we leave for future work.
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