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The discrete velocity Boltzmann equations (DVBE) underlie the attainable properties
of all numerical lattice Boltzmann methods (LBM). To that regard, a thorough
understanding of their intrinsic hydrodynamic limits and stability properties is
mandatory. To achieve this, we propose an analytical study of the eigenvalues
obtained by a von Neumann perturbative analysis. It is shown that the Knudsen
number, naturally defined as a particular dimensionless wavenumber in the athermal
case, is sufficient to expand rigorously the eigenvalues of the DVBE and other fluidic
systems such as Euler, Navier–Stokes and all Burnett equations. These expansions
are therefore compared directly to one another. With this methodology, the influences
of the lattice closure and equilibrium on the hydrodynamic limits and Galilean
invariance are pointed out for the D1Q3 and D1Q4 lattices, without any ansatz.
An analytical study of multi-relaxation time (MRT) models warns us of the errors
and instabilities associated with the choice of arbitrarily large ratios of relaxation
frequencies. Importantly, the notion of the Knudsen–Shannon number is introduced
to understand which physics can be solved by a given LBM numerical scheme. This
number is also shown to drive the practical stability of MRT schemes. In the light of
the proposed methodology, the meaning of the Chapman–Enskog expansion applied
to the DVBE in the linear case is clarified.

Key words: kinetic theory, computational methods, Navier–Stokes equations

1. Introduction
The Navier–Stokes equations prevail as the bedrock of fluid modelling. Their

general form encompasses the description of many Newtonian fluids, from gases to
most condensed phases. This approach relies on a simplified linear decomposition
of the stress tensor through an isotropic pressure plus shear and bulk viscosity.
Yet, this simplification does not cover many exotic fluidic behaviours, such as
rarefied physics or visco-elastic properties (Bird, Armstrong & Hassager 1987).
An absolute modelling of microscopic interactions could overcome this difficulty,
yielding emergent macroscopic equations covering a wider range of fluids. But
treating the motion of each particle independently remains preposterous. Therefore, a
statistical description of local particle distributions in space, time and velocity space
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forms a natural attempt to compromise macroscopic and microscopic approaches.
For monatomic gases, the Boltzmann equation (BE) governs this distribution function
(Boltzmann 1872). Its form models the microscopic collision process, while recovering
the evolution of statistical moments linked to macroscopic quantities. Proving formally
that this mesoscopic description is equivalent to a simple set of macroscopic equations
on a hydrodynamic manifold constitutes the tremendously perplexing sixth Hilbert
problem (Hilbert 1902), yet to be resolved.

Knowing what the Boltzmann equation solves is a question still open to debate
(Gorban & Karlin 2014). Thorough mathematical treatments show that Euler,
Navier–Stokes and other hydrodynamic limits are contained within the Boltzmann
equation, but only to a certain extent. This extent is in practice a function of
asymptotic parameters for given norms on the solutions, and remains today an
active field of mathematical research (see Bobylev 2018; Slemrod 2018; Gorban
et al. 2018, and many others). The latest significant step forward came out of
the Bardos, Golse and Levermore program (Villani 2001), which produced good
advances in the acoustic and Euler cases. But some limitations arose from a
lack of compactness and convergence in formal proofs in the Navier–Stokes case.
Significantly earlier than this, Chapman and Enskog performed a much easier and
more physical approach, although it was less rigorous (Chapman & Cowling 1939).
They proposed a multi-scale development of the Boltzmann equation, often simplified
in practice by the Bhatnagar–Gross–Krook (BGK) operator (Bhatnagar, Gross &
Krook 1954). They computed an expansion in a small parameter they assumed to
be the Knudsen number, to derive at the first order the Euler equations, and at the
second order the Navier–Stokes equations with a dynamic viscosity proportional to
the pressure and the collision frequency. Analogous methods, such as the famous
Grad moment system (Grad 1949b), or the Hilbert expansion (Hilbert 1912) share in
fact similar asymptotic treatments (Mika 1981; Söderholm 2008). Unfortunately, the
Chapman–Enskog expansion raises as many questions as it answers, notably in terms
of convergence, and is mostly used today as a black box tool. The latter requires in
practice an arbitrary expansion of the time derivative to complete the macroscopic
interpretation. Moreover, the expansion parameter does not seem consensual in the
literature, further putting a damper on the endless path to rigour (Li 2015).

In other words, the stumbling block of mesoscopic fluid modelling is the
introduction of a velocity field: all the questions raised above boil down to knowing
how this field behaves hydrodynamically. This extra field is infinite and different
at each point in space and time. The distribution function contains in that regard
much more information than the hydrodynamic quantities. And since all fluidic
systems are meant to be simulated on a computer, this issue of infinite information is
particularly problematic. Along with the space–time discretization, it is obvious that
a finite restriction in velocity space is necessary. Such a restriction leads to a smaller
system: the discrete velocity Boltzmann equations (DVBE). The numerical schemes
solving the DVBE on a discrete grid in space and time are called lattice Boltzmann
methods (LBM) (McNamara & Zanetti 1988; Higuera & Jiménez 1989; Succi, Benzi
& Higuera 1991; Benzi, Succi & Vergassola 1992). Among all these, the extensively
used stream-and-collide schemes are particularly well suited to parallel computing,
allowing us to simulate some flows with increased performance (Noble, Georgiadis &
Buckius 1996; Velivelli & Bryden 2006), and even multicomponent flows in complex
geometries (Falcucci et al. 2011). Noticeably, such methods recently showed high
accuracy for simulating high Knudsen number flows in nanoporous media (Montessori
et al. 2016; Falcucci et al. 2017). Understanding which physics are solved by the
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Hydrodynamics and stability of the DVBE 897 A29-3

DVBE is necessary to settle, apart from the influence of space–time discretization,
what LBM actually do. What are the links with the original Boltzmann equation?
What is the exact influence of this restriction in velocity space? Surprisingly, little
literature has studied thoroughly the hydrodynamic and stability properties of the
DVBE. Yet, the latter are necessary to assess which properties are attainable by
LBM. The limitations of the DVBE must be indeed sorted out, so as to differentiate
intrinsic drawbacks from numerical artefacts. For instance, it is notoriously observed
that the standard BGK operator is rapidly unstable for standard simple-speed lattices
(Sterling & Chen 1996; Banda, Yong & Klar 2006; Wissocq, Sagaut & Boussuge
2019). In that regard, multi-relaxation time (MRT) models introduced by d’Humières
(1992) were proven to increase substantially the numerical stability (see Lallemand
& Luo 2000) by relaxing moments at different frequencies. However, the resulting
hydrodynamics of MRT models is still badly understood and it appears that arbitrarily
large choices of frequency ratios generate even more instability (Krüger et al. 2017).
Most frequencies must be tuned by hand and are case dependent. Studying the
equations underpinning MRT and BGK is thus crucial to understand whether these
phenomena are purely numerical or related to the system of equations.

The physics of the DVBE is substantially different from the fully continuous
Boltzmann equation. For instance, the simple-speed lattices (e.g. D1Q3, D2Q9,
D3Q27, see Qian, d’Humières & Lallemand (1992)) show a Galilean variance
through the so-called O(Ma3) error, where Ma is the local Mach number of the
flow. This is a direct consequence of the discretization in velocity space, leading to
instabilities and modified hydrodynamics. In this regard, Geier, Greiner & Korvink
(2006) proposed a so-called cascaded model. It consists in performing collision on
the central moments, for which the velocity space is shifted by the local flow. The
model claimed accordingly to restore Galilean invariance. But to the best of the
authors’ knowledge, although it stabilized numerical simulations at high Reynolds
numbers, no O(Ma3)-related instability improvement was observed, thus no clear
influence on Galilean invariance. This is reassuring, because fixing the lattice closure
requires additional physical information, not provided by a shift of the velocity
space. More generally, it is observed that the notion of Galilean invariance within
the DVBE framework remains badly understood. The Boltzmann equation is Galilean
invariant by construction, but the DVBE is not. Can we quantify this deviation from
Galilean invariance? Furthermore, it must be noted that one of the best attempts so
far to correct these Galilean variance issues is the addition of external force terms
in the DVBE, somewhat disconnected from the underlying microscopic modelling
(Prasianakis & Karlin 2007). Hybrid LBM notably need this force term without
which the energy coupling turns unstable (Feng et al. 2019). A Chapman–Enskog
analysis proved this extra term to correct the O(Ma3) error in the momentum equation,
thus restoring Galilean invariance at the so-called Navier–Stokes level. But what does
this mean exactly, since the Chapman–Enskog analysis is still a subject of debate?

The purpose of the present work is to provide a framework based on unequivocal
expansions of the linear perturbative physics of the DVBE at a well-defined Knudsen
number, in an attempt to answer the questions raised above, without prior use of
the Chapman–Enskog analysis. Each of the orders of the obtained expansions will
depend on the lattice considered, the associated equilibrium, the collision modelling
(e.g. BGK or MRT), the use of central (cascaded) or raw moments and the possible
inclusion of force terms. That way, the notions of hydrodynamics, stability and
Galilean invariance can be sorted out altogether, for each order in Knudsen number.
In addition, the relation between our framework and the Chapman–Enskog expansion
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in the limit of an infinite number of discrete velocities will provide insight into both
the hydrodynamic limits of the DVBE and the continuous Boltzmann equation.

The article is organized as follows. Section 2 defines the general perturbative
framework used to study the hydrodynamics and stability of the DVBE. The notion
of Knudsen number is physically defined in the athermal case, and is shown to
drive all the linear physics. The discretization process leading from the Boltzmann
equation to the DVBE is recalled. The new notion of the Knudsen–Shannon number
is introduced, what allows a direct use of the results for the design of LBM. In § 3,
we perform an analytical analysis of the D1Q3 lattice where the theoretical critical
Mach number at the second order in Knudsen number is demonstrated. The influence
of forcing terms is also investigated. Then, § 4 is devoted to the D1Q4 lattice, which
allows for an examination of MRT and cascaded models. Many other lattices are
scrutinized numerically in light of the analytical results of the D1Q3 and D1Q4
lattices. Finally, § 5 proposes an interpretation of the Chapman–Enskog expansion
within our framework. It is shown notably that the expansion retrieves successively
the Knudsen orders. This result allows for further validation of the convergence of
the hydrodynamic physics at each Knudsen order when increasing the number of
discrete velocities and the equilibrium truncation order.

2. From BE to linear BGK–DVBE and the Knudsen number
This section clarifies the links between the DVBE and the fully continuous

Boltzmann-BGK equation in the athermal framework. In that context, the different
methods providing discrete velocities and equilibrium distributions are recalled. The
influence of the lattice closure is investigated. We notably show that an infinite
recovery of Maxwell moments retrieves the continuous physics. Then, we focus on
the DVBE and set up the linear perturbative framework. It is shown that the Knudsen
number is a sufficient and unequivocal parameter driving all the physics of the DVBE
for a given mean flow. This feature allows for a rigorous series expansion of the
solutions in Knudsen number. Finally, the points of interest of this methodology and
its link with LBM schemes are explained.

2.1. The Boltzmann-BGK equation
It was in 1872 that Ludwig Eduard Boltzmann introduced his famous equation
describing the statistical evolution of monatomic gases (Boltzmann 1872). The latter
accounts for the evolution of the particle distribution function over space, time and a
velocity space f (x, t, ξ). In the absence of body-force terms, the latter reads

∂f
∂t
+ ξα

∂f
∂α
=Ω( f ), (2.1)

where Einstein’s notation is used for the implicit summation over α ∈ {x, y, z}. On
the left-hand side dwells the advective term for the particles moving at velocity
ξ . On the right-hand side resides collision, modelled as a source term Ω( f ). In
general, this collision operator takes a sophisticated form. Assuming the gas to be
subject to molecular chaos (Stossansatz), it is possible to express the collision term
by considering all possible two-particle interactions (Villani 2001):

Ω( f )(ξ)=
∫

ξ∗
dξ ∗

∫
Σ

B(Σ, ξ ∗)[F(ξ , ξ ∗, Σ)−G(ξ , ξ ∗, Σ)] dΣ, (2.2)
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where ξ ∗ defines the velocity of the second particle, Σ the collision angle and
B(Σ, ξ ∗) the cross-section of the collision. The functions F and G are related to the
probabilities associated with the particles before and after collision. Although general
and physical, such a form cannot be easily studied nor implemented for simulation,
due to the tremendous cost of computing the integral over all possible velocities
and collision angles. For that reason, a simplified collision operator ΩBGK known as
Bhatnagar–Gross–Krook (BGK) is often introduced (Bhatnagar et al. 1954). This term
aims at modelling the relaxation of the distribution function f towards an equilibrium
f eq over the characteristic time τ . This simplifies the Boltzmann equation (2.1) to the
so-called Boltzmann-BGK equation

∂f
∂t
+ ξα

∂f
∂α
=ΩBGK( f )=−

1
τ
( f − f eq). (2.3)

In that context, f eq is the well-known Maxwell distribution (Maxwell 1860):

f eq
=

ρ

(2πRT)D/2
e(−(‖ξ−u‖2)/2RT), (2.4)

where D is the dimension of space, T the temperature, R the gas constant and ρ the
mass density (the distribution function includes the molecular mass of the particles).
Note that this traditional framework is often referred to as thermal, because the
temperature T intervenes in the Maxwell distribution. In our statistical context, the
macroscopic quantities of mass density ρ, momentum j and total energy E are related
to the zeroth-, first- and second-order moments of the distribution function as

ρ =

∫
f dξ , (2.5)

j= ρu=
∫

ξ f dξ , (2.6)

Π = 2ρE=
∫

ξ · ξ f dξ . (2.7)

For a monatomic gas of heat constant DR/2, the temperature T in (2.4) is defined
from the physical definition Π =ρu2

+DρRT . For their part, the equilibrium moments
ρeq, jeq and Π eq are defined similarly by injecting f eq in (2.5)–(2.7). Since we have
the exact expression for f eq, we can compute directly the integrals, leading to ρeq

= ρ,
jeq
= j and Π eq

=Π . In that context, we have∫
ΩBGK( f ) dξ = 0,

∫
ξΩBGK( f ) dξ = 0 and

∫
ξ · ξΩBGK( f ) dξ = 0.

(2.8a−c)

In other words, the zeroth-, first- and trace of the second-order raw moments of the
distribution function are collision invariants in the thermal framework.

2.2. The athermal hypothesis
The present work does not cover exactly this thermal framework: we make use
of the well-known athermal hypothesis (Dellar 2001). It simply consists in setting
the temperature T in the Maxwell distribution (2.4) to a constant value Tf . This
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widespread modification originated from the LBM community, consequent to the
struggle of simple-speed lattices (e.g. D1Q3, D2Q9, D3Q19 and D3Q27) to model a
satisfactory energy equation (Shan, Yuan & Chen 2006). The fluid temperature will
naturally and rapidly relax towards Tf , so its evolution is not specifically scrutinized.
Albeit violating energy conservation, this common framework catches very well the
physics of isothermal, weakly compressible flows. This choice is also pedagogical,
because the proposed definition for the Knudsen number will be largely simplified in
what follows. What is more, a thermal D1Q3 lattice cannot exist since three collision
invariants for three discrete velocities would mean no collision at all. Thanks to
the athermal hypothesis, there only remains two collision invariants, permitting our
theoretical considerations for the D1Q3 lattice∫

ξ · ξΩBGK, athermal case( f ) dξ 6= 0. (2.9)

2.3. Interpreting the Boltzmann-BGK equation
Before introducing the DVBE itself, we link it to the fully continuous Boltzmann
equation in the limit of an infinite number of discrete velocities. For that, we make
use of the equations on the moments which are space and time differential equations
free from the dependence on ξ . Let us start from (2.3). Even though it is called
‘the Boltzmann-BGK equation’, it is possible to interpret it as an infinite number of
equations in different ways. For instance, each given value of ξ in the velocity space
defines a particular partial differential equation in space–time. There is an uncountable
number of them, because ξ is a continuous value in a real velocity space. But another
approach can be considered. If we assume the distribution function to be close to an
exponential form (which is the case for its equilibrium counterpart), then f ∈L∞ and
an infinite, but here countable, number of moments of the distribution functions can
be computed. We define the raw moments as

m(n)
=

∫
ξ nf dξ , (2.10)

m(n)
eq =

∫
ξ nf eq dξ , (2.11)

where ξ n denotes the tensor product for various components of the velocity. In one
dimension, the bold notations become simply m(n) and m(n)

eq . In parallel, an infinite
number of raw moments of the Boltzmann-BGK equation can be computed∫

ξ n

(
∂f
∂t
+ ξα

∂f
∂α
=−

1
τ
( f − f eq)

)
dξ . (2.12)

Since the variables ξ , x and t are independent, the integral and the space–time
derivatives commute. This leads this time to a countable number of space–time
equivalent equations on the moments of the distribution function

∂tm(n)
+∇m(n+1)

=−
1
τ
(m(n)

−m(n)
eq ). (2.13)

The L∞-hypothesis makes (2.3) and (2.13) equivalent. These equations are interesting
for several reasons. The zeroth-, first- and the trace of the second-order moments
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are related to the macroscopic variables of interest ρ, j and Π . As mentioned above
and most importantly, this formulation is a shift from an uncountable to countable
number of space–time equations. This result is the first ingredient linking the DVBE
and the Boltzmann-BGK equation. To understand why, we must define correctly what
we mean by DVBE.

2.4. The DVBE: definitions
The DVBE is obtained by selecting a finite set of discrete speeds (ξi)i∈J1,VK and
equilibrium distributions ( f eq

i )i∈J1,VK to solve the V partial differential equations

∂fi

∂t
+ ξiα

∂fi

∂α
=−

1
τ
( fi − f eq

i ). (2.14)

The set (ξi)i∈J1,VK is called the lattice. First, it is clear that the solved physics will be
driven by the selected ξi and f eq

i . What we want to know is, how this discretization
in velocity space truncates the physics of the fully continuous Boltzmann-BGK
equation. In the continuity of § 2.3 it is possible to locate the influence of this
truncation by computing the moments of (2.14) and comparing them to (2.13). Since
the distributions are now discrete, the moment integrals must be replaced by sums.
We replace in that case the continuous notations by

m(n)
=

V∑
i=1

ξ n
i fi and m(n)

eq =

V∑
i=1

ξ n
i f eq

i . (2.15a,b)

So as to fix ideas, we reason in one dimension. From here, the important point is to
understand that, with V discrete velocities, it is possible to represent V independent
moments and along with them a system very similar to the V first equations of (2.13)
– the two differences being:

(i) m(V) is a linear combination of all the moments m(n6V−1) through the so-called
lattice closure (Karlin, Chikatamarla & Asinari 2010). Its gradient in the Vth
equation is not a supplementary unknown.

(ii) The equilibrium moments can be arbitrarily chosen. They can of course very well
be those of the Maxwell equilibrium, but the choice of f eq

i is a priori unrestricted.

2.5. The cascade of moments
The last ingredient to link the fully continuous Boltzmann equation and the DVBE
is the so-called cascade of moments. A look at (2.13) shows indeed a dependence of
each equation on the next-order moment. The system is infinitely cascaded and does
not show independent space–time partial differential equations. It is in fact closed at
infinity, and its reduction to a smaller and equivalent set of hydrodynamic variables is
exactly the challenge posed by the sixth Hilbert problem (Gorban & Karlin 2014). One
way among many to recover physics from this infinite cascade is to use a Chapman–
Enskog expansion, as presented in appendix A. But whatever the method, the principle
is to cut off and model the cascade. Its infinite nature in the Boltzmann continuous
case makes it an abhorrent problem. For its part, the DVBE is already closed. In that
regard, the discretization process leading to the DVBE can be seen as a particular way
of cutting off the cascade. From here, it is clear that pushing V→+∞ leads naturally
to (2.13) if the equilibrium moments are those of the Maxwell distribution. In other
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≈3 ≈1 ≈2

FIGURE 1. Sketch of the D1Q3 lattice.

words, the DVBE is a form of truncation of (2.13), changing its hydrodynamic limits.
In that context, we now understand how the lattice closure and the choice of the
equilibrium impact the equations: they change the modelling of the truncated cascade.
The choices made when performing the discretization in velocity space will define
certain hydrodynamic limits and stability properties we justly study.

2.6. Discretization in velocity space

We now describe the two most common methods to choose ξi and f eq
i . The first one

is a moment-matching technique for prescribed velocities, and the second one relies
on the Gauss–Hermite quadrature.

2.6.1. Moment-matching technique
In the general case, it is possible to choose arbitrarily the velocities ξi, and then

match given equilibrium moments. Matching those equilibrium moments amounts to
a simple matrix problem. We illustrate directly this method with the D1Q3 lattice, as
shown in figure 1. We fix |ξ2| = |ξ3| = r> 0 the norm of two non-zero velocities. Note
that the value of r has an influence on the lattice closure. For instance, in our athermal
case, we can choose to match the first three equilibrium moments, so that1 1 1

0 r −r
0 r2 r2


︸ ︷︷ ︸

lattice choice

f eq
1

f eq
2
f eq
3

=
 ρ

ρu
ρu2
+ ρRTf


︸ ︷︷ ︸

equilibrium choice

. (2.16)

Since r > 0, the left-hand side matrix is invertible, and the equilibrium distributions
are given by

f eq
1 = ρ

[
1−

(
u2
+ RTf

r2

)]
,

f eq
2 =

ρ

2

[
u
r
+

(
u2
+ RTf

r2

)]
,

f eq
3 =

ρ

2

[
−

u
r
+

(
u2
+ RTf

r2

)]
.


(2.17)

This method is general for all lattices, at least when the corresponding left-hand side
matrix is invertible. Since the f eq

i represent V independent degrees of freedom, it is
possible to match up to V independent moments from the Maxwell distribution. The
only drawback of the method resides in its lack of generality. A matrix problem must
be solved for each lattice: no general expression for f eq

i nor the lattice closure are
retrieved. The Gauss–Hermite quadrature provides precisely a remedy for these issues.

2.6.2. Gauss–Hermite quadrature
The Gauss–Hermite quadrature is a procedure yielding both ξi and f eq

i . The latter
makes use of Hermite polynomials H(n), as originally proposed by Grad (1949a)
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and developed thoroughly by Shan et al. (2006). The main interest dwells in their
orthogonality properties, regarding a certain scalar product 〈, 〉. A key point of the
Gauss–Hermite procedure is to conserve this property in the discrete case and provide
a generic expansion of each f eq

i using those particular polynomials – which can be
seen as vectors in our finite V-dimensional space. But there can only be V different
orthogonal vectors, and the so-called quadrature order Q translates this limitation so
that

〈H(n)
a ,H

(m)
b 〉 = δnmδab, for n+m 6 Q, (2.18)

where the transcripts a and b identify formally given Hermite polynomials, in the case
of several dimensions. For example, if a≡ xx and b≡ xy, we have δab = 0 and thus
〈H(2)

xx ,H
(2)
xy 〉 = 0. In the above equation, the order of quadrature Q is defined as the

maximal Hermite polynomial order whose integral can be exactly estimated on the
lattice ∫

w(ξ)H(n)
(ξ) dξ =

V∑
i=1

wi H(n)
(ξi), for n 6 Q. (2.19)

Here, w is the weight function defined in appendix D and (wi)i∈J1,VK are the quadrature
weights; Q depends on the choice of the lattice velocities, even though its links with
V are intricate. For more details, notably on how (2.19) implies (2.18), the reader can
refer to Shan et al. (2006), Philippi et al. (2006) or Shan (2016), which provide many
examples of lattices. We recall that Q= 5 for the most famous lattices (D1Q3, D2Q9
and D3Q27, cf. Shan et al. (2006)). In that context, the Gauss–Hermite quadrature
provides the following generic truncated expansion on the Hermite basis at a given
order N:

f eq,N
i =wi

N∑
n=0

b(n)eq :H
(n)
i , (2.20)

where Hi =H(ξi) and b(n)eq are related to the Hermite moments of the equilibrium
distribution. More details are given in appendix D. The prescribed recovery of the
Hermite moments of the expansion, along with the orthogonality requirement (2.18)
imposes de facto 2N 6 Q. This makes the truncation somewhat rough, since it
systematically reduces the amount of possible matched moments. For example, with
the D2Q9 lattice, the traditional basis arising from the second-order truncation of the
equilibrium is

(H(0),H(1)
x ,H(1)

y ,H(2)
xx ,H(2)

yy ,H(2)
xy ), (2.21)

which makes six orthogonal vectors for V = 9 possible ones. Fortunately, it is possible
to complete the basis keeping the correct orthogonality properties by adding

(H(3)
xxy,H(3)

yyx,H(4)
xxyy). (2.22)

But then, the expansion cannot be expressed under the form (2.20), somewhat limiting
the expected degree of generality when recovering all the Maxwell moments. Note
that, once the set of velocities fixed, completing the orthogonal basis leads to the
same discrete equilibrium distributions f eq

i as with moment matching. As a concluding
remark, note further that the quadrature order Q is related by definition to the number
of recovered Maxwell moments through N in (2.20). As seen in § 2.5 its increase leads
to a higher-order cutoff of the cascade of moments. Therefore, the higher Q, the better
the modelling of the fully continuous Boltzmann-BGK equation.
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2.7. Framework of the perturbative analysis
The DVBE forms a set of V coupled equations, whose natural descriptive variables
are the discrete distributions ( fi)i∈J1,VK. The perturbative analysis we now perform
consists first in setting these distribution functions to a mean field plus a complex
wave perturbation as

fi = fi + f̂iei(ωt−k·x). (2.23)

The pulsation (also called the angular velocity, or eigenvalue) ω is assumed to be
complex a priori, while the wavevector k is kept real. Note that the exponential
is nothing other but a mathematical tool to diagonalize the set of equations. This
expression (2.23) is injected in the DVBE (2.14). Simultaneously, a linearization
process is performed, which consists simply in keeping only the first orders of f̂i.
That way, the results can be generalized to any signal in the linear regime thanks to
the superposition principle. Assuming that the mean field verifies the equations, this
calculation yields two sets of independent relations. One concerns the mean field, the
other the perturbations. The first reads

∂fi

∂t
+ ξiα

∂fi

∂α
=−

1
τ
( fi − f eq

i ). (2.24)

Since the variations in space and time of the mean field are null by definition, this
equation boils down to

fi = f eq
i . (2.25)

The studied mean field is in fact the equilibrium mean field. Thus, the terms f̂iei(ωt−kαxα)

can be regarded as linear perturbations from the equilibrium state. The second relation
concerns the perturbative physics

((iωτ + 1)I− iK−J eq(F))F̂ = 0, (2.26)

where we introduced the column vector of the perturbations

F̂ =


f̂1

f̂2
...

f̂V

 . (2.27)

The mean field similarly reads F = ( fi)i∈J1,VK. The dimensionless pulsation is defined
by

ωτ =ωτ. (2.28)

The diagonal matrix containing wavevectors coming from the spatial derivatives reads

K=


τk · ξ1

τk · ξ2
. . .

τk · ξV

 . (2.29)
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Eventually, the Jacobian matrix of the equilibrium distributions is given by

J eq(F)=



∂f eq
1

∂f1

∂f eq
1

∂f2
. . .

∂f eq
1

∂fV

∂f eq
2

∂f1

∂f eq
2

∂f2

...
. . .

∂f eq
V

∂f1

∂f eq
V

∂fV


, (2.30)

where all derivatives are evaluated at the mean field F . We now explain how the
matrix K drives the values of ωτ for a given DVBE and mean field in (2.26). By
looking more closely at the form (2.29), it is clear that the V products τk · ξi suffice
to determine the solutions of (2.26). Mindful that the velocities ξi are often of the
order

√
RTf = c, dimensionless lattice velocities are introduced

eiα =
ξiα√
RTf
=
ξiα

c
, (2.31)

along with a dimensionless wavevector

Kn= τk
√

RTf = τkc. (2.32)

Another key point of the present theory dwells here; this dimensionless wavevector
can in fact be interpreted as a multi-dimensional generalization of a Knudsen number.
We call it here the Knudsen vector Kn. In that context, the matrix (2.29) can be
rewritten using the canonical scalar products between the dimensionless velocities and
the Knudsen vector

K=


e1 ·Kn

e2 ·Kn
. . .

eV ·Kn

 . (2.33)

That way, the Knudsen vector stands as a natural descriptive parameter to determine
fully the linear (perturbative) physics of the DVBE, for a given mean field. We now
justify physically this definition for Kn.

2.8. The Knudsen number
Introduced by Martin Knudsen a century ago, the Knudsen number is a local
dimensionless number defined as the ratio between the free mean path of the particles
lFMP and a characteristic length of a perturbation lp in a given fluid

Kn=
lFMP

lp
. (2.34)

The value of Kn defines whether the medium can be considered continuous or if
it should be treated statistically as a rarefied fluid. In some measure, the Knudsen
number can be regarded as a sampling indicator checking if the perturbation under
consideration can be represented continuously by particles, thus by continuous and
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897 A29-12 P.-A. Masset and G. Wissocq

well-defined macroscopic variables. The continuous condition is fundamental, since the
Navier–Stokes modelling is based upon this assumption. Traditionally, the following
ranges are given to sort out the various regimes (see Bird & Brady 1994):

(i) Kn . 0.001: the medium is fully continuous;
(ii) 0.001 . Kn . 0.1− 1: the medium is almost continuous;

(iii) Kn & 1: the medium is not continuous.

The free mean path lFMP is a well-defined notion in fluid statistics and depends only
on the temperature (see Laurendeau 2005). It can be regarded as a collision time τ
multiplied by a quadratic mean speed ∼

√
RTf , so we define

lFMP = τ
√

RTf . (2.35)

On the other hand, the characteristic length of a perturbation of a quantity X can be
derived locally from its gradient as

lp ∼
|X|
|∇X|

. (2.36)

Within the framework of our perturbative analysis, the characteristic length becomes

lp ∼
1
k
. (2.37)

That is why naturally we get

Kn= τk
√

RTf = τkc. (2.38)

Note that the retrieval of the von Kármán relation is a supplementary confirmation of
the physical validity of this definition

Kn=

(
U
c

)
(

U
kν

) = Ma
Re
, (2.39)

where U is a fluid velocity and ν = τc2 is the kinematic viscosity of Boltzmann-
BGK gases. Note that, on its own, the Knudsen number does not quantify a shift
from the equilibrium distribution. It is because this number – or its vector counterpart
– drives the linear perturbative physics shift from equilibrium that its interpretation
makes sense.

We also give further comments on the definition (2.38). It is important to keep
in mind that there exists no such thing as the Knudsen number of the entire flow;
Kn depends both on the fluid model and the perturbation considered. Furthermore,
no exterior system length (e.g. a distance between two walls or an object in the
flow) directly intervenes to define the Knudsen number. Even for very small systems
of size ε, such as can be found in microfluidics, the large Knudsen numbers found
can be interpreted by arguing that any perturbation cannot exceed the size ε, thus
yielding a minimum wavenumber 1/ε. This point of view encompasses traditional
definitions of the Knudsen number, for instance in nanoporous media involving the
pore diameter (Montessori et al. 2015, 2016; Falcucci et al. 2017) or small channels
(Toschi & Succi 2005).

Now that the DVBE and the Knudsen number are well defined, we present our
methodology to interpret the solutions of (2.26) in terms of hydrodynamics and
stability.
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2.8.1. Methodology: retrieving the physics from ωτ

The system (2.26) can be solved in two manners. First, the V solutions ωτ (Kn,F)
can be obtained by studying the kernel of the matrix multiplying the perturbation
vector. The solutions are non-trivially equal to zero when

det((iωτ + 1)I− iK−J eq(F))= 0. (2.40)

This obtained equation is often referred to as the dispersion relation of the waves
propagating physically. It has the advantage of yielding swiftly the pulsations ωτ , but
does not provide the associated eigenvectors F̂ . So as to retrieve them, it is possible
to rewrite (2.26) as a complex eigenvalue equivalent problem

(iI+K− iJ eq(F))F̂ =ωτ F̂ . (2.41)

Whatever the method, we focus in this work on the eigenvalues ωτ , which are a
sufficient tool to answer the questions raised in the previous introductory sections. For
their part, the eigenvectors are only the support of the perturbations. They depend
also on Kn, F , the lattice and the choice of the collision model, but their study
is a separate problem outside of the scope of the proposed objectives. Future work,
following Wissocq et al. (2019), will investigate these points in detail, including the
thermal framework.

The real part of the eigenvalues Re(ωτ ) yields the non-dimensional phase vφ and
group vg speeds at the considered Knudsen vector Kn (or, equivalently, wavevector
k)

vφα =
Re(ωτ )

Knα

∣∣∣∣
Kn
, (2.42)

vgα =
∂Re(ωτ )
∂Knα

∣∣∣∣
Kn
. (2.43)

On the other hand, the imaginary part Im(ωτ ) provides information on the dissipation
of the waves in the system. Notably, any Knudsen number and mean flow for which
Im(ωτ (Kn,F)) < 0 points to an instability. Such unstable modes will be investigated
both theoretically and numerically. In addition, some particular solutions ωτ can be
interpreted physically. For instance, acoustic waves appear naturally in all of our
studies. One of the main interests of the method is the following. Assuming the
function ωτ (Kn, F) to be C∞ in the components of Kn close to the origin, it is
absolutely rigorous to expand ωτ in series of the Knudsen vector

ωτ (Kn,F)=
+∞∑

j,l,m=0

ωτj,l,m(F)Kn j
x Knl

y Knm
z . (2.44)

The convergence radius can be discussed case by case. But the form and plots of
the solutions will provide us rigorous ranges of validity of the approach. Instead of
starting from an ansatz, as the Chapman–Enskog expansion does, we can recover
valuable information at each order in Knudsen number with certainty. This important
notion of Knudsen order will be used in the rest of the work. Since all of our
theoretical calculations are one-dimensional, the expansions will take in practice the
simplified form

ωτ (Kn,F)=
+∞∑
j=0

ωτj(F)Kn j. (2.45)
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The expression of the coefficients ωτj(F) varies as a function of the system under
study, and of course, the mean flow. Note that, in practice, F boils down simply
and only to the mean Mach number. For the DVBE, these coefficients are a function
of the lattice, the equilibrium, the possible MRT modelling and the expression of
the forcing terms. Since similar work can be achieved on Euler, Navier–Stokes and
Burnett equations, rigorous comparisons of hydrodynamics and stability between
these systems at each Knudsen order is therefore feasible. We must simply compare
the coefficients. What is more, the notion of Galilean invariance can be rigorously
investigated by looking at the coefficients ωτj(F). A dependence of the dissipation
Im(ωτ ) on the mean flow through Ma is intrinsically non-physical, because all waves
should dissipate similarly in any referential. Similarly, a diagnostic tool of Galilean
variance is to check for the dependence of vg − Ma and/or vφ − Ma on the mean
flow. This can be seen readily by considering the perturbation in the reference system
moving with the mean flow xM

xM

τc
=

x
τc
+Ma

t
τ
, (2.46)

giving
ei[(Re(ωτ )−Kn Ma)t/τ−Kn xM/(τc)]e−i Im(ωτ )t/τ . (2.47)

In this moving frame, Galilean invariance requires that neither Im(ωτ ) nor Re(ωτ )−Kn Ma
should depend on Ma. Thus, the same goes for vg−Ma and vφ−Ma (the condition on
vφ being more restrictive). Finally, we will see in § 5 that it is possible to determine
the converged behaviour of the coefficients ωτj when V→+∞ and N→+∞, giving
insight into the linear physics of the fully continuous Boltzmann-BGK equation by
virtue of the introductory analysis (2.3)–(2.5).

2.8.2. Validity of the results in LBM
Being discrete space–time approximations of the DVBE, LBM simulations come

along with deviations from the continuous physics. Still, supposing the adopted LB
scheme to be convergent, the physics of the LB simulation should converge towards
that of the DVBE in the limit of infinitely small space and time steps. If it is true
that some shifts of non-hydrodynamic waves can be observed at the origin for stream-
and-collide schemes (Lallemand & Luo 2000), most of the physics of interest should
be acceptably comparable in that limit. We now understand how – it is by using two
dimensionless parameters which fit remarkably well the proposed framework.

What is to be understood here is that LBM introduces two new parameters into
the problem: 1t and 1x (we restrict ourselves to schemes of regular time and space
steps). This means that two supplementary dimensionless parameters are necessary for
the description of the solutions. One natural parameter is the reduced collision time

τ/1t= τdimensionless. (2.48)

The other interesting one, that we introduce here, is the Knudsen–Shannon number.
Working on a discrete grid, the Nyquist–Shannon sampling condition must be indeed
accounted for (Nyquist 1928; Shannon 1949). Only the wavenumbers fulfilling

k1x 6π (2.49)

can be represented in the simulation. In terms of Knudsen number, this expression can
be recast

Kn= τkc 6
τcπ
1x
=Kns. (2.50)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

37
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.374


Hydrodynamics and stability of the DVBE 897 A29-15

The Knudsen–Shannon number Kns represents the ultimately represented Knudsen
number in the simulation. These two dimensionless parameters have separate effects.
Let us for example consider a fixed physical collision time τ . Then, τdimensionless
defines the temporal precision of the scheme, while Kns defines the spatial precision.
But more importantly, considering the expansion (2.45), Kns defines which orders in
Knudsen number must be taken into account in such expansions (it is still possible
to compute the waves of LBM and expand the eigenvalues in Kn as before). In the
limit τdimensionless → ∞ and Kns → ∞, which is equivalent to infinitely small time
and space steps, the physics of the waves of LBM and DVBE should fit and all the
Knudsen orders of the expansion can be represented.

In the particular yet extensively used case of stream-and-collide schemes, space and
time steps are linked together through an acoustic scaling relation which takes the
following general form:

1x
1t
= σc= σ

√
RTf , (2.51)

where σ is a scaling coefficient which depends on the lattice. In that case, the
Knudsen–Shannon number is directly linked to both 1x and 1t

Kns =
τcπ
1x
=
τπ

σ1t
=

π

σ
τdimensionless. (2.52)

The Knudsen–Shannon number and the reduced collision time are thus equivalent
for stream-and-collide schemes. In that context, this means that increasing τdimensionless,
and thus Kns, leads simultaneously to a physics closer to the DVBE and representing
more Knudsen numbers/orders. There, 1t (or 1x) is a criterion expressing the
deviation of LBM from the underlying DVBE, and if higher orders in Knudsen
number will be represented in the simulation. Since standard LBM is designed
to retrieve the Navier–Stokes physics, only valid at low Knudsen numbers, it is
legitimate to question the influence of these higher-order contributions. If the physics
at large Knudsen numbers is correctly damped, this should not be a problem. But
this is not always the case. We see for instance in § 5 that MRT models tend to
show an instability at large Knudsen numbers. This means that refinements at a
fixed physical collision time can lead to instabilities. More generally, studying high
Knudsen number effects is necessary to ensure their valid (or at least acceptable)
physical behaviour and assess their impact on stability. Since the standard study of
hydrodynamics and stability is usually performed assuming small Knudsen numbers,
understanding the physics in a wide range of Knudsen numbers is necessary, so as
to bolster the foundations of the DVBE theory and LBM. The correct understanding
of the underlying DVBE is indeed necessary to know, in such limits, towards what
the simulation converges.

In fact, the proposed work on the DVBE can be seen as a limit framework
encompassing all LBM. In §§ 3 and 4, we prove analytically that the critical Mach
number of the D2Q9 is approximately 0.732 in the Gauss–Hermite case. It is exactly
the limit observed empirically in the works of Hosseini et al. (2019) and Wissocq
(2019) for large values of the reduced collision time. Proving further the generality
of the proposed framework, multi-step LBM seem to show as well the same limiting
critical Mach number (Wilde et al. 2019).

To the light of the following work, it is in fact possible to answer many questions
often overlooked or swept under the carpet. For instance, which values of the reduced
relaxation time still model a correct fluid for a given DVBE, possibly with a MRT
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model, or even the force terms? Which hydrodynamics regarding Navier–Stokes is
resolved by the DVBE and thus by LBM in the convergent limit? The Knudsen–
Shannon number is a useful conceptual tool to answer these questions. Now that the
theoretical framework is settled, and the useful linkage with LBM performed, we can
move to the analysis of actual lattices. Let us start with the D1Q3 lattice.

2.9. Remark – vocabulary used
We clarify further the important following notions used throughout the article:

(i) Equilibrium-rich DVBE: in the Gauss–Hermite framework, it defines a DVBE
for which the truncation order N is the highest possible whilst verifying 2N 6Q.
In the moment-matching framework, it refers to a DVBE with fully matched
Maxwell equilibrium moments. In both cases it defines the highest recovery
of Maxwell moments with a given equilibrium construction procedure. With
the Gauss–Hermite quadrature, slightly less moments are recovered due to
the imposed orthogonality of the Hermite polynomials and the constraint of
quadrature order.

(ii) Knudsen order: refers to the terms in the expansions in Knudsen number of ωτ ,
namely the ωτjKnj.

(iii) Standard lattices: refer to the lattices obtained by Gauss–Hermite quadrature,
extensively studied in the literature.

(iv) Hydrodynamic waves: point out the two acoustic waves in the athermal case in
one dimension, plus the shear wave(s) in multiple dimensions. These waves are
identified via their developments in Knudsen number.

(v) Physics: refers to the dispersion and dissipation properties of the sets of equations
under study, obtained through the eigenvalues.

3. Perturbative analysis of the D1Q3 lattice
In this section, the case of the D1Q3 lattice (V = 3) is studied analytically. For a

given equilibrium, the influence of the lattice closure on dispersion and dissipation
properties is investigated. This study allows determination of a theoretical critical
Mach number Mac at the second order in Knudsen number through the Taylor
expansion of ωτ . This accounts theoretically for the value Mac ≈ 0.732 observed
in the literature in the Gauss–Hermite case. For that, we develop the analytical
perturbative study as a function of the Knudsen number, as presented in § 2. Note
that the equilibrium distributions are fixed as in (2.17).

3.1. The D1Q3 lattice closure on moments
In this discrete case, the macroscopic moments ρ, j and Π are naturally defined as

ρ =m(0)
=

3∑
i=1

fi, (3.1)

j= ρu=m(1)
=

3∑
i=1

ξi fi, (3.2)

Π =m(2)
=

3∑
i=1

ξ 2
i fi. (3.3)
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We recall the notation |ξ2| = |ξ3| = r. So as to simplify future calculations, we further
introduce a scaling parameter σ defining the ratio between r and the Newtonian sound
speed c=

√
RTf

r= σ
√

RTf = σc. (3.4)

As discussed before, the finite-dimensional structure of the lattice enforces relations
between higher- and lower-order moments, through a so-called lattice closure relation.
In our D1Q3 case, it reads

m(3)
=

3∑
i=1

ξ 3
i fi = r3f2 − r3f3 = r2(rf2 − rf3)= r2m(1)

= r2j= σ 2c2j. (3.5)

3.2. Equivalent system and perturbative analysis
It is conspicuous that changing the descriptive variables of a system does not change
the solutions ωτ . In our context, it allows us to work on the moment equations. Our
interest is to catch visually the impact of the lattice closure and actually see the
equilibrium moments. By taking the raw moments of the D1Q3 DVBE, we get

∂ρ

∂t
+
∂j
∂x
= 0,

∂j
∂t
+
∂Π

∂x
= 0,

∂Π

∂t
+ σ 2c2 ∂j

∂x︸ ︷︷ ︸
closure relation

=−
1
τ
(Π −Π eq),


(3.6)

where Π eq
= j2/ρ + ρc2 is the second-order equilibrium moment. We recognize a

system whose two first equations express the conservation of mass and momentum.
The last equation closes the system, showing the influence of collision. We can now
perform our stability analysis over the set (ρ, j, Π). The mean field is naturally
denoted (ρ, j, Π) and the mean Mach number of the flow Ma is defined as

Ma=
j

ρ
√

RTf
=

j
ρc
. (3.7)

This definition is arbitrary, and based on the Newtonian sound speed. The perturbative
analysis presented in § 2 yields (2.26) under the explicit form

iωτ −i
Kn
c

0

0 iωτ −i
Kn
c

(Ma2
− 1)c2

−(iKnσ 2
+ 2Ma)c iωτ + 1


︸ ︷︷ ︸

MD1Q3

 ρ̂ĵ
Π̂

= 0, (3.8)

whose dispersion relation can be easily computed through

det(MD1Q3)= 0 ⇐⇒ iω3
τ +ω

2
τ −Kn(iKnσ 2

+ 2Ma)ωτ +Kn2(Ma2
− 1)= 0. (3.9)
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This equation, (3.9), can be solved analytically and has three complex solutions.
But being of tremendous size, they are not given here. As announced, we rather
provide the Taylor series expansion in Knudsen number (2.45) for each solution.
The following forms are imposing but are insightful and will be commented on step
by step. By looking at the first terms of the expansion, it is possible to identify
clearly two acoustic waves (ac+), (ac−) and another one, which is named here the
supplement (s). The acoustics (ac±) are exhibited through the terms Kn(Ma ± 1),
expressing a propagation at a reduced speed of 1 carried by the mean field Ma. This
behaviour recalls that of Euler, as shown in appendix B. For the downstream acoustic
wave, we have

Re(ωτ ,ac+)=Kn(Ma+ 1)
+Kn3 (Ma6

− (2σ 2
+ 15)Ma4

− 40Ma3
+ (σ 4

+ 12σ 2
− 45)Ma2

+ (16σ 2
− 24)Ma− σ 4

+ 6σ 2
− 5)/8

+O(Kn5),

Im(ωτ ,ac+)=Kn2(−Ma3
− 3Ma2

+ (σ 2
− 3)Ma+ σ 2

− 1)/2
+Kn4 (Ma9

− (3σ 2
+ 12)Ma7

+ (3σ 4
+ 21σ 2

+ 126)Ma5
+ 336Ma4

+ (−σ 6
− 10σ 4

− 105σ 2
+ 420)Ma3

+ (−168σ 2
+ 288)Ma2

+ (σ 6
+ 15σ 4

− 105σ 2
+ 105)Ma+ 8σ 4

− 24σ 2
+ 16)/16

+O(Kn6),


(3.10)

for the upstream acoustic wave

Re(ωτ ,ac−)=Kn(Ma− 1)
+Kn3 (−Ma6

+ (2σ 2
+ 15)Ma4

− 40Ma3
+ (−σ 4

− 12σ 2
+ 45)Ma2

+ (16σ 2
− 24)Ma+ σ 4

− 6σ 2
+ 5)/8

+O(Kn5),

Im(ωτ ,ac−)=−Kn2(Ma− 1)(σ 2
− (Ma− 1)2)/2

+Kn4 (Ma9
+ (3σ 2

+ 12)Ma7
− (3σ 4

+ 21σ 2
+ 126)Ma5

+ 336Ma4

+ (σ 6
+ 10σ 4

+ 105σ 2
− 420)Ma3

+ (−168σ 2
+ 288)Ma2

+ (−σ 6
− 15σ 4

+ 105σ 2
− 105)Ma+ 8σ 4

− 24σ 2
+ 16)/16

+O(Kn6),


(3.11)

and for the supplement wave

Re(ωτ ,s)=−Kn(2Ma)
+Kn3(10Ma3

+ (−4σ 2
+ 6)Ma)

+O(Kn5),

Im(ωτ ,s)= 1
+Kn2(3Ma2

− σ 2
+ 1)

+Kn4(−42Ma4
+ (21σ 2

− 36)Ma2
− σ 4

+ 3σ 2
− 2)

+O(Kn6).


(3.12)

3.3. Interpretation of the expansions
Let us now take a closer look at the solutions (3.10)–(3.12). We recall on the one
hand that the real part provides the propagation properties of the waves, namely
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their phase and group speeds. On the other hand, the imaginary part describes the
dissipation properties. With our convention for perturbations, a negative imaginary part
leads to an exponentially growing linear instability. Note that the real part contains
only odd powers in Knudsen number and the imaginary part only even ones. This
can be physically explained. The sign of Kn represents a direction of propagation but
is just conventional. The dispersion Re(ωτ ) of each wave must be an odd function
because the phase speed switches sign with the direction considered. For its part,
the dissipation Im(ωτ ) is an even function, unchanged with respect to the direction
considered.

As announced in § 2.8.1, the notion of Galilean invariance can be studied here
at each Knudsen order. Here, for instance, the dependence of the dissipation in
Kn2 on the mean Mach number is a clear signature of Galilean variance. Terms
in Ma3 intervene, as expected, because we are dealing with the O(Ma3) error. One
of the implications of this error is that the two acoustic waves do not propagate
symmetrically. The scaling parameter σ , defining the lattice closure, appears in this
error. Galilean invariance deviations can also be noted on dispersion with the terms in
Kn3 and beyond, by considering the phase and group speeds. Note that the terms in
Kn1 depend on the mean Mach number but do not exhibit Galilean variance, because
what matters are the quantities vg −Ma and vφ −Ma.

3.4. Influence of the lattice closure through σ
In figures 3, 4, 5 and 6 we plot the real and imaginary parts of the roots ωτ ,
successively for the mean Mach numbers 0 and 0.8. Some Taylor truncations are also
plotted. The legend O(Knp) denotes a truncation of order p.

3.4.1. Dispersion – Re(ωτ )
For Ma= 0 : let us now take a look at figure 3. Note that the acoustic waves

almost never fit Euler (i.e. O(Kn1)), nor show much of a linear behaviour for Knudsen
numbers greater than 0.5. For values of σ < 1, the acoustic waves propagate slower
than the Euler prediction. Surprisingly, an interesting physical behaviour is attained for
lattice velocities fitting the Newtonian sound speed (σ = 1), where the acoustic waves
are not dispersed. Unfortunately, we will understand below that lattice velocities for
which σ 61 tend to be fundamentally unstable. It is insightful to note that the standard
lattice (Gauss–Hermite, σ =

√
3) shows only a valid acoustic behaviour for Kn . 0.4,

a value largely sufficient in practice.
Let us go further, by remarking that the first orders in the Taylor development

struggle to fit the exact solutions for Knudsen numbers greater than 0.2–0.5, a
situation that gets worse for large lattice speeds. This raises the question of the
convergence radius of the Taylor developments. It seems that for values of σ >

√
9=3,

a singular point (non-derivable) appears for a certain Knudsen number 0 6 Kn 6 0.2.
The range of validity of the expansions in Knudsen numbers can be therefore
called into question. Above this threshold, the solved physics seems somewhat more
complicated. The two acoustic waves slow as Kn increases and then degenerate at
zero. This hints that, for too large values of σ , some waves simply cannot propagate.
A special attention should be given to the supplement wave. Mainly influenced by the
collisional equation, here on Π , this wave cannot be identified as convecting energy
as for Euler cases. This wave travels backwards, with an initial slope −2Kn Ma.

For Ma= 0.8: increasing the mean Mach number has a strong impact on dispersion.
For example, the Euler behaviour for the acoustic waves in Kn(Ma ± 1) that was
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observed at rest for σ = 1 is no longer valid. It is this time the standard lattice
σ =
√

3 that shows a behaviour very close to Euler, but this is only a coincidence.
The singularity observed previously does not seem to appear anymore for reasonable
lattice speed norms.

3.4.2. Dissipation and stability – Im(ωτ )
We now investigate some stability aspects of the D1Q3 lattice. The imaginary part

of ωτ is plotted in figures 4 and 6, respectively for the mean Mach numbers Ma= 0
and Ma = 0.8. As for the real part, the imaginary part does not fit well the Taylor
development approximation for large Knudsen numbers, a situation which gets worse
as σ increases. This points out again that excessive values of σ (typically &3) cannot
be easily studied analytically. We now restrict ourselves to reasonable, lesser values of
σ – what is the case of standard lattices – for which the second-order approximation
fits reasonably well the analytical form. This happens by definition close to the origin,
typically for Kn. 0.5. Within this framework, stability is approximately driven by the
sign of the second-order truncation of the dissipation from (3.10)–(3.12)

Im(ωτ ,ac+)'Kn2(Ma+ 1)(σ 2
− (Ma+ 1)2)/2,

Im(ωτ ,ac−)'−Kn2(Ma− 1)(σ 2
− (Ma− 1)2)/2,

Im(ωτ ,s)' 1−Kn2(σ 2
− 3Ma2

− 1).

 (3.13)

The sign of these expressions is plotted in figure 2. The coloured regions exhibit
the positive (stable) configurations. For the supplement wave, the most restrictive
Knudsen number is considered (Kn = 0.5 here). From these graphs it is clear that
the wave driving the instability is always the downstream acoustic one. The critical
Mach number Mac is therefore given by solving (σ 2

− (Ma+ 1)2)= 0, which yields
in our case

Mac = σ − 1. (3.14)

Note that on the standard D1Q3 lattice, this critical Mach number evaluates to√
3− 1' 0.732, a value encountered in practice in the LBM community (see Wilde

et al. (2019) and Hosseini et al. (2019) for example). Nonetheless, to the best of
the authors’ knowledge, this specific value was never explained before. As will be
seen in the next section, this critical Mach number is common to all lattices using a
Gauss–Hermite quadrature with N = 2. They suffer from an intrinsically rough lattice
closure and/or quadrature order, thus a Galilean variance in Kn2. It means that, without
any modification to the DVBE, LBM schemes with N = 2 cannot cope with transonic
or supersonic flows. In the next paragraph, we see, however, that it is possible to
amend the DVBE by adding forcing terms, so as to establish Galilean invariance in
Kn2 even when N = 2.

3.5. Corrective terms to tailor the Knudsen orders
There is no reason for any DVBE to be Galilean invariant at all Knudsen orders
– this point is notably addressed thoroughly in § 5. As explained in the previous
paragraph, most simple-speed lattices, used in many solvers because they are well
adapted to stream-and-collide algorithms, suffer from this problem from the second
Knudsen order (Kn2). So as to address this issue, it is possible to modify the DVBE
by introducing a force term ψi (also called corrective term) as follows:

∂fi

∂t
+ ξiα

∂fi

∂α
=−

1
τ
( fi − f eq

i )+ψi. (3.15)
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Im(ø†,ac+) Im(ø†,ac-) Im(ø†,s)

FIGURE 2. Sign of the truncated imaginary parts (up to the second order in Kn) for each
of the waves, as a function of σ and Ma. The coloured regions are the positive regions,
while the regions left blank are the negative regions.

This approach is well known in the LBM community (Prasianakis & Karlin 2007;
Feng et al. 2019). Its purpose is to suppress the so-called O(Ma3) error in the
momentum equation obtained through a Chapman–Enskog procedure. On standard
lattices in one dimension and for thermal cases, this term can be written under the
form

ψi ∝H(2)
i
∂

∂x
[ρu((1− θ)c2

0 − u2)], (3.16)

where θ is a dimensionless temperature and c0 a certain speed, both adapted to Gauss–
Hermite thermal cases. The term is traditionally constructed so that its zeroth and first
moments are null, while the second-order moment yields the following correction on
the second-order moment equation:

3∑
i=1

ξ 2
i ψi =

∂

∂x
[ρu((1− θ)c2

0 − u2)]. (3.17)

We still consider the D1Q3 lattice. The term ψi has to be adapted to the present
framework with a general lattice closure and the athermal hypothesis. We must notably
adapt the Hermite polynomials to a more general expression taking into account σ .
On the other hand, even in the athermal framework, we keep the dimensionless
temperature θ as an extra degree of freedom, an a priori function of σ . This will
notably help us recover interesting Galilean invariant properties. The final form of
our corrective term is thus

ψi(σ )=wi
3ξ 2

i − σ
2c2

2σ 4c4

∂

∂x
[ρu((1− θ(σ ))c2

− u2)], (3.18)

where w1 = 2/3, w2 =w3 = 1/6. The system (3.6) now reads

∂ρ

∂t
+
∂j
∂x
= 0,

∂j
∂t
+
∂Π

∂x
= 0,

∂Π

∂t
+ σ 2c2 ∂j

∂x
=−

1
τ
(Π −Π eq)+

∂

∂x
[ρu((1− θ(σ ))c2

− u2)].


(3.19)
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FIGURE 3. Real part of the complex angular velocities ωτ , solutions of the dispersion
equation, for Ma= 0.
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FIGURE 4. Imaginary part of the complex angular velocities ωτ , solutions of the
dispersion equation, for Ma= 0.
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FIGURE 5. Real part of the complex angular velocities ωτ , solutions of the dispersion
equation, for Ma= 0.8.
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FIGURE 6. Imaginary part of the complex angular velocities ωτ , solutions of the
dispersion equation, for Ma= 0.8.
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It is possible to perform a perturbative analysis as previously. As before, we provide
the second-order Taylor development of the imaginary parts

Im(ωτ ,ac+)=Kn2(1+ 1
2(θ(σ )− 4+ σ 2)(Ma+ 1))+O(Kn4),

Im(ωτ ,ac−)=Kn2(1− 1
2(θ(σ )− 4+ σ 2)(Ma− 1))+O(Kn4),

Im(ωτ ,s)= 1−Kn2(θ(σ )− 2+ σ 2)+O(Kn4).

 (3.20)

The force term changed (3.13) into (3.20). Interesting remarks can now be made. The
first is that choosing

θ(σ )= 4− σ 2, (3.21)

recovers Galilean invariance in Kn2. The second is that keeping the extra parameter
θ , even in the athermal case, is necessary to retrieve this invariance. A thermal
analysis would not allow for this supplementary degree of freedom, since θ would
be a new independent parameter. Note also that with σ =

√
3 and θ = 1, the term

proportional to ρu in (3.18) disappears. From there it is thus impossible to ascertain
that the Galilean invariance is indeed retrieved in practical thermal cases, which
will be investigated in future work. We also remark that the term obtained at the
second order for the acoustic waves fits that of the Navier–Stokes dissipation, which
is exactly Im(ωτ ,ac±)NS= iKn2 (see appendix B). The non-null higher-order dissipative
terms of the corrected D1Q3 lattice are thus direct deviations from Navier–Stokes. So
if one wants to recover this behaviour, these higher-order terms should all be set to
zero. To achieve it, we can push the reasoning to the next level and propose additional
corrective terms. For that, let us for instance take a look at the fourth-order coefficient
of the downstream acoustic wave (ac+) taking into account the above correction term
with (3.21). We find

ωτ4,ac+ =Kn4(−9Ma2
− 3Ma+ 1). (3.22)

This term is not zero, nor Galilean invariant. And since it shows mean Mach numbers
to the zeroth, first and second powers at a fourth order in Knudsen number, inspired
by the previous force term ψi, it is possible to imagine an additional correction φi of
the form

φi =wi
3ξ 2

i − σ
2c2

2σ 4c4
(cτ)2

∂3

∂x3

[
λ0ρc3

+ λ1 jc2
+ λ2

j2

ρ
c
]
. (3.23)

The third-order derivative after a linearization process leads to a term ∝ Kn3 in the
perturbation matrix, and thus does not change lower orders which were already correct.
The cascade which appears with the terms −iKn/c in all perturbation matrices above
the diagonal will increase by one the affected Knudsen order, here in Kn4. The linear
combination of ρ, j and j2/ρ leads to a linear combination of terms in Ma0

= 1, Ma1

and Ma2 to try and enforce Galilean invariance and nullify the term completely. In
our case, the coefficient from (3.22) now reads

ωτ4,ac+ =Kn4(Ma2
(λ2 + 18)+Ma(2λ2 + λ1 + 6)+ λ1 + λ0 − 2). (3.24)

Choosing λ2=−18, λ1= 30 and λ0=−28 nullifies this coefficient, as expected for a
Navier–Stokes behaviour. However, the upstream acoustic wave (ac−) is not corrected
simultaneously. A general method must be further adapted and investigated, but would
stand outside of the scope of this article. The various levels of the super-Burnett
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equations could give hints towards forms of corrections, leading to an independence
from the mean flow for the even Knudsen orders (see § 5). Here, the purpose was to
underline the levers at the disposal of one willing to design force terms.

Instead of adding corrective terms to the DVBE, it is possible to enrich naturally
the physics and retrieve Galilean invariance at certain Knudsen orders. For instance,
we now see with the D1Q4 lattice that a correct dissipation of the acoustic waves
is obtained as soon as the third-order Maxwell moment is recovered. More generally,
an increase in number of discrete velocities and recovered Maxwell moments leads to
more and more converged physics, as explained thoroughly in § 5.

4. Larger lattices: influence of central moments and MRT models

In this section, we move to the question of larger lattices. It is seen that a theoretical
limitation stymies all efforts to find the analytical eigenvalues for V > 5. Fortunately,
the D1Q4 lattice is still analytically feasible. This lattice allows for representation
of an additional moment, which is the opportunity to clarify the influence of multi-
relaxation time (MRT) models. In that regard, we introduce a second relaxation time
τN . We show notably that large values of the ratio τ/τN strongly impact the expected
behaviour of the DVBE. In parallel, the proposed general formalism allows for a
choice of the additional equilibrium moment and collision basis. It is demonstrated
that moving to central moments does not fix the Galilean variance error in Kn2, while
enriching the equilibrium does. Numerical investigations confirm the predicted effects
on many standard lattices.

4.1. The question of larger lattices
The analytical study of a lattice with V discrete velocities requires the extraction
of V complex roots from the dispersion relation. Since we wish to work completely
analytically, these roots have to be resolved formally in the general case. Unfortunately,
this is mathematically impossible: the roots of any (even complex) polynomial of
order >5 cannot be expressed through radicals in the general case, as proved a long
time ago by Abel (1824). In practice, this means that extracting the solutions for
the D1Q5 or D2Q9 lattices, for instance, is not feasible. Even though this drawback
strongly restricts the frame of study of the proposed methodology, the D1Q4 is still
feasible and we will see that it brings valuable information on the behaviour of the
DVBE for larger lattices.

4.2. MRT models
As we have seen in the previous section, the simple BGK operator has fundamental
limitations in terms of stability. In addition to this intrinsic drawback, LBM schemes
must cope with additional instabilities arising from the space–time discretization.
One way of reducing these numerical instabilities is the introduction of a MRT
modelling (Lallemand & Luo 2000). The principle of MRT models is to relax given
moments at different frequencies. This formalism is more general than the DVBE
presented in (2.14). More importantly, note that the Chapman–Enskog expansion and
its implications presented in § 5 should not apply, because the underlying logic of
identifying terms related to a unique τ does not hold anymore. The relative importance
of higher-order contributions must be investigated. And fortunately, the perturbative
methodology still holds and provides expansions in Knudsen number without use of
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the Chapman–Enskog expansion. As originally proposed by d’Humières (1992), all
MRT models can be written in the form (here in one dimension)

∂F
∂t
+
∂(ξF)
∂x
=M−1ΛΛΛM(F −F eq

), (4.1)

where ξF denotes simply the vector of (ξi fi)i∈J1,VK; M is a general passage matrix
providing the basis for collision. The diagonal matrix ΛΛΛ sets an independent collision
frequency for each moment. Many choices can be made for the collision basis. It
could be a priori completely arbitrary, providing a wide range of fluidic properties.
Yet, in general, the first moments are collision invariants and the first corresponding
terms in the diagonal of ΛΛΛ are useless – and thus set to zero.

MRT models are used in a wide range of applications. One of their most famous
forms was developed in the early work of d’Humieres (2002), in the case of the
D3Q15 and D3Q19 lattices. MRT models also provided LBM a better management
of boundary conditions (Ginzbourg & Adler 1994), improved thermal properties
(McNamara, Garcia & Alder 1995) and the ability to retrieve visco-elastic behaviour
(Giraud, d’Humières & Lallemand 1997). On the other hand, although stabilizing
many simulations, MRT models might result in less physical interfacial dynamics of
liquid ligaments in multiphase flows, by changing the distribution of spurious currents
at the interface (Chiappini et al. 2019). Note that some regularization procedures can
be written under the form of MRT (Latt & Chopard 2006). Later, Geier et al. (2006)
pioneered a cascaded model, which is based on a central-moment collision. In that
case, the matrix M depends upon the local flow, through a shift of the lattice velocities
by the local flow speed. This modelling claimed to restore Galilean invariance, which
is equivalent to suppress the O(Ma3) error on simple-speed lattices. In that context,
using a D1Q4 lattice, we are to catch the influence on hydrodynamics, stability and
the related Galilean invariance errors arising from MRT and cascaded models. Do
they improve the intrinsic stability of the equations, or are the observed improvements
solely numerical?

4.3. The generalized MRT-D1Q4 lattice
The purpose of this paragraph is to set up a generalized MRT-D1Q4 model, with a
unified formalism which allows us to identify simultaneously the influence of:

(i) the enrichment equilibrium;
(ii) the addition of discrete velocities;

(iii) the introduction of an additional relaxation parameter through a MRT model;
(iv) and the choice of the collision basis when moving to central moments.

This formalism encompasses BGK and some basic MRT models. The prescribed
velocities of the lattice are shown in figure 7. We set ξ1= r, ξ2= 2r, ξ3=−r and ξ4=

−2r, where r = σc, as in the previous section. With the D1Q4 lattice, it is possible
to represent an additional independent moment Q=m(3), because the lattice closure is
pushed one moment equation farther. In our case, this closure relation reads

m(4)
= 5σ 2c2Π − 4σ 4c4ρ. (4.2)

We note M= (m(n))n∈J1,VK and Mc= (m(n)
c )n∈J1,VK for which m(n)

c refers to the central
moments defined by

m(n)
c =

V∑
i=1

(ξi − u)nfi =

V∑
i=1

(
ξi −

j
ρ

)n

fi, (4.3)
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≈4 ≈3 ≈1 ≈2

FIGURE 7. Sketch of the D1Q4 lattice.

in the one-dimensional case. We also introduce the two passage matrices Mr and Mc,
respectively yielding the raw and central moments from the discrete distributions

M=MrF and Mc =McF . (4.4a,b)

Explicitly, those matrices read in our D1Q4 case

Mr =

1 1 1 1
r 2r −r −2r
r2 4r2 r2 4r2

r3 8r3
−r3

−8r3

 , (4.5)

and

Mc =

 1 1 1 1
r− u 2r− u −r− u −2r− u
(r− u)2 (2r− u)2 (−r− u)2 (−2r− u)2

(r− u)3 (2r− u)3 (−r− u)3 (−2r− u)3

 . (4.6)

For the sake of compactness and generality, we introduce a switch parameter δ
which defines whether we compute raw (δ = 0) or central moments (δ = 1). With it,
we define a general passage matrix Mδ encompassing the two definitions

Mδ = (1− δ)Mr + δMc, (4.7)

and the associated general moments

Mδ =MδF = (1− δ)M+ δMc. (4.8)

Equation (4.1) reads in our particular case

∂F
∂t
+
∂(ξF)
∂x
=M−1

δ ΛΛΛMδ(F −F eq
), (4.9)

for which we set second relaxation time τN associated with the MRT model in Λ

ΛΛΛ=


0

0

−
1
τ

−
1
τN

 . (4.10)

Since we have introduced a new dimensional parameter τN into the equations, another
dimensionless parameter must be set up and will naturally appear in the solutions. To
this regard, we denote the ratio

τ

τN
= Pr, (4.11)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

37
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.374


897 A29-30 P.-A. Masset and G. Wissocq

as a certain Prandtl number, since it models the ratio between the relaxation times of
the momentum and the energy fluxes. However, since our athermal approximation does
not model an energy-conserving fluid, this definition must not be considered absolute.
Eventually, the last ingredient of this modelling consists in tailoring the third-order
(raw) equilibrium moment, through the introduction of a second switch parameter γ
to set the richness of the equilibrium, so that

Qeq
γ = γ (ρu3

+ 3ρuc2)= γ

(
j3

ρ2
+ 3jc2

)
. (4.12)

If γ = 0, the equilibrium is not enriched compared to the previous D1Q3 lattice. On
the other hand, if γ = 1, all possible Maxwell moments are matched.

4.4. Perturbative analysis of the generalized MRT-D1Q4 model
A perturbative analysis of (4.9) is now performed. By taking the raw moments of the
system of equations, which is equivalent to multiplying (4.9) by Mr, we get

iωτ −i
Kn
c

0 0

0 iωτ −i
Kn
c

0

(Ma2
− 1)c2

−2Mac iωτ + 1 −i
Kn
c

m41 m42 (−5iσ 2Kn+ 3δMa(1− Pr))c iωτ + Pr




ρ̂

ĵ
Π̂

Q̂

= 0,

(4.13)
where m41 = (4iσ 4Kn + 2γPrMa3

+ 3δMa(Ma2
− 1)(1 − Pr))c3 and m42 = (−3γPr

(Ma2
+ 1)+ 6δMa2

(Pr− 1))c2. Contrary to the D1Q3 lattice, we have this time four
solutions. We recognize again two acoustic waves (ac+) and (ac−) through the first
dispersion order of the form Kn(Ma± 1). The two supplementary waves are noted (s1)
and (s2). We provide the Taylor developments, first of the downstream acoustic wave

Re(ωτ ,ac+)=Kn(Ma+ 1)

+Kn3 f (Ma, Pr, δ, γ , σ )
8Pr

+O(Kn5),

Im(ωτ ,ac+)=Kn2
[1+ (γ − 1)(Ma3

+ 3Ma2
+ 3Ma+ 3)]

+Kn4 f (Ma, Pr, δ, γ , σ )
16Pr2

+O(Kn6),


(4.14)

then of the upstream one

Re(ωτ ,ac−)=Kn(Ma− 1)

+Kn3 f (Ma, Pr, δ, γ , σ )
8Pr

+O(Kn5),

Im(ωτ ,ac−)=Kn2
[1− (γ − 1)(Ma3

− 3Ma2
+ 3Ma− 3)]

+Kn4 f (Ma, Pr, δ, γ , σ )
16Pr2

+O(Kn6).


(4.15)
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The first supplementary wave reads

Re(ωτ ,s1)=Kn[Ma(3δ − 2)]

+Kn3 f (Ma, Pr, δ, γ , σ )
(Pr− 1)2

+O(Kn5),

Im(ωτ ,s1)= 1

+Kn2−Ma2
[3Pr(γ − 1)+ 3(δ + 1)] − Pr(3γ − 1)+ 5σ 2

− 1
Pr− 1

+Kn4 f (Ma, Pr, δ, γ , σ )
(Pr− 1)3

+O(Kn6),



(4.16)

and eventually the second supplementary wave

Re(ωτ ,s2)=Kn(−3δMa)

+Kn3 f (Ma, Pr, δ, γ , σ )
Pr(Pr− 1)2

+O(Kn5),
Im(ωτ ,s2)= Pr

+Kn2 3Ma2
(δ + γ )+ 3γ − 5σ 2

Pr− 1

+Kn4 f (Ma, Pr, δ, γ , σ )
Pr2(Pr− 1)3

+O(Kn6),



(4.17)

where f (Ma, Pr, δ, γ , σ ) denotes a generic function, each time different, but which
can always be written as a finite sum of monomials

f (Ma, Pr, δ, γ , σ )=
∑

i1,i2,i3,i4,i5

λi1,i2,i3,i4,i5Mai1Pri2δi3γ i4σ i5 . (4.18)

Yet, being of overly large size, the exact expressions are not provided. Importantly,
note that non-null terms in Pr0 intervene in general so that f can be decomposed as

f (Ma, Pr, δ, γ , σ )= g(Ma, Pr, δ, γ , σ )Pr+ h(Ma, δ, γ , σ ), (4.19)

where g and h are never zero in practice. This means that the Prandtl number drives
separate physics. Its relative value compared to the Knudsen number will matter in
the expansion because of the ratios Kn/Pr. We now see how in the regime Pr∼Kn,
a phenomenon called here Prandtl degeneracy starts interfering with the lower-order
physics. It is strongly related to the notion of hyperviscosity introduced by Geier et al.
(2015) to discuss the influence of the relaxation frequencies of higher-order moments.
Note that the present formalism allows for a clear distinction of this influence at each
order in Knudsen number, without the assumption of the so-called diffusive scaling
that was used by Geier to interpret this phenomenon.
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4.4.1. The Prandtl degeneracy
Consider the two acoustic waves (4.14) and (4.15). The decomposition (4.19)

implies that the fractions in Prandtl number do not simplify in general. Therefore,
the relative importance of the terms in Knn/Prn−2 a priori running to the infinite for
n > 3 must be investigated. If for example the Knudsen number of a perturbation
turns out to be of the order of the Prandtl number, then we observe a degeneracy

Kn∼ Pr H⇒ Knn/Prn−2
∼Kn2. (4.20)

Formally, all the functions h(Ma, δ, γ , σ ) become a factor of Kn2, and thus have
an impact on the hydrodynamics at the so-called Navier–Stokes level. Physically,
this means that the hyperviscous effects of small wavelengths cannot be neglected
anymore and the dispersion of hydrodynamic waves is strongly affected. The same
goes for the non-hydrodynamic modes. This degeneracy has unpredictable effects on
the hydrodynamics and stability, because the errors of the lattice closure and the
equilibrium truncation degenerate in an unknown manner, being therefore very much
Kn and Pr dependent. There are various regimes:

(i) Kn � Pr: higher-order terms in Knn/Prn−2 should not intervene, and the
properties should be somewhat close to the original BGK operator (for small
physical τ which is the case in practice);

(ii) Kn∼Pr: the Prandtl degeneracy takes place: we expect a progressive modification
of the hydrodynamics and stability properties;

(iii) Kn� Pr: the degeneracy starts modifying lower-order physics to the Euler level,
as soon as Knn/Prn−2

∼ Kn, strongly hampering the expected behaviour of the
DVBE.

In other words, the present theory predicts the lower Pr, the more affected the
physics at low Kn. This can be confirmed by looking at figure 8, in which the critical
Mach number Mac of the present MRT-D1Q4 model is plotted for different values of
the Prandtl number, in the case δ=0 and γ =1. This critical Mach number is naturally
defined as the maximum value for which all waves are still stable at a given Kn

Mac(Kn)=max
Ma>0
{Ma, ∀ωτ solutions, Im(ωτ (Kn,Ma)) > 0}. (4.21)

Figure 8 must be read as follows. The reference curve is the BGK model for which
Pr= 1. The different regimes expected above are observed: a reduction of the critical
Mach number occurs as soon as Kn∼Pr. In that context, the Galilean invariance at the
second order in Kn starts fading with the degeneracy of higher-order Knudsen orders.
Beyond this, when Kn� Pr, the DVBE becomes completely unstable.

4.4.2. Influence of the central moments and choice of equilibrium
We now scrutinize the influence of the parameters δ and γ . A look at (4.14) and

(4.15) confirms that switching from raw to central moments (δ = 1) does not recover
Galilean invariance at the second order in Knudsen number for hydrodynamic waves
(here, the two acoustics). In fact, only enriching the equilibrium by setting γ = 1,
i.e. recovering the third-order moment of the Maxwell distribution, provides Galilean
invariance in Kn2 for the hydrodynamic waves (ac±). We will see in § 5 that all
equilibrium-rich lattices beyond the D1Q4 show the same Galilean invariance in Kn2,
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100
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0.5

0

Mac

FIGURE 8. Influence of the Prandtl number on the critical Mach number of the D1Q4
lattice, for δ = 0 and γ = 1. :Pr= 10−5, : Pr= 10−4, : Pr= 10−3, : Pr= 10−2,

: Pr= 10−1, : Pr= 1.

hinting towards a form of convergence of the Knudsen orders. It is directly linked to
the convergence of the DVBE towards the continuous BE when V→+∞.

4.5. Generalization to larger standard lattices
As explained above, the previous methodology does not apply as soon as V > 5. But
even if it did, the formal computations would become complicated as V increases.
Fortunately, it is still possible to determine numerically the solutions ωτ for fixed
Knudsen vector Kn and mean field F , whatever the lattice. Instead of dealing with
analytical expressions, individual points ωτ (Kn,F) are retrieved. This is sufficient for
instance to determine the critical Mach number Mac of any lattice, up to a certain
machine precision. We are going to make use of this particular quantity to compare
lattices and generalize our previous analyses. For example, we have demonstrated in
§ 3 the theoretical critical Mach number of the D1Q3 lattice, but only at the second
order in Kn. Can we observe a deviation at large Knudsen numbers? What about other
lattices for which N = 2? In addition, we have seen in the previous paragraph that
a Prandtl degeneracy takes place with a reduction of the critical Mach number for
the D1Q4 lattice, and that the cascaded modelling does not seem to really improve
Galilean invariance. Are these phenomena still observed for larger lattices?

4.5.1. Critical Mach number of standard lattices – BGK
The critical Mach numbers Mac of some standard lattices are shown in figure 9.

Details about these lattices can be found in the work of Coreixas (2018) and are
compiled in appendix D. Since we consider the most unstable wave in all directions,
the reader interested in specific orientations should consider, for example, further
(LBM) literature (Lallemand & Luo 2000; Siebert, Hegele & Philippi 2008). It
is observed that all the critical Mach numbers of the DVBE when N = 2 boil
down to

√
3 − 1 ' 0.732 for low Knudsen numbers. For the D1Q3 lattice, this

value does even not vary as a function of Kn: it is a particular case for which
the dissipation of the downstream acoustic wave nullifies for all Knudsen numbers:
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10010-5 10-3 10-110-210-4 10010-5 10-3 10-110-210-4

Kn Kn

Some 1D lattices D2Q9 & D2Q21 lattices

D2V17 lattices D2V37 lattices
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6

4

2

0

Mac
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8
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(c)

(a)

(d)

(b)

D1Q7 N = 2
D1Q7 N = 3
D1Q7 N = 4 D2Q21 N = 2

D2Q21 N = 3
D2Q9 N = 2D1Q5 N = 2

D1Q5 N = 3
D1Q3 N = 2

D2V17a N = 2
D2V17b N = 2
D2V17c N = 2
D2V17d N = 2
D2V17a N = 3
D2V17b N = 3
D2V17c N = 3
D2V17d N = 3

D2V37a N = 3
D2V37b N = 3
D2V37c N = 3
D2V37d N = 3
D2V37a N = 4
D2V37b N = 4
D2V37c N = 4
D2V37d N = 4

FIGURE 9. Critical Mach numbers Mac of standard Gauss–Hermite lattices for various
equilibrium truncation orders N. For multi-dimensional lattices, Kn denotes the norm of
the Knudsen vector Kn = ‖Kn‖. The same is true for the critical Mach number Mac =

‖Mac‖.

Im(ωτ ,ac+(Kn, Ma =
√

3 − 1)) = 0. For all larger lattices, either in one or two
dimensions, the higher-order terms seem to have a stabilizing effect when Kn→ 1.
In fact, a slight stability gain can be observed for almost all lattices and equilibrium
truncation orders N. It can also be noted that the curves almost fit for a given
equilibrium, whatever the lattice, especially at low Kn. This is the signature of the
convergence of Knudsen orders, as discussed thoroughly in § 5.

4.5.2. Prandtl degeneracy on standard lattices
The Prandtl degeneracy theory predicts that a change in the hydrodynamics and

stability should occur as soon as Kn ∼ Pr. This was observed successfully on the
D1Q4 lattice. We plot in figure 10 additional demonstrations of this phenomenon for
the D2Q9 and D1Q5 lattices. The characteristic time τ concerns the second-order
moments, while τN relaxes higher-order ones. Note that the critical Mach number is
unchanged at low Kn for N = 2, when the degeneracy has not occurred yet. It can
be observed that, contrary to the D1Q4 lattice, adding velocities has a positive effect
at higher Kn, similarly to the BGK case studied in the previous paragraph. The most
insightful plot is 10(c): an intermediate plateau is observed as soon as the degeneracy
takes places, proving effectively that the effects of the lattice closure (thus Galilean
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FIGURE 10. Influence of the Prandtl number on the critical Mach number of various
lattices (MRT with raw moments). : Pr = 10−5, : Pr = 10−4, : Pr = 10−3, :
Pr= 10−2, : Pr= 10−1, : Pr= 1, : Pr= 10.

invariance violations) are brought back to lower Kn orders, here in Kn2, before the
final cutback when terms in Kn1 are affected as well. This destabilizing phenomenon
is observed in practice in LBM.

4.5.3. Influence of the cascaded modelling on standard lattices
The cascaded model is now investigated similarly. The associated critical Mach

numbers are plotted in figure 11. The results seem to confirm that central moments do
not correct Galilean invariance at the second order in Knudsen number when N = 2.
The critical Mach numbers for low Kn values is finite and exactly the same compared
to the previous raw moment MRT results (figure 10), which is consistent with the
theoretical investigations of §§ 3 and 4. The O(Ma3) error is not corrected. Still, a
certain delay in the reduction of the critical Mach number is observed, being the
signature of the unpredictable effects of the Prandtl degeneracy. A look at 11(b) of
the D1Q5 lattice for N = 2 confirms this unpredictability. At approximately Kn∼ Pr,
we observe a sudden improvement of the critical Mach number for a certain range
in Knudsen number. This phenomenon is not related to a fundamental correction
of Galilean invariance, and falls most likely within the scope of serendipity. What
is more, the much more common D2Q9 lattice does not show substantial stability
improvements. The conclusion is that shifting the velocity space does not recover
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FIGURE 11. Influence of the Prandtl number on the critical Mach number of various
lattices for the cascaded model (MRT with central moments). : Pr = 10−5, : Pr =
10−4, : Pr= 10−3, : Pr= 10−2, : Pr= 10−1, : Pr= 1, : Pr= 10.

Galilean invariance, and possible improvements in stability are very much lattice,
numerics, Kn and Pr dependent.

4.5.4. Practical implications – link with LBM
In practice, MRT models improve the numerical stability of LBM schemes.

Interestingly, we have just proven, on the contrary, that the Prandtl degeneracy
is almost always destabilizing as soon as Pr< 1 for the underlying DVBE. Since in
practice Pr� 1, there is an apparent contradiction. Do MRT models stabilize LBM
or not? Under which conditions? In fact, we now prove that practical stability is
driven by the ratio Kns/Pr. For that, we first recall that, in LBM simulations, only
the Knudsen numbers verifying Kn 6 Kns are represented. The theoretical attainable
critical Mach number of a simulation, in the limit of a convergent scheme, is the
minimum of all critical Mach numbers among the represented physics Kn6Kns. This
implies that the Prandtl degeneracy could very well remain unnoticed if Kns � Pr
because in this case we cannot encounter the instabilities arising from Kn ∼ Pr.
This means that Kns/Pr drives exactly whether LBM simulations undergo the effects
of the Prandtl degeneracy or not. A very low value of Kns/Pr for small τ means
that we remain close to the BGK framework: the increase in numerical stability
should be negligible. On the other hand, it is clear that choosing Kns � Pr will
have destabilizing effects, because the Prandtl degeneracy would become visible, and
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Numerical instabilities Practical compromise

PrKns ≪ Pr: ¡ 1
Kns Kns ≫ Pr

Prandtl degeneracy instabilites

FIGURE 12. Progressive influence of the Prandtl number on LBM.

some newly represented waves would become unstable. That is why choosing this
ratio close to unity seems like a good compromise: both numerical BGK-related
and intrinsic Prandtl-related instabilities are limited. These regimes are summarized
figure 12. The key idea is that a good first guess for MRT model tuning should
satisfy

Kns

Pr
∼ 1. (4.22)

Interestingly, this ratio is in fact related to a well-known parameter in LBM. Let
us consider acoustic scaling cases. The ratio Kns/Pr can be linked directly to the
dimensionless extra characteristic time τN/1t

Kns

Pr
=

πτN

σ1t
∼ τN,dimensionless. (4.23)

Stable LBM simulations should thus be obtained for τN,dimensionless ∼ 1. Be careful
that the classical change of variables of stream-and-collide schemes might shift
the definition of τN/1t of +1/2 for practical applications. To conclude on MRT
LBM, it is not surprising that traditional guidelines for MRT simulations are often
given in terms of the parameter τN,dimensionless (Krüger et al. 2017). Even more
interestingly, it turns out that almost all guidelines found in the literature, most
of which were empirical, can be recast, or almost recast, with the condition (4.22)
(see for instance Lallemand & Luo (2000), d’Humieres (2002), Geier et al. (2006),
Latt & Chopard (2006), Latt (2007), De Rosis (2017)). Our criterion is therefore
general and could be used as an educated first guess in MRT simulations. Note that,
for the D2Q9 lattice, either with raw or central moments, the empirical guideline
often encountered in the literature for stream-and-collide schemes, τN,dimensionless∼ 1 (i.e.
τN,dimensionless,LBM ∼ 1/2), seems reasonable and consistent with the results of figures
10(a) and 11(a). The critical Mach number seems unchanged within this regime and
MRT is used wisely in that case.

5. Chapman–Enskog insights into the DVBE

The whole point of all previous analyses was to get rid ourselves of the
Chapman–Enskog expansion, so as to gain mathematical rigour and study directly
the influence of the lattice closure, the equilibrium and some MRT models without
any ansatz. Notably, the rigorous analysis of MRT models could not have been
easily and generally performed nor interpreted with the Chapman–Enskog expansion
without uncertainty. But within the BGK framework, we see in this section that
this black box tool turns out to be very convenient to study the convergence of the
terms in our Knudsen expansions. It can indeed provide general results for all DVBE
systems in the limit N→+∞ and V→+∞. To illustrate how this is possible, we
perform the Chapman–Enskog expansion on the D1Q3 lattice, carefully taking into
account the closure relation. We first show that the Euler equations obtained from this
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procedure recover the terms in Kn1 of the acoustic waves (3.10) and (3.11). Then,
the Navier–Stokes equations are proven to recover those in Kn1 and Kn2, and the
Burnett equations those in Kn1, Kn2 and Kn3. Assuming this procedure to be general
in the linear case, as is supported in the mathematical literature, we provide general
conclusions for all choices of lattices and equilibria.

5.1. Chapman–Enskog analysis of the DVBE – D1Q3
The general principles, main steps and notations of the traditional Chapman–Enskog
expansion are recalled in appendix A. We recommend a good understanding of this
appendix before going further into the section. The reader already familiar with the
expansion should only note the definition τ (1)Kn= τ , and bear in mind that we apply
in this section the procedure in the athermal case, where the trace of the second-
order moments of the f (k) is not null. This expansion, traditionally performed on the
continuous, thermal Boltzmann-BGK equation for the cascade interpretation, can also
be carried out on the DVBE by taking into account the lattice closure relation. Here,
we restrict our analysis to one dimension for the sake of clarity and simplicity. In the
athermal case, the energy equation is not recovered. Hence, only two equations for
the hydrodynamic moments ρ and j are to be found, thus two acoustic waves are to
be obtained.

5.1.1. Euler level and terms in Kn1

In the athermal case, the Euler equations (A 8) and (A 9) for mass and momentum
become

∂ρ

∂t
+
∂j
∂x
= 0, (5.1)

∂j
∂t
+
∂Π eq

∂x
= 0, (5.2)

where the physical time derivative is truncated as ∂t∼ ∂t(0) . Being a simple conservation
equation without viscous effects, the eigenvalues of the perturbative analysis read

ωτ ,ac+ =Kn(Ma+ 1),
ωτ ,ac− =Kn(Ma− 1).

}
(5.3)

This shows that Euler physics is fundamentally truncated at the first order in Kn.
The Chapman–Enskog expansion provided, from an infinitely Knudsen-rich equation,
a system of equations whose dispersive and dissipative properties rely only on terms
in Kn1. We see that the terms in Kn1 are exactly those of the complete solutions of
the D1Q3 lattice (3.10) and (3.11).

5.1.2. Navier–Stokes level and terms in Kn2

We introduce the following notation for the second-order moment of f (1):

Π (1)
=

3∑
i=1

ξ 2
i f (1). (5.4)

From (A 11) and (A 12) we get the Navier–Stokes correction level

∂ρ

∂t(1)
= 0, (5.5)
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∂j
∂t(1)
+
∂Π (1)

∂x
= 0. (5.6)

Taking the second-order moment of (A 6) leads to

Π (1)
=−τ (1)

(
∂Π eq

∂t(0)
+
∂m(3)

eq

∂x

)
= τ (1)

(
2j
ρ

∂Π eq

∂x
+

(
c2(1− σ 2)−

j2

ρ2

)
∂j
∂x

)
, (5.7)

where the lattice closure intervenes m(3)
eq =σ

2c2jeq
=σ 2c2j. Using the relations obtained

from the Euler system to express the derivatives with respect to t(0) on Π eq
= j2/ρ +

ρc2 yields

∂Π eq

∂t(0)
=

(
c2
−

j2

ρ2

)
∂ρ

∂t(0)
+ 2

j
ρ

∂j
∂t(0)
=−

(
c2
−

j2

ρ2

)
∂j
∂x
− 2

j
ρ

∂Π eq

∂x
. (5.8)

All that remains is to inject the expression for Π (1) into (5.6), which finally yields

∂j
∂t(1)
+ τ (1)

∂

∂x

(
2j
ρ

∂Π eq

∂x
+

(
c2(1− σ 2)−

j2

ρ2

)
∂j
∂x

)
= 0. (5.9)

Then, truncating the physical time through the approximation ∂t ∼ ∂t(0) + Kn ∂t(1) and
adding together Euler and Navier–Stokes levels gives the system

∂ρ

∂t
+
∂j
∂x
= 0, (5.10)

∂j
∂t
+
∂Π eq

∂x
+ τ

∂

∂x

(
2j
ρ

∂Π eq

∂x
+

(
c2(1− σ 2)−

j2

ρ2

)
∂j
∂x

)
= 0. (5.11)

Since Π eq depends only on ρ and j, the system is well defined and can be studied
through a perturbative analysis. Two acoustic waves are retrieved, whose Taylor
developments are given by

Re(ωτ ,ac+)=Kn(Ma+ 1)
+Kn3(Ma6

− (3+ 2σ 2)Ma4
+ (3+ σ 4)Ma2

− σ 4
+ 2σ 2

− 1)/8
+O(Kn5),

Im(ωτ ,ac+)=Kn2(−Ma3
+ 3Ma2

+ (σ 2
− 3)Ma+ 1− σ 2)/2

+Kn4 (−Ma9
+ 3Ma7

+ 3σ 2(1− σ 2)Ma5
+ (σ 6

− 2σ 4
+ σ 2

− 8)Ma3

+ (−σ 6
+ 5σ 4

− 7σ 2
+ 3)Ma) /16

+O(Kn6),


(5.12)

Re(ωτ ,ac−)=Kn(Ma− 1)
+Kn3(−Ma6

+ (3+ 2σ 2)Ma4
− (3+ σ 4)Ma2

+ σ 4
− 2σ 2

+ 1)/8
+O(Kn5),

Im(ωτ ,ac−)=Kn2(Ma3
+ 3Ma2

(3− σ 2)Ma+ 1− σ 2)/2
+Kn4 (Ma9

− 3Ma7
− 3σ 2(1− σ 2)Ma5

+ (−σ 6
+ 2σ 4

− σ 2
+ 8)Ma3

+ (σ 6
− 5σ 4

+ 7σ 2
− 3)Ma) /16

+O(Kn6).


(5.13)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

37
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.374


897 A29-40 P.-A. Masset and G. Wissocq

This time, the terms in Kn2 are also those of (3.10) and (3.11), while higher-order
terms still differ. Importantly, note that the Navier–Stokes level is not stricto sensu a
truncation at the second order in Knudsen number and contains higher-order physics
by nature.

5.1.3. Burnett level and terms in Kn3

The somewhat heavier calculations yielding the Burnett level correction are provided
in appendix C. The procedure is similar to that of the Navier–Stokes level. We
consider the truncated development for the time derivative ∂t ∼ ∂t(0) +Kn∂t(1) +Kn2∂t(2) .
In a condensed form, this set of equation reads

∂ρ

∂t
+
∂j
∂x
= 0,

∂j
∂t
+
∂Π eq

∂x
+Kn

∂Π (1)

∂x
+Kn2 ∂Π

(2)

∂x
= 0.

 (5.14)

Again, we can take a look at the two acoustic waves

Re(ωτ ,ac+)=Kn(Ma+ 1)
+Kn3 (Ma6

− (2σ 2
+ 15)Ma4

− 40Ma3
+ (σ 4

+ 12σ 2
− 45)Ma2

+ (16σ 2
− 24)Ma− σ 4

+ 6σ 2
− 5)/8

+O(Kn5),

Im(ωτ ,ac+)=Kn2(−Ma3
− 3Ma2

+ (σ 2
− 3)Ma+ σ 2

− 1)/2
+Kn4 (Ma9

− (3σ 2
+ 12)Ma7

+ (3σ 4
+ 21σ 2

+ 30)Ma5

− (σ 6
+ 10σ 4

+ σ 2
+ 28)Ma3

+ (σ 6
− 7σ 4

− 17σ 2
+ 9)Ma)/16

+O(Kn6),


(5.15)

Re(ωτ ,ac−)=Kn(Ma− 1)
+Kn3 (−Ma6

+ (2σ 2
+ 15)Ma4

− 40Ma3
+ (−σ 4

− 12σ 2
+ 45)Ma2

+ (16σ 2
− 24)Ma+ σ 4

− 6σ 2
+ 5)/8

+O(Kn5),

Im(ωτ ,ac−)=−Kn2(Ma− 1)(σ 2
− (Ma− 1)2)/2

+Kn4 (−Ma9
+ (3σ 2

+ 12)Ma7
− (3σ 4

+ 21σ 2
+ 30)Ma5

+ (σ 6
+ 10σ 4

+ σ 2
+ 28)Ma3

+ (−σ 6
+ 7σ 4

+ 17σ 2
− 9)Ma)/16

+O(Kn6).


(5.16)

The terms in Kn3 of the D1Q3 lattice (3.10) and (3.11) are recovered. It can further
be noted that the terms in Kn4 of the two acoustic waves have opposite signs. This
means that one of the two waves has a propensity to trigger an instability at large Kn.
The instabilities of the Burnett equations are in fact a well-known phenomenon (see
Bao, Zhu & Lin 2012; Bobylev 2018).

5.1.4. Beyond the Burnett level
It is a priori possible to iterate the previous procedure and draw successive

corrections, often referred to as super-Burnett equations. For Euler, Navier–Stokes
and Burnett cases, we have seen that each new correction recovers a new order
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of the expansion in Knudsen number. Proving this property in the general case
is theoretically mandatory. However, such a general demonstration would in fact
boil down to solving the sixth Hilbert problem in the athermal linear case, and
is not provided in this manuscript. Yet, the work of McLennan (1965) on the
convergence of the Chapman–Enskog expansion for the linearized fully continuous
Boltzmann-BGK equation supports the idea that linear cases are properly covered by
the Chapman–Enskog procedure. Within our framework, the question of uniqueness of
the development in Kn, or that of the norms on the solutions does not appear and it
seems reasonable to believe that the procedure retrieves all Knudsen orders at infinity.
Applying the Chapman–Enskog analysis to the infinite is thus equivalent to retrieving
the (at least linear) continuous physics. In that regard, the absolute hydrodynamic
limit of the Boltzmann-BGK equation can be seen as an infinitely corrected system
reading

∂ρ

∂t
+
∂j
∂x
= 0,

∂j
∂t
+
∂Π eq

∂x
+

+∞∑
l=1

Knl ∂Π
(l)

∂x
= 0,

 (5.17)

which, once linearized, retrieves the absolute Taylor expansions of the acoustic waves.
This hypothesis allows us to comment further on the various Knudsen expansions
encountered throughout the article, notably on the question of the convergence of the
terms with regard to the increase in number of discrete velocities V and richness of
the equilibrium (N in the Gauss–Hermite case).

5.2. The convergence of Knudsen orders
We still consider one-dimensional cases. It was seen that fully enriching the
equilibrium, i.e. setting γ = 1 when moving to the D1Q4 lattice, recovered Galilean
invariance in Kn2 while the D1Q3 lattice did not. We now explain how the previous
Chapman–Enskog generalization hypothesis ensures that all the larger equilibrium-rich
lattices will conserve this correct term in Kn2. We know that the fully continuous
Boltzmann-BGK equation contains, formally, an infinite number of velocities, along
with an infinitely rich equilibrium. Note that this equation is Galilean invariant by
construction. Consider now a D1QV lattice for which we recover a maximum number
of Maxwell moments. The reasoning is also valid if we choose the maximum N 6Q/2
within the Gauss–Hermite formalism, since we consider the limit V→+∞ and N(V)
is an absolutely increasing function (leading to N →+∞ as well). Because of the
increase of V , the lattice closure is rejected infinity in (2.13). In parallel, since the
Chapman–Enskog procedure requires only certain equilibrium moments to provide
a given correction level, say the nth, there are finite N(n) and V(n) for which the
correction on a given Knudsen order does not depend on N or V anymore: the lattice
closure does not intervene, and the needed equilibrium moments are recovered for
good. This implies that all the terms ωτj,j∈N from (2.45) converge when V → +∞.
Following the considerations of § 2, this convergence leads naturally towards the
physics of the fully continuous, Galilean invariant Boltzmann-BGK equation

ωτj,DVBE(N, V)
def
−−−−→
V→+∞
N→+∞

ωτj,continuous limit. (5.18)
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Therefore, we can conclude that all equilibrium-rich lattices beyond the D1Q4 are
hydrodynamically Galilean invariant in Kn2 in one dimension. As we know, there
is a fundamental restriction in Kn2 for many standard simple-speed lattices, such as
the D1Q3 and D2Q9, for which only forcing corrective terms can ensure Galilean
invariance. It can also be noted that this development further confirms that cascaded
models do not recover Galilean invariance. Since it does not consist in enriching the
equilibrium at all, it is hardly conceivable that the Galilean invariance issues could
be solved, because solving the Galilean invariance problem is equivalent to finding an
hydrodynamic model thus solving the sixth Hilbert problem.

5.3. Further discussion: can a DVBE formally retrieve the Navier–Stokes equations?

The main difference between a DVBE with V discrete velocities and a system such as
the Navier–Stokes equations is the number of degrees of freedom. In one dimension
in the athermal case, the Navier–Stokes equations simply boil down to mass and
momentum conservation. There are two unknowns, ρ and u, for two equations. Their
perturbative analysis yields two acoustic waves. Let us assume that we find a DVBE
with appropriate corrective terms, equilibrium moments and lattice closure yielding,
among all the waves, two acoustic waves whose Knudsen expansions exactly fit their
Navier–Stokes counterparts. Does it mean that this DVBE solves the Navier–Stokes
equations? Not really. There are extra non-hydrodynamic waves – here in the athermal
one-dimensional case, precisely (V − 2) – that can carry physical information. Even
though highly damped – as observed in practice and in the present work as well,
where the dissipation at the zeroth order in Kn is a positive constant – this information
does exist. It means that some non-hydrodynamic information is not projected onto
equivalent hydrodynamic physics. The results stressed in this section, concerning the
convergence of the Knudsen orders, mean that the Boltzmann physics cannot ever
retrieve an absolute Navier–Stokes behaviour (and conversely). Nonetheless, it is
fair to assume that the more the two acoustic waves fit those of the Navier–Stokes
equations, the closer are the main hydrodynamic physics. So the design of a DVBE
with regard to this particular hydrodynamic limit should be treated with a direct
comparison of all Knudsen orders for hydrodynamic waves, until a formal match is
achieved. Note eventually that matching the eigenvalues is a priori not sufficient: the
eigenvectors should project correctly on the hydrodynamic manifold. This specific
point will be addressed in future work, as announced in § 2.8.1.

A last but not least point concerns the notion of the Navier–Stokes level, referring
most of the time to the second order in Knudsen number. We have seen in the linear
case that a Chapman–Enskog expansion at this level retrieves the rigorous Taylor
expansion in Kn up to the second order. But since the Navier–Stokes equations
possess higher-order physics as well (in Knp>3), this appellation seems to the authors
somewhat misguiding. The Navier–Stokes equations are not anyway truncated in
Kn2, thus are not directly related to this particular order other than through the
DVBE/Navier–Stokes comparison. Note that the Navier–Stokes equations obtained
from the Chapman–Enskog successive corrections can differ from one lattice closure
and equilibrium to another, but the present reasoning remains of course valid. The
key idea to remember here is that the Navier–Stokes level is not a formal truncation
of the DVBE in Kn2, but rather an approximation of the physics that shares the
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same orders in Kn0, Kn1 and Kn2 as the DVBE for the hydrodynamic waves, at
least in the linear regime. It would therefore be wrong to believe, for instance,
that the bigger the lattice, the closer the equations to Navier–Stokes. Preferably,
they get closer and closer to the actual hydrodynamic limit of the fully continuous
Boltzmann-BGK equation, something still out of reach and whose properties are ill
understood. For most continuous flows, rather low Knudsen numbers are attained, at
least for structures that are large enough (in practice almost all waves except shock
waves). For such low Knudsen numbers, typically below 0.1–0.3, the expansion of
the eigenvalues ωτ up to the second order in Kn is very close to their exact value at
the origin. Therefore, the higher-order physics are rarely attained. Better, since Kns

can be regarded as a low-pass filter on the physics, as explained in § 2, it is in fact
possible to use τ and 1t as levers to choose when various orders are represented or
not, thus tailoring the relative importance of the terms in the models. Keep in mind
that the dependence of Kns on 1x and/or 1t depends on the considered scheme
(stream-and-collide or others). So if a DVBE model fits the Navier–Stokes terms in
Knp62 (typically when N > 2), it is therefore possible to simulate essentially this
physics in common and overlook the higher-order deviations using the space–time
discretization by nature.

To conclude, we can say that it is clear that the non-hydrodynamic information is
a problem in LB simulations. The more such waves, the more numerical instabilities.
So a good compromise would be to limit the number of discrete velocities and try to
tailor the expansions in Knudsen number with adequate corrective terms.

6. Conclusion

A linear perturbative analysis methodology allowed for studying many hydrodynamic
and stability properties of the athermal DVBE using a single parameter: the Knudsen
number. Rigorous Taylor expansions sorted out the influence of the lattice closure,
the choice of equilibrium and the mean field. Among the novelties brought out by the
method, it was possible to determine theoretically the critical Mach number of the
D1Q3 lattice. The key improvement of forcing terms on stability was spelled out, and
a general methodology to try and add additional terms was proposed. Then, a general
MRT formalism applied to the D1Q4 lattice stressed how the enrichment of the
equilibrium improved Galilean invariance, while switching to central moments did not.
But most importantly, it was explained how the choice of arbitrarily large relaxation
frequency ratios could drastically reduce the stability of MRT models, through
a so-called Prandtl degeneracy. Finally, the precise role of the Chapman–Enskog
expansion within this framework was clarified, permitting us to generalize the results
of the D1Q3 and D1Q4 to all lattices and equilibria.

The results presented in the article can of course be used to study LBM, keeping in
mind the additional errors and instabilities arising from the space–time discretization.
For instance, the provided critical Mach numbers must be interpreted as a limit
target justly allowing us to assess the quality of a given discrete scheme. Conversely,
the Knudsen–Shannon number plays the role of an additional tool allowing us to
appreciate which physics in Knudsen numbers are solved in a simulation. Together
with the Prandtl number, they provide a general criterion to compromise discrete and
continuous instabilities. More generally, the authors strongly encourage the use of
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this Knudsen/Prandtl formalism for rigorous interpretation of the hydrodynamic limits
and stability properties of the DVBE and MRT models.

The DVBE has not delivered all of its secrets yet. In the present work, only
the eigenvalues in the athermal case were investigated. They provided valuable
interpretations and trends that should remain valid in the thermal case, which is
the natural and necessary extension of the present methodology, along with the
consideration of eigenvectors. For the moment, MRT models are capable of stabilizing
simulations of thermal multi-speed lattices for standard LBM. But in light of the
results, it is unfortunately very likely that the Prandtl degeneracy restricts forever
some applications of MRT in terms of physics solved and intrinsic stability of the
equations.
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Appendix A. The Chapman–Enskog expansion
In this section, we recall the Chapman–Enskog expansion applied to the general,

thermal, fully continuous Boltzmann-BGK equation. The purpose of this expansion is
to recover a closed set of macroscopic equations on the hydrodynamic moments of
f . In the continuous case of the Boltzmann-BGK equation, this expansion provides
a closure of the system by suppressing the cascade of moments, at the cost of an
approximation. Its principle is to expand the distribution function in a small parameter,
often said to be the Knudsen number. This theory is fundamentally based on the
ansatz that the f (k) behave correctly in terms of the convergence radius or remaining
dependency in Kn, for the following form:

f =
+∞∑
k=0

Knkf (k). (A 1)

An important feature of the analysis, the time derivative, is also expanded as

∂

∂t
=

+∞∑
k=0

Knk ∂

∂t(k)
. (A 2)

To the authors’ best knowledge, this assumption is often badly understood, remaining
a stumbling block of the correct interpretation of the Boltzmann-BGK equation. Note
that the gradient operator is not expanded, following the original work of Chapman
& Cowling (1939). In parallel, the collision time τ is assumed to be of the order of
the Knudsen number

τ = τ (1)Kn, (A 3)

where τ (1) ∼ O(1). This hypothesis supposes that collision and advection differ in
magnitude in proportion to the Knudsen number, similar to Chapman’s work. Simply
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injecting those expansions in (2.3) leads to

+∞∑
k=0

+∞∑
l=0

Knk+l ∂f (k)

∂t(l)
+

+∞∑
k=0

Knkξα
∂f (k)

∂α
=

1
τ (1)

+∞∑
k=0

Knkf (k+1). (A 4)

Then, the core hypothesis of the Chapman–Enskog expansion is to identify each order
in Kn, assuming their coefficients (functions) behave independently. This assumption
is a priori not correct in many regards, since the convergence of the solution of the
equation in Kn is not obvious keeping only the first orders. Even for simple one-
dimensional ordinary differential equations of a single variable, expansions in small
coefficient can turn out to be rather chaotic, as shown by Alexeev (2015). Note further
that we cannot really say that a certain physics corresponds to an absolute order in
Kn, since (A 4) can be multiplied or divided arbitrarily by Kn. Only the relative orders
matter. That being said, this identification process leads to

in Kn−1
: 0=−

1
τ (1)

( f (0) − f eq), (A 5)

in Kn0
:
∂f eq

∂t(0)
+ ξα

∂f eq

∂α
=−

1
τ (1)

f (1), (A 6)

in Kn1
:
∂f eq

∂t(1)
+
∂f (1)

∂t(0)
+ ξα

∂f (1)

∂α
=−

1
τ (1)

f (2). (A 7)

To move forward, it is necessary to make another hypothesis to deal with the
right-hand sides of (A 6) and (A 7): the zeroth, first and the trace of the second
moment of each f (k) should be null (in the athermal case, the hypothesis on the
trace is relaxed, following (2.9)). In fact, this property is true for the sum

∑
k>1 f (k),

since f eq contains all the hydrodynamic information by definition. This hypothesis
assumes the same for each term of the sum. Note that, in our case, the closure of the
system is achieved through the nullity of these moments for f (2), which suppresses
the cascade of unknowns, and not because of the expansion of the time derivative.
We now study the moments of the equations yielded by the various orders in Kn.
Considering only the terms in Kn0 (A 6), we recover the Euler equations, where the
physical time is confounded as t(0)

∂ρ

∂t(0)
+
∂

∂α
(ρuα)= 0, (A 8)

∂(ρuα)
∂t(0)

+
∂

∂β
(ρuαuβ)+

∂

∂α
(ρRT)= 0, (A 9)

∂(ρE)
∂t(0)

+
∂

∂β
(ρuβ(E+ RT))= 0. (A 10)

With the terms in Kn1, we recover another system to complete the Navier–Stokes
physics

∂ρ

∂t(1)
= 0, (A 11)

∂(ρuα)
∂t(1)

+
∂

∂β

(∫
ξαξβ f (1) dξ

)
= 0, (A 12)
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∂(ρE)
∂t(1)

+
∂

∂β

(∫
ξβξγ ξγ f (1) dξ

)
= 0, (A 13)

which needs to be interpreted and approximated further by instilling the previous
Euler physics. That is how the linear Navier–Stokes viscous stress tensor and the
viscous heat dissipation are computed – by injecting the formal expression of f (1) from
(A 6) into (A 12) and (A 13). The last step of the Chapman–Enskog development is to
assume that the physical time derivative is given by the truncation ∂t ∼ ∂t(0) + Kn∂t(1)

only, neglecting higher orders. Adding the two above systems together yields the
Navier–Stokes equations for this physical time. Beyond Navier–Stokes, it is possible
to push the Chapman–Enskog expansion further, yielding Burnett and all super-Burnett
corrections with the exact same spirit (identification of Knudsen orders and use of
previously obtained equations).

When comparing the framework of the present work and the Chapman–Enskog
expansion, some surprising incoherences might arise, further confirming the black
box nature of this tool. It is very important to remember that the Knudsen number
depends on the wavelength of the perturbation considered. In this regard, any gas
modelling (e.g. either Boltzmann or Navier–Stokes) with a defined temperature and
quadratic mean speed

√
RTf , along with a relaxation time τ , has a defined Knudsen

number for a given perturbation. It leads the parameter τ (1) to be physically equal
to k

√
RTf , which has no reason to be in O(1), since k depends on the considered

perturbation. Therefore, this reasoning calls the traditional linkage between τ and
Kn into question. These two expansion parameters are often confused. One of the
advantages of the expansion in Knudsen number through Taylor series is precisely to
get rid of such philosophical considerations, too often misleading.

Appendix B. Athermal one-dimensional Euler/Navier–Stokes perturbative study
B.1. Euler

In the athermal, one-dimensional case, the Euler equations read

∂ρ

∂t
+
∂

∂x
(ρu)= 0, (B 1)

∂(ρu)
∂t
+
∂

∂x
(ρu2
+ ρc2)= 0. (B 2)

By performing the perturbative analysis, we obtain two acoustic waves

ωτ ,ac+ =Kn(Ma+ 1),
ωτ ,ac− =Kn(Ma− 1).

}
(B 3)

The Euler physics is fundamentally truncated at the first order in Kn. Note that the
dissipation is null. In figure 13 we plot the corresponding dissipation (Re(ωτ )) and
dispersion (Im(ωτ )). Since the D1Q3 lattice correctly recovers this first order, this plot
is also visible in figures 3 and 5, labelled as the truncation O(Kn1).

B.2. Navier–Stokes
For their part, the athermal, one-dimensional Navier–Stokes equations read

∂ρ

∂t
+
∂

∂x
(ρu)= 0, (B 4)
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∂(ρu)
∂t
+
∂

∂x
(ρu2)+

∂

∂x
(ρc2)=µ

∂2u
∂x2

, (B 5)

where the dynamic viscosity µ is the one obtained traditionally when performing a
Chapman–Enskog expansion: µ= 2ρc2τ . The dispersion relation reads in that case

ω2
τ − 2 Kn(Ma+ i Kn)ωτ − i Kn(i Kn(Ma2

− 1)− 2 Ma Kn2)= 0, (B 6)

whose exact solutions are the two acoustic waves given by

ωτ ,ac+ =Kn(Ma+
√

1−Kn2)+ iKn2,

ωτ ,ac− =Kn(Ma−
√

1−Kn2)+ iKn2.

}
(B 7)

The corresponding plots for the mean Mach numbers 0 and 0.8 are provided in
figure 13. Note that by expanding the square root

√
1−Kn2 = 1− Kn2/2− Kn4/8+

O(Kn6), we understand that the eigenvalues (B 7) possess orders in Knudsen number
above Kn2, which are known exactly.

Appendix C. Athermal Burnett equations of the D1Q3 lattice
The Burnett equations are obtained by pushing the Chapman–Enskog development

one step further than Navier–Stokes. So as to obtain them, we need an extra-order
equation resulting from the identification in various Knudsen orders in (A 4). In one
dimension, it reads

∂f eq

∂t(2)
+
∂f (1)

∂t(1)
+
∂f (2)

∂t(0)
+ ξ

∂f (2)

∂x
=−

1
τ (1)

f (3). (C 1)

As previously, assuming that the f (k) for k > 1 carry no hydrodynamic information,
their zeroth- and first-order moments are null. Then, taking the zeroth- and first-order
moment of (C 1) leads to

∂ρ

∂t(2)
= 0,

∂j
∂t(2)
+
∂Π (2)

∂x
= 0,

 (C 2)

where Π (2) denotes the second-order moment of f (2). Taking the second-order moment
of (A 7) provides its expression

Π (2)
=−τ (1)

(
∂Π eq

∂t(1)
+
∂Π (1)

∂t(0)
+
∂Q(1)

∂x

)
, (C 3)

where Q(1) denotes the third-order moment of f (1). As before, the principle of the
Chapman–Enskog expansion is to transform the temporal derivatives in (C 3) into
spatial derivatives of already-known quantities. To achieve this, we make use of the
previous results obtained in § 5.1. This notably yields

∂Π eq

∂t(1)
=−

2j
ρ

∂Π (1)

∂x
, (C 4)
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FIGURE 13. Dispersive and dissipative properties of the one-dimensional athermal Euler
and Navier–Stokes equations.

∂Π (1)

∂t(0)
= τ (1)

[
−

2
ρ

(
∂Π eq

∂x

)2

+
2j
ρ2

∂Π eq

∂x
∂j
∂x
−

2j
ρ

∂

∂x

((
c2
−

j2

ρ2

)
∂j
∂x
+

2j
ρ

∂Π eq

∂x

)

+
2j
ρ2

∂Π eq

∂x
∂j
∂x
−

2j2

ρ3

(
∂j
∂x

)2

−

(
c2(1− σ 2)−

j2

ρ2

)
∂2Π eq

∂x2

]
. (C 5)

Interestingly, due to the D1Q3 lattice closure relations, which ensures m(3)
eq =σ

2c2j and
m(4)

eq = σ
2c2Π eq, we get

Q(1)
=−τ (1)

(
∂m(3)

eq

∂t(0)
+
∂m(3)

eq

∂x

)
=−τ (1)σ 2c2

(
−
∂Π eq

∂x
+
∂Π eq

∂x

)
= 0. (C 6)
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At the Burnett level, the physical time derivative is approximated by ∂t = ∂t(0) +

Kn∂t(1) +Kn2∂t(2) . Since by definition we have Knτ (1)= τ , it is possible to put together
equations (C 4) and (C 5) to get the final form of the Burnett equations in the case
of the athermal D1Q3 lattice, including a lattice closure

∂j
∂t
+
∂Π eq

∂x
+ τ

∂

∂x

(
2j
ρ

∂Π eq

∂x
+

(
c2(1− σ 2)−

j2

ρ2

)
∂j
∂x

)
+ τ 2 ∂

∂x

[
2j
ρ

∂

∂x

(
2j
ρ

∂Π eq

∂x
+

(
c2(1− σ 2)−

j2

ρ2

)
∂j
∂x

)
+

2
ρ

(
∂Π eq

∂x

)2

−
2j
ρ2

∂Π eq

∂x
∂j
∂x

+
2j
ρ

∂

∂x

((
c2
−

j2

ρ2

)
∂j
∂x
−

2j
ρ

∂Π eq

∂x

)
−

2j
ρ2

∂Π eq

∂x
∂j
∂x
+

2j2

ρ3

(
∂j
∂x

)2

+

(
c2(1− σ 2)−

j2

ρ2

)
∂2Π eq

∂x2

]
= 0. (C 7)

Appendix D. Lattices used for numerical treatment

Equation (2.20) provided a very general formulation of the Gauss–Hermite truncated
expansion of the equilibrium distributions. This expression was kept minimalist on
purpose, so as to introduce fewer notations. Here, we give an equivalent, but more
explicit form including all the information from the lattice

f eq,N
i =wi

N∑
n=0

1
n!c2n

s

a(n)eq :H
(n)
i . (D 1)

Here, wi are lattice weights associated with the Gauss–Hermite quadrature, cs is
a lattice speed constant and a(n)eq are the Hermite equilibrium moments. Again, the
discrete Hermite polynomials are simply defined as H(n)

i =H(n)
(ξi). We also recall

the definition of Hermite polynomials

H(n)
(ξ)=

(−c2
s )

n

w(ξ)
∂nw
∂ξ n

, (D 2)

where the derivation ∂n/∂ξ n must be understood within tensor formalism, while the
weight function w is given by

w(ξ)=
1

(2πc2
s )

D/2
e−ξ ·ξ/2c2

s . (D 3)

In table 1, we provide the various standard lattices used in § 4 for numerical
computations of critical Mach numbers for which the equilibrium expansion (D 1) was
used. These lattices are referred to as standard due to their extensive use in academic
research and industry afterwards. Most of them were introduced originally in Qian
et al. (1992), Shan et al. (2006), Chikatamarla & Karlin (2009) and Shan (2016)
and the denomination adopted here follows that of Coreixas (2018). In the tables
below and for the sake of compactness, velocities obtained by cyclic permutation of
the Cartesian axes are sorted together in groups; p denotes the number of discrete
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Lattice Q ξi Group p wi r/
√

RTf

D1Q3 5 (0) 1 1 2/3
√

3
(±r) 2 2 1/6

(0) 1 1 4(4+
√
(10))/45

D1Q5 7 (±r) 2 2 3(8−
√

10)/80
√
(5+
√

10)/3
(±3r) 3 2 (16− 5

√
10)/720

(0) 1 1 0.4766698865892078362
D1Q7 9 (±r, 0) 2 2 0.2339147378268245647 1.1969797703930749044

(±2r, 0) 3 2 0.0269381893448254125
(±3r, 0) 4 2 0.0008121295337461090

(0, 0) 1 1 4/9
D2Q9 5 (±r, 0) 2 4 1/9

√
3

(±r,±r) 3 4 1/36

(0, 0) 1 1 (575+ 193
√

193)/8100
(±r, 0) 2 4 (3355− 91

√
193)/18 000

D2Q17a 7 (±r,±r) 3 4 (655+ 17
√

193)/27 000
√

5(25+
√

193)/72
(±2r,±2r) 6 4 (685− 49

√
193)/54 000

(±3r, 0) 7 4 (1445− 101
√

193)/1 62 000

(0, 0) 1 1 (190− 8
√

10)/405
(±r, 0) 2 4 (12

√
10− 15)/200

D2Q17b 7 (±r,±r) 3 4 (150− 39
√

10)/800
√
(5+
√

10)/3
(±3r, 0) 4 4 (295− 92

√
10)/16 200

(±3r,±3r) 5 4 (130− 41
√

10)/64 800

(0, 0) 1 1 455/1152
(±r,±r) 2 4 243/2048

D2Q17c 7 (±2r, 0) 3 4 81/2560 2/
√

3
(±3r, 0) 4 4 1/1440
(±3r,±3r) 5 4 5/18 432

(0, 0) 1 1 35/288
(±r,±r) 2 4 45/256

D2Q17d 7 (±2r,±2r) 3 4 9/640
√

2/3
(±3r, 0) 4 4 1/36
(±3r,±3r) 5 4 23/11 520

TABLE 1. (continued)
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Lattice Q ξi Group p wi r/
√

RTf

(0, 0) 1 1 91/324
(±r, 0) 2 4 1/12

D2Q21 7 (±r,±r) 3 4 2/27
√

3/2
(±2r, 0) 4 4 7/360
(±2r,±2r) 5 4 1/432
(±3r, 0) 6 4 1/1620

(0, 0) 1 1 0.2331506691323525022
(±r, 0) 2 4 0.1073060915422190024
(±r,±r) 3 4 0.0576678598887948820

D2Q37a 9 (±2r, 0) 4 4 0.0142082161584507502 1.1969797703930743589
(±2r,±r) 5 8 0.0053530490005137752
(±2r,±2r) 6 4 0.0010119375926735754
(±3r, 0) 7 4 0.0002453010277577173
(±3r,±r) 8 8 0.0002834142529941982

(0, 0) 1 1 0.2039169164551158774
(±r, 0) 2 4 0.1275448433956905119
(±r,±r) 3 4 0.0437537179895332192

D2Q37b 9 (±2r, 0) 4 4 0.0081365906024092974 1.1969797703930743589
(±2r,±r) 5 8 0.0094007993712080771
(±3r, 0) 6 4 0.0006950510689459731
(±3r,±r) 7 8 0.0000304298548258043
(±3r,±3r) 8 4 0.0000281093775742659

(0, 0) 1 1 0.2071627676365350079
(±r, 0) 2 4 0.1254147535578842075
(±r,±r) 3 4 0.0451230614566944149

D2Q37c 9 (±2r, 0) 4 4 0.0086234682796221669 1.1969797703930743589
(±2r,±r) 5 8 0.0091269306777758379
(±3r, 0) 6 4 0.0007153376388298426
(±3r,±2r) 7 8 0.0000304298548258043
(±3r,±3r) 8 4 0.0000179660926323312

(0, 0) 1 1 0.2161458139527006092
(±r, 0) 2 4 0.1193511972944724266
(±r,±r) 3 4 0.0491654322989689355

D2Q37d 9 (±2r, 0) 4 4 0.0102404166165319752 1.1969797703930743589
(±2r,±r) 5 8 0.0081163379672072078
(±2r,±2r) 6 4 0.0001616948336909808
(±3r, 0) 7 4 0.0006704224072490146
(±2r,±3r) 8 8 0.0000708535632485495

TABLE 1. Standard lattices used for numerical computations.

velocities per group. We recall that Q denotes the quadrature order, defined in § 2.
When the analytical expressions are too large, an approximated value is given with
19 decimals. Note that our D1Q7 and D2Q37c lattices slightly differ from the tables
of Shan, for which it seemed that the sum of weights did not equal 1 and were
derived again for the purposes of this article.
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