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The free boundary model of diffusion-induced grain boundary motion derived in Cahn et

al. [3], Fife et al. [6] and Cahn & Penrose [4] is extended, in the case of thin metallic films, to

account for bidirectional motion, together with the appearance of S-shapes and double seam

configurations. These are often observed in the laboratory. Computer simulations based on

the extended model are given to illustrate these and other features of bidirectional motion.

More generally, the extension accounts for the motion of grain boundaries whose traces on

the film’s surface are curved. The new free boundary model is one of forced motion by

curvature, the forcing term possibly changing sign due to the bidirectionality. The thin film

model is derived systematically under explicit assumptions, and an adjustment for grooving

is included.

1 Introduction

Boundaries between grains (separate crystals) in a metallic alloy specimen may migrate

due a variety of reasons. In particular the following phenomenon, called Diffusion Induced

Grain Boundary Motion (DIGM), is well known and has been studied extensively, both

experimentally and theoretically. Atoms of a solute species (one of the species making up

the alloy) in a vapour which is in contact with the metallic surface may enter the grain

boundaries and diffuse rapidly along them. The resulting presence of solute atoms may,

by inducing stresses in the material adjacent to (or in) the boundaries, cause the latter to

migrate, eating away one crystalline grain while building up the next. See the diagram in

Figure 1.

A quantitative model of DIGM was developed in Cahn et al. [3]. It allows the velocity

of this migration to be predicted on the basis of known physical parameters and the local

concentration of solute. The grain boundary itself is considered to be of finite thickness,

and since it involves a continuously varying order parameter measuring crystallinity, the

model is of the ‘phase-field’ type. It consists of nonlinear partial differential equations for

(1) the concentration u of solute, and (2) the order parameter, both being functions of

position in the grain boundary and time.
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This phase-field model was further developed in Fife et al. [6], especially in the context

of curved boundaries in a 2D geometry, and then through a systematic approximation

procedure reduced to a free boundary model. In this latter version, the grain boundary

has zero thickness. It is represented by a ‘free boundary’ curve. The law of motion of

this free boundary specifies that its normal velocity is the sum of two terms: one of

them proportional to the mean curvature, and the other dependent on the concentration

of solute at that point. In addition, the solute diffuses along the boundary and its

concentration is reduced due to its incorporation into the growing daughter grain.

We thus obtained [6] a pair of equations for the evolution of the free boundary and

the concentration u. In dimensionless form it is:

ρv = κ+ u2, (1.1)

uss − vu = 0. (1.2)

Here v is the normal velocity of the curve, κ is its curvature, ρ is a dimensionless material

constant, and s measures arclength along the curve.

The contact curve where the grain boundary in the metallic specimen meets the

specimen’s face adjacent to the vapour reservoir (seen on the top face in Figure 1) is in

general not really a curve, but rather a traveling groove carved into the metal by the action

of surface diffusion (see Figure 3 in § 5). The phenomenon of grooving was first given a

mathematical basis by Mullins [9, 10]. The existence of grooves is due to the diffusion of

material on the surface of a crystalline grain. That diffusion tends to smooth out sharp

corners, such as corners which would be evident where the grain boundary meets the

specimen face were there no grooves. More discussion is given in § 5. This grooving effect

was disregarded in Cahn et al. [3] and Fife et al. [6], the contact being represented as a

curve, but was studied carefully in Cahn & Penrose [4]. This latter paper builds on the

model given in Fife et al. [6].

Beyond this, there are two important limitations to the theory developed in Fife et

al. [6] and Cahn & Penrose [4]. The first one is that grain boundaries are only considered

whose contact curves (or grooves) on the face of the metal are straight (in Figure 1 it is

curved), and the second one is that only unidirectional motions of the grain boundary

were allowed. Both of these limitations are overcome in this paper.

Consider the first limitation. In addition to the assumption of straightness, it was

supposed in Fife et al. [6] and Cahn & Penrose [4] that at each point on the grain

boundary, its motion is in a direction perpendicular to the contact line (or groove). A

rigorous existence theory, in fact, was given for configurations of this type which are

steady, in that they move in a direction parallel to the surface without changing shape or

speed.

This limitation is a geometical one; it reduces the problem to the consideration of

an evolving curve in a plane, namely the curve formed by the intersection of the grain

boundary with a plane perpendicular to the contact line (hence also to the metal surface).

As far as the derivation of the free boundary model from the phase-field model given

in Fife et al. [6] is concerned, this restriction is easily surmounted (§ 2). Each step in the

derivation generalizes to the case when the phase-field version of the grain boundary is a

thin layer of any shape within a three-dimensional metal plate. The reduction is made from
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Figure 1. Grain boundary cutting through a section of metallic film.

this layer to a free boundary which is a mobile surface imbedded in three-dimensional

space. The equations of motion of this free boundary are the same as before, except that

the curvature term is now the sum of the two principal curvatures of this surface, and the

diffusion term is the analogous diffusion of the solute within the surface.

In the investigation of the steady configurations mentioned above, both papers [6, 4]

consider two cases: (i) the case when the specimen is a film so thin that the grain boundary

can extend from one face all the way to the other (as in Figure 1); and (ii) relatively thick

films or plates, for which the migrating boundary cannot extend all the way through;

instead it trails behind the moving contact point, eventually curving to become parallel

to the face of the specimen. The first case was called the ‘connecting’ case, the second

one the ‘trailing’ case. When the film is thin enough and the grooving angle is zero,

the grain boundary’s intersections with planes perpendicular to the faces are expected

to be approximately straight line segments connecting the two faces, at least after initial

transients have relaxed. This was the case assumed in the original model [3] (in fact there

was no curvature to the boundary at all). The justification of this claim is given in § 3
below, on the basis of explicit assumptions designed to eliminate transient behaviour.

In this paper, we adopt this thin film assumption, but contrary to the previous papers,

now allow the grain boundary to be curved in the plane of the specimen’s faces. Thus

the important shape dynamics is similar to that of the curve on the top face in Figure 1,

namely that seen by an observer away from the specimen, looking at its surface. This

provides a perspective of the grain boundary and its motion which is different from

that in Cahn et al. [3], Fife et al. [6] and Cahn & Penrose [4]. Rather than considering

the boundary’s motion within the material specimen, we develop the law of motion and

properties of the evolving trace of the grain boundary on the face of the specimen. This

new perspective is what is often seen in experiments.

Our free boundary problem, derived formally on the basis of the thin film assumption

and an assumption related to the disappearance of transients, says that the trace of the

grain boundary on the surface of the specimen obeys a forced motion by curvature law.

It is derived first for the case of zero grooving angle, and later (§ 5) conditions are given

under which a similar free boundary problem applies with the angle nonzero but small.
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Both of these derivations, when the angle is zero and then nonzero, relate to what we

envisage as the motion after rapid transients have disappeared. In the zero angle case,

that implies, among other things, that the grain boundary inside the film is approximately

perpendicular to the face. But geometrical conditions such as this are not assumed. They

are rather derived in turn from a more basic assumption (see § 3). To explain this, we

consider a family of solutions of the 3D free boundary problem in a film, the parameter of

the family being the film thickness h. Then we assume that that each term in the equations

of motion is bounded independently of h. For example, we assume that the curvature of

the grain boundary is bounded independently of h. Initial grain boundary configurations

concocted so that their curvatures violate this assumption can be imagined, but it is

expected that during the associated subsequent motion, transient effects will cause these

high curvatures to relax.

In the case when the the groove angle is not zero, there are complications due to the

fact that it may happen that the two groove roots (the ones on the upper and lower

faces; see Figure 3) may be close to each other. When that happens, a large curvature is

automatically induced on the grain boundary between the two roots. This in turn prohibits

any motion unless the forcing due to solute concentration is large enough [4]. Our free

boundary problem is therefore only valid if this condition is fulfilled. We must combine

this threshold condition with a non-transient assumption analogous to that described

above. This is done in § 5.4 by means of a ‘reference profile’, an explicit configuration

inside the film which is a solution of the 3D problem when the trace on the film surface is

straight. A second complication which arises in this case is that the depths of the grooves

may change in time. A discussion of this, and an argument as to why this effect is typically

small, are given in § 5.

The second major limitation to the theory in Fife et al. [6] is that only unidirectional

motions of the grain boundary were allowed. In fact, at the very outset, the partial

differential equations developed in Cahn et al. [3] were used together with boundary

conditions and interaction terms which were appropriate for motion in a specific direction

relative to the grain boundary. If the motion were in the opposite direction, those terms

would have to be changed.

One of the aims of this paper is to eliminate this hypothesis, allowing for movements

in either direction. See the discussion in § 4. Configurations with variable direction of

migration are commonplace in experiments [2, 5, 7, 8, 11].

We provide computer simulations of solutions of our Free Boundary Problem (FBP)

for various prototypical grain boundary configurations. These are suggestive of common

observations such as S-shaped boundaries and the formation of double seams by one

portion of the grain boundary doubling back to abut a region which has already been

covered by another portion. These simulations posit two or more adjacent intervals of

the initially straight grain boundary, each spawning migration in its own direction, that

direction differing from one interval to its neighbor.

In general, the transition point between two adjacent portions of the mobile boundary,

marking the point at which the direction of motion changes, will itself migrate; this is

exemplified by the simulations in § 6.3. However, symmetry of the movement resulting

from imposed symmetric initial conditions may serve to pin this transition point, as seen

in Figures 4–8.

https://doi.org/10.1017/S0956792501004806 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792501004806


Chemically induced grain boundary dynamics 29

Here is an outline of the paper. To incorporate our new perspective into the analysis,

we present in § 2 the three-dimensional analogue of the FBP which was derived in Fife

et al. [6]. That derivation was exceedingly complex, due largely to the degeneration of the

assumed mobility of the solute atoms as they enter the crystalline grain from the grain

boundary. Therefore, rather than repeating the derivation in the 3D context, we shall

simply indicate the specific changes to be made in Fife et al. [6] to adapt that argument

to the present scenario. Most of the details are put into an appendix.

We then proceed in § 3 to carry through an approximation procedure valid when the

material is a thin film. This analysis reduces the dimension from 3 back to 2. At this stage

we are continuing to neglect the grooving effect, which is taken up in § 5. The resulting

FBP so derived governs the evolution of the trace of the free boundary on the film’s

surface.

Actual physical processes involving chemically induced grain boundary motion (DIGM)

are subject to at least two further considerations beyond the mere statement of the FBP

derived in § 3: the fact that they often move in opposite directions in different patches

or segments of the grain boundary, and the fact that the law of motion changes once a

grain boundary impinges on a part of the material which has already been covered by

the DIGM process. These extra considerations are discussed in § 4 in the context of our

model; in particular, the appropriate modifications to the FBP are outlined.

In § 5, the grooving phenomenon is discussed in our same context, and a physical

scenario is suggested under the FBP which was derived in § 3 remains valid when

grooving is present. Observed effects of grooving on the motion of grain boundaries have

been brought out in Cahn & Penrose [4]. For example, the analysis in that paper reflects

the observation that the film must attain a certain minimal thickness before motion is

possible. Accordingly, in § 5 thicknesses larger than the critical one are considered.

The simulations are presented in § 6. They involve three prototypical features, as

mentioned above. A summary is given in the discussion, § 7.

2 The free boundary problem in three dimensions

In Fife et al. [6], a free boundary problem was derived to describe the diffusion-induced

motion of grain boundaries. The derivation consisted of a formal asymptotic reduction

of a phase field model which had been introduced in Cahn et al. [3]. The result of the

reduction is (1.1), (1.2).

The phase field model is a system of two nonlinear partial differential equations

of parabolic type for the concentration of the solute species and an order parameter

representing the crystallinity of the material. The grain boundary, at this stage, was

considered to have finite thickness, and these two functions (concentration and order

parameter) were defined in the region representing the grain boundary. The magnitude

of the order parameter is least in the interior of the grain boundary, and maximal where

the material becomes part of the abutting grains. The partial differential equation (PDE)

for the order parameter is an Allen–Cahn (Ginzburg–Landau) equation with forcing term

dependent on the concentration. Therefore, it is no surprise to one familiar with internal

layers that its formal reduction involves curvature-dependent motion of the free boundary.

The PDE for the concentration is an equation which reflects the diffusion of solute
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atoms, with diffusivity vanishing when the atoms enter the crytalline grain. In addition,

there is another term coupling the concentration field to the order parameter field.

This was a 2D theory, all the fields being assumed constant in the third direction,

parallel to the faces.

The asymptotic reduction in Fife et al. [6] consisted of an extremely involved singular

limit as the thickness of the grain boundary and another parameter measuring the elastic

effects tended to zero.

The analogous 3D theory in thin films, as we shall show, takes the form of the following

free boundary problem for the motion of the surface Γ (t), which represents the grain

boundary, and the concentration u of solute in the grain boundary:

ρv = κ1 + κ2 + f(u), (2.1)

∆Γu− vu = 0. (2.2)

Here v is the normal velocity of Γ , ∆Γ is the Laplace operator on the surface Γ (t),

and κi are curvatures of Γ (t) in any two orthogonal directions (in the surface). The

parameter ρ is a dimensionless combination of material constants defined in Fife et al. [6].

Although there are no explicit time derivatives here, this is a dynamical problem because

of the presence of v. In fact, (2.1) tells us the normal velocity of Γ as a function of the

mean curvature of Γ and the local concentration of solute. In turn, (2.2) expresses rapid

diffusion of the solute along Γ , together with its loss, during the motion, due to the solute

being trapped in the growing grain. This latter effect is expressed by the term vu.

In addition, there are boundary conditions on the film’s faces. The grain boundary must

meet them at a prescribed angle of grooving θg at the point where it intersects them, and

u = 1 on the top face. If the bottom face is also in contact with a solute reservoir, then

u = 1 there as well. If it is in contact with an inert material, then the normal derivative of u

vanishes there. In Fife et al. [6] and Cahn & Penrose [4], f(u) was taken to be u2 in accord

with the theory in Cahn et al. [3], but here it could be any nonnegative increasing function.

The 2D free boundary problem (1.1), (1.2) derived in Fife et al. [6] is like this, except

that Γ (t) is a mobile curve, hence only one curvature appears in (2.1), and the Laplacian

in (2.2) is replaced by the second derivative with respect to arclength.

In Appendix A, it is shown how the derivation in Fife et al. [6] can be modified to fit

the present 3D scenario, resulting in (2.1), (2.2).

3 The thin film approximation when θg = 0

As mentioned before, we suppose the specimen Ω to be a film occupying the set in the

space (x1, x2, y) (dimensionless variables) given by {−2h < y 6 0} (Figure 2). We now

assume h � 1. The free boundary Γ (t) extends through Ω, so has traces on the top and

bottom faces {y = 0} and {y = −2h}. In this section, we restrict θg = 0 and disregard the

depth of any groove; other cases are considered in § 5.

We shall give a formal argument in this section, based on (1) the smallness of h and (2)

assumptions designed to eliminate transient behaviour, that the evolution of the surface

Γ governed by (2.1), (2.2) may in normal circumstances be reduced to a simpler evolution

of the curve Γ0(t), which is the intersection of Γ with the upper surface {y = 0} of
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Figure 2. Coordinate system used in the thin film.

the material. Thus the dynamical behaviour of the part of the surface Γ lying below

that upper plane will have little effect on the motion of Γ0(t), which is approximately

autonomous. That part will be approximately generated by lines perpendicular to the

surface. Our argument is summarized below in § 3.7.

Regarding the exceptional circumstances, one can imagine a sequence of values of h

tending to 0, together with a sequence of initial conditions to be contrived, for example,

so that although Γ0(0) may be a fixed curve, κ1 + κ2 becomes arbitrarily large on the

sequence, and Γ is very far from being normal to the upper surface. However, our

expectation is that any such initial abnormalities will quickly be damped out by transient

behaviour. We consider only motions for which such transients are no longer present. We

will spell out below an assumption on the solution designed to eliminate them. Roughly

speaking, it is that the terms in the evolution equations (2.1), (2.2) are smooth functions

with regularity properties independent of h.

First, we rewrite (2.1) in the form of differential operators valid locally, using the

variables (x1, x2, y). Let H be the mean curvature of Γ , so that κ1 + κ2 = 2H , and we

make that replacement in (2.1). With no loss of generality, we assume that the origin

(0, 0, 0) lies on Γ0(0), and that Γ0(0) is tangent to the x1-axis at the origin. Then for small

(x1, y) we may represent Γ (0) as

x2 = X2(x1, y), where X2(0, 0) = 0, ∂x1
X2(0, 0) = 0, ∂yX2(x1, 0) = ∂yX2(x1,−2h) = 0.

(3.1)

The last normality requirement in (3.1) was mentioned following (2.2) and is the same as

equation (2.76) of Fife et al. [6].

The mean curvature H of Γ (0) can be expressed as

H(x1, y) = (a11∂
2
x1

+ a12∂x1
∂y + a22∂

2
y)X2(x1, y), (3.2)

where the coefficients aij are nonlinear functions of ∇X2(x1, y). For example,

a12 = − 2
(
∂x1
X2

) (
∂yX2

)(
1 +

(
∂x1
X2

)2
+
(
∂yX2

)2
)3/2

. (3.3)

The other coefficients a11 and a22 are positive and bounded below as well as above.
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Thus (2.1) becomes

ρv = 2(a11∂
2
x1

+ a12∂x1
∂y + a22∂

2
y)X2(x1, y) + f(u). (3.4)

3.1 Basic assumption

All terms in (3.4) and (2.2), together with their first spatial derivatives, are bounded inde-

pendently of h.

We draw the following consequences.

3.2 Γ is almost vertical

By (3.1), ∂yX2 = 0 at y = 0 and −2h, so by the mean value theorem, for each x1 there

is a value of y at which ∂2
yX2 = 0. By the basic assumption and the boundedness from

below of a22, we know that ∂3
yX2 is bounded. We therefore have the estimate

|∂2
yX2| 6 Ch (3.5)

for all points. Integrating from y = 0 and using (3.1), we obtain

|∂yX2(x1, y)| 6 Ch2, (3.6)

and one more time,

|X2(x1, y)−X2(x1, 0)| 6 Ch3. (3.7)

Since the choice of origin was arbitrary, similar estimates hold everywhere on Γ (t), and

for all t.

These order relations (3.5)–(3.7) may be differentiated with respect to x1 or t.

3.3 The curvature of Γ is close to that of Γ0

Similarly, we have from (3.3) and (3.6) (differentiated) that |a12∂x1
∂yX2| 6 Ch2; combining

this with (3.5), we have

|H(x1, y)−H0(x1)| 6 Ch, (3.8)

where

H0(x1) = a11∂
2
x1
X2(x1, 0) ≡ κ0(x1), (3.9)

and a11 is to be evaluated with ∂yX2 = 0. This is the curvature of Γ0.

3.4 The velocity of Γ is close to that of Γ0

Let s0 be an arclength parameter for Γ0. We may represent points on Γ (t) by (s0, t, y).

We now derive a relation between the normal velocity vector v(s0, t, y) of Γ (t) and the

normal velocity vector v0(s0, t) of Γ0(t).

Let X 0(s0, t) be the 3D position vector corresponding to the point (s0, t). Thus

X 0(s0, t) ∈ Γ0(t) for all (s0, t). (3.10)
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Let Γ1(s0, t) be the intersection of Γ (t) with the plane P (t, s0) perpendicular to Γ0(t) at

that point. Points on Γ1 may be denoted by

X (s0, t, y) = X 0(s0, t) + yey + Ξ(s0, t, y), − 2h 6 y 6 0, (3.11)

where ey is the unit vector in the y-direction, and Ξ⊥ ey . Here the vector Ξ is the

(horizontal) deviation of the point on Γ (t) at depth y from the projection, to depth y, of

its associated point X 0 on the top surface.

By (3.6) and (3.7) we may write Ξ = h2ξ, where |ξ| 6 Ch and |∂yξ| 6 C .

The normal velocity vector can be represented as

v(s0, t, y) = (∂t + α(s0, t, y)∂s0 + β(s0, t, y)∂y)X (s0, t, y), (3.12)

where α and β are chosen so that v is normal to the surface Γ . The condition that v be

normal to Γ is

v·∂s0X = v·∂yX = 0, (3.13)

since ∂s0X and ∂yX are tangential to Γ . These two equations (3.13), with v given by (3.12),

can be solved for α and β. In the expression (3.12), we make the substitution (3.11) to

obtain

v(s0, t, y) = (∂t + α∂s)X 0(s0, t) + βey + O(h2). (3.14)

The second of equations (3.13) now yields β = O(h2) and the first yields

v·∂s0X 0 = O(h2). (3.15)

The analogs of (3.12), (3.13) for the velocity of Γ0 are

v0(s0, t) = (∂t + α0(s0, t)∂s0 )X0(s0, t), (3.16)

v0(s0, t)·∂s0X0(s0, t) = 0. (3.17)

From (3.14) we have

v(s0, t, y) = (∂t + α(s0, t, y)∂s0 )X0(s0, t) + O(h2). (3.18)

Subtract (3.16) from (3.18) and (3.17) from (3.15) to obtain

v(s0, t, y)− v0(s0, t) = (α− α0)∂s0X 0(s0, t) + O(h2), (3.19)

(v − v0)·∂s0X 0 = O(h2). (3.20)

Since ∂s0X 0 is a unit vector, we may take the scalar product of (3.19) with ∂s0X 0 to obtain

|α− α0| 6 Ch2, hence

v = v0 + O(h2). (3.21)

3.5 u is close to 1

Let us now consider the distribution u(s0, t, y) of solute along the the grain boundary as

a function of y, for fixed (s0, t). By our main assumption, we only consider solutions such

that all terms in (2.2) are 6 O(1); in particular, uyy 6 O(1). At the upper face {y = 0}
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we have u = 1 and at the lower face either u = 1 (if the vapour is in contact with the

specimen there) or uy = 0 (if it is in contact with a neutral material). In either case there

is a location where uy = 0, so that since the film has thickness h, |uy| 6 O(h). Integrating

again, we conclude that

|u− 1| 6 O(h2). (3.22)

Thus in (2.1), f(u) = f(1) + O(h2).

3.6 The evolution law for Γ0

All in all, from (3.22), (3.21), (3.8) and (3.9), we find that (2.1) becomes ρv0 = κ0 + f(1) +

O(h), where v0 is the normal velocity of Γ0, v0 = v0·ν0, ν0 being the unit normal. We take

f(1) = 1, so that ρv0 = κ0 + 1 + O(h). We now rescale the time variable to eliminate the

factor ρ. Thus our approximate free boundary problem is

v0 = κ0 + 1. (3.23)

The second equation (2.2) is no longer applicable. It represents the conservation of

solute species at an interior point of the grain boundary. But at the top face, solute really

is not conserved; there is an infinite reservoir of solute atoms at concentration unity which

replenishes any lost through the migration of Γ0.

3.7 Summary

The starting point in this derivation was the 3D FBP (2.1), (2.2). We introduced the

coordinate system shown in Figure 2 and wrote the equation (3.4) for the velocity of

the grain boundary in terms of that system. We envisaged a family of configurations in

which the thickness 2h of the film tended to zero. Thus in fact the solution depends on h.

Our main assumption, designed to eliminate transients, was that the terms in the law of

motion (3.4), (2.2) are all bounded independently of h. Using this assumption, we derived

estimates, in terms of h, on the deviation from verticality of Γ in the film, the deviation of

the curvature of Γ from that of Γ0, the same for the normal velocities, and the deviation

of u from 1. These estimates yielded an evolution law for Γ0 which contained error terms

which vanish as h→0. Neglecting them produced our final model (3.23).

4 Changes of direction and obstacles

When the DIGM process initially causes a grain boundary to move, the direction of

motion could depend on microscopic asymmetries which are not accounted for in our

theory. Along a given grain boundary, the direction is commonly observed to change from

one location to another. Thus one segment of the boundary may be seen to move to the

right (say), while an adjacent patch moves to the left. We must decide on modifications

to our free boundary problem (3.23) to account for bidirectional motion.

We conceive of the trace of the grain boundary Γ0(t) = Γ+(t)∪Γ−(t) as being composed

of two parts, Γ+(t) being the part which moves one way (we shall say in the ‘positive

direction’) and Γ−(t) moving in the other direction. On Γ+(t), (3.23) models the motion.
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For convenience we drop the subscript ‘0’ to obtain

v = κ+ 1 on Γ+(t). (4.1)

Here v > 0; it is normal velocity in the positive direction, and the convention is that κ > 0

if the centre of curvature is on the positive side of Γ+.

On Γ−, however, we shall still retain the same notion of positive direction and the

same curvature sign convention, so that v < 0. The normal velocity (considered positive)

is now −v and the curvature relative to the new direction is now −κ. We therefore obtain

−v = −κ+ 1, or

v = κ− 1 on Γ−(t). (4.2)

Near transition points where the direction changes, we expect the velocity to be small.

However, the original derivation in [3] on the basis of this mechanism resulted in no

dependence of the forcing term on magnitude of the velocity. Therefore, we shall take

the forcing term to change discontinuously from +1 to −1 as one passes through such a

point. At the transition point itself, the effect of curvature will still be felt, however. This

prevents corners from occurring there; we require that Γ0 be everywhere continuously

differentiable.

The transition point itself may move, and an example where this occurs is investigated

in § 6.3.

The part of the material which has been swept over by a migrating grain boundary

during DIGM is closer to equilibrium, and a new DIGM-produced grain boundary

coming to the edge of this region would operate by a different law of motion. If the

material is in equilibrium relative to the solute concentration in the adjacent vapour, then

the grain boundary would have no DIGM forcing, and would be subject to motion by

curvature only; the last term in (4.1) or (4.2) would be absent.

In typical cases, this means that a new grain boundary approaching such an equilibrium

region would be prevented from entering it. This obstacle phenomenon is relevant to

double seam formation. We incorporate it in the simulations of § 6.1.

5 Adjustment for grooving

5.1 Background

It is generally the case that the intersection of a grain boundary with the surface of the

metal specimen is a V-shaped groove extending into the specimen some distance d (see

Figure 3). The centre line of the groove may deviate from the normal to the surface by

some typically small angle θg .

Mullins [9, 10] gave a theory of the dynamics of such grooves, based on the phenomenon

of surface diffusion. The importance of the grooving effect depends on the material and

the temperature. Mullins [10] found a connection between the depth d and the velocity

of the grain boundary when the latter moves steadily as a whole in a direction parallel to

the surface. He also considered [9] a groove which is stationary in this sense, but whose

depth increases in time. Then d ∼ t1/4. Because of the small exponent, Mullins argued that

at times of practical interest, the rate of increase of d is so small that it can be considered

stationary. In fact, he provided a rough estimate of that stationary value. By the same
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Figure 3. Film section showing the grooving phenomenon.

token, when t is small d increases rapidly at a rate ∼ t−3/4. In other words, the groove

depth d relaxes rapidly to its preferred value.

Mullins also [10] that the groove angle θg , for steady motions, is approximately inde-

pendent of the velocity, a typical value being around .05 radians.

In our development, we assume that d is constant. If, for example, a migration is

initiated by immersing a sample with existing grain boundary in a solute reservoir,

we assume that the groove depth has already reached its characteristic depth before

the immersion time. The subsequent motion of the boundary will affect d, but not

instantaneously; there will be a time lag. The exact nature of the groove depth dynamics

induced by variable speed of the boundary has not been explored. If the moving boundary

achieves a limiting position so its velocity decays, then d will regain its initial value. If the

velocity of the grain boundary is always slow, then d will remain constant throughout the

development.

In any case, we assume that d is constant throughout the motion, without attempting

to spell out the most general conditions under which this is a good assumption.

In this section we provide an analog of the approximation arguments in § 3. Changes

are necessary simply because the presence of a nonzero groove angle boundary condition

may, by geometry alone, induce a large grain boundary curvature in the direction going

into the metal. A large curvature here violates the conditions of applicability of the

previous argument.

Our strategy will be to work with an explicit reference grain boundary configuration

which conforms to the required boundary angle, but which has no curvature in the

direction parallel to the flat surface. When this reference configuration moves parallel

to the surface with the appropriate velocity, it is the simplest solution of (2.1) with

u ≡ 1 which satisfies the boundary conditions. We then look for (not necessarily small)

perturbations of this reference configuration, giving us our desired solution of (2.1). We

apply, to the perturbation, the same ‘Basic assumption’ that was proposed originally in

§ 3.1. This approach generalizes the one in § 3, in which one could think of the reference

configuration as being flat and perpendicular to the face. The argument is summarized

below in § 5.5.
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5.2 Assumptions about the groove

As mentioned before, we assume the depth of the groove is everywhere and always the

same, and that the groove angle

0 < θg � 1. (5.1)

The thickness 2h now has the meaning of the distance between the root of the groove

on the upper surface and that on the lower surface (Figure 3). The mobile curve Γ0 is

now the locus of the groove root below the upper surface. As before, we first fix attention

on a specific point on Γ0, the origin of our coordinate system, and a specific time t = 0.

We use the same coordinate system (x1, x2, y) as in § 3.

The boundary condition

tan−1 [∂yX2(x1, 0))] = −θ(x1, 0) = −θg (5.2)

is to be imposed at the upper root, and the same with +θg at y = −2h. Because of (5.1),

we may approximate (5.2) by

∂yX2(x1, 0)) = −θg (5.3)

The grain boundary will, as before, span the set {−2h 6 y 6 0}, but this will no longer

be the entire film specimen; just the part between the roots of the two grooves.

The ‘basic assumption’ given in § 3.1 is no longer necessarily valid, because the boundary

condition (5.3) may, when h is small enough, itself force the grain boundary to have a

large curvature. When this is the case, the chemical forcing f(u) may not suffice to cause

the boundary to move against the force due to curvature. We shall therefore assume this

forcing term to be a variable parameter (denoted by K below) and to be large enough for

motion to proceed.

The argument in § 3.5 remains valid in the present context, so we shall henceforth

assume that u ≡ 1. Let K = f(1); as mentioned, we regard it as a variable parameter.

5.3 Reference profile

We work with a reference profile

X0
2 (x1, y) ≡ X0

2 (y) ≡ 1

2
θgh

[
−
(y
h

+ 1
)2

+ 1

]
, (5.4)

so that X0
2 satisfies (5.3), X0

2 (x1, 0) = 0, and

∂2
yX

0
2 (y) ≡ −1

h
θg. (5.5)

Assuming (5.1), we see that the unit normal vector to the surface {x2 = X0
2 (y)} is, up

to an error of the order O(θg), directed along the x2-axis, i.e. in the plane of the surface

of the film. Similarly, the curvature of the reference surface is

H0 = −1

h
θg(1 + O(θg)), (5.6)

since in (3.2), derivatives of X0
2 with respect of x1 vanish and moreover a22 = 1 when
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∇X2 = 0. Therefore this surface, translated in the x2-direction with velocity v0 given by

ρv0 = −2

h
θg +K, (5.7)

is an approximate solution of (3.4) with f(u) replaced by K . This special solution has no

curvature in the plane of the film surface.

We now represent our desired solution at t = 0 near the origin as a perturbation X1
2

(not necessarily small) of the reference surface:

X2(x1, y) = X0
2 (y) +X1

2 (x1, y). (5.8)

Then (3.4) becomes

ρv = −2

h
θg − 2(a11∂

2
x1

+ a12∂x1
∂y + a22∂

2
y)X

1
2 (x1, y) +K, (5.9)

which by (5.7)

= ρv0 − 2(a11∂
2
x1

+ a12∂x1
∂y + a22∂

2
y)X

1
2 (x1, y). (5.10)

Let v = v0 + v1. From (5.10) we have

ρv1 = −2(a11∂
2
x1

+ a12∂x1
∂y + a22∂

2
y)X

1
2 . (5.11)

Formally, this is a simple motion-by-curvature problem without forcing. Recall that the

aij are functions of ∇X2, without the superscript “1”.

5.4 Basic assumption eliminating transients when grooving is present

All terms appearing in (5.11) and (2.2), together with their first spatial derivatives, are

bounded independently of h.

With this assumption, again designed to eliminate transients, we may proceed as in § 3.2

to deduce that (3.5)–(3.7) hold with X2 replaced by X1
2 .

The following argument is the analog of that in § 3.3.

We decompose the curvature by setting H = H0 + H1, where by neglecting the error

terms in (5.6), we have H0 = − 1
h
θg . Recall (§ 3.3) that the curvature of Γ0 is denoted by

H0, and note that

H0 = H1
0 , (5.12)

the latter being a11∂
2
x1
X1

2 (see the first term on the right of (5.11)) evaluated at ∇X1
2 = 0,

y = 0. Analogous to (3.8), we obtain

H1 −H1
0 6 Ch. (5.13)

Thus

H − (H0 +H1
0 ) = H0 +H1 −H0 −H1

0 = H1 −H1
0 6 Ch. (5.14)

Note that H0 +H1
0 is independent of y.

As in § 3.4, we obtain

v = v0 + O(h2 + θg), (5.15)

so that recalling

ρv = 2H +K, (5.16)
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we get

ρv0 = 2(H0 +H1
0 ) +K + O(h+ θg) = 2H1

0 +K0 + O(h+ θg), (5.17)

where

K0 = K + 2H0 = K − 2

h
θg. (5.18)

Again, we rescale the time variable to effectively make ρ = 1, use (5.13) and 2H0 = κ0,

and neglect the error terms to obtain

v0 = κ0 +K0. (5.19)

This is our new approximate evolution law for Γ0. It is like (3.23) except that K0

replaces 1.

We assume that

K0 is at most of order unity; (5.20)

then the evolution of Γ0 is qualitatively like it is for the case of no grooving.

Notice that by (5.18), K0 depends upon h; therefore in (5.20), we are essentially requiring

that the chemical forcing be large enough, for small h, to counteract the large second term

in (5.18), which is the curvature forced, for small h, by the imposed groove angle θg .

Because of the qualitative similarity, we take note that the computed simulations in § 6
apply to the case when there is grooving, as long as (5.20) holds.

5.5 Summary

We rewrote the equation of motion in terms of the deviation X1
2 (x1, y) of the grain

boundary from an explicit reference configuration incorporating the groove angle, and

the deviation v1 of the normal velocity from the reference velocity. In terms of the new

equation of note (5.11), we then imposed an assumption (§ 5.4), analogous to that in § 3.1,

and again designed to disregard transients. A final assumption was (5.20) with K0 given

by (5.18) and K = f(1). On this basis, the law of motion of Γ0 was found to be (5.19),

except for terms negligible when h is small.

6 Three prototypical cases

The three cases below, which are simulated numerically, are designed to illustrate three

effects associated with bidirectional motion: the formation of double seams, whereby a

grain boundary doubles back on itself to encounter a region already in equilibrium (§ 6.1),

a threshold effect between evolutions to a stable S-configuration and to a double seam

(§ 6.2), and the migration of a transition point (§ 6.3).

In all cases, we envisage an initial straight grain boundary which is divided into patches

which subsequently move in alternating directions. In most cases (§ 6.3 excluded), enough

symmetry is imposed that the mobile grain boundaries are pinned at the transition points

between the initial patches.

For purposes of the simulations, the problem is reduced to initial value problems for

nonlinear parabolic PDEs. The numerical integration of these equations is by a fourth

order Runge-Kutta method in time, with centered differences in space. The coefficients in
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the equations never become singular during the integration, because the quantities p, p̂, p

in (6.1), (6.2), (6.8) are bounded away from zero. The last term in (6.8) is discontinuous at

the creeping transition, but this does not affect the flux. The accuracy of the calculations

was checked by doubling the number of grid points.

6.1 The formation of double seams

Consider two adjacent patches of the initial grain boundary which begin to migrate

in opposite directions. Often it is observed that each of the moving parts of the grain

boundary doubles back to impinge on the initial position of the other part (i.e. the other

patch). It is not able to proceed immediately into the region which has been covered by

the other part, however, but merely advances along that patch without penetrating it. This

is illustrated by micrographs and drawings in numerous other papers [2, 5, 7, 8, 11]. The

diagrams in these papers sometimes show eventual penetration in some cases; this effect

lies outside our theory. What results, then is a configuration in which there are two grain

boundaries (really parts of the original grain boundary generated by different patches)

moving away from the initial grain boundary’s position on either side of it.

Often the initiation of the grain boundary movement does not occur simultaneously in

all the patches [5]. The initiation mechanism is no doubt caused by many factors, outside

the scope of this theory. Our simulations are for the case of simultaneous initiation.

We have simulated the simplest case in which this occurs, namely the case when the

two initial patches are infinite in extent. Then there will be a built-in symmetry which

served to keep the transition point between patches fixed

We use the symbols (x, y) for Cartesian coordinates on the upper face; this is a change

of notation from before. We formulate a symmetric initial value problem for the motion

of Γ0(t), which we just write as Γ (t), on that face.

The initial shape Γ (0) is the x-axis. The subsequent velocity is initially upwards for

x < 0, downwards for x > 0. Thus Γ+(0) = {x < 0} and Γ−(0) = {x > 0}.
The prediction is that eventually Γ+ grows to the right and makes contact from above

with the positive x-axis. But that is an obstacle: the free boundary cannot pass through

the positive x-axis from above, because it would be entering a region which has already

been brought to equilibrium. The equation (4.1) with the last term 1 eliminated would

hold there. Since κ < 0 at any point on the positive x-axis where Γ first arrives, v would

have to be > 0 at that point and time, so entrance is indeed forbidden.

All the above is born out by the numerical simulations in Figures 4 and 5.

The simulation uses a parabolic partial differential equation representation of (3.23),

derived in Appendix B. We represent the interface in the form θ = Θ(r, t), (r, θ) being

polar coordinates. Let w(r, t) = rΘ(r, t). Then

1

p̄
wt =

1

p̄3

[
wrr + r2Θ3

r

]− 1, (6.1)

where p̄2 = 1 + r2Θ2
r . It is to be solved under the initial condition w(r, 0) = rπ and

boundary conditions w(0, t) = 0, w(r, t) ∼ rπ− t+ o(1) as r→∞.

To handle the obstacle, we drop the last term −1 in (6.1) when Θ < 0. The simulations

were carried out for the motion of Γ+(t); the motion of Γ−(t) was then added to the
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Figure 4. Computer simulation of the formation of a double seam by interfaces doubling back

on regions already covered by the grain boundary. The curves depict the positions of the grain

boundary at successive times.
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Figure 5. Blow-up near the singular point at the origin of the simulations in Figure 4. Each grain

portion of the grain boundary flattens against the region already covered by the other.

figure by imposing symmetry. The phenomenon by which one part of the free boundary

slides along the opposite initial patch is clearly seen in Figures 4 and 5.

6.2 Threshold results for a finite Γ

Again, we assume enough symmetry that all segments (patches) are pinned at their ends.

We envisage the patches being finite, all of them of length L. The whole configuration has

odd symmetry about x = ±L/2. The prediction is that if L 6 2, the evolution of all patches

proceeds to the arc of a circle of radius 1, because such a circle is an exact stationary

solution of (4.1). This final state, with such arcs alternating upward and downward, will

be called an S-configuration. But if L > 2, we may argue that the evolving curve will

never attain such a large curvature as 1. Then the free boundary pieces grow indefinitely,

each eventually forming a double seam as in § 6.1. This threshold phenomenon may be

justified rigorously; see § 6.2.1 below. The computation in the subthreshold case is shown

in Figure 6, and that in the superthreshold case in Figure 8. The critical case, when the

limiting shape is a semicircle, is shown in Figure 7. The initial configuration in these three
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Figure 6. Computed evolution from a pair of adjacent patches, alternating in direction. Here the

length of the central patch is subthreshold (length 1) and the evolution approaches a limiting

configuration which is a stationary arc of a circle of radius 1. Note the distortion due to unequal

horizontal and vertical scalings. The wiggly line is the imposed configuration at t = 0. The evolution

quickly smooths out the wiggles.

simulations is taken to be irregular with random wiggles. The reason is to show that the

wiggles are quickly damped out by the evolution, leaving a solution at later times which

appears to be quite independent of the initial data.

Such a threshold phenomenon depending on the size of the patch is not explicitly seen

in available micrographs; most of the cited authors appear to believe that S-mechanisms

always lead to double seams. The model and analysis given here suggest that reversals

of direction of motion may act to inhibit the formation of double seams, and therefore

the progress of DIGM. Such a conclusion may have practical implications relating to

chemical deterioration of alloys.

For this description, we use the representation r = R(θ, t), where now (r, θ) are polar

coordinates with origin at x = −L
2
, y = 0. The PDE is now

Rt = p̂−2

[
Rθθ − 2R2

θ

R
− R

]
+
p̂

R
, (6.2)

p̂2 = R2 + R2
θ . The derivation proceeds on the basis of (6.1) and is given in Appendix B.

We use initial and boundary data

R(θ, 0) = R0(θ), R(0, t) = L/2, Rθ

(π
2
, t
)

= 0. (6.3)

Here the initial data R0(θ) is an arbitrary small positive function describing the initial

position of the grain boundary. Any initial irregularities become smoothed out. The graph

is then extended to be even with respect to the line x = 0 and odd with respect to the

lines x = ±L/2.

6.2.1 Justification of the threshold effect

The reason for using the representation r = R(θ, t) and (6.2) was in order to be able to

include interfaces such as those in Figure 8 which eventually bulge out and are no longer
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Figure 7. Same as in Figure 6, except that the length of the central patch is 2 rather than 1. The

limiting circular arc is exactly a semicircle with radius 1. This is the critical case.
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Figure 8. Same as in Figure 6, except that the length of the central patch is 4 rather than 1. This is

the supercritical case, and the interface increases indefinitely, never approaching a stationary limit

configuration.

representable as graphs y = Y (x, t). However, we now move to the easier representation

y = Y (x, t), because it will suffice to describe the threshold effect.

We consider only the upward moving patch, with x confined to the basic interval

[−L/2, L/2]. The initial-boundary value problem is then (similar to (6.8) below)

Yt =
1

p2
Yxx + p, (6.4)

where p2 = 1 + Y 2
x ,

Y (x, 0) = Y0(x), Y (±L/2, t) = 0, (6.5)

where Y0(x) > 0.

We define a subsolution Y (x, t) to be a smooth function satisfying

Y t 6
1

p2
Y xx + p, (6.6)

where p2 = 1 + Y 2
x. Supersolutions Y are defined similarly.

It is a perfectly standard result that if Y , Y are a sub- and super-solution such that
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Y 6 Y at the two boundary points and also when t = 0, then this inequality is preserved

for later times.

Moreover, if Y0(x) is a stationary subsolution, then the solution Y (x, t) is a nondecreas-

ing function of t for as long as it exists. The (standard) proof of this consists in, first,

using the above comparison result to show that Y (x, t) > Y0(x), and secondly applying

that result to the function vδ(x, t) = Y (x, t+δ)−Y (x, t) for δ > 0. The function vδ satisfies

a similar parabolic PDE and a similar comparison principle. It begins nonnegative and

so stays nonnegative. Since δ is arbitrary, this shows that Y is increasing in t.

First, consider the case that Y0(x) ≡ 0. It is a subsolution, so the corresponding evolution

Y (x, t) must increase in time. We consider two cases:

(1) L < 2. Then an exact stationary solution of (6.4), (6.5)2 exists, namely the function

Ỹ (x) > 0 whose graph is the arc of a circle of radius 1 pinned to the boundary

points, so that Ỹ (±L/2) = 0. In fact, it is seen by setting the right-hand side of

(3.23) equal to 0 that such arcs are the only stationary solutions. Therefore, by the

comparison principle, the function Y (x, t) must be confined below Ỹ , exist for all

time, and (by the monotonicity in t) approach it as a limit:

lim
t→∞Y (x, t) = Ỹ (x) for all x ∈ [−L/2, L/2]. (6.7)

The existence for all time follows from the a priori bound Y (x, t) 6 Ỹ (x), together

with a priori estimates for higher derivatives.

This case is illustrated in Figure 6.

(2) Next, suppose L > 2. Then there exists no such arc of a circle of radius 1 pinned to

the boundary points. It follows that Y (x, t) must either increase with t unboundedly

or cease to exist at some finite value of t.

In fact, the second alternative no doubt is the case, as Figure 8 shows. As a solution of

the forced motion-by-curvature equation (3.23), the evolution ceases to satisfy (6.4), (6.5)

since it is no longer a graph. Likely Yx will become infinite in finite time at the boundary

points x = ±L/2.

Calculations for the intermediate case L = 2 are shown in Figure 7. Then the evolution

approaches a semicircle, with infinite derivative at the endpoints.

These results were for the special initial condition Y0(x) ≡ 0. If the actual initial

condition satisfies 0 6 Y0(x) 6 Ỹ (x), then by the same comparison principle, its graph in

Case 1 always lies between Ỹ (x) and the evolution from the special initial condition, which

approaches Ỹ (x). Therefore the evolving graph from the arbitrary initial configuration

must also approach Ỹ (x), as it does in Figure 6.

Similarly in Case 2, the solution of (6.4), (6.5) no doubt ceases to exist because it lies

above an evolution which does.

These considerations were based on a comparison principle for the nonlinear heat equa-

tion (6.4), which is not really appropriate for the later stages of the motion. Comparison

principles for various generalizations of the motion-by-curvature equation itself abound

in the literature; see, for example, Angenent [1]. However, these results apply mainly to

curves which do not have pinned ends, as ours do, and so do not appear to be directly

applicable to our problem.
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6.3 A creeping transition point

Here we investigate the case when the transition point between Γ+ and Γ− is not pinned,

but rather moves in time.

For a computational illustration, we again consider a prototypical situation. We place

the origin 0 at the left end of Γ+(0), so that Γ+(0) = {0 6 x 6 L1} and Γ−(0) = {L1 6
x 6 L1 +L2}. We assume L1 > L2, so that this much of the previous symmetry is broken.

However, we assume odd symmetry with respect to x = 0 and x = L1 +L2. This effectively

pins the transition points at those locations.

To compute the evolution, we use the representation y = Y (x, t) for both Γ±, i.e. for

0 6 x 6 L1 + L2. The equation is

1

p
Yt =

1

p3
Yxx + h(x, t, [Y ]), (6.8)

where p2 = 1 + Y 2
x , and h(x, t, [Y ]) depends upon the past history of the function Y as

follows:

(a) At points (x, y, t) with y > 0 which have not been covered by the motion of a grain

boundary, h = 1.

(b) At points (x, y, t) with y < 0 which have not been covered by the motion of a grain

boundary, h = −1.

(c) At points (x, y, t) which have been covered by the motion of a grain boundary, h = 0.

The initial and boundary conditions are

Y (x, 0) = 0, Y (0, t) = Y (L1 + L2, t) = 0. (6.9)

Initially at t = 0, we set h =

{
1, x < L1,

−1, x > L1

The prediction is that the transition point will migrate to the right, maybe eventually

swallowing up Γ−. This indeed is shown in the figure.

The movement of the transition point is not clear from the available micrographs;

however those in Baumann et al. [2] are suggestive of this.

7 Discussion

We have built upon the previous models for DIGM [3, 6, 4] in a systematic manner to

account for effects not covered in them. These effects are associated with the migration

of curved bidirectional grain boundaries spanning a thin metallic film.

To obtain this information, we have followed these steps:

(1) We have extended the asymptotic reduction from phase field model to free boundary

problem given in Fife et al. [6] so that problems in a film with a 3D geometry can

be handled. The reduction is based on the smallness of a parameter measuring the

thickness of the grain boundary and the strength of the elastic interaction.

(2) We have further reduced this 3D FBP to a 2D one, this time using approximations

based on the thinness of the film and assumptions on the solution calculated to

ensure that transient effects have passed away. The derived free boundary problem
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Figure 9. In this case, the transition point between the portions of the grain boundary moving in

opposite directions is the intersection of the boundary with the x-axis. It begins at x = 1 and is not

fixed, but rather migrates in such a way that the smaller of the two adjacent patches becomes even

smaller and eventually vanishes. Odd symmetry is imposed at x = 0 and x = 1.5, so the picture is

periodic with period 1.5. Only one period interval is shown.

in this case is a simple one of forced motion by curvature, the forcing function

taking positive, negative, or zero values depending on the situation. In the case

when there is a non-neglible grooving angle, the elimination of transient effects

becomes more complicated. In order for the grain boundary to move, it must be

assumed that the solute concentration is large enough to overcome an inhibiting

effect associated with the groove angle. This critical amount can be estimated by

means of a reference configuration which we introduce.

(3) The final FBP is solved numerically for several prototypical configurations. Specifi-

cally, the well known formation of S-configurations and double seams is illustrated

by computer simulations of the free boundary problem. Moreover a threshold effect

and the phenomenon of creeping transition point are predicted and illustrated.

Regarding the threshold effect, the model and analysis given here suggest that reversals

of direction of motion may act to inhibit the formation of double seams, and therefore

the progress of DIGM. Such a conclusion may have practical implications relating to

chemical change in alloys.
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Appendix A Derivation of the 3D free boundary problem

We detail the modifications to the derivation in Fife et al. [6] needed to obtain (2.1),

(2.2). To avoid repetition of that long and complex argument, we simply point out the

changes that may be made for this purpose in the various steps of the previous derivation.
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Figure A 1. Coordinate system in the grain boundary.

References to equations in [6] will be made by the notation ‘I’ placed before the equation

number from Fife et al. [6].

Our starting point will be the same as in Fife et al. [6], namely the system I(2.10)–I(2.12)

of PDE’s for the phase function φ, concentration c, and chemical potential w. The grain

boundary G(t), defined by I(2.15), will now be a mobile curved shell in 3D, rather than a

strip in 2D. For the purpose of this section, unidirectional motion will still be assumed;

thus G(t) has a leading surface Γ+(t) and a trailing surface Γ−(t), on which I(2.16) holds.

First we review some simple geometric concepts. For now we fix t, and in fact disregard

time dependence. As in Fife et al. [6], for x ∈ G we define X(x) to be the point on Γ−
closest to x, r(x) = |x − X(x)| = distance from x to Γ−, and ν(x) the unit vector in the

direction from X(x) to x (since G is open, r(x) > 0 and ν(x) is well defined). For any

function f(x), we represent

∇f(x) = ν(x)∂rf(x) + τ1(x)∂1f(x) + τ2(x)∂2f(x), (A 1)

where τi(x) are chosen in any smooth fashion so that (ν, τ1, τ2) form an orthonormal

triple. Here ∂rf is the derivative in the direction of ν , and the tangential derivatives ∂if,

i = 1, 2, are in the directions of τi . Thus for any function w(x),

∇·D∇w =

(
ν∂r +

2∑
1

τi∂i

)
·D
(
ν∂rw +

2∑
1

τi∂iw

)

= ∂r(D∂rw) +

2∑
1

τi ·∂i(Dν∂rw) +

2∑
1

ν·∂r(τiD∂iw) + Rw, (A 2)

where the second order differential operator R involves only ∂1 and ∂2, not ∂r . Note that

as we move from X(x) to x along the normal to Γ−, ν(x) is unchanged, but a twisting

may cause τ i to change.

We now fix a point x0 and let s1, s2 denote arclengths along two curves (which we think

of as coordinate curves) on Γ− with origin at X(x0), tangent at that point to τ1(x0) and

τ2(x0), respectively (Figure A 1). We also require the curves to lie in planes normal to Γ−
at the origin. Then the curves will be the intersections of Γ− with the planes through

X(x0) determined by ν(x0) and either τ1(x0) or τ2(x0). Let the curvatures of the two curves
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at 0 be denoted by κi(x0), deemed positive if the respective centre of curvature lies on the

same side of Γ− as G. Then (r, s1, s2) form a local coordinate system in a neighborhood

of x0, so that for a function f(x), we may write f = f̃(r, s1, s2; x0) and express, by the

dilatation effect as in I(D.1), the operator ∂i appearing in (A 2) as

∂if(x0) =
1

1− r(x0)κi(x0)
∂si f̃(r, s1, s2; x0)

∣∣
s1=s2=0

. (A 3)

Attaching a similar meaning to ν̃(r, s1, s2; x0), we also know that ∂si ν̃|s1=s2=0 =

−κi(x0)τi(x0). Although ∂rτ i(x) does not generally vanish (due to twisting), it will be

orthogonal to ν(x), so that ν(x)·∂rτi(x) = 0. Therefore the second summation on the right

of (A 2) vanishes. In (A 2) we may write

∂i(Dν∂rw) = ν∂i(D∂rw) +
D∂rw

1− rκi ∂si ν̃ , (A 4)

so that since ν·τi = 0,

τi ·∂i(Dν∂rw) = −κi D∂rw
1− rκi . (A 5)

Thus (A 2) becomes the following for any point x, no longer fixed:

∇·D∇w = ∂r(D∂rw)−
(

2∑
1

Dκi

1− rκi

)
∂rw + Rw, (A 6)

where R is a second order differential operator of the form Rw =
∑

(i,j) b
1
i (x)∂i[Db

2
j (x)∂jw]

for some b1
i , b

2
j . This equation (A 6) replaces I(D.6) except for the factor ρ−1, and the

right side of I(2.25) becomes (A 6) with r replaced by εz and w by W . As in Fife et al. [6],

it is now appropriate to change the metric on Γ− by I(2.17). This introduces a factor ρ−1

in front of RW in (A 6).

We now consider the other parts of I(2.24), I(2.25). The right side of I(2.24) becomes,

by setting D = 1 in the above,

Φ+ Φzz −
2∑
1

εκi

1− εzκi Φz − εpφ + ε2R̂Φ, (A 7)

where R̂Φ involves derivatives of Φ in directions other than r.

Consider the left side of I(2.24). We now restore t-dependence, and give a different

meaning to the coordinates si. That curvilinear coordinate system will now be fixed, rather

than attached to the variable point X(x). Let (x1, x2, y) be Cartesian coordinates; we

specify that the film occupy the set {−2h < y < 0} as in Figure 2 of the present paper and

Section 2.5 of Fife et al. [6] (replace x2 there by y). Thus (x1, x2) are Cartesian coordinates

for the top and bottom faces of the film. Let Γ0(t) = Γ (t) ∩ {y = 0} (this is the top curve

in Figure 2), and s0 be arclength along Γ0(t) from some reference point, as was done with

the coordinate s in Fife et al. [6] (§ 2.2).

Let P (t, s0) be the plane perpendicular to Γ0(t) at s0, and Γ1(t, s0) = Γ (t) ∩ P (t, s0).

Consider points x ∈ G(t) such that X(x) ∈ Γ1(t, s0). For given x, let s0(x, t) be the value

of s0 for which this is true.

Let s1(x, t) be the arclength along Γ1(t, s0) from Γ0(t) to the closest point X(x, t) to x.

In particular, each point on Γ−(t) is specified by a pair (s0, s1).
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To summarize, the coordinate transformation (x, t)→(r(x, t), s0(x, t), s1(x, t)) is defined

as follows. We identify X(x, t) as the closest point on Γ−. This also defines the plane

P = P (t, s0) through X normal to Γ0(t), hence s1(x, t) and s0(x, t), the latter being the

arclength from the reference point on Γ0 to P .

In the coordinate system (z, s0, s1) (z = r/ε as in Fife et al. [6]), time derivatives at t = 0

are transformed as follows, analogous to I(2.19):

φt(x, 0) = Φt(z, s0, s1, 0) + ε−1rt(x, 0)Φz(z, s0, s1, 0) +

2∑
i=1

∂tsi(x, 0)∂siΦ(z, s0, s1, 0). (A 8)

Let v(s0, s1, t) be the normal velocity of Γ−(t). Also let v0(s0, t) be the normal velocity of

Γ0(t), κ0(s0, t) its curvature, and let v∗0 be given by I(2.30) with s∗i defined by I(2.17). As in

Fife et al. [6], we derive ∂ts0(x, t) = ρ−1S1(s0, t), where S1(s0, t) =
∫ s0

0
v∗0(ρ−1/2s′, t)κ0(s′, t)ds′.

Also ∂ts1 is given by such an analogous expression ρ−1S2, whose exact form is not

important.

In all, we have the following equations to replace I(2.24) and I(2.25). In them, the

symbol s will now mean (s0, s1), and similarly for s∗.

ρε2Φt(z, s, t)− ρεv(s, t)Φz(z, s, t) + ε2(S1(s∗, t)Φs0 (z, s, t) + S2(s∗, t)Φs1 (z, s, t))

= Φ+ Φzz − ε
2∑
1

(
κi

1− εzκi
)
Φz − εpφ + ε2R̂Φ, (A 9)

εUt(z, s
∗, t)− v(s, t)Uz(z, s

∗, t) + ερ−3/2(S1(s∗, t)Us∗1 (z, s, t) + S2(s∗, t)Us∗2 (z, s, t))

= ε−2(DWz)z − ε−1
2∑
1

(
Dκi

1− εzκi
)
Wz + ρ−1RW. (A 10)

Finally, I(2.26) still holds.

The assumptions listed at the beginning of § 2.3 of [6] still hold, with minor modifi-

cations. In Assumption I, κ1, κ2 both have the regularity stated. The integral condition

now is applied only to κ0, as a function of s0, since the analogous condition resulting in

the boundedness of S2 is automatically fulfilled by virtue of the bounded length of Γ1.

Assumption IV still holds with the obvious changes of meaning for the derivatives.

§ 2.3.1 is still valid, with the evident new interpretation of I(2.47), I(2.50). Also, only

obvious changes are needed in Section 2.3.2.

Changes in § 2.4 result, as we shall show, in the new FBP (2.1), (2.2) to replace I(2.74),

I(2.75).

To see this, we first consider M(t) (I(2.61)). We now consider two pairs of numbers

s∗01 < s∗02, s
∗
11 < s∗12 and define G∗(t) = G(t) ∩ {ρ1/2s∗01 < s0 < ρ1/2s∗02, ρ1/2s∗11 < s1 <

ρ1/2s∗12}.
The increase in dimension means that the boundary ∂G∗ now contains four lateral

portions rather than 2. We call the union of the lateral portions ∂LG
∗.

Obvious changes in the treatment of F1 result in the same estimate I(2.64).

Consider now F2. The brackets in I(2.65) and I(2.67) are to be replaced by an integral

over ∂LG
∗. In fact, the first equation in I(2.67) becomes F2 =

∫
∂LG∗ ρ

−1/2τ ·D∇w. However,

for each z = z0, by the divergence theorem,
∫
∂LG∗∩{z=z0} τ ·D∇W =

∫
G∗∩{z=z0} ∇·D∇W .
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Therefore

F2 =

∫ π

0

ρ−1/2dz′
∫
G∗∩{z=z′}

∇·D∇W (1 + O(ε)), (A 11)

and by the same chain of estimates as in [6], we find the analog of I(2.68):

F2 = πD0ρ
−1/2

∫
G∗∩{z=π/2}

∆∗U + ρ−1/2O(ε̂+ ερ−1/2), (A 12)

where ∆∗ is the Laplacian on the surface G∗ ∩{z = π/2} with respect to the starred metric.

Continuing the argument as in Fife et al. [6], we obtain (2.1) and (2.2). (In Fife et al. [6]

and Cahn & Penrose [4], f(u) was taken to be u2 in accord with the theory in Cahn et

al. [3], but here it could be any nonnegative increasing function.)

Appendix B The equation of motion in polar coordinates

B.1 Derivation of the equation for w

We consider the scenario described in § 6.1. Let (r, θ) be polar coordinates, so that

x = r cos θ, etc. We represent the moving curve Γ (t) in the form θ = Θ(r, t), and show

that for x < 0, (4.1) reduces to (6.1).

Let τ (r, t), ν(r, t) be the tangential and normal unit vectors; also er(θ), eθ(θ) are the

unit vectors in the directions of the ray from the origin in the direction θ, and in the

perpendicular direction with θ increasing.

We first represent τ and ν in terms of er and eφ. We have

dx = erdr + eφdθ. (B 1)

For points restricted to lie on Γ with fixed t, we have dθ = Θrdr, so

dx = (er + rΘreφ)dr. (B 2)

If s is arclength on Γ , τ = dx
ds

= (er + rΘreφ) dr
ds

, so that dr
ds

= 1√
1+r2Θ2

r

and

τ =
er + rΘreφ√

1 + r2Θ2
r

, ν =
rΘrer − eφ√

1 + r2Θ2
r

. (B 3)

For the curvature, we have

−κν =
dτ

ds
=

1√
1 + r2Θ2

r

d

dr

er + rΘreφ√
1 + r2Θ2

r

. (B 4)

We calculate
d

dθ
er = eφ,

d

dθ
eφ = −er. (B 5)

Hence

d

dr
(er + rΘreφ) = Θr

d

dθ
er +

d

dr
(rΘr)eφ + rΘ2

r

d

dθ
eφ = (rΘrr + eΘr)eφ − rΘ2

r er. (B 6)

Also d
dr

(r2Θ2
r ) = 2rΘ2

r + 2r2ΘrΘrr . Thus letting

p̄ =
√

1 + r2Θ2
r ,
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we have

d

dr

er + rΘreφ√
1 + r2Θ2

r

=
1

p̄

[
(rΘrr + 2Θr)eφ − rΘ2

r er
]− 1

2
p̄−3

(
2rΘ2

r + 2r2ΘrΘrr

)
(er + rΘreφ),

(B 7)

and from (B 3), (B 4),

−κν = p̄−2
[
(rΘrr + 2Θr)eφ − rΘ2

r er
]− p̄−4

(
r2ΘrΘrr + rΘ2

r

)
(er + rΘreφ). (B 8)

Use (B 3) together with κ = −(κν)·ν to get

κ = − rΘr

p̄

[−rΘ2
r p̄
−2 − p̄−4(r2ΘrΘrr + rΘ2

r )
]

+
1

p̄

[
p̄−2(rΘrr + 2Θr)− p̄−4rΘr(r

2ΘrΘrr + rΘ2
r )
]

= p̄−3r2Θ3
r + p̄−5r2Θ2

r (rΘrr +Θr) + p̄−3(rΘrr + 2Θr)− p̄−5r2Θ2
r (rΘrr +Θr)

= p̄−3(rΘrr + 2Θr + r2Θ3
r ). (B 9)

We now represent the velocity v. Since x = rer(Θ(r, t)), we have

dx = (er + rΘr

d

dθ
er)dr + rΘt

d

dθ
erdt = (er + rΘreφ)dr + rΘteφdt. (B 10)

To find the normal velocity, we choose dr so that dx is in the direction of ν , i.e. dx·τ = 0.

From (B 3), we need dx·(er + rΘreφ) = 0:

dr + (rΘrdr + dΘtdt)rΘr = 0,

dr = −p̄−2r2ΘrΘtdt. (B 11)

Put this into (B 10) to obtain

dx =
1

p̄2

[−r2Θrer + reφ
]
Θtdt = −νrΘt

p̄
dt. (B 12)

Thus

v = − rΘt

p̄
(B 13)

is the normal velocity.

From (B 13), (B 9), we may write the law of motion (B 2) as

rΘt

p̄
=

1

p̄3

(
rΘrr + 2Θr + r2Θ3

r

)− 1. (B 14)

Because of the factor r in two terms of (B 14), the problem is singular at r = 0, and

we cannot prescribe a priori θ(0, t). We wouldn’t in fact expect to. This can be somewhat

alleviated by definiting w(r, t) = rΘ(r, t), so wrr = rΘrr + 2Θr , wr(0, t) = Θ(0, t). Then

(B 14) becomes

1

p̄
wt =

1

p̄3

(
wrr + r2Θ3

r

)− 1, (B 15)

which is (6.1). We solve it under the boundary and initial conditions given following (6.1).
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B.2 Derivation of the equation for R

For fixed t, the function r = R(θ, t) is the inverse function to θ = Θ(r, t). Therefore in

(B 14) we may make the replacements

Θr = 1/Rθ, Θt = −Rt/Rθ, Θrr = −Rθθ/(Rθ)3.

Doing this results in (6.2).
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