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Abstract We define and study equivariant periodic cyclic homology for locally compact groups. This
can be viewed as a non-commutative generalization of equivariant de Rham cohomology. Although
the construction resembles the Cuntz–Quillen approach to ordinary cyclic homology, a completely new
feature in the equivariant setting is the fact that the basic ingredient in the theory is not a complex in the
usual sense. As a consequence, in the equivariant context only the periodic cyclic theory can be defined
in complete generality. Our definition recovers particular cases studied previously by various authors.
We prove that bivariant equivariant periodic cyclic homology is homotopy invariant, stable and satisfies
excision in both variables. Moreover, we construct the exterior product which generalizes the obvious
composition product. Finally, we prove a Green–Julg theorem in cyclic homology for compact groups
and the dual result for discrete groups.
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1. Introduction

In the general framework of non-commutative geometry cyclic homology plays the role
of de Rham cohomology [13]. It was introduced by Connes [12] as the target of the
non-commutative Chern character. Besides cyclic cohomology itself Connes also defined
periodic cyclic cohomology. The latter is particularly important because it is the periodic
theory that gives de Rham cohomology in the commutative case.

In this paper we develop a general framework in which cyclic homology can be extended
to the equivariant context. Special cases of our theory have been defined and studied by
various authors [4–8, 29, 30]. However, all these approaches are limited to actions of
compact Lie groups or even finite groups. Hence a substantial open problem was how
to treat non-compact groups. Even for compact Lie groups an important open question
was how to give a correct definition of equivariant cyclic cohomology (in contrast to
homology) apart from the case of finite groups.

In this paper we define and study bivariant equivariant periodic cyclic homology
HPG

∗ (A, B) for locally compact groups G. Throughout we work in the setting of bornolog-
ical vector spaces and use the theory of smooth representations of locally compact groups
on bornological vector spaces developed by Meyer [32]. In this way we can treat many
interesting examples of group actions on algebras in a unified fashion. In particular we
obtain a theory which applies to discrete groups and totally disconnected groups as well
as to Lie groups.

The construction of the theory follows the Cuntz–Quillen approach to cyclic homology
based on the X-complex [15–18]. In fact a certain part of the Cuntz–Quillen machin-
ery can be carried over to the equivariant situation without change. However, a new
feature in the equivariant theory is the fact that the basic objects are not complexes
in the sense of homological algebra. More precisely, we define an equivariant version
XG of the X-complex but the differential ∂ in XG does not satisfy ∂2 = 0 in gen-
eral. To describe this behaviour we introduce the notion of a paracomplex. It turns
out that in order to obtain ordinary complexes it is crucial to work in the bivariant
setting from the very beginning. Although many tools from homological algebra are
not available for paracomplexes, the resulting theory is computable to some extent. We
point out that the occurrence of paracomplexes is the reason why we only define and
study the periodic theory HPG

∗ . It seems to be unclear how ordinary equivariant cyclic
homology HCG

∗ can be defined correctly in general apart from the case of compact
groups.

An important ingredient in the definition of HPG
∗ is the algebra KG which can be

viewed as a certain subalgebra of the algebra of compact operators on the regular rep-
resentation L2(G). For instance, if G is discrete the elements of KG are simply finite
matrices indexed by G. The ordinary Hochschild homology and cyclic homology of this
algebra are rather trivial. However, in the equivariant setting KG carries homological
information of the group G if it is viewed as a G-algebra equipped with the action
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induced from the regular representation. This resembles the properties of the total space
EG of the universal principal bundle over the classifying space BG. As a topological
space EG is contractible, but its equivariant cohomology is the group cohomology of G.
Moreover, in the classical theory an arbitrary action of G on a space X can be turned
into a free action by replacing X with the G-space EG×X. In our theory tensoring with
the algebra KG is used to associate to an arbitrary G-algebra another G-algebra which
is projective as a G-module.

Let us now explain how the text is organized. In § 2 we review basic definitions and
results from the theory of bornological vector spaces and the theory of smooth repre-
sentations of locally compact groups. After this we introduce the category of covariant
modules in § 3 and discuss the natural symmetry operator on this category. Covariant
modules constitute the appropriate framework for studying equivariant cyclic homology.
In § 4 we review some facts about pro-categories. Since the work of Cuntz and Quillen [18]
it is known that periodic cyclic homology is most naturally defined for pro-algebras. The
same holds true in the equivariant situation where one has to consider pro-G-algebras.
We introduce the pro-categories needed in our framework and fix some notation. In § 5
we define paracomplexes and paramixed complexes. As explained above, paracomplexes
play an important role in our theory.

After these preparations we define and study quasifree pro-G-algebras in § 6. This dis-
cussion extends in a straightforward way the theory of quasifree algebras introduced by
Cuntz and Quillen. Next we define equivariant differential forms for pro-G-algebras in § 7
and show that one obtains paramixed complexes in this way. Equivariant differential
forms are used to construct the equivariant X-complex XG(A) for a pro-G-algebra A

in § 8. As mentioned before this leads to a paracomplex. We show that the paracom-
plexes obtained from the equivariant X-complex and from the Hodge tower associated
to equivariant differential forms are homotopy equivalent. In this way we generalize one
of the main results of Cuntz and Quillen to the equivariant setting. The proof from the
non-equivariant situation has to be modified because there is no spectral decomposition
of the Karoubi operator available in the equivariant context. In § 9 we give the defini-
tion of bivariant equivariant periodic cyclic homology HPG

∗ (A, B) for pro-G-algebras A

and B. We show that HPG
∗ is homotopy invariant with respect to smooth equivariant

homotopies and stable in a natural sense in both variables in the subsequent sections.
Moreover, we prove that HPG

∗ satisfies excision in both variables. This shows on a formal
level that HPG

∗ shares important properties with equivariant KK-theory [26,27]. In § 13
we construct the exterior product for equivariant periodic cyclic homology. Again, the
properties of this product are parallel to the situation in KK-theory.

After these general considerations we explain in § 14 how our definition is related to
previous constructions in the literature. In particular we discuss the example of a compact
Lie group G acting smoothly on a compact manifold M . In this case the equivariant
cyclic homology of C∞(M) has been computed by Block and Getzler [4]. This example
is illuminating since it exhibits the relations between equivariant cyclic homology and
the classical Cartan model of equivariant cohomology [10,11]. In fact, one may think of
equivariant cyclic homology as a non-commutative version of the Cartan model.
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Finally, we prove a homological version of the Green–Julg theorem HPG
∗ (C, A) ∼=

HP∗(A � G) for compact groups in § 15 and the dual result HPG
∗ (A, C) ∼= HP ∗(A � G)

for discrete groups in § 16. Again this is analogous to the situation in KK-theory.
We do not treat the construction of a Chern character from equivariant K-theory into

equivariant cyclic homology in this paper. Let us remark that for compact Lie groups
and finite groups partial Chern characters have been defined before [4,29].

This paper is based on the main part of my thesis [37] which was written under the
direction of Professor J. Cuntz.

2. Bornological vector spaces and smooth representations

In this section we recall some basic results of the theory of bornological vector spaces
and smooth representations of locally compact groups. For more information we refer
to [23,24,32–34].

A convex bornology on a complex vector space V is a collection of subsets S(V ) of
V satisfying some axioms. The elements S ∈ S(V ) are called the small subsets of the
bornology. The motivating example of a bornology is given by the collection of bounded
subsets in a locally convex vector space. A bornological vector space is a vector space
V together with a convex bornology S(V ) on V . A linear map f : V → W between
bornological vector spaces is called bounded if it maps small sets to small sets. The space
of bounded linear maps from V to W is denoted by Hom(V, W ). Recall that a subset S

of a complex vector space is called a disk if it is circled and convex. The disked hull S♦

is the circled convex hull of S. If S is a small subset in a bornological vector space then
S♦ is again small. To a disk S ⊂ V one associates the semi-normed space 〈S〉 which is
defined as the linear span of S endowed with the semi-norm ‖·‖S given by the Minkowski
functional. The disk S is called norming if 〈S〉 is a normed space and completant if 〈S〉
is a Banach space. A bornological vector space is called separated if all disks S ∈ S are
norming. It is called complete if each S ∈ S is contained in a completant small disk
T ∈ S. A complete bornological vector space is always separated.

We will usually only work with complete bornological vector spaces. To any bornolog-
ical vector space V one can associate a complete bornological vector space V c and a
bounded linear map � : V → V c such that composition with � induces a bijective corre-
spondence between bounded linear maps V c → W with complete target W and bounded
linear maps V → W . In the category of complete bornological vector spaces direct sums,
direct products, projective limits and inductive limits exist. In all these cases one has
characterizations by universal properties. Moreover, there exists a natural tensor product
which is universal for bounded bilinear maps.

A complete bornological algebra is a complete bornological vector space A with an
associative multiplication given as a bounded linear map m : A ⊗̂A → A. A homomor-
phism between complete bornological algebras is a bounded linear map f : A → B which
is compatible with multiplication. Remark that complete bornological algebras are not
assumed to have a unit. Even if A and B are unital a homomorphisms f : A → B need
not preserve the unit of A. A homomorphism f : A → B between unital bornological
algebras satisfying f(1) = 1 will be called a unital homomorphism.
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We denote the unitarization of a complete bornological algebra A by A+. It is the
complete bornological algebra with underlying vector space A ⊕ C and multiplication
defined by (a, α) · (b, β) = (ab + αb + βa, αβ). If f : A → B is a homomorphism between
complete bornological algebras there exists a unique extension to a unital homomorphism
f+ : A+ → B+.

Let us discuss briefly the definition of a module over a complete bornological algebra
A. A left A-module is a complete bornological vector space M together with a bounded
linear map λ : A ⊗̂M → M satisfying the axiom λ(id ⊗̂λ) = λ(m ⊗̂ id) for an action. A
homomorphisms f : M → N of A-modules is a bounded linear map commuting with the
action of A. We denote by HomA(M, N) the space of all A-module homomorphisms. Let
V be any complete bornological vector space. An A-module of the form M = A+ ⊗̂V

with action given by left multiplication is called the free A-module over V . If an A-module
P is a direct summand in a free A-module it is called projective. Projective modules are
characterized by the following property. If P is projective and f : M → N a surjective
A-module homomorphism with a bounded linear splitting s : N → M then any A-module
homomorphism g : P → N can be lifted to an A-module homomorphism h : P → M

such that fh = g.
In a similar way one can define and study right A-modules and A-bimodules. We can

also work in the unital category starting with a unital complete bornological algebra A.
A unitary module M over a unital complete bornological algebra A is an A-module such
that λ(1⊗m) = m for all m ∈ M . In the category of unitary modules the modules of the
form A ⊗̂V where V is a complete bornological vector space are free. Projective modules
are again direct summands of free modules and can be characterized by a lifting property
as before.

Let us briefly discuss the most relevant examples of bornological vector spaces.

Fine spaces

Let V be an arbitrary complex vector space. The fine bornology Fine(V ) is the smallest
possible bornology on V . This means that S ⊂ V is contained in Fine(V ) if and only
if it is a bounded subset of a finite-dimensional subspace of V . It follows immediately
from the definitions that all linear maps f : V → W from a fine space V into any
bornological space W are bounded. In particular we obtain a fully faithful functor Fine

from the category of complex vector spaces into the category of complete bornological
vector spaces. This embedding is compatible with tensor products. If V1 and V2 are
fine spaces the completed bornological tensor product V1 ⊗̂V2 is the algebraic tensor
product V1 ⊗ V2 equipped with the fine bornology. In particular every algebra A over
the complex numbers can be viewed as a complete bornological algebra with the fine
bornology.

Since the completed bornological tensor product is compatible with direct sums we see
that V1 ⊗̂V2 is as a vector space simply the algebraic tensor product V1 ⊗ V2 provided
V1 or V2 is a fine space. However, the bornology on the tensor product is in general not
the fine bornology.
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Locally convex spaces

The most important examples of bornological vector spaces are obtained from locally
convex vector spaces. If V is any locally convex vector space one can associate two natural
bornologies Bound(V ) and Comp(V ) to V which are called the bounded bornology and
the precompact bornology, respectively.

The elements in Bound(V ) are by definition the bounded subsets of V . Equipped
with the bornology Bound(V ) the space V is separated if its topology is Hausdorff and
complete if the topology of V is sequentially complete.

The bornology Comp(V ) consists of all precompact subsets of V . This means that
S ∈ Comp(V ) if and only if for all neighbourhoods U of the origin there is a finite subset
F ⊂ V such that S ⊂ F +U . If V is complete then S ⊂ V is precompact if and only if its
closure is compact. Equipped with the bornology Comp(V ) the space V is separated if
the topology of V is Hausdorff and complete if V is a complete topological vector space.

Fréchet spaces

In the case of Fréchet spaces the properties of the bounded bornology and the pre-
compact bornology can be described more in detail. Let V and W be Fréchet spaces
both of which are endowed with the bounded bornology or both of which are endowed
with the precompact bornology. A linear map f : V → W is bounded if and only if it
is continuous. This is due to the fact that a linear map between metrizable topological
spaces is continuous if and only if it is sequentially continuous. Hence the functors Bound

and Comp from the category of Fréchet spaces into the category of complete bornological
vector spaces are fully faithful.

The following theorem describes the completed bornological tensor product of Fréchet
spaces with the precompact bornology and is proved in [33].

Theorem 2.1. Let V and W be Fréchet spaces and let V ⊗̂π W be their completed
projective tensor product. Then there is a natural isomorphism

(V, Comp) ⊗̂ (W, Comp) ∼= (V ⊗̂π W, Comp)

of complete bornological vector spaces.

LF-spaces

More generally we can consider LF-spaces. A locally convex vector space V is an LF-
space if there exists an increasing sequence of subspaces Vn ⊂ V with union equal to
V such that each Vn is a Fréchet space in the subspace topology and V carries the
corresponding inductive limit topology. A linear map V → W from the LF-space V into
an arbitrary locally convex space W is continuous if and only if its restriction to the
subspaces Vn is continuous for all n. From the definition of the inductive limit topology
it follows that a bounded subset of an LF-space V is contained in a Fréchet subspace Vn.
If V1 and V2 are LF-spaces endowed with the bounded or the precompact bornology a
bilinear map b : V1 × V2 → W is bounded if and only if it is separately continuous. This
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implies that an LF-space equipped with a separately continuous multiplication becomes a
complete bornological algebra with respect to the bounded or the precompact bornology.

The following description of tensor products of LF-spaces can also be found in [33].

Theorem 2.2. Let V and W be nuclear LF-spaces endowed with the bounded bornology.
Then V ⊗̂W is isomorphic to the inductive tensor product V ⊗̂ι W endowed with the
bounded bornology.

Next we review the basic theory of smooth representations of locally compact groups
on bornological vector spaces [32]. In the sequel integration of functions on a locally
compact group is always understood with respect to a fixed left Haar measure.

A representation of a locally compact group G on a complete bornological vector
space V is a group homomorphism π : G → Aut(V ) where Aut(V ) denotes the group
of bounded linear automorphisms of V . Let F (G, V ) be the vector space of all functions
from G to V . The space F (G, V ) is simply the direct product of copies of the space V

taken over the set G. To a representation π : G → Aut(V ) we associate the linear map
[π] : V → F (G, V ) defined by [π](v)(t) = π(t)(v).

Definition 2.3. Let G be a locally compact group and let V be a complete bornological
vector space. A representation π of G on V is smooth if [π] defines a bounded linear map
from V into E(G, V ). A smooth representation is also called a G-module. A bounded
linear map f : V → W between G-modules is called equivariant if f(s · v) = s · f(v) for
all v ∈ V and s ∈ G.

Here E(G, V ) denotes the space of smooth functions on G with values in V . Smoothness
has its usual meaning if G is a Lie group and V is a Banach space. If G is discrete any
function from G to V is smooth. It follows that every representation of a discrete group
is smooth. If G is totally disconnected and V is a fine space then a function from G to
V is smooth if and only if it is locally constant. Hence for totally disconnected groups
and fine spaces one recovers the ordinary theory of smooth representations on complex
vector spaces. For the general definition of the space E(G, V ) and more information we
refer to [32].

We denote by G -Mod the category of G-modules and equivariant linear maps. The
direct sum of a family of G-modules is again a G-module. The tensor product V ⊗̂W of
two G-modules becomes a G-module using the diagonal action s · (v ⊗ w) = s · v ⊗ s · w

for v ∈ V and w ∈ W . For every group the trivial one-dimensional G-module C is a unit
with respect to the tensor product. In this way G -Mod becomes an additive monoidal
category.

Let D(G) be the space of smooth functions with compact support on G. For a Lie
group G this is the space of smooth functions with compact support on G in the usual
sense. If G is totally disconnected we obtain the space of locally constant functions on G

with compact support. The group G acts on D(G) by left translations

(s · f)(t) = f(s−1t)

and D(G) becomes a G-module in this way.
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A G-module is called projective if it has the lifting property with respect to equivariant
surjections M → N of G-modules with bounded linear splitting N → M .

Lemma 2.4. Let V be any G-module. Then the G-module D(G) ⊗̂V is projective.

Proof. We use a standard argument [2]. Let π : M → N be a surjective equivariant map
with a bounded linear splitting σ. Moreover let φ : D(G) ⊗̂V → N be any equivariant
linear map. Choose a function χ ∈ D(G) such that∫

G

χ(s) ds = 1

and define
fs(t) = f(t)χ(t−1s)

for every f ∈ D(G) and s ∈ G. Then one computes∫
G

fs(t) ds = f(t)

and t · (ft−1s) = (t · f)s for all f ∈ D(G) and s, t ∈ G. We set

ψ(f ⊗ v) =
∫

G

t · σφ(t−1 · (ft ⊗ v)) dt.

Since we have t−1 · (ft) = (t−1 · f)e the integral is well defined. It is easy to check that
ψ extends to an equivariant linear map D(G) ⊗̂V → M . Finally, we have

πψ(f ⊗ v) =
∫

G

t · πσφ(t−1 · (ft ⊗ v)) dt =
∫

G

φ(ft ⊗ v) dt = φ(f ⊗ v)

using that π and φ are equivariant. This yields the assertion. �

Next we specify the class of G-algebras we are going to work with. Expressed in the
language of category theory our definition amounts to saying that a G-algebra is an
algebra in the monoidal category G -Mod.

Definition 2.5. Let G be a locally compact group. A G-algebra is a complete bornologi-
cal algebra A which is at the same time a G-module such that the multiplication satisfies

s · (xy) = (s · x)(s · y)

for all x, y ∈ A and s ∈ G. An equivariant homomorphism f : A → B between G-algebras
is an algebra homomorphism which is equivariant.

If A is unital we say that A is a unital G-algebra if s · 1 = 1 for all s ∈ G. The unita-
rization A+ of a G-algebra A is a unital G-algebra in a natural way. We will occasionally
also speak of an action of G on A to express that A is a G-algebra.

There is a natural way to enlarge any G-algebra to a G-algebra where all group elements
act by inner automorphisms. This is the crossed product construction which we study
next.
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Definition 2.6. Let G be a locally compact group and let A be a G-algebra. The crossed
product A � G of A by G is A ⊗̂ D(G) = D(G, A) with multiplication given by

(f ∗ g)(t) =
∫

G

f(s)s · g(s−1t) ds

for f, g ∈ D(G, A).

It is easy to check that A � G is a complete bornological algebra. If we consider the
case A = C with the trivial action we obtain by definition the smooth group algebra
D(G) of G. If G is discrete this is simply the complex group ring CG endowed with the
fine bornology.

In general the crossed product does not posses a unit, the algebra A � G is unital if A

has a unit and G is discrete. We want to show that the crossed product A�G still has an
approximate identity whenever A has one. Let us first recall from [32] the concept of an
approximate identity. A complete bornological algebra A is said to have an approximate
identity if for any bornologically compact subset S ⊂ A there exists a sequence (un)n∈N

in A such that un · a − a and a · un − a converge to zero uniformly for a ∈ S. A subset of
a bornological vector space V is bornologically compact if it is a compact subset of the
Banach space 〈T 〉 for some completant small disk T ⊂ V . Uniform convergence means
that there exists a completant small disk T ⊂ A such that the sequences un · a − a and
a · un − a converge uniformly to zero in the Banach space 〈T 〉.

An A-module M over a bornological algebra A with approximate identity is called
non-degenerate if the module action A ⊗̂M → M is a bornological quotient map. This
is equivalent to saying that the natural map A ⊗̂A M → M is a bornological isomor-
phism [32].

Given a smooth representation π of G on V one defines a D(G)-module structure on
V by setting

f · v =
∫

G

f(t)t · v dt.

It is shown in [32] that the smooth group algebra D(G) has an approximate identity and
that the previous construction defines an isomorphism between the category of smooth
representations of G and the category of non-degenerate D(G)-modules for every locally
compact group G.

We have the following extension of Proposition 4.3 in [32].

Proposition 2.7. Let G be a locally compact group and let A be a G-algebra with
approximate identity. Then the crossed product A � G has an approximate identity.

Proof. The idea is to combine the approximate identity of A with an approximate
identity for D(G), the latter being constructed in [32]. In the sequel we will view elements
of A and D(G) as left and right multipliers of the crossed product A � G in the obvious
way. Let S ⊂ A � G be a bornologically compact subset. Right multiplication of D(G)
on A � G does not involve A. Let us consider left multiplication. Since A is a smooth
representation, the left action of G on A�G is smooth. Hence there exists a bounded linear
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splitting σ : A�G → D(G) ⊗̂ (A�G) for the left action of D(G) on the crossed product.
Clearly, the image σ(S) of S is again bornologically compact. Using Grothendieck’s result
about compact subsets of the projective tensor product of Fréchet spaces [22] we see that
S is contained in the completant disked hull of Rl ⊗Cl for bornologically compact subsets
Rl ⊂ A and Cl ⊂ D(G). Similarly, σ(S) is contained in the completant disked hull of
Cr ⊗Rr for bornologically compact subsets Cr ⊂ D(G) and Rr ⊂ A�G. Hence we obtain
a sequence (hn)n∈N in D(G) such that f · hn − f and hn · σ(f) − σ(f) converge to zero
uniformly for f ∈ S. After applying the multiplication map D(G) ⊗̂ (A � G) → A � G

we see that hn · f − f converges uniformly to zero in A � G.
Left multiplication of A on A � G does not involve D(G). For right multiplication

the explicit formula is (f · a)(t) = f(t)(t · a) for f ∈ D(G, A) and a ∈ A. Let φ :
A � G → A ⊗̂ D(G) = D(G, A) be the isomorphism given by φ(f)(t) = t−1 · f(t). Then
the right action of A on A � G corresponds under the map φ to the trivial right action
(f · a)(t) = f(t)a on A ⊗̂ D(G). As above we choose a sequence (an)n∈N in A such that
an · f − f and φ(f) · an − φ(f) converge uniformly to zero for all f ∈ S. Then f · an − f

converges uniformly to zero in A � G for all f ∈ S. Define un = an ⊗ hn ∈ A � G. Using
the equations

un · f − f = an · (hn · f − f) + (an · f − f)

and

f · un − f = (f · an − f)hn + (f · hn − f)

we see that un · f − f and f · un − f converge to zero uniformly for f ∈ S. Hence A � G

has an approximate identity. �

Definition 2.8. A covariant representation of a G-algebra A with approximate identity
is a complete bornological vector space M which is both a G-module and a non-degenerate
A-module such that

s · (a · m) = (s · a) · (a · m)

for all s ∈ G, f ∈ A and m ∈ M . A bounded linear map f : M → N between covariant
representations is covariant if it is A-linear and equivariant.

Clearly, covariant representations of a G-algebra A and covariant maps form a cate-
gory. The next result shows that this category is closely relate to the crossed product
construction.

Proposition 2.9. Let A be a G-algebra with an approximate identity. Then the category
of non-degenerate A � G-modules is isomorphic to the category of covariant representa-
tions of A.

Proof. Let M ∼= (A � G) ⊗̂ A�GM be a non-degenerate A � G-module. Then we obtain
a representation of G and an A-module structure on M by letting act s ∈ G and a ∈ A

as left multipliers on A � G. Since the action of G on A � G is smooth we have natural
isomorphisms

D(G) ⊗̂ D(G)M ∼= D(G) ⊗̂ D(G)(A � G) ⊗̂ A�GM ∼= (A � G) ⊗̂ A�GM ∼= M
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for the integrated form of this representation of G and it follows that M becomes a
G-module. Moreover, we have

A ⊗̂A M ∼= A ⊗̂A (A � G) ⊗̂ A�G ⊗̂M ∼= (A � G) ⊗̂ A�GM ∼= M

in a natural way using the fact that multiplication induces an isomorphism A ⊗̂A A ∼=
A due to the existence of an approximate identity for A. It follows that M is a non-
degenerate A-module. In this way M becomes a covariant representation.

Conversely, assume that M is a covariant representation of A. Then we obtain an
A � G-module structure on M by setting

f · m =
∫

G

f(t)(t · m) dt

for f ∈ D(G, A). The module structure µ : (A � G) ⊗̂M → M can be decomposed as

(A � G) ⊗̂M = A ⊗̂ D(G) ⊗̂M
id ⊗̂ µG−−−−−→ A ⊗̂M

µA−−→ M,

where µG : D(G) ⊗̂M → M and µA : A ⊗̂M → M are the given module structures.
Since M is a G-module the map µG has a bounded linear splitting. Hence the first arrow
is a bornological quotient map. Moreover, µA is a bornological quotient map since M is
a non-degenerate A-module. It follows that M is a non-degenerate A � G-module.

The previous constructions are compatible with morphisms and it is easy to see that
they are inverse to each other. This yields the assertion. �

Let us have a look at some basic examples of G-algebras and the associated crossed
products. In particular the algebra KG introduced below will play an important role in
our theory.

Trivial actions

The simplest example of a G-algebra is the algebra of complex numbers with the trivial
G-action. More generally one can equip any complete bornological algebra A with the
trivial action to obtain a G-algebra. The corresponding crossed product algebra A � G

is simply a tensor product,
A � G ∼= A ⊗̂ D(G).

This explains why one may view crossed products in general as twisted tensor products.

Commutative algebras

Let M be a smooth manifold on which the Lie group G acts smoothly and let C∞
c (M)

be the LF-algebra of compactly supported smooth functions on M . Then we get an action
of G on A = C∞

c (M) by defining

(s · f)(x) = f(s−1 · x)

for all s ∈ G and f ∈ A. This algebra is unital if M is compact and G is discrete. The
associated crossed product A � G may be described as the smooth convolution algebra
of the translation groupoid M � G associated to the action of G on M .
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Algebras associated to representations of G

Let V and W be G-modules and let b : W ×V → C be an equivariant bounded bilinear
map. Then l(b) = V ⊗̂W is a G-algebra with the multiplication

(v1 ⊗ w1) · (v2 ⊗ w2) = v1 ⊗ b(w1, v2)w2

and the diagonal G-action.
In the case V = W we have a natural homomorphism l(b) → End(V ) given by

ι(v ⊗ w)(u) = vb(w, u).

If we equip End(V ) with the representation of G defined by the formula

(s · T )(u) = s · T (s−1 · u)

for s ∈ G and u ∈ V the homomorphism ι becomes equivariant.
A basic example is given by the left regular representation on D(G). We set V = W =

D(G) and consider the pairing

b(f, g) =
∫

G

f(t)g(t) dt.

The corresponding G-algebra will be denoted by KG. Elements in KG can be viewed as
kernels k ∈ D(G × G) of integral operators acting on D(G) by

(kf)(s) =
∫

G

k(s, t)f(t) dt.

Finally, observe that by Lemma 2.4 the tensor product V ⊗̂ KG is a projective G-module
for every G-module V .

3. Covariant modules

In this section we introduce the notion of a covariant modules which plays an important
role in equivariant cyclic homology.

Let G be a locally compact group. Then G can be viewed as a G-space using the
adjoint action. This induces an action of G on D(G) viewed as a commutative algebra
with pointwise multiplication. The resulting G-algebra will be denoted by OG in order to
distinguish it from the smooth group algebra of G. Explicitly we have (t·f)(s) = f(t−1st)
for f ∈ OG and s ∈ G. It is evident that the algebra OG has an approximate identity.
Remark that OG is unital if and only if the group G is compact.

We are interested in covariant representations of this particular G-algebra and give the
following explicit definition.

Definition 3.1. Let G be a locally compact group. A (smooth) G-covariant module is
a complete bornological vector space M which is both a non-degenerate OG-module and
a G-module such that

s · (f · m) = (s · f) · (s · m)

for all s ∈ G, f ∈ OG and m ∈ M . A bounded linear map φ : M → N between covariant
modules is called covariant if it is OG-linear and equivariant.

https://doi.org/10.1017/S1474748007000102 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748007000102


Equivariant periodic cyclic homology 701

We remark that covariant modules may be thought of as spaces of global sections of
equivariant sheaves over G viewed as a G-space with the adjoint action. Moreover, due
to Proposition 2.9 a covariant module is the same thing as a non-degenerate module over
the crossed product OG � G. In the sequel we will also write Cov(G) for the crossed
product OG � G.

Usually we will not mention the group explicitly in our terminology and simply speak
of covariant modules and covariant maps. The category of covariant modules and covari-
ant maps will be denoted by G-Mod and we will write HomG(M, N) for the space of
covariant maps between covariant modules M and N . In addition we let Hom(M, N) be
the collection of maps that are only OG-linear.

A basic example of a covariant module is the algebra OG itself. More generally, let V

be a G-module. We obtain an associated covariant module by considering OG ⊗̂V with
the diagonal G-action and the obvious OG-module structure given by multiplication. In
the case V = D(G) we obtain just Cov(G) viewed as a left module over itself. If V is any
G-module then Cov(G) ⊗̂V becomes a covariant module by the diagonal action of G and
left multiplication of OG.

Let us consider the covariant module Cov(G). We can view elements in Cov(G) as
smooth functions with compact support on G × G where the first variable corresponds
to OG and the second variable corresponds to D(G). The multiplication in the crossed
product becomes

(f · g)(s, t) =
∫

G

f(s, r)g(r−1sr, r−1t) dr

in this picture.

Lemma 3.2. The bounded linear map T : Cov(G) → Cov(G) defined by

T (f)(s, t) = f(s, st)

is an isomorphism of Cov(G)-bimodules.

Proof. It is clear that T is a bounded linear isomorphism with inverse given by
T−1(f)(s, t) = f(s, s−1t). We compute

(f · T (g))(s, t) =
∫

G

f(s, r)T (g)(r−1sr, r−1t) dr

=
∫

G

f(s, r)g(r−1sr, r−1st) dr = T (f · g)(s, t)

=
∫

G

f(s, sr)g(r−1sr, r−1t) dr = (T (f) · g)(s, t)

for f, g ∈ Cov(G). This proves the assertion. �

Now consider an arbitrary covariant module M . Since Cov(G) has an approximate
identity we have a natural isomorphism M ∼= Cov(G) ⊗̂ Cov(G)M . Let us define T : M →
M by

T (f ⊗ m) = T (f) ⊗ m
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for f ⊗ m ∈ Cov(G) ⊗Cov(G) M . It follows from Lemma 3.2 that this definition makes
sense. The operator T has the following fundamental properties.

Proposition 3.3. The operator T : M → M is a covariant isomorphism for all covariant
modules M . If φ : M → N is any covariant map between covariant modules then we have
Tφ = φT . Hence T defines a natural isomorphism T : id → id of the identity functor
id : G-Mod → G-Mod.

Proof. It is clear from Lemma 3.2 that T : M → M is a covariant isomorphism for all M .
Using the fact that M and N are non-degenerate Cov(G)-modules the equation Tφ = φT

follows easily after identifying φ with the covariant map id ⊗̂φ : Cov(G) ⊗̂ Cov(G)M →
Cov(G) ⊗̂ Cov(G)N . The last statement is just a reformulation of the first two assertions.

�

We conclude this section by exhibiting certain projective objects in the category of
covariant modules. A covariant module P is projective if for every covariant map π :
M → N with a bounded linear splitting σ : N → M between covariant modules and
every covariant map φ : P → N there exists a covariant map ψ : P → M such that
πψ = φ.

Lemma 3.4. Let V be any G-module. Then the covariant module Cov(G) ⊗̂V is pro-
jective.

Proof. Let π : M → N be a surjective covariant map with bounded linear splitting
σ : N → M and let φ : Cov(G) ⊗̂V → N be any covariant map. Moreover, let (χj)j∈J

be a partition of unity for G with χk ∈ D(G) for all k such that
∑

j∈J χ2
j = 1. We define

a bounded linear map η : Cov(G) ⊗̂V → M as follows. For f ⊗ g ⊗ v ∈ OG ⊗ D(G) ⊗ V

set
η(f ⊗ g ⊗ v) =

∑
j∈J

(fχj) · σφ(χj ⊗ g ⊗ v)

and observe that the sum is actually finite since the support of f is compact for every
f ∈ OG. It is easy to check that η extends to the completion Cov(G) ⊗̂V . Moreover, it
follows from the definitions that η is OG-linear and that we have πη = φ.

With the same notation as in the proof of Lemma 2.4 we set

ψ(f ⊗ g ⊗ v) =
∫

G

t · η(t−1 · (f ⊗ gt ⊗ v)) dt

for an element f ⊗ g ⊗ v ∈ OG ⊗ D(G) ⊗ V . One checks that ψ extends to a bounded
linear map Cov(G) ⊗̂V → M . Moreover, ψ is OG-linear and equivariant. Finally, one
computes πψ = φ using that πη = φ is covariant. This yields the assertion. �

4. Projective systems

The most natural way to define equivariant periodic cyclic homology is to work in the
category of pro-G-algebras. This means that we have to consider projective systems of
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G-modules and covariant modules. In this section we review these notions and fix our
notation.

To any additive category C one associates the pro-category pro(C) of projective systems
over C as follows. A projective system over C consists of a directed index set I, objects
Vi for all i ∈ I and morphisms pij : Vj → Vi for all j � i. The morphisms are assumed to
satisfy pijpjk = pik if k � j � i. These conditions are equivalent to saying that we have
a contravariant functor from the small category I to C. The class of objects of pro(C)
consists by definition of all projective systems over C. The space of morphisms between
projective systems (Vi)i∈I and (Wj)j∈J is defined by

Mor((Vi), (Wj)) = lim←−
j

lim−→
i

MorC(Vi, Wj),

where the limits are taken in the category of abelian groups. Of course one has to check
that the composition of morphisms can be defined in a consistent way. We refer to [1]
for further details.

It is useful to study pro-objects by comparing them to constant pro-objects. A constant
pro-object is by definition a pro-object where the index set consists only of one element.
If V = (Vi)i∈I is any pro-object a morphism V → C with constant range C is given by
a morphism Vi → C for some i.

In the category pro(C) projective limits always exist. This is due to the fact that a
projective system of pro-objects (Vj)j∈J can be identified naturally with a pro-object.

Since there are finite direct sums in C we also have finite direct sums in pro(C). Explic-
itly, the direct sum of V = (Vi)i∈I and W = (Wj)j∈J is given by

(Vi)i∈I ⊕ (Wj)j∈J = (Vi ⊕ Wj)(i,j)∈I×J ,

where the index set I × J is ordered using the product ordering. The structure maps
of this projective system are obtained by taking direct sums of the structure maps of
(Vi)i∈I and (Wj)j∈J . With this notion of direct sums the category pro(C) becomes an
additive category.

If we apply these general constructions to the category of G-modules we obtain the
category of pro-G-modules. A morphism in pro(G -Mod) will be called an equivariant
linear map. Similarly we have the category of covariant pro-modules as the pro-category
of G-Mod. Morphisms in pro(G-Mod) will be called covariant maps.

Let us come back to the general situation. Assume in addition that C is monoidal such
that the tensor product functor C × C → C is bilinear. In this case we define the tensor
product V ⊗ W for pro-objects V = (Vi)i∈I and W = (Wj)j∈J by

(Vi)i∈I ⊗ (Wj)j∈J = (Vi ⊗ Wj)(i,j)∈I×J ,

where again I×J is ordered using the product ordering. The structure maps are obtained
by tensoring the structure maps of (Vi)i∈I and (Wj)j∈J . Observe that any morphism
f : V ⊗ W → C with constant range C factors through Vi ⊗ Wj for some i ∈ I, j ∈ J .
This means that we can write f in the form f = g(fV ⊗ fW ) where fV : V → CV and
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fW : W → CW are morphisms with constant range and g : CV ⊗CW → W is a morphism
of constant pro-objects.

Equipped with this tensor product the category pro(C) is additive monoidal and we
obtain a natural faithful additive monoidal functor C → pro(C).

The existence of a tensor product in pro(C) yields a natural notion of algebras and alge-
bra homomorphisms in this category. Such algebras will be called pro-algebras and their
homomorphism will be called pro-algebra homomorphisms. Moreover, we can consider
pro-modules for pro-algebras and their homomorphisms.

The category G -Mod is monoidal in the sense explained above. To indicate that we
use completed bornological tensor products in G -Mod we will denote the tensor product
of two pro-G-modules V and W by V ⊗̂W .

In order to fix terminology we give the following definition.

Definition 4.1. A pro-G-algebra A is an algebra in the category pro(G -Mod). An alge-
bra homomorphism f : A → B in pro(G -Mod) is called an equivariant homomorphism
of pro-G-algebras.

Occasionally we will consider unital pro-G-algebras. The unitarization A+ of a pro-G-
algebra A is defined in the same way as for G-algebras.

We also include a short discussion of extensions. Let again C be any additive category
and let K, E and Q be objects in pro(C). A (strict) extension is a diagram of the form

K
ι �� E
ρ

��
π �� Q
σ

��

in pro(C) such that ρι = id, πσ = id and ιρ + σπ = id. In other words we require that E

decomposes into a direct sum of K and Q. We will frequently omit the splitting σ and
the retraction ρ in our notation and write simply

K �� ι �� E
π �� �� Q

or (ι, π) : 0 → K → E → Q → 0 for an extension.
Let us give the following definition in the situation C = pro(G -Mod).

Definition 4.2. Let K, E and Q be pro-G-algebras. An extension of pro-G-algebras is
an extension

K �� ι �� E
π �� �� Q

in pro(G -Mod) where ι and π are equivariant algebra homomorphisms.

Later we will need the concept of relatively projective pro-G-modules and covariant
pro-modules. A pro-G-module P is called relatively projective if for every equivariant
linear map π : M → N of pro-G-modules with pro-linear section N → M and every
equivariant linear map φ : P → N there exists an equivariant linear map ψ : P → M

such that πψ = φ. Similarly a covariant pro-module is called relatively projective if it
has the lifting property with respect to covariant maps between covariant pro-modules
having a pro-linear section. The following lemma gives a simple criterion for relative
projectivity.
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Lemma 4.3. Let V be a pro-G-module. Then D(G) ⊗̂V is a relatively projective pro-
G-module and Cov(G) ⊗̂V is a relatively projective covariant pro-module.

Proof. This follows from the fact that the constructions in the proofs of Lemmas 2.4
and 3.4 are natural. �

Working with pro-G-modules or covariant pro-modules may seem somewhat difficult
because there are no longer concrete elements to manipulate with. Nevertheless, we will
write down explicit formulae involving ‘elements’ in subsequent sections. This can be
justified by noticing that these formulae are concrete expressions for identities between
abstractly defined morphisms.

5. Paracomplexes

In this section we introduce the concept of a paramixed complex. Our terminology is
motivated from [20] but it is slightly different. The related notion of a paracyclic module is
well known in the study of the cyclic homology of crossed products and smooth groupoids
[14,19,20,35].

Whereas cyclic modules and mixed complexes are fundamental concepts in cyclic
homology, paracyclic modules are mainly regarded as a tool in computations. However,
in the equivariant situation the point of view has to be changed drastically. Here the
fundamental objects are paramixed complexes and mixed complexes show up mainly in
calculations.

In abstract terms our notion of a paracomplex can be defined most naturally using the
concept of a para-additive category.

Definition 5.1. A para-additive category is an additive category C together with a
natural isomorphism T of the identity functor id : C → C.

In other words, we are given invertible morphisms T (M) : M → M for all objects
M ∈ C such that φT (M) = T (N)φ for all morphisms φ : M → N . In the sequel we will
simply write T instead of T (M).

Clearly, any additive category is para-additive by setting T = id. More interestingly, it
follows from Proposition 3.3 that the category G-Mod of covariant modules for a locally
compact group G is a para-additive category in a natural way. Remark that in this case
the operator id − T : M → M is usually far from being zero.

Definition 5.2. Let C be a para-additive category. A paracomplex C = C0 ⊕ C1 in C is
given by objects C0 and C1 in C together with morphisms ∂0 : C0 → C1 and ∂1 : C1 → C0

such that
∂2 = id − T,

where the differential ∂ : C → C1 ⊕ C0 ∼= C is the composition of ∂0 ⊕ ∂1 with the
canonical flip map. A chain map φ : C → D between two paracomplexes is a morphism
from C to D that commutes with the differentials.
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Remark that we consider only Z2-graded objects. The morphism ∂ in a paracomplex
is called a differential although this contradicts the classical definition of a differential.

In general it does not make sense to speak about the homology of a paracomplex.
Given a paracomplex C with differential ∂, for instance in a category of modules over
some ring, one could force it to become a complex by dividing out the subspace ∂2(C)
and then take homology. However, it turns out that this procedure is not appropriate in
our context.

Although there is no reasonable definition of homology we can give meaning to the
statement that two paracomplexes are homotopy equivalent: let φ, ψ : C → D be two
chain maps between paracomplexes. A chain homotopy connecting φ and ψ is a map
σ : C → D of degree 1 satisfying the usual relation ∂σ + σ∂ = φ − ψ. Note that the map
∂σ + σ∂ is a chain map for any morphism σ : C → D of odd degree since ∂2 commutes
with all morphisms in C. Two paracomplexes C and D are called homotopy equivalent
if there exist chain maps φ : C → D and ψ : D → C which are inverse to each other up
to chain homotopy.

The paracomplexes we have in mind arise from paramixed complexes that we are going
to define now.

Definition 5.3. Let C be a para-additive category. A paramixed complex M in C is a
sequence of objects Mn together with differentials b of degree −1 and B of degree +1
satisfying b2 = 0, B2 = 0 and

[b, B] = bB + Bb = id − T.

If C is additive, that is T = id, we reobtain the notion of a mixed complex. In general
one can define and study Hochschild homology of a paramixed complex in the usual way
since the Hochschild operator b satisfies b2 = 0. On the other hand, we shall not try to
define the cyclic homology of an arbitrary paramixed complex. We will see below how
bivariant periodic cyclic homology can still be defined in a natural way.

6. Quasifree pro-G-algebras

Let G be a locally compact group and let A be a pro-G-algebra. The space Ωn(A) of
non-commutative n-forms over A is defined by Ωn(A) = A+ ⊗̂A⊗̂n for n � 0. We recall
that A+ denotes the unitarization of A.

From its definition as a tensor product it is clear that Ωn(A) becomes a pro-G-module
in a natural way. The differential d : Ωn(A) → Ωn+1(A) and the multiplication of
forms Ωn(A) ⊗̂Ωm(A) → Ωn+m(A) are defined as usual [18] and it is clear that both
are equivariant linear maps. Multiplication of forms yields in particular an A-bimodule
structure on Ωn(A) for all n. Apart from the ordinary product of differential forms we
have the Fedosov product given by

ω ◦ η = ωη − (−1)|ω| dω dη

for homogeneous forms ω and η. Consider the pro-G-module Ω�n(A) = A ⊕ Ω1(A) ⊕
· · ·⊕Ωn(A) equipped with the Fedosov product where forms above degree n are ignored.
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It is easy to check that this multiplication is associative and turns Ω�n(A) into a pro-G-
algebra. Moreover, we have the usual Z2-grading on Ω�n(A) into even and odd forms. The
natural projection Ω�m(A) → Ω�n(A) for m � n is an equivariant homomorphism and
compatible with the grading. Hence we get a projective system (Ω�n(A))n∈N of pro-G-
algebras. By definition the periodic differential envelope θΩ(A) of A is the pro-G-algebra
obtained as the projective limit of this system. We define the periodic tensor algebra T A

of A to be the even part of θΩ(A). If we set T A/(J A)n := A⊕Ω2(A)⊕· · ·⊕Ω2n−2(A) we
can describe T A as the projective limit of the projective system (T A/(J A)n)n∈N. The
natural projection θΩ(A) → A restricts to an equivariant homomorphism τA : T A → A.
Since the natural inclusions A → A ⊕ Ω2(A) ⊕ · · · ⊕ Ω2n−2(A) assemble to give an
equivariant linear section σA for τA we obtain an extension

J A �� �� T A
τA �� �� A

of pro-G-algebras where J A is by definition the projective limit of the pro-G-algebras
J A/(J A)n := Ω2(A) ⊕ · · · ⊕ Ω2n−2(A).

This section is devoted to the study of the pro-G-algebras T A and J A. Since this
part of the equivariant theory is a straightforward extension of ordinary Cuntz–Quillen
theory we have omitted some of the proofs. For more details we refer to [33].

Let mn : N⊗n → N be the iterated multiplication in an arbitrary pro-G-algebra N .
Then N is called k-nilpotent for k ∈ N if the iterated multiplication mk : N ⊗̂k → N is
zero. It is called nilpotent if N is k-nilpotent for some k ∈ N. We call N locally nilpotent
if for every equivariant linear map f : N → C with constant range C there exists
n ∈ N such that fmn = 0. In particular nilpotent pro-G-algebras are locally nilpotent.
An extension 0 → K → E → Q → 0 of pro-G-algebras is called locally nilpotent (k-
nilpotent, nilpotent) if K is locally nilpotent (k-nilpotent, nilpotent).

Lemma 6.1. The pro-G-algebra J A is locally nilpotent.

Proof. Let l : J A → C be an equivariant linear map. By the construction of projective
limits it follows that there exists n ∈ N such that l factors through J A/(J A)n. The
pro-G-algebra J A/(J A)n is n-nilpotent by the definition of the Fedosov product. Hence
lmn

J A = 0 as desired. �

Lemma 6.2. Let N be a locally nilpotent pro-G-algebra and let A be any pro-G-algebra.
Then the pro-G-algebra A ⊗̂N is locally nilpotent.

Proof. Let f : A ⊗̂N → C be an equivariant linear map with constant range. By the
construction of tensor products in pro(G -Mod) this map can be written as g(f1 ⊗̂ f2) for
equivariant linear maps f1 : A → C2, f2 : N → C2 with constant range and an equivariant
bounded linear map g : C1 ⊗̂C2 → C. Since N is locally nilpotent there exists a natural
number n such that f2m

n
N = 0. Up to a coordinate flip the n-fold multiplication in A ⊗̂N

is given by mn
A ⊗̂mn

N . This implies fmn
A ⊗̂ N

= 0 for the multiplication mA ⊗̂ N in A ⊗̂N .
Hence A ⊗̂N is locally nilpotent. �
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Next we want to study the pro-G-algebra T A. In order to formulate its universal
property we need another definition. An equivariant linear map l : A → B between
pro-G-algebras is called a lonilcur if its curvature ωl : A ⊗̂A → B defined by ωl(a, b) =
l(ab) − l(a)l(b) is locally nilpotent, that is, if for every equivariant linear map f : B → C

with constant range C there exists n ∈ N such that fmn
Bω⊗̂n

l = 0. The term lonilcur is
an abbreviation for ‘equivariant linear map with locally nilpotent curvature’. It is clear
that every equivariant homomorphism is a lonilcur because the curvature is zero in this
case. Using the fact that J A is locally nilpotent one checks easily that the natural map
σA : A → T A is a lonilcur.

Proposition 6.3. Let A be a pro-G-algebra. The pro-G-algebra T A and the equivariant
linear map σA : A → T A satisfy the following universal property. If l : A → B is a lonilcur
into a pro-G-algebra B there exists a unique equivariant homomorphism [[l]] : T A → B

such that [[l]]σA = l.

Let us now define and study quasifree pro-G-algebras.

Definition 6.4. A pro-G-algebra R is called G-equivariantly quasifree if there exists an
equivariant splitting homomorphism R → T R for the natural projection τR.

By abuse of language we will occasionally speak of quasifree pro-G-algebras instead of
G-equivariantly quasifree G-algebras although the latter is the correct terminology for a
pro-G-algebra which is quasifree as a pro-algebra.

In the following theorem the class of quasifree pro-G-algebras is characterized.

Theorem 6.5. Let G be a locally compact group and let R be a pro-G-algebra. Then
the following conditions are equivalent.

(a) R is G-equivariantly quasifree.

(b) There exists a family of equivariant homomorphisms vn : R → T R/(J R)n such
that v1 = id and vn+1 is a lifting of vn.

(c) For every locally nilpotent extension 0 → K → E → Q → 0 of pro-G-algebras
and every equivariant homomorphism f : R → Q there exists an equivariant lifting
homomorphism h : R → E.

(d) For every nilpotent extension 0 → K → E → Q → 0 of pro-G-algebras and
every equivariant homomorphism f : R → Q there exists an equivariant lifting
homomorphism h : R → E.

(e) For every 2-nilpotent extension 0 → K → E → Q → 0 of pro-G-algebras and
every equivariant homomorphism f : R → Q there exists an equivariant lifting
homomorphism h : R → E.

(f) For every 2-nilpotent extension 0 → K → E → R → 0 of pro-G-algebras there
exists an equivariant splitting homomorphism R → E.
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(g) There exists an equivariant splitting homomorphism for the natural homomorphism
T R/(J R)2 → R.

(h) There exists an equivariant linear map φ : R → Ω2(R) satisfying

φ(xy) = φ(x)y + xφ(y) − dx dy

for all x, y ∈ R.

(i) There exists an equivariant linear map ∇ : Ω1(R) → Ω2(R) satisfying

∇(xω) = x∇(ω), ∇(ωx) = ∇(ω)x − ω dx

for all x ∈ R and ω ∈ Ω1(R).

(j) The R-bimodule Ω1(R) is projective in pro(G -Mod).

(k) There exists a projective resolution 0 → P1 → P0 → R+ of the R-bimodule R+ of
length 1 in pro(G -Mod).

Let us also include the following definitions.

Definition 6.6. A pro-G-algebra A is called n-dimensional (with respect to G) if there
exists a projective resolution 0 → Pn → · · · → P0 → A+ of the A-bimodule A+ of length
n in pro(G -Mod).

Definition 6.7. Let A be a pro-G-algebra and let n > 0. An equivariant graded (right)
connection on Ωn(A) is an equivariant linear map ∇ : Ωn(A) → Ωn+1(A) such that

∇(xω) = x∇(ω), ∇(ωx) = ∇(ω)x + (−1)nω dx

for x ∈ A and ω ∈ Ωn(A).

According to Theorem 6.5 a pro-G-algebra A is G-equivariantly quasifree if and only
if it is one dimensional with respect to G. As in the non-equivariant case one has the
following characterization of n-dimensional algebras.

Proposition 6.8. Let G be a locally compact group and let A be a pro-G-algebra. Then
the following conditions are equivalent.

(a) A is n-dimensional with respect to G.

(b) The A-bimodule Ωn(A) is projective in pro(G -Mod).

(c) There exists an equivariant graded connection on Ωn(A).

A basic example of a quasifree pro-G-algebra is the algebra of complex numbers C

with the trivial G-action. More generally we observe the following.

Lemma 6.9. Let A be a pro-algebra equipped with the trivial G-action. If A is quasifree
as a pro-algebra it is G-equivariantly quasifree.
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The following result is important.

Proposition 6.10. Let A be any pro-G-algebra. The periodic tensor algebra T A is
G-equivariantly quasifree.

Proof. We have to show that there exists an equivariant splitting homomorphism for the
projection τT A : T T A → T A. Let us consider the equivariant linear map σ2

A = σT AσA :
A → T T A. We want to show that σ2

A is a lonilcur. First we compute the curvature ωσ2
A

of σ2
A as follows:

ωσ2
A
(x, y) = σ2

A(xy) − σ2
A(x) ◦ σ2

A(y)

= σT A(σA(xy)) − σT A(σA(x) ◦ σA(y)) + dσ2
A(x) dσ2

A(y)

= σT A(ωσA
(x, y)) + dσ2

A(x) dσ2
A(y).

Consider the equivariant linear map σA = τT Aσ2
A. Since τT A is a homomorphism we

obtain ωσA
= τT Aωσ2

A
. Let l : T T A → C be an equivariant linear map with constant

range C. Composition with σT A : T A → T T A yields a map k = lσT A : T A → C with
constant range. Since σA is a lonilcur there exists n ∈ N such that

kmn
T Aω⊗̂n

σA
= kmn

T Aτ ⊗̂n
T Aω⊗̂n

σ2
A

= kτT Amn
T T Aω⊗̂n

σ2
A

= 0.

By the construction of T T A the map l factors over T T A/(J (T A))m for some m. Using
the formula for the curvature of σ2

A and our previous computation we obtain

lmmn
T T Aω⊗̂mn

σ2
A

= 0.

Hence σ2
A is a lonilcur. By the universal property of T A there exists a homomorphism

v = [[σ2
A]] : T A → T T A such that vσA = σ2

A. This implies (τT Av)σA = τT AσT AσA = σA.
From the uniqueness assertion of Proposition 6.3 we deduce τT Av = id. This means

that T A is quasifree. �

In connection with unital algebras the following result is useful.

Proposition 6.11. Let A be a pro-G-algebra. Then A is G-equivariantly quasifree if
and only if A+ is G-equivariantly quasifree.

We will now define universal locally nilpotent extensions of pro-G-algebras.

Definition 6.12. Let A be a pro-G-algebra. A universal locally nilpotent extension of
A is an extension of pro-G-algebras 0 → N → R → A → 0 where N is locally nilpotent
and R is G-equivariantly quasifree.

We equip the Fréchet algebra C∞[0, 1] of smooth functions on the interval [0, 1] with the
bounded bornology and view it as a G-algebra with the trivial G-action. An equivariant
homotopy is an equivariant homomorphism of pro-G-algebras h : A → B ⊗̂C∞[0, 1]
where C∞[0, 1] is viewed as a constant pro-G-algebra. For each t ∈ [0, 1] evaluation at t

defines an equivariant homomorphism ht : A → B. Two equivariant homomorphisms are
equivariantly homotopic if they can be connected by an equivariant homotopy. We will
also write B[0, 1] for the pro-G-algebra B ⊗̂C∞[0, 1].
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Proposition 6.13. Let (ι, π) : 0 → N → R → A → 0 be a universal locally nilpotent
extension of A. If (i, p) : 0 → K → E → Q → 0 is any other locally nilpotent extension
and φ : A → Q an equivariant homomorphism there exists a commutative diagram of
pro-G-algebras

N �� ι ��

ξ

��

R
π �� ��

ψ

��

A

φ

��
K ��

i
�� E p

�� �� Q

Moreover, the equivariant homomorphisms ξ and ψ are unique up to smooth homotopy.
More generally let (ξt, ψt, φt) for t = 0, 1 be equivariant homomorphisms of extensions

and let Φ : A → Q[0, 1] be an equivariant homotopy connecting φ0 and φ1. Then Φ can
be lifted to an equivariant homotopy (Ξ, Ψ, Φ) between (ξ0, ψ0, φ0) and (ξ1, ψ1, φ1).

Proof. Let v : R → T R be a splitting homomorphism for the projection τR : T R → R

and let s : Q → E be an equivariant linear section for the projection p : E → Q. Since
p(sφπ) = φπ is an equivariant homomorphism the curvature of sφπ : R → E has values
in K. Since by assumption K is locally nilpotent it follows that sφπ is a lonilcur. From the
universal property of T R we obtain an equivariant homomorphism k = [[sφπ]] : T R → E

such that kσR = sφπ. Define ψ = kv : R → E. We have

(pk)σR = psφπ = φπ = (φπτR)σR

and by the uniqueness assertion in Proposition 6.3 we get pk = φπτR. Hence pψ = pkv =
φπτRv = φπ as desired. Moreover, ψ maps N into K and restricts consequently to an
equivariant homomorphism ξ : N → K making the diagram commutative.

The assertion that ψ and ξ are uniquely defined up to smooth homotopy follows from
the more general statement about the lifting of homotopies. Hence let (ξt, ψt, φt) for t =
0, 1 and Φ : A → Q[0, 1] be given as above. Tensoring with C∞[0, 1] yields an extension
(i[0, 1], p[0, 1]) : 0 → K[0, 1] → E[0, 1] → Q[0, 1] → 0 of pro-G-algebras. An equivariant
linear splitting s[0, 1] for this extension is obtained by tensoring s with the identity on
C∞[0, 1]. Since Φtπ = pψt for t = 0, 1 the equivariant linear map l : R → E[0, 1] defined
by

l = s[0, 1]Φπ + (ψ0 − sφ0π) ⊗ (1 − t) + (ψ1 − sφ1π) ⊗ t

satisfies evtl = ψt for t = 0, 1 and p[0, 1]l = Φπ. The map p[0, 1]l = Φπ is a homomorphism
and hence the curvature of l has values in K[0, 1]. Due to Lemma 6.2 the pro-G-algebra
K[0, 1] = K ⊗̂C∞[0, 1] is locally nilpotent. Consequently, we get an equivariant homo-
morphism [[l]] : T R → E[0, 1] such that [[l]]σR = l. We define Ψ = [[l]]v and in the same
way as above we obtain p[0, 1]Ψ = Φπ. An easy computation shows Ψt = evtΨ = ψt for
t = 0, 1. Clearly, Ψ restricts to an equivariant homomorphism Ξ : N → K[0, 1] such that
(Ξ, Ψ, Φ) becomes an equivariant homomorphism of extensions. �

Proposition 6.14. Let A be a pro-G-algebra. The extension 0 → J A → T A → A → 0
is a universal locally nilpotent extension of A. If 0 → N → R → A → 0 is any other
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universal locally nilpotent extension of A it is equivariantly homotopy equivalent over A

to 0 → J A → T A → A → 0. In particular R is equivariantly homotopy equivalent to
T A and N is equivariantly homotopy equivalent to J A.

Proof. The pro-G-algebra J A is locally nilpotent by Lemma 6.1. Moreover, T A is
quasifree by Proposition 6.10. Hence the assertion follows from Proposition 6.13. �

7. Equivariant differential forms

In the previous section we have seen that the space of non-commutative n-forms Ωn(A)
for a pro-G-algebra A is a pro-G-module in a natural way. Let now A be any pro-G-
algebra and consider the covariant pro-module Ωn

G(A) = OG ⊗̂Ωn(A). The G-action on
this space is defined by

t · (f(s) ⊗ ω) = f(t−1st) ⊗ t · ω

for all f ∈ OG and ω ∈ Ωn(A) and the OG-module structure is given by multiplication.

Definition 7.1. Let A be a pro-G-algebra. The covariant pro-module Ωn
G(A) is called

the space of equivariant n-forms over A.

Let us define operators d and bG on equivariant differential forms by

dG(f(s) ⊗ ω) = f(s) ⊗ dω

and
bG(f(s) ⊗ ω dx) = (−1)n(f(s) ⊗ (ωx − (s−1 · x)ω))

for ω ∈ Ωn(A) and x ∈ A. We remark that the definition of the operator bG goes back
at least to the work of Brylinski [5]. Moreover, in order to clarify our notation we point
out that one may view elements in Ωn

G(A) as functions from G to Ωn(A). In particular
the precise meaning of the last formula is that evaluation of bG(f ⊗ ω dx) ∈ Ωn

G(A) at
the group element s ∈ G yields (−1)n(f(s)(ωx − (s−1 · x)ω)) ∈ Ωn(A).

Having this in mind we want to study the properties of the operators d and bG. As in
the non-equivariant case we clearly have d2 = 0. The operator bG should be thought of
as a twisted version of the ordinary Hochschild boundary. We compute for ω ∈ Ωn(A)
and x, y ∈ A

b2
G(f(s) ⊗ ω dx dy)

= bG((−1)n+1(f(s) ⊗ ω dxy − f(s) ⊗ (s−1 · y)ω dx))

= bG((−1)n+1(f(s) ⊗ ω d(xy) − f(s) ⊗ ωx dy − f(s) ⊗ (s−1 · y)ω dx))

= (−1)n(−1)n+1(f(s) ⊗ ωxy − f(s) ⊗ s−1 · (xy)ω

− (f(s) ⊗ ωxy − f(s) ⊗ (s−1 · y)ωx)

− (f(s) ⊗ (s−1 · y)ωx − f(s) ⊗ (s−1 · x)(s−1 · y)ω)) = 0.

This shows b2
G = 0 and hence bG is an ordinary differential. We will call bG the equivariant

Hochschild operator.

https://doi.org/10.1017/S1474748007000102 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748007000102


Equivariant periodic cyclic homology 713

Similar to the non-equivariant case we construct an equivariant Karoubi operator κG

and an equivariant Connes operator BG out of d and bG. We define

κG = id − (bGdG + dGbG)

and on Ωn
G(A) we set

BG =
n∑

j=0

κj
GdG.

Using that κG commutes with dG and d2
G = 0 we obtain B2

G = 0. Let us record the
following explicit formulae on Ωn

G(A). For n � 1 we have

κG(f(s) ⊗ ω dx) = (−1)n−1f(s) ⊗ (s−1 · dx)ω

and we obtain κG(f(s) ⊗ x) = f(s) ⊗ s−1 · x for f(s) ⊗ x ∈ Ω0
G(A). For the Connes

operator we compute

BG(f(s) ⊗ x0 dx1 · · · dxn) =
n∑

i=0

(−1)nif(s) ⊗ s−1 · (dxn+1−i · · · dxn) dx0 · · · dxn−i.

In addition we have the symmetry operator T which is defined on any covariant pro-
module and takes the form

T (f(s) ⊗ ω) = f(s) ⊗ s−1 · ω

on Ωn
G(A). It is easy to check that all operators constructed so far are covariant.

In order to keep the formulae readable we will frequently write b instead of bG in the
sequel and use similar simplifications for the other operators.

We need the following lemma concerning relations between the operators constructed
above. See [16] for the corresponding assertion in the non-equivariant context.

Lemma 7.2. On Ωn
G(A) the following relations hold:

(a) κn+1d = Td,

(b) κn = T + bκnd,

(c) bκn = bT ,

(d) κn+1 = (id − db)T ,

(e) (κn+1 − T )(κn − T ) = 0,

(f) Bb + bB = id − T .
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Proof. (a) This follows directly from the explicit formula for κ from above. (b) Using
again the formula for κ we compute

κn(f(s) ⊗ x0 dx1 · · · dxn)

= f(s) ⊗ s−1 · (dx1 · · · dxn)x0

= f(s) ⊗ s−1 · (x0 dx1 · · · dxn) + (−1)nb(f(s) ⊗ s−1 · (dx1 · · · dxn) dx0)

= T (f(s) ⊗ x0 dx1 · · · dxn) + bκnd(f(s) ⊗ x0 dx1 · · · dxn).

(c) This follows by applying the Hochschild boundary b to both sides of (b). (d) Apply
κ to (b) and use (a). (e) This is a consequence of (b) and (d). (f) We compute

Bb + bB =
n−1∑
j=0

κjdb +
n∑

j=0

bκjd =
n−1∑
j=0

κj(db + bd) + κnbd

= id − κn(id − bd) = id − κn(κ + db) = id − T + dbT − Tdb = id − T,

where we use (d) and (b) and the fact that T commutes with covariant maps due to
Proposition 3.3. �

Let us summarize this discussion as follows.

Proposition 7.3. Let A be a pro-G-algebra. The space ΩG(A) of equivariant differential
forms is a paramixed complex in the category pro(G-Mod) of covariant pro-modules and
all the operators constructed above are covariant.

As for ordinary differential forms we define

Ω�n
G (A) = Ω0

G(A) ⊕ Ω1
G(A) ⊕ · · · ⊕ Ωn

G(A) for all n � 0.

We have the usual Z2-grading on Ω�n
G (A) into even and odd forms. The natural projection

Ω�m
G (A) → Ω�n

G (A) for m � n is a covariant homomorphism and compatible with the
grading. Hence we obtain a projective system (Ω�n

G (A))n∈N and we let θΩG(A) be the
corresponding projective limit.

Using Lemma 4.3 we easily obtain the following fact.

Lemma 7.4. For any pro-G-algebra B the covariant pro-module θΩG(B ⊗̂ KG) is rela-
tively projective.

8. The equivariant X-complex

In this section we define and study the equivariant X-complex. Apart from the periodic
tensor algebra introduced in § 3.1 this object is the main ingredient in the definition of
equivariant periodic cyclic homology.

Consider the paramixed complex ΩG(A) of equivariant differential forms for a pro-G-
algebra A which was defined in the previous section. Following Cuntz and Quillen [16]
we define the nth level of the Hodge tower associated to ΩG(A) by

θnΩG(A) =
n−1⊕
j=0

Ωj
G(A) ⊕ Ωn

G(A)/b(Ωn+1
G (A)).
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It is easy to see that the operators d and b descend to θnΩG(A). Consequently, the same
holds true for κ and B. Using the natural grading into even and odd forms we see that
θnΩG(A) together with the boundary operator B +b becomes a paracomplex. For m � n

there exists a natural covariant chain map θmΩG(A) → θnΩG(A). By definition the
Hodge tower θΩG(A) of A is the projective limit of the projective system (θnΩG(A))n∈N

obtained in this way.
We emphasize that θnΩG(A) for an arbitrary pro-G-algebra A is a projective systems

of not necessarily separated covariant modules. However, we will only have to work with
these objects in the case they are in fact projective systems of separated spaces.

We define the Hodge filtration on θnΩG(A) by

F kθnΩG(A) = b(Ωk+1
G (A)) ⊕

n−1⊕
j=k+1

Ωj
G(A) ⊕ Ωn

G(A)/b(Ωn+1
G (A)).

Clearly, F kθnΩG(A) is closed under b and B. The Hodge filtration on θnΩG(A) is a finite
decreasing filtration such that F−1θnΩG(A) = θnΩG(A) and FnθnΩG(A) = 0. Remark
that these definitions can be extended to arbitrary paramixed complexes of covariant
modules in a straightforward way.

Definition 8.1. Let A be a pro-G-algebra. The equivariant X-complex XG(A) of A is
the paracomplex θ1ΩG(A). Explicitly, we have

XG(A) : Ω0
G(A)

d ��
Ω1

G(A)/b(Ω2
G(A)).

b
��

Let us point out that, despite our terminology, XG(A) is usually only a paracomplex
and not a complex. Moreover, we remark that we will only be interested in the equivariant
X-complex XG(A) in the case that A is quasifree. Recall from Theorem 6.5 that the
A-bimodule Ω1(A) is a projective object in pro(G -Mod) if A is a quasifree pro-G-algebra.
It follows easily that Ω1

G(A)/b(Ω2
G(A)) is a projective system of separated spaces in this

case.
The following lemma shows how the equivariant X-complex behaves with respect to

unitarizations. This will be useful later on.

Lemma 8.2. For every pro-G-algebra A the natural homomorphisms A → A+ and
C → A+ induce an isomorphism of paracomplexes

XG(A) ⊕ OG[0] ∼= XG(A+).

Proof. We have an evident isomorphism q0 : X0
G(A) ⊕ OG

∼= X0
G(A+) in degree zero

given by the identification

X0
G(A) ⊕ OG = OG ⊗̂A ⊕ OG = OG ⊗̂A+ = X0

G(A+).

Let q1 : X1
G(A) → X1

G(A+) be the map induced by the inclusion homomorphism. In
order to construct an inverse of q1 consider the map p1 : OG ⊗̂Ω1(A+) → OG ⊗̂Ω1(A)
given by

p1(f ⊗ (a0, α0)d(a1, α1)) = f ⊗ a0 da1 + f ⊗ α0 da1, p1(f ⊗ d(a1, α1)) = f ⊗ da1.
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It is straightforward to verify that p1 descends to a covariant map X1
G(A+) → X1

G(A).
Moreover, one checks easily p1q1 = id. To prove q1p1 = id observe first that in X1

G(A+)
we have

f ⊗ (0, 1)d(0, 1) = f ⊗ (0, 1)d((0, 1)(0, 1)) = 2f ⊗ (0, 1)d(0, 1)

and hence f ⊗ (0, 1)d(0, 1) = 0. This implies

f ⊗ (a0, α0)d(0, 1) = f ⊗ (a0, α0)d((0, 1)(0, 1)) = 2f ⊗ (a0, α0)d(0, 1) = 0.

Now we compute

q1p1(f ⊗ (a0, α0)d(a1, α1)) = f ⊗ (a0, 0)d(a1, 0) + f ⊗ α0d(a1, 0)

= f ⊗ (a0, 0)d(a1, 0) + f ⊗ (0, α0)d(a1, 0)

= f ⊗ (a0, α0)d(a1, 0)

= (a0, α0)d(a1, α1)

and
q1p1(f ⊗ d(a1, α1)) = f ⊗ d(a1, 0) = f ⊗ d(a1, α1).

Finally, one checks easily that the map q is compatible with the differentials. This finishes
the proof. �

If we set A = 0 in Lemma 8.2 we obtain a simple description of the equivariant X-
complex of the complex numbers.

Lemma 8.3. The equivariant X-complex XG(C) of the complex numbers C can be
identified with the trivial supercomplex OG[0].

We are interested in the equivariant X-complex of the periodic tensor algebra T A

of a pro-G-algebra A. The first goal is to relate the covariant pro-module XG(T A) to
equivariant differential forms over A. If we denote the even part of θΩG(A) by θΩev

G (A)
we obtain a covariant isomorphism

X0
G(T A) = OG ⊗̂ T A ∼= θΩev

G (A)

according to the definition of T A.
Before we consider X1

G(T A) we have to make a convention. We use the letter D for
the equivariant linear map T A → Ω1(T A) usually denoted by d. This will help us not
to confuse this map with the differential d in T A = θΩev(A).

As in [33] we obtain the following assertion.

Proposition 8.4. Let A be any pro-G-algebra. The following maps are equivariant linear
isomorphisms:

µ1 : (T A)+ ⊗̂A ⊗̂ (T A)+ → Ω1(T A), µ1(x ⊗ a ⊗ y) = xDσA(a)y,

µ2 : (T A)+ ⊗̂A → T A, µ2(x ⊗ a) = x ◦ σA(a),

µ3 : A ⊗̂ (T A)+ → T A, µ3(a ⊗ x) = σA(a) ◦ x.

Hence Ω1(T A) is a free T A-bimodule and T A is free as a left and right T A-module.
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Using Proposition 8.4 we see that the map

µ1 : (T A)+ ⊗̂A ⊗̂ (T A)+ → Ω1(T A)

induces a covariant isomorphism

OG ⊗̂ (T A)+ ⊗̂A ⊗̂ (T A)+ ∼= Ω1
G(T A).

Identifying equivariant commutators under this isomorphism yields a covariant isomor-
phism

Ω1
G(T A)/bG(Ω2

G(T A)) ∼= OG ⊗̂ (T A)+ ⊗̂A.

Using again T A = θΩev(A) we obtain a covariant isomorphism

X1
G(T A) ∼= θΩodd

G (A),

where θΩodd
G (A) is the odd part of θΩG(A).

Having identified XG(T A) and θΩG(A) as covariant pro-modules we want to compare
the differentials on both sides. To this end let f(s) ⊗ x da be an element of θΩodd

G (A)
where x ∈ T A ∼= θΩev

G (A) and a ∈ A. The differential X1
G(T A) → X0

G(T A) in the
equivariant X-complex corresponds to

∂1(f(s) ⊗ x da) = f(s) ⊗ (x ◦ a − (s−1 · a) ◦ x)

= f(s) ⊗ (xa − (s−1 · a)x − dx da + (s−1 · da) dx)

= b(f(s) ⊗ x da) − (id + κ)d(f(s) ⊗ x da).

To compute the other differential we map Ω1
G(T A) to OG ⊗̂ (T A)+ ⊗̂A ⊗̂ (T A)+ using

the inverse of the isomorphism µ1 in Proposition 8.4 and compose with the covariant map
OG ⊗̂ (T A)+ ⊗̂A ⊗̂ (T A)+ → θΩodd

G (A) sending f(s)⊗x0⊗a⊗x1 to f(s)⊗(s−1·x1)◦x0 da.
The derivation rule for D yields the explicit formula

∂0(f(s) ⊗ x0 dx1 · · · dx2n)

= f(s) ⊗ D(x0 dx1 · · · dx2n)

= f(s) ⊗ s−1 · (dx1 · · · dx2n)Dx0

+
n∑

j=1

f(s) ⊗ s−1 · (dx2j+1 · · · dx2n) ◦ x0 dx1 · · · dx2j−2D(x2j−1x2j)

−
n∑

j=1

f(s) ⊗ s−1 · (dx2j+1 · · · dx2n) ◦ x0 dx1 · · · dx2j−2 ◦ x2j−1Dx2j

−
n∑

j=1

f(s) ⊗ s−1 · (x2jdx2j+1 · · · dx2n) ◦ x0 dx1 · · · dx2j−2Dx2j−1
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=
2n∑

j=0

f(s) ⊗ s−1 · (dxj · · · dx2n) dx0 dx1 · · · dxj−1

−
n∑

j=1

b(f(s) ⊗ s−1 · (dx2j+1 · · · dx2n)x0 dx1 · · · dx2j−1dx2j)

= B(f(s) ⊗ x0 dx1 · · · dx2n) −
n−1∑
j=0

κ2jb(f(s) ⊗ x0 dx1 · · · dx2n)

for the operator corresponding to the differential X0
G(T A) → X1

G(T A). This can be
summarized as follows.

Proposition 8.5. Under the identification XG(T A) ∼= θΩG(A) as above the differentials
of the equivariant X-complex correspond to

∂1 = b − (id + κ)d on θΩodd
G (A),

∂0 = −
n−1∑
j=0

κ2jb + B on Ω2n
G (A).

We would like to show that the paracomplexes XG(T A) and θΩG(A) are covariantly
homotopy equivalent. However, at this point we cannot proceed as in the non-equivariant
case.

Let us recall the situation for the ordinary X-complex. The proof of the homotopy
equivalence between X(T A) and θΩ(A) given by Cuntz and Quillen [16,18] is based on
the spectral decomposition of the Karoubi operator κ. This decomposition is obtained
from the polynomial relation

(κn+1 − id)(κn − id) = 0

which holds on Ωn(A). Remark that this formula is related to the fact that the cyclic
permutation operator is of finite order on Ωn(A).

In the equivariant theory the situation is different. The equivariant cyclic permutation
operator is in general of infinite order, due to Lemma 7.2 (e) the relevant relation for κ

is
(κn+1 − T )(κn − T ) = 0

on Ωn
G(A). Hence the proof from [16] cannot be carried over directly.

However, some additional work will in fact yield the following theorem.

Theorem 8.6. For any pro-G-algebra A the paracomplexes XG(T A) and θΩG(A) are
covariantly homotopy equivalent.

Due to Proposition 8.5 it suffices to prove that the paracomplexes (θΩG(A), ∂) and
(θΩG(A), B + b) are covariantly homotopy equivalent. We define c2n = c2n+1 = (−1)nn!
for all n. Consider the isomorphism c : θΩG(A) → θΩG(A) given by c(ω) = cnω for
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ω ∈ Ωn
G(A) and let δ = c−1(B + b)c be the boundary corresponding to B + b under this

isomorphism. It is easy to check that

δ = B − nb on Ω2n
G (A)

and

δ = − 1
n + 1

B + b on Ω2n+1
G (A).

Hence in order to prove Theorem 8.6 it is enough to show that (θΩG(A), ∂) and
(θΩG(A), δ) are covariantly homotopy equivalent.

In ordinary Cuntz–Quillen theory one proceeds by considering certain operators asso-
ciated to the spectral decomposition of the operator κ2. These operators are polynomials
in κ2 and explicit formulae can be found in [33]. Since we do not have a spectral decom-
position of κ2 in the equivariant situation we will work directly with these polynomials.

We begin with the operator Nn which is given by

Nn = Nn(κ2) =
1
n

n−1∑
j=0

κ2j

for n � 1 and by N0 = id.
Due to Lemma 7.2 (a) we have κ2n+1d = Td on Ω2n

G (A). Hence we get

(id − κ2)N2n+1B =
1

2n + 1
(id − κ2(2n+1))B =

1
2n + 1

(id − T 2)B (8.1)

on Ω2n
G (A). Similarly we have

(id − κ2)N2n+1b =
1

2n + 1
(id − κ2(2n+1))b =

1
2n + 1

(id − T 2)b (8.2)

on Ω2n+1
G (A) since κ2n+1b = Tb on Ω2n+1

G (A) by Lemma 7.2 (c). Next we define the
polynomials fn and gn by

fn = fn(κ2) = Nn(κ2)Nn+1(κ2)(id + (n − 1
2 )(id − κ2))

and

gn = gn(κ2) = −(n − 1
2 )NnNn+1 + Nn

Nn+1 − id
κ2 − id

+
Nn − id
κ2 − id

for all n � 0. In addition we set fj = id and gj = 0 for all negative integers j. It is easy
to check that each gn is in fact a polynomial in κ2 and that we have

gn(id − κ2) = id − fn (8.3)

for all n. We define covariant maps Fj by

F2n−1 = F2n = f2n−2f2n−1f2n

for all n and let F : θΩG(A) → θΩG(A) be the operator which is given on j-forms by Fj .
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We have to investigate the compatibility of the operator F with the differentials ∂

and δ. Let us first determine the failure of F to define a chain map from (θΩG(A), ∂) to
(θΩG(A), ∂). Using equations (8.3) and (8.1) we get on Ω2n

G (A)

∂0F − F∂0

= BF2n −
n−1∑
j=0

κ2jbF2n − F2n+1B + F2n−1

n−1∑
j=0

κ2jb

= (F2n − F2n+1)B

= f2n(f2n−2f2n−1 − f2n+1f2n+2)B

= −f2n((id − f2n−2)f2n−1 + (id − f2n−1) − (id − f2n+2)f2n+1 − (id − f2n+1))B

= −f2n(g2n−2f2n−1 + g2n−1 − g2n+2f2n+1 − g2n+1)(id − κ)2B

= (id − T )Q2n,

where

Q2n = − 1
2n + 1

N2n(id + (2n − 1
2 )(id − κ2))

× (g2n−2f2n−1 + g2n−1 − g2n+2f2n+1 − g2n+1)(id + T )B.

Similarly, using equation (8.2) we have on Ω2n+1
G (A)

∂1F − F∂1 = bF2n+1 − (id + κ)dF2n+1 − F2nb + F2n+2(id + κ)d

= (F2n+1 − F2n)b

= f2n(g2n−2f2n−1 + g2n−1 − g2n+2f2n+1 − g2n+1)(id − κ)2b

= (id − T )Q2n+1,

where

Q2n+1 =
1

2n + 1
N2n(id + (2n − 1

2 )(id − κ2))

× (g2n−2f2n−1 + g2n−1 − g2n+2f2n+1 − g2n+1)(id + T )b.

An analogous computation is needed to determine the deviation of F to define a chain
map from (θΩG(A), δ) to (θΩG(A), δ). We get on Ω2n

G (A)

δ0F − Fδ0 = BF2n − nbF2n − F2n+1B + nF2n−1b

= (F2n − F2n+1)B

= (id − T )Q2n

and

δ1F − Fδ1 = bF2n+1 − 1
n + 1

BF2n+1 − F2nb +
1

n + 1
F2n+2B

= (F2n+1 − F2n)b

= (id − T )Q2n+1

https://doi.org/10.1017/S1474748007000102 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748007000102


Equivariant periodic cyclic homology 721

on Ω2n+1
G (A). Let Q : θΩG(A) → θΩG(A) be the operator which is given on n-forms by

Qn. Then the previous computation yields

∂F − F∂ = (id − T )Q, δF − Fδ = (id − T )Q. (8.4)

The operator Q satisfies the following identities. We have on Ω2n
G (A)

∂1Q = δ1Q = bQ2n, Q∂0 = Qδ0 = Q2n+1B,

and similarly on Ω2n+1
G (A)

∂0Q = δ0Q = BQ2n+1, Q∂1 = Qδ1 = Q2nb.

Since bQ2n + Q2n+1B = 0 and BQ2n+1 + Q2nb = 0 we deduce the following lemma.

Lemma 8.7. The operator Q satisfies the relations

∂Q = δQ, Q∂ = Qδ.

Moreover,

∂Q + Q∂ = 0, δQ + Qδ = 0,

that is, Q is a chain map of odd degree for both boundary operators.

Using Lemma 8.7 we define the operator P : θΩG(A) → θΩG(A) by

P = F + 1
2Q∂ = F − 1

2∂Q = F + 1
2Qδ = F − 1

2δQ (8.5)

and calculate using equation (8.4)

∂P − P∂ = ∂(F − 1
2∂Q) − (F + 1

2Q∂)∂ = ∂F − F∂ − 1
2∂2Q − 1

2Q∂2

= (id − T )Q − (id − T )Q = 0.

In the same way we get
δP − Pδ = 0,

which shows that P defines a chain map from (θΩG(A), ∂) to itself and also a chain map
from (θΩG(A), δ) to itself.

Next we shall prove that these chain maps are homotopic to the identity. First observe
that

id − F2n−1 = id − F2n = (id − f2n−2) + (id − f2n−1)f2n−2 + (id − f2n)f2n−1f2n−2.

Hence if we set

S2n−1 = S2n = g2n−2 + g2n−1f2n−2 + g2nf2n−1f2n−2 (8.6)

and let S : θΩG(A) → θΩG(A) be the operator given on n-forms by Sn we get

id − F = (id − κ2)S.
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Observe that we also have

id − F2n−1 = id − F2n = (id − f2n) + (id − f2n−1)f2n + (id − f2n−2)f2n−1f2n,

which implies
S2n−1 = S2n = g2n + g2n−1f2n + g2n−2f2n−1f2n. (8.7)

Combining equations (8.6) and (8.7) we get

S2n − S2n+2 = f2n(g2n−1 − g2n+1 + g2n−2f2n−1 − g2n+2f2n+1). (8.8)

Let us consider the chain map P : (θΩG(A), ∂) → (θΩG(A), ∂). We define

h2n = (id + κ)d − b, h2n+1 = 0

and calculate

∂h + h∂ = −(b − (id + κ)d)2 = (id + κ)(bd + db) = (id + κ)(id − κ) = id − κ2.

It follows that id − κ2 is homotopic to zero with respect to the boundary ∂. Now we set

H2n = h2nS2n + 1
2Q2n, H2n+1 = 0

and compute on Ω2n
G (A)

∂H + H∂ = ∂h2nS2n + 1
2∂Q2n = id − F2n + 1

2∂Q2n = id − P2n.

Observe that by Lemma 7.2 (a) we have on Ω2n
G (A)

N2n+1(id + κ)d =
1

2n + 1

2n∑
j=0

κ2j(id + κ)d

=
1

2n + 1

2n∑
j=0

κj(id + κ2n+1)d

=
1

2n + 1
(id + T )B. (8.9)

Hence using equations (8.8) and (8.9) we get on Ω2n+1
G (A)

h2n+2(S2n − S2n+2)b = N2n(id + (2n − 1
2 )(id − κ2))

× (g2n−1 − g2n+1 + g2n−2f2n−1 − g2n+2f2n+1)N2n+1(id + κ)db

= −Q2nb

and compute on Ω2n+1
G (A)

∂H + H∂ = −h2n+2S2n+2(id + κ)d + h2nS2nb + 1
2Q2nb

= id − F2n+1 + h2n+2(S2n − S2n+2)b + 1
2Q2nb

= id − F2n+1 − Q2nb + 1
2Q2nb

= id − P2n+1.
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We now consider the chain map P : (θΩG(A), δ) → (θΩG(A), δ). Let us define

l2n = (id + κ)d, l2n+1 = − 1
n + 1

(id + κ)d

for all n. Then the equation

[δ, c−1dc] = c−1[B + b, d]c = c−1(bd + db)c = c−1(id − κ)c = id − κ

implies
δl + lδ = (id + κ)(id − κ) = id − κ2.

It follows that id − κ2 is homotopic to zero with respect to the boundary δ. Now we set

L2n = l2nS2n + 1
2Q2n, L2n+1 = l2n+1S2n+1

and compute on Ω2n
G (A)

δL + Lδ = S2nδl + S2nlδ + 1
2δQ2n = id − P2n.

On Ω2n+1
G (A) we get

δL + Lδ = δl2n+1S2n+1 + l2nS2nb + 1
2Q2nb

= id − F2n+1 + l2n(S2n − S2n+2)b + 1
2Q2nb

= id − F2n+1 + h2n(S2n − S2n+2)b + 1
2Q2nb

= id − F2n+1 − 1
2Qδ

= id − P2n+1.

We summarize this discussion as follows.

Proposition 8.8. We have

id − P = ∂H + H∂, id − P = δL + Lδ,

that is, the chain map id − P is homotopic to zero with respect to both boundary
operators.

Let us now determine the failure of F to define a chain map from (θΩG(A), δ) to
(θΩG(A), ∂). Using the relation κ2nb = Tb on Ω2n

G (A) we compute

(id − κ2)N2nb =
1
2n

(id − κ2(2n))b =
1
2n

(id − T 2)b

on Ω2n
G (A) for n > 0. Hence we have on Ω2n

G (A) for n > 0

δ0F − F∂0 = BF2n − nbF2n + F2n−1

n−1∑
j=0

κ2jb − F2n+1B

= (F2n − F2n+1)B − (id − κ2)
n−2∑
j=0

(n − j − 1)κ2jF2nb

= (id − T )Q2n − (id − T )
n−2∑
j=0

(n − j − 1)κ2jKnb,
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where

Kn =
1
2n

f2n−2f2n−1N2n+1(id + (2n − 1
2 )(id − κ2))(id + T ).

Similarly, on Ω2n−1
G (A) we have κ2nd = Td and hence

(id − κ2)N2nd =
1
2n

(id − κ2(2n))d =
1
2n

(id − T 2)d.

Using this we compute on Ω2n−1
G (A)

δ1F − F∂1 = bF2n−1 − 1
n

BF2n−1 − F2n−2b + F2n(id + κ)d

= b(F2n−1 − F2n−2) −
(

1
n

2n−1∑
j=0

κjF2n−1 − (id + κ)F2n

)
d

= (id − T )Q2n−1 +
1
n

(id − κ2)(id + κ)
n−2∑
j=0

(n − j − 1)κ2jF2nd

= (id − T )Q2n−1 +
1
n

(id − T )(id + κ)
n−2∑
j=0

(n − j − 1)κ2jKnd.

Hence if we set

R2n = −
n−2∑
j=0

(n − j − 1)κ2jKnb,

R2n−1 =
1
n

(id + κ)
n−2∑
j=0

(n − j − 1)κ2jKnd

for n > 0 and R0 = 0 we get

δF − F∂ = (id − T )(Q + R),

where, as before, R is given by Rn in degree n. Similarly, we obtain on Ω2n
G (A)

∂0F − Fδ0 = BF2n −
n−1∑
j=0

κ2jbF2n − F2n+1B + nF2n−1b

= (F2n − F2n+1)B + (id − κ2)
n−2∑
j=0

(n − j − 1)κ2jF2nb

= (id − T )Q2n + (id − T )
n−2∑
j=0

(n − j − 1)κ2jKnb
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and on Ω2n−1
G (A)

∂1F − Fδ1 = bF2n−1 − (id + κ)dF2n−1 − F2n−2b +
1
n

F2nB

= (F2n−1 − F2n−2)b − 1
n

(id − κ2)(id + κ)
n−2∑
j=0

(n − j − 1)κ2jF2nd

= (id − T )Q2n−1 − 1
n

(id − T )(id + κ)
n−2∑
j=0

(n − j − 1)κ2jKnd.

Hence we have
∂F − Fδ = (id − T )(Q − R).

The operator R satisfies the identities

δR + R∂ = − 1
n

BR2n − R2n−1

n−1∑
j=0

κ2jb, ∂R + Rδ = −(id + κ)dR2n − R2n−1nb

on Ω2n
G (A) and

δR + R∂ = −nbR2n−1 − R2n(id + κ)d, ∂R + Rδ = −
n−1∑
j=0

κ2jbR2n−1 − 1
n

R2nB

on Ω2n−1
G (A). Moreover, we have on Ω2n

G (A)

FR − RF = F2n−1R2n − R2nF2n = 0,

and similarly

FR − RF = F2nR2n−1 − R2n−1F2n−1 = 0

on Ω2n−1
G (A). Finally, one easily checks RQ = QR = 0. We summarize this as follows.

Lemma 8.9. We have the relations

δF − F∂ = (id − T )(Q + R), ∂F − Fδ = (id − T )(Q − R)

as well as
δR + R∂ = 0, ∂R + Rδ = 0

and
[F, R] = FR − RF = 0, RQ = QR = 0.

Let us define φ : (θΩG(A), ∂) → (θΩG(A), δ) and ψ : (θΩG(A), δ) → (θΩG(A), ∂) by

φ = P + 1
2R∂ = P − 1

2δR, ψ = P + 1
2∂R = P − 1

2Rδ.
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Using Lemmas 8.7 and 8.9 one verifies that φ and ψ are chain maps. Let us prove that
φψ is homotopic to the identity. According to Lemma 8.9 one has

φψ = (P + 1
2R∂)(P + 1

2∂R)

= P 2 + 1
2 (R∂P + P∂R) + 1

4R∂2R

= P 2 − 1
2 (δR(F + 1

2Qδ) + (F − 1
2δQ)Rδ) + 1

4R2(id − T )

= P 2 − 1
2 (δRF + RFδ) + 1

4R2(id − T ).

Consider the first term in the last expression. By Proposition 8.8 the map P is homotopic
to the identity with respect to the boundary δ. Hence the same holds true for the chain
map P 2. The second term is obviously homotopic to zero. The last term is homotopic to
zero since R2 is a chain map with respect to the boundary δ according to Lemma 8.9.
We conclude that φψ is homotopic to the identity. In the same way one shows that ψφ

is homotopic to the identity.
This finishes the proof of Theorem 8.6.

9. Equivariant periodic cyclic homology

In this section we define bivariant equivariant periodic cyclic homology for pro-G-
algebras.

Definition 9.1. Let G be a locally compact group and let A and B be pro-G-algebras.
The bivariant equivariant periodic cyclic homology of A and B is

HPG
∗ (A, B) = H∗(HomG(XG(T (A ⊗̂ KG)), XG(T (B ⊗̂ KG)))).

There are some explanations in order. On the right-hand side of this definition we take
homology with respect to the usual boundary in a Hom-complex given by

∂(φ) = φ∂A − (−1)|φ|∂Bφ

for a homogeneous element φ ∈ HomG(XG(T (A ⊗̂ KG)), XG(T (B ⊗̂ KG))) where ∂A and
∂B denote the boundary operators of XG(T (A ⊗̂ KG)) and XG(T (B ⊗̂ KG)), respectively.
However, in order to take homology we have to check that we indeed obtain a supercom-
plex in this way since the equivariant X-complexes are only paracomplexes.

From the definition of the equivariant X-complex we know ∂2
A = id−T and ∂2

B = id−T .
Using these relations we compute

∂2(φ) = φ∂2
A + (−1)|φ|(−1)|φ|−1∂2

Bφ = φ(id − T ) − (id − T )φ = Tφ − φT

and hence ∂2(φ) = 0 follows from Proposition 3.3. Thus the failure of the individual
differentials to satisfy ∂2 = 0 is cancelled out in the Hom-complex. This shows that our
definition of HPG

∗ makes sense.
Let us discuss some basic properties of the equivariant homology groups defined above.

Clearly, HPG
∗ is a bifunctor, contravariant in the first variable and covariant in the second

variable. As usual we define HPG
∗ (A) = HPG

∗ (C, A) to be the equivariant periodic cyclic
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homology of A and HP ∗
G(A) = HPG

∗ (A, C) to be equivariant periodic cyclic cohomology.
There is a natural product

HPG
i (A, B) × HPG

j (B, C) → HPG
i+j(A, C), (x, y) �→ x · y,

induced by the composition of maps. This product is obviously associative. Every equiv-
ariant homomorphism f : A → B defines an element in HPG

0 (A, B) denoted by [f ]. The
element [id] ∈ HPG

0 (A, A) is simply denoted by 1 or 1A. An element x ∈ HPG
∗ (A, B)

is called invertible if there exists an element y ∈ HPG
∗ (B, A) such that x · y = 1A

and y · x = 1B . An invertible element of degree zero will also be called an HPG-
equivalence. Such an element induces isomorphisms HPG

∗ (A, D) ∼= HPG
∗ (B, D) and

HPG
∗ (D, A) ∼= HPG

∗ (D, B) for all G-algebras D. An HPG-equivalence exists if and only
if the paracomplexes XG(T (A ⊗̂ KG)) and XG(T (B ⊗̂ KG)) are covariantly homotopy
equivalent.

10. Homotopy invariance

In this section we show that HPG
∗ is invariant under smooth equivariant homotopies in

both variables.
Let B be a pro-G-algebra and consider the Fréchet algebra C∞[0, 1] of smooth func-

tions on the interval [0, 1]. We denote by B[0, 1] the pro-G-algebra B ⊗̂C∞[0, 1] where
the action on C∞[0, 1] is trivial. By definition a (smooth) equivariant homotopy is an
equivariant homomorphism Φ : A → B[0, 1] of pro-G-algebras. Evaluation at a point
t ∈ [0, 1] yields an equivariant homomorphism Φt : A → B. Two equivariant homomor-
phisms from A to B are called equivariantly homotopic if they can be connected by an
equivariant homotopy.

A homology theory h∗ for algebras is called homotopy invariant if the induced maps
h∗(φ0) and h∗(φ1) are equal whenever φ0 and φ1 are homotopic homomorphisms. In our
situation we will prove the following assertion.

Theorem 10.1 (Homotopy Invariance). Let A and B be pro-G-algebras and let
Φ : A → B[0, 1] be a smooth equivariant homotopy. Then the elements [Φ0] and [Φ1] in
HPG

0 (A, B) are equal. Hence the functor HPG
∗ is homotopy invariant in both variables

with respect to smooth equivariant homotopies.
More generally the elements [Φ0] and [Φ1] in H0(HomG(XG(A), XG(B))) are equal

provided A is quasifree.

We recall that θ2ΩG(A) is the paracomplex Ω0
G(A) ⊕ Ω1

G(A) ⊕ Ω2
G(A)/b(Ω3

G(A)) with
the usual differential B+b and the grading into even and odd forms for any pro-G-algebra
A. Clearly, there is a natural map of paracomplexes ξ2 : θ2ΩG(A) → XG(A). The first
step in the proof of Theorem 10.1 is to show that ξ2 is a covariant homotopy equivalence
provided A is equivariantly quasifree.

Let us consider the following more general situation. Assume that A is a pro-G-algebra
and let ∇ : Ωn(A) → Ωn+1(A) be an equivariant graded connection. Recall from Defini-
tion 6.7 that ∇ satisfies

∇(xω) = x∇(ω), ∇(ωx) = ∇(ω)x + (−1)nω dx
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for all x ∈ A and ω ∈ Ωn(A). We extend ∇ to forms of higher degree by setting
∇(a0 da1 · · · dam) = ∇(a0 da1 · · · dan) dan+1 · · · dam. Moreover, we put ∇(ω) = 0 if the
degree of ω is smaller than n. Then we have

∇(aω) = a∇(ω), ∇(ωη) = ∇(ω)η + (−1)|ω|ω dη

for a ∈ A and differential forms ω and η. Let us define a covariant map ∇G : θΩG(A) →
θΩG(A) by the formula

∇G(f(s) ⊗ ω) = f(s) ⊗ ∇(ω).

Proposition 10.2. Let A be a pro-G-algebra and let ∇ : Ωn
G(A) → Ωn+1

G (A) be
an equivariant graded connection. Then the covariant map [b, ∇G] = b∇G + ∇Gb

is an idempotent operator on θΩG(A) and defines a retraction for the natural map
FnθΩG(A) → θΩG(A).

It follows that θΩG(A) and θnΩG(A) are covariantly homotopy equivalent with respect
to the Hochschild operators if A is n-dimensional with respect to G.

Proof. Let us compute the commutator of b and ∇G. Take ω ∈ Ωj(A) for j > n. For
a ∈ A we obtain

[b, ∇G](f(s) ⊗ ω da) = b(f(s) ⊗ ∇(ω) da) + ∇G(b(f(s) ⊗ ω da))

= (−1)j+1(f(s) ⊗ ∇(ω)a − f(s) ⊗ (s−1 · a)∇(ω))
+ (−1)j(∇G(f(s) ⊗ ωa − f(s) ⊗ (s−1 · a)ω))

= (−1)j(f(s) ⊗ (s−1 · a)∇(ω) − f(s) ⊗ ∇(ω)a
+ f(s) ⊗ ∇(ωa) − f(s) ⊗ ∇((s−1 · a)ω))

= (−1)j(f(s) ⊗ (s−1 · a)∇(ω) − f(s) ⊗ ∇(ω)a + f(s) ⊗ ∇(ω)a
+ (−1)jf(s) ⊗ ω da − f(s) ⊗ (s−1 · a)∇(ω))

= f(s) ⊗ ω da.

Hence [b, ∇G] = id on Ωj
G(A) for j > n. Since [b, ∇G] commutes with b this holds also

on b(Ωn+1
G (A)). Let us determine the behaviour of [b, ∇G] on Ωj

G(A) for j � n. Clearly,
[b, ∇G] = 0 on Ωj

G(A) for j < n since ∇G vanishes on Ωj
G(A) and Ωj−1

G (A) in this case.
On Ωn

G(A) we have [b, ∇G] = b∇G because ∇G is zero on Ωn−1
G (A). Hence

[b, ∇G][b, ∇G] = b∇Gb∇G = b(id − b∇G)∇G = b∇G = [b, ∇G] on Ω1
G(A)

and it follows that [b, ∇G] is idempotent. The range of the map [b, ∇G] = b∇G restricted
to Ωn

G(A) is contained in b(Ωn+1
G (A)). Equality holds because [b, ∇G] is equal to the

identity on b(Ωn+1
G (A)) as we have seen before. It follows that [b, ∇G] maps θΩG(A) to

FnθΩG(A) and is a retraction of the natural map from FnθΩG(A) into θΩG(A). Hence
the map id − [b, ∇G] : θnΩG(A) → θΩG(A) is inverse to the natural projection up to
homotopy with respect to the Hochschild boundary. �

Proposition 10.3. Let A be a G-equivariantly quasifree pro-G-algebra. Then the map
ξ2 : θ2ΩG(A) → XG(A) is a covariant homotopy equivalence.
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Proof. Since A is quasifree there exists by Theorem 6.5 an equivariant graded connection
∇ : Ω1(A) → Ω2(A). We use the covariant map ∇G defined above to construct an
inverse of ξ2 up to homotopy. In order to do this consider the commutator of ∇G with
the boundary B + b. Clearly, we have [∇G, B + b] = [∇G, B] + [∇G, b]. Since [∇G, B]
has degree +2 we see from Proposition 10.2 that id − [∇G, B + b] maps F jΩG(A) to
F j+1ΩG(A) for all j � 1. This implies in particular that id − [∇G, B + b] descends to
a covariant map ν : XG(A) → θ2ΩG(A). Using that ∇G is covariant we see that ν is a
chain map. Explicitly we have

ν = id − ∇Gd on Ω0
G(A),

ν = id − [∇G, b] = id − b∇G on Ω1
G(A)/b(Ω2

G(A)),

and we deduce ξ2ν = id. Moreover, νξ2 = id − [∇G, B + b] is homotopic to the identity.
This yields the assertion. �

Now let Φ : A → B[0, 1] be an equivariant homotopy. The derivative of Φ is an
equivariant linear map Φ′ : A → B[0, 1]. If we view B[0, 1] as a bimodule over itself the
map Φ′ is a derivation with respect to Φ in the sense that Φ′(xy) = Φ′(x)Φ(y)+Φ(x)Φ′(y)
for x, y ∈ A. We define a covariant map η : Ωn

G(A) → Ωn−1
G (B) for n > 0 by

η(f(s) ⊗ x0 dx1 · · · dxn) =
∫ 1

0
f(s) ⊗ Φt(x0)Φ′

t(x1) dΦt(x2) · · · dΦt(xn) dt.

Since integration is a bounded linear map we see that η is bounded. In addition we set
η = 0 on Ω0

G(A). Using the fact that Φ′ is a derivation with respect to Φ we compute

ηb(f(s) ⊗ x0 dx1 · · · dxn)

=
∫ 1

0
f(s) ⊗ Φt(x0x1)Φ′

t(x2) dΦt(x3) · · · dΦt(xn)

− f(s) ⊗ Φt(x0)Φ′
t(x1x2) dΦt(x3) · · · dΦt(xn)

+ f(s) ⊗ Φt(x0)Φ′
t(x1)Φt(x2) dΦt(x3) · · · dΦt(xn)

− (−1)nf(s) ⊗ Φt(x0)Φ′
t(x1)(dΦt(x2) · · · dΦt(xn−1))Φt(xn)

+ (−1)nf(s) ⊗ Φt((s−1 · xn)x0)Φ′
t(x1) dΦt(x2) · · · dΦt(xn−1) dt

=
∫ 1

0
(−1)n−1(f(s) ⊗ Φt(x0)Φ′

t(x1)(dΦt(x2) · · · dΦt(xn−1))Φt(xn)

− f(s) ⊗ Φt((s−1 · xn)x0)Φ′
t(x1) dΦt(x2) · · · dΦt(xn−1)) dt

= −bη(f(s) ⊗ x0 dx1 · · · dxn).

This implies that η maps b(Ω3
G(A)) into b(Ω2

G(B)) and hence induces a covariant map
η : θ2ΩG(A) → XG(B).

Lemma 10.4. We have XG(Φ1)ξ2 − XG(Φ0)ξ2 = ∂η + η∂. Hence the chain maps
XG(Φt)ξ2 : θ2ΩG(A) → XG(B) for t = 0, 1 are covariantly homotopic.
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Proof. We compute both sides on Ωj
G(A) for j = 0, 1, 2. For j = 0 we have

[∂, η](f(s) ⊗ x) = η(f(s) ⊗ dx) =
∫ 1

0
f(s) ⊗ Φ′

t(x) dt = f(s) ⊗ Φ1(x) − f(s) ⊗ Φ0(x).

For j = 1 we get

[∂, η](f(s) ⊗ x0 dx1)

= dη(f(s) ⊗ x0 dx1) + ηB(f(s) ⊗ x0 dx1)

=
∫ 1

0
f(s) ⊗ d(Φt(x0)Φ′

t(x1)) + f(s) ⊗ Φ′
t(x0) dΦt(x1) − f(s) ⊗ Φ′

t(s
−1 · x1) dΦt(x0) dt

=
∫ 1

0
b(f(s) ⊗ dΦt(x0) dΦ′

t(x1)) +
∂

∂t
(f(s) ⊗ Φt(x0) dΦt(x1)) dt

= f(s) ⊗ Φ1(x0) dΦ1(x1) − f(s) ⊗ Φ0(x0) dΦ0(x1).

Here we can forget about the term∫ 1

0
b(f(s) ⊗ dΦt(x0) dΦ′

t(x1)) dt,

since the range of η is XG(B). Finally, on Ω3
G(A)/b(Ω2

G(A)) we have ∂η+η∂ = ηb+bη = 0
due to the computation above. �

Now we come back to the proof of Theorem 10.1. Let Φ : A → B[0, 1] be an equiv-
ariant homotopy. Tensoring both sides with KG we obtain an equivariant homotopy
Φ ⊗̂ KG : A ⊗̂ KG → (B ⊗̂ KG)[0, 1]. The map Φ ⊗̂ KG induces an equivariant homomor-
phism T (Φ ⊗̂ KG) : T (A ⊗̂ KG) → T ((B ⊗̂ KG)[0, 1]). Now consider the equivariant linear
map

l : B ⊗̂ KG ⊗̂C∞[0, 1] → T (B ⊗̂ KG) ⊗̂C∞[0, 1], l(b ⊗ T ⊗ f) = σB ⊗̂ KG
(b ⊗ T ) ⊗ f.

Since σB ⊗̂ KG
is a lonilcur it follows that the same holds true for l. Hence we obtain an

equivariant homomorphism [[l]] : T ((B ⊗̂ KG)[0, 1]) → T (B ⊗̂ KG)[0, 1] due to Proposi-
tion 6.3. Composition of T (Φ ⊗̂ KG) with the homomorphism [[l]] yields an equivariant
homotopy

Ψ = [[l]]T (Φ ⊗̂ KG) : T (A ⊗̂ KG) → T (B ⊗̂ KG)[0, 1].

From the definition of Ψ it follows easily that Ψt = T (Φt ⊗̂ KG) for all t. Since
T (A ⊗̂ KG) is quasifree we can apply Proposition 10.2 and Lemma 10.4 to obtain
[Φ0] = [Φ1] ∈ HPG

0 (A, B). The second assertion of Theorem 10.1 follows directly from
Proposition 10.2 and Lemma 10.4. This finishes the proof of Theorem 10.1.

Let us note a formula for the chain homotopy h connecting XG(Φ0) and XG(Φ1)
obtained above in the case that A is equivariantly quasifree. Since A is quasifree there
exists according to Theorem 6.5 an equivariant linear map φ : A → Ω2(A) satisfying
φ(xy) = φ(x)y + xφ(y) − dx dy. Using the map φ one obtains

h0(f(s) ⊗ x0) = −η(f(s) ⊗ φ(x0)),

h1(f(s) ⊗ x0 dx1) = η(f(s) ⊗ x0 dx1) − ηb(f(s) ⊗ x0φ(x1))

for the homotopy h : XG(A) → XG(B).
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As a first application of homotopy invariance we show that HPG
∗ can be computed

using arbitrary universal locally nilpotent extensions.

Proposition 10.5. Let 0 → I → R → A → 0 be a universal locally nilpotent
extension of the pro-G-algebra A. Then XG(R) is covariantly homotopy equivalent to
XG(T A) in a canonical way. More precisely, any morphism of extensions (ξ, φ, id) from
0 → J A → T A → A → 0 to 0 → I → R → A → 0 induces a covariant homotopy
equivalence XG(φ) : XG(T A) → XG(R). The class of this homotopy equivalence in
H∗(HomG(XG(T A), XG(R))) is independent of the choice of φ.

Proof. From Propositions 6.13 and 6.14 it follows that φ : T A → R is an equivariant
homotopy equivalence of algebras. Hence XG(φ) : XG(T A) → XG(R) is a covariant
homotopy equivalence due to Theorem 10.1. Since φ is unique up to equivariant homotopy
it follows that the class of this homotopy equivalence does not depend on the particular
choice of φ. �

In particular there is a natural covariant homotopy equivalence between XG(T A) and
XG(A) if A itself is quasifree.

11. Stability

In this section we want to investigate stability properties of HPG
∗ . We will show that

HPG
∗ is stable with respect to tensoring with the algebras l(b) associated to an equivariant

bounded bilinear pairing b : W × V → C that were introduced in § 2.
First we consider a special class of pairings.

Definition 11.1. Let V and W be G-modules. An equivariant bilinear pairing b : W ×
V → C is called admissible if there are subspaces NW ⊂ W and NV ⊂ V where the
G-action is trivial such that the restriction of b to NW × NV is non-zero.

Now let A be a G-algebra and let b : W×V → C be an admissible pairing. Let NW ⊂ W

and NV ⊂ V be the corresponding subspaces. By assumption we may choose w ∈ NW

and v ∈ NV such that b(w, v) = 1. Then p = v ⊗ w is an element of l(b) and clearly p is
G-invariant. Consider the equivariant homomorphism ιA : A → A ⊗̂ l(b), ιA(a) = a ⊗ p.

Theorem 11.2. Let A be a pro-G-algebra and let b : W × V → C be an admissible
pairing. Then the class [ιA] ∈ H0(HomG(XG(T A), XG(T (A ⊗̂ l(b))))) is invertible.

Proof. We have to find an inverse for [ιA]. Our argument is a generalization of a well-
known proof of stability in the non-equivariant case.

First observe that the canonical equivariant linear map A ⊗̂ l(b) → T A ⊗̂ l(b) is a
lonilcur and induces consequently an equivariant homomorphism λA : T (A ⊗̂ l(b)) →
T A ⊗̂ l(b). Define the map trA : XG(T A ⊗̂ l(b)) → XG(T A) by

trA(f(s) ⊗ x ⊗ T ) = trs(T )f(s) ⊗ x
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and

trA(f(s) ⊗ x0 ⊗ T0d(x1 ⊗ T1)) = trs(T0T1)f(s) ⊗ x0 dx1.

Here we use the twisted trace trs : l(b) → C defined by

trs(v ⊗ w) = b(w, s · v) = b(s−1 · w, v)

for v ⊗ w ∈ V ⊗̂W and s ∈ G.
Now it is easily verified that

trs(T0T1) = trs((s−1 · T1)T0)

for all T0, T1 ∈ l(b).
One checks that trA is a covariant map of paracomplexes. We define τA = trA ◦XG(λA)

and claim that [τA] is an inverse for [ιA]. Using the relation pUs = p one computes [ιA] ·
[τA] = 1. We have to show that [τA] · [ιA] = 1. Consider the equivariant homomorphisms
ij : A ⊗̂ l(b) → A ⊗̂ l(b) ⊗̂ l(b) for j = 1, 2 given by

i1(a ⊗ T ) = a ⊗ T ⊗ p,

i2(a ⊗ T ) = a ⊗ p ⊗ T.

As before we see [i1] · [τA ⊗̂ l(b)] = 1 and we determine [i2] · [τA ⊗̂ l(b)] = [τA] · [ιA]. Let us
show that the maps i1 and i2 are equivariantly homotopic. We shall define an invertible
multiplier σ of l(b) ⊗̂ l(b) such that conjugation with σ yields the natural coordinate flip of
l(b) ⊗̂ l(b) sending k1 ⊗̂ k2 to k2 ⊗̂ k1 as follows. Using that l(b) ⊗̂ l(b) ∼= V ⊗̂W ⊗̂V ⊗̂W

as G-modules we set

σ · (v1 ⊗ w1 ⊗ v2 ⊗ w2) = v2 ⊗ w1 ⊗ v1 ⊗ w2

and

(v1 ⊗ w1 ⊗ v2 ⊗ w2) · σ = v2 ⊗ w1 ⊗ v1 ⊗ w2.

It is clear that these formulae define equivariant bounded linear maps l(b) ⊗̂ l(b) →
l(b) ⊗̂ l(b). Moreover, we have σ · (kl) = (σ · k)l, (kl) · σ = k(l · σ) and (k · σ)l = k(σ · l)
for all k, l ∈ l(b) ⊗̂ l(b) which means by definition that σ is a multiplier of l(b) ⊗̂ l(b).
We have σ · (σ · k) = k = (k · σ) · σ and ad(σ)(k1 ⊗ k2) = σ · (k1 ⊗ k2) · σ = k2 ⊗ k1.
Consider for t ∈ [0, 1] the invertible multiplier σt = cos(πt/2)id+i sin(πt/2)σ with inverse
given by σ−1

t = cos(πt/2)id − i sin(πt/2)σ. The family σt depends smoothly on t and we
have σ0 = id and σ1 = σ. Now the formula ad(σt)(k) = σt · k · σ−1

t defines equivariant
homomorphisms ad(σt) : l(b) ⊗̂ l(b) → l(b) ⊗̂ l(b). We use ad(σt) to define an equivariant
homomorphism ht : A ⊗̂ l(b) → A ⊗̂ l(b) ⊗̂ l(b) by ht(a ⊗ k) = a ⊗ ad(σt)(k ⊗ p). One
computes h0 = i1 and h1 = i2 and the family ht again depends smoothly on t. Hence we
have indeed defined a smooth homotopy between i1 and i2. Theorem 10.1 yields [i1] = [i2]
and hence [τA] · [ιA] = 1. �

Now we can prove the following stability theorem.
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Theorem 11.3 (Stability). Let A be a pro-G-algebra and let b : W ×V be any non-zero
equivariant bilinear pairing. Then there exists an invertible element in HPG

0 (A, A ⊗̂ l(b)).
Hence there are natural isomorphisms

HPG
∗ (A ⊗̂ l(b), B) ∼= HPG

∗ (A, B), HPG
∗ (A, B) ∼= HPG

∗ (A, B ⊗̂ l(b))

for all pro-G-algebras A and B.

Proof. Consider the natural pairing D(G)×D(G) → C used in the definition of KG. The
tensor product l(b) ⊗̂ KG is isomorphic to the algebra l(D(G) ⊗̂V, D(G) ⊗̂W ) associated
to the tensor product pairing. We have a natural equivariant isomorphism α : D(G) ⊗̂V ∼=
D(G) ⊗̂Vτ given by α(f)(t) = t−1 · f(t) where Vτ is the space V equipped with the
trivial G-action. In the same way we obtain an equivariant isomorphism D(G) ⊗̂W ∼=
D(G) ⊗̂Wτ which we will also denote by α. These isomorphisms are compatible with the
pairings in the sense that

b(α(g), α(f)) =
∫

G

b(α(g)(t), α(f)(t)) dt =
∫

G

b(t−1 · g(t), t−1 · f(t)) dt = b(g, f)

for g ∈ D(G) ⊗̂W , f ∈ D(G) ⊗̂V , where we use the fact that the pairing W × V → C is
equivariant. It follows that we obtain an equivariant isomorphism

l(D(G) ⊗̂V, D(G) ⊗̂W ) → l(D(G) ⊗̂Vτ ,D(G) ⊗̂Wτ )

given by α(f ⊗̂ g) = α(f) ⊗̂α(g). In other words, we have an equivariant isomorphism of
G-algebras

KG ⊗̂ l(b) ∼= KG ⊗̂ l(bτ ),

where bτ = b : Wτ × Vτ → C. Now we can apply Theorem 11.2 with A replaced by
A ⊗̂ KG and l(b) replaced by l(bτ ) to obtain the assertion. �

As an application of Theorem 11.2 we obtain a simpler description of HPG
∗ if G is a

compact group.

Proposition 11.4. Let G be a compact group. Then we have a natural isomorphism

HPG
∗ (A, B) ∼= H∗(HomG(XG(T A), XG(T B)))

for all pro-G-algebras A and B.

Proof. If G is compact the trivial one-dimensional representation is contained in D(G).
Hence the pairing used in the definition of KG is admissible in this case. �
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12. Excision

The goal of this section is the proof of excision in equivariant periodic cyclic homology.
We consider an extension

K �� ι �� E
π �� �� Q
σ

�� (12.1)

of pro-G-algebras where σ : Q → E is an equivariant linear splitting for the quotient
map π : E → Q.

Let XG(T E : T Q) be the kernel of the map XG(T π) : XG(T E) → XG(T Q) induced
by π. The splitting σ yields a direct sum decomposition XG(T E) = XG(T E : T Q) ⊕
XG(T Q) of covariant pro-modules. The resulting extension

XG(T E : T Q) �� �� XG(T E) �� �� XG(T Q)

of paracomplexes induces long exact sequences in homology in both variables. Moreover,
there is a natural covariant map ρ : XG(T K) → XG(T E : T Q) of paracomplexes. Our
main result is the following generalized excision theorem.

Theorem 12.1. The map ρ : XG(T K) → XG(T E : T Q) is a covariant homotopy
equivalence.

As a consequence we get excision in equivariant periodic cyclic homology.

Theorem 12.2 (Excision). Let A be a pro-G-algebra and let (ι, π) : 0 → K → E →
Q → 0 be an extension of pro-G-algebras with a linear splitting. Then there are two
natural exact sequences

HPG
0 (A, K) ��

��
HPG

0 (A, E) �� HPG
0 (A, Q)

��
HPG

1 (A, Q) �� HPG
1 (A, E) �� HPG

1 (A, K)

and
HPG

0 (Q, A) ��
��

HPG
0 (E, A) �� HPG

0 (K, A)

��
HPG

1 (K, A) �� HPG
1 (E, A) �� HPG

1 (Q, A)

The horizontal maps in these diagrams are induced by the maps in the extension.

We point out that in Theorem 12.2 we only require a pro-linear splitting for the quotient
homomorphism π : E → Q. Let us first show how Theorem 12.1 implies Theorem 12.2.
Tensoring the extension given in Theorem 12.2 with KG yields an extension

K ⊗̂ KG
�� �� E ⊗̂ KG

�� �� Q ⊗̂ KG (12.2)

of pro-G-algebras with a linear splitting. Due to Lemma 4.3 the pro-G-module Q ⊗̂ KG

is relatively projective. It follows that we obtain in fact an equivariant linear splitting
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for extension (12.2). Now we can apply Theorem 12.1 to this extension and obtain the
claim by considering long exact sequences in homology.

Our proof of Theorem 12.1 is an adaption of the method used in [33] to prove excision
in cyclic homology theories. Consider the extension (12.1) and let L ⊂ T E be the left
ideal generated by K ⊂ T E. Using Proposition 8.4 we see that

(T E)+ ⊗̂K → L, x ⊗ k �→ x ◦ k, (12.3)

is an equivariant linear isomorphism. Moreover, we obtain from this description an equiv-
ariant linear retraction for the inclusion L → T E. Clearly, L is a pro-G-algebra since the
ideal K ⊂ E is G-invariant. The natural projection τE : T E → E induces an equivariant
homomorphism τ : L → K and σE restricted to K is an equivariant linear splitting for
τ . Hence we obtain an extension

N �� �� L
τ �� �� K

of pro-G-algebras. The inclusion L → T E induces a morphism of extensions from
0 → N → L → K → 0 to 0 → J E → T E → E → 0. In particular we have a nat-
ural equivariant homomorphism i : N → J E and it is easy to see that there exists an
equivariant linear map r : J E → N such that ri = id. Using this retraction we want to
show that N is locally nilpotent. If l : N → C is an equivariant linear map with constant
range C we compute lmn

N = lpimn
N = lpmn

J Ei⊗̂n where mN and mJ E denote the mul-
tiplication maps in N and J E, respectively. Since lp : J E → C is an equivariant linear
map with constant range the claim follows from the fact that J E is locally nilpotent.

We will establish Theorem 12.1 by proving the following theorem.

Theorem 12.3. With the notation as above we have

(a) the pro-G-algebra L is quasifree;

(b) the inclusion map L → T E induces a covariant homotopy equivalence ψ : XG(L) →
XG(T E : T Q).

Let us indicate how Theorem 12.3 implies Theorem 12.1. The map ρ is the composition
of the natural maps XG(T K) → XG(L) and XG(L) → XG(T E : T Q). Since L is
quasifree by part (a) it follows that 0 → N → L → K → 0 is a universal locally
nilpotent extension of K. Hence the first map is a covariant homotopy equivalence due
to Proposition 10.5. The second map is a covariant homotopy equivalence by part (b). It
follows that ρ itself is a covariant homotopy equivalence.

We need some notation. The equivariant linear section σ : Q → E induces an equiv-
ariant linear map σL : Ωn(Q) → Ωn(E) defined by

σL(q0 dq1 · · · dqn) = σ(q0) dσ(q1) · · · dσ(qn).

Here σ is extended to an equivariant linear map Q+ → E+ in the obvious way by
requiring σ(1) = 1.
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We also need a right-handed version of the map σL. In order to explain this correctly
consider first an arbitrary pro-G-algebra A. There is a natural equivariant isomorphism
Ω1(A) ∼= A ⊗̂A+ of right A-modules. This follows easily from the description of Ω1(A)
as the kernel of the multiplication map A+ ⊗̂A+ → A+. More generally we obtain
equivariant linear isomorphisms Ωn(A) ∼= A⊗̂n ⊗̂A+ for all n. Using these identifications
we define the equivariant linear map σR : Ω(Q) → Ω(E) by

σR(dq1 · · · dqnqn+1) = dσ(q1) · · · dσ(qn)σ(qn+1),

which is the desired right-handed version of σL. As in [33] we obtain the following
assertion.

Lemma 12.4. The following maps are equivariant linear isomorphisms:

µL : (T Q)+ ⊕ (T E)+ ⊗̂K ⊗̂ (T Q)+ → (T E)+,

q1 ⊕ (x ⊗ k ⊗ q2) �→ σL(q1) + x ◦ k ◦ σL(q2),

µR : (T Q)+ ⊕ (T Q)+ ⊗̂K ⊗̂ (T E)+ → (T E)+,

q1 ⊕ (q2 ⊗ k ⊗ x) �→ σR(q1) + σR(q2) ◦ k ◦ x.

Equation (12.3) and Lemma 12.4 yield an equivariant linear isomorphism

L
+ ⊗̂ (T Q)+ ∼= (T E)+, l ⊗ q �→ l ◦ σL(q). (12.4)

This isomorphism is obviously left L-linear and it follows that (T E)+ is a free left
L-module. Furthermore, we get from Lemma 12.4

(T Q)+ ⊗̂K ⊗̂L
+ ∼= (T Q)+ ⊗̂K ⊕ (T Q)+ ⊗̂K ⊗̂ (T E)+ ⊗̂K ∼= (T E)+ ⊗̂K ∼= L.

It follows that the equivariant linear map

(T Q)+ ⊗̂K ⊗̂L
+ → L, q ⊗ k ⊗ l �→ σR(q) ◦ k ◦ l, (12.5)

is an isomorphism. This map is right L-linear and we see that L is a free right L-module.
Denote by J the kernel of the map T π : T E → T Q. Using again Lemma 12.4 we see

that
(T Q)+ ⊗̂K ⊗̂ (T E)+ ∼= J, q ⊗ k ⊗ x �→ σR(q) ◦ k ◦ x, (12.6)

is a right T E-linear isomorphism. In a similar way we have a left T E-linear isomorphism

(T E)+ ⊗̂K ⊗̂ (T Q)+ ∼= J, x ⊗ k ⊗ q �→ x ◦ k ◦ σL(q).

Together with equation (12.3) this yields

L ⊗̂ (T Q)+ ∼= J, l ⊗ q �→ l ◦ σL(q), (12.7)

and using equation (12.4) we get

L ⊗̂L+ (T E)+ ∼= J, l ⊗ x �→ l ◦ x. (12.8)
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Now one constructs a free resolution of the L-bimodule L+. First let A be any pro-G-
algebra and consider the extension of A-bimodules in pro(G -Mod) given by

BA
• : Ω1(A)

�� α1 ��
A+ ⊗̂A+

α0 �� ��

h1

���� A+ .��
h0

��

Here the maps are defined as follows:

α1(xDyz) = xy ⊗ z − x ⊗ yz, α0(x ⊗ y) = xy,

h1(x ⊗ y) = Dxy, h0(x) = 1 ⊗ x.

It is easy to check that αh + hα = id. The complex BA
• is a projective resolution of the

A-bimodule A+ in pro(G -Mod) if and only if A is quasifree. Define a subcomplex P• of
BT E

• as follows:

P0 = (T E)+ ⊗̂L + L
+ ⊗̂L

+ ⊂ (T E)+ ⊗̂ (T E)+,

P1 = (T E)+DL ⊂ Ω1(T E).

There exists an equivariant linear retraction BT E
• → P• for the inclusion P• → BT E

• .
Since L is a left ideal in T E we see that the boundary operators in BT E

• restrict to P•
and turn P1 → P0 → L+ into a complex. It is clear that P0 and P1 inherit a natural L-
bimodule structure from BT E

0 and BT E
1 , respectively. Moreover, the homotopy h restricts

to a contracting homotopy for the complex P1 → P0 → L+. Hence P• is a resolution of
L+ by L-bimodules in pro(G -Mod). Next we show that the L-bimodules P0 and P1 are
free. Using equation (12.4) we obtain the isomorphism

L
+ ⊗̂L

+ ⊕ L
+ ⊗̂ T Q ⊗̂L ∼= P0,

(l1 ⊗ l2) ⊕ (l3 ⊗ q ⊗ l4) �→ l1 ⊗ l2 + (l3 ◦ σL(q)) ⊗ l4.
(12.9)

Since L is a free right L-module by (12.5) we see that P0 is a free L-bimodule. Now
consider P1. We claim that

P1 = Ω1(T E) ◦ K + (T E)+DK.

The inclusion (T E)+DK ⊂ P1 is clear and it is easy to see that Ω1(T E) ◦ K ⊂ P1.
Conversely, for x0D(x1 ◦ k) ∈ P1 with x0, x1 ∈ (T E)+ we compute

x0D(x1 ◦ k) = x0(Dx1) ◦ k + x0 ◦ x1Dk

which is contained in Ω1(T E) ◦ K + (T E)+DK. This yields the claim. Under the iso-
morphism Ω1(T E) ∼= (T E)+ ⊗̂E ⊗̂ (T E)+ from Proposition 8.4 the space Ω1(T E) ◦ K

corresponds to (T E)+ ⊗̂E ⊗̂ (T E)+ ◦ K = (T E)+ ⊗̂E ⊗̂L and (T E)+DK corresponds
to (T E)+ ⊗̂K ⊗̂ 1. Hence

((T E)+ ⊗̂K ⊗̂L
+) ⊕ ((T E)+ ⊗̂Q ⊗̂L) → P1,

(x1 ⊗ k ⊗ l1) ⊕ (x2 ⊗ q ⊗ l2) �→ x1Dkl1 + x2Dσ(q)l2,
(12.10)
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is an equivariant linear isomorphism. Since (T E)+ is a free left L-module by equa-
tion (12.4) and L is a free right L-module by equation (12.5) we deduce that P1 is a free
L-bimodule. Consequently, we have established that P• is a free L-bimodule resolution
of L+ in the category pro(G -Mod). According to Theorem 6.5 this finishes the proof of
part (a) of Theorem 12.3.

We need some more notation. Let Xβ
G(T E) be the complex obtained from XG(T E) by

replacing the differential ∂1 : X1
G(T E) → X0

G(T E) by zero. In the same way we proceed
for XG(T E : T Q). Moreover, let M be an L-bimodule in pro(G -Mod). We define the
covariant module (OG ⊗̂M)/[· , ·]G as the quotient of OG ⊗̂M by twisted commutators
f(s) ⊗ ml − f(s) ⊗ (s−1 · l)m where l ∈ L and m ∈ M .

Now we continue the proof of Theorem 12.3. The inclusion P• → BT E
• is an L-bimodule

homomorphism and induces a chain map

φ : (OG ⊗̂P•)/[· , ·]G → (OG ⊗̂BT E
• )/[· , ·]G ∼= Xβ

G(T E) ⊕ OG[0].

Let us determine the image of φ. We use equations (12.9) and (12.7) to obtain

(OG ⊗̂P0)/[· , ·]G ∼= OG ⊗̂ (L+ ⊕ L ⊗̂ T Q)
∼= OG ⊕ (OG ⊗̂L ⊗̂ (T Q)+)
∼= OG ⊕ (OG ⊗̂ J) ⊂ OG ⊗̂ (T E)+.

Using equations (12.10) and (12.8) we get

(OG ⊗̂P1)/[· , ·]G ∼= OG ⊗̂ ((T E)+ ⊗̂K) ⊕ OG ⊗̂ (L ⊗̂L+ (T E)+ ⊗̂Q)
∼= OG ⊗̂ ((T E)+ ⊗̂K) ⊕ OG ⊗̂ J ⊗̂Q

∼= OG ⊗̂ ((T E)+DK + JDσ(Q)) ⊂ Ω1
G(T E).

This implies that φ induces a covariant isomorphism of chain complexes

(OG ⊗̂P•)/[· , ·]G ∼= Xβ
G(T E : T Q) ⊕ OG[0].

With these preparations we can prove part (b) of Theorem 12.3.

Proposition 12.5. The natural map ψ : XG(L) → XG(T E : T Q) is split injective and
we have

XG(T E : T Q) = XG(L) ⊕ C•

with a covariantly contractible paracomplex C•. Hence XG(T E : T Q) and XG(L) are
covariantly homotopy equivalent.

Proof. The standard resolution BL
• of L+ is a subcomplex of P•. Since P• itself is a free

L-bimodule resolution of L+ the inclusion map f• : BL
• → P• is a homotopy equivalence.

Explicitly set M0 = L+ ⊗̂ T Q ⊗̂L and define g : M0 → P0 by

g(l1 ⊗ q ⊗ l2) = l1 ◦ σL(q) ⊗ l2 − l1 ⊗ σL(q) ◦ l2.
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Using equation (12.9) it is easy to check that f0 ⊕ g : L+ ⊗̂L+ ⊕ M0 → P0 is an iso-
morphism. Furthermore, we have α0g = 0. Since the complex P• is exact this implies
that P1 = ker α0 ∼= Ω1(L) ⊕ M0. Set M1 = M0 and define the boundary M1 → M0

to be the identity map. The complex M• of L-bimodules is obviously contractible and
P• ∼= BL

• ⊕M•. Applying the functor (OG ⊗̂ −)/[· , ·]G we obtain covariant isomorphisms

Xβ
G(T E : T Q) ⊕ OG[0] ∼= (OG ⊗̂P•)/[· , ·]G

∼= (OG ⊗̂BL
• )/[· , ·]G ⊕ (OG ⊗̂M•)/[· , ·]G

∼= Xβ
G(L) ⊕ OG[0] ⊕ (OG ⊗̂M•)/[· , ·]G.

One checks that the two copies of OG are identified under this isomorphism. Moreover,
the map Xβ

G(L) → Xβ
G(T E : T Q) arising from these identifications is equal to ψ. Hence

ψ is split injective. Let C• be the image of (OG ⊗̂M•)/[· , ·]G in Xβ
G(T E : T Q). One

checks that C0 is the range of the map

OG ⊗̂L ⊗̂ T Q → X0
G(T E), f(s) ⊗ l ⊗ q �→ f(s) ⊗ l ◦ sL(q) − f(s) ⊗ (s−1 · sL(q)) ◦ l,

and that C1 is the range of the map

OG ⊗̂L ⊗̂ T Q → X1
G(T E), f ⊗ l ⊗ q �→ f ⊗ lDsL(q).

The boundary C1 → C0 is the boundary induced from XG(T E : T Q). On the other hand,
the boundary ∂0 : X0

G(T E : T Q) → X1
G(T E : T Q) does not vanish on C0. However, we

have ∂2 = id − T and this implies that C• is a sub-paracomplex of XG(T E : T Q). Since
ψ is compatible with ∂0 we obtain the desired direct sum decomposition

XG(T E : T Q) ∼= XG(L) ⊕ C•.

It is clear that the paracomplex C• is covariantly contractible. �

This completes the proof of Theorem 12.1.

13. The exterior product

In this section we construct the exterior product for equivariant periodic cyclic homology.
The exterior product is a generalization of the obvious composition product HPG

∗ (A, B)×
HPG

∗ (B, C) → HPG
∗ (A, C) discussed in § 9 and an analogue of the exterior product in

KK-theory. Our discussion follows essentially the construction in the non-equivariant
case given by Cuntz and Quillen [18].

We need some preparations. First we define the tensor product of paracomplexes of
covariant modules. Let C and D be paracomplexes of covariant modules. Then the tensor
product C � D of C and D is the paracomplex defined as follows. The space underlying
C � D is given by

(C � D)0 = C0 ⊗̂ OG
D0 ⊕ C1 ⊗̂ OG

D1, (C � D)1 = C1 ⊗̂ OG
D0 ⊕ C0 ⊗̂ OG

D1.
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The group G acts diagonally and OG acts by multiplication. Using the fact that OG is
commutative we see that C � D becomes a covariant module in this way.

It remains to define the boundary operator in C � D. The usual formula for the
differential in a tensor product of complexes is not appropriate since this formula does
not yield a paracomplex. Instead we define the differential ∂ in C � D by

∂0 =

(
∂ ⊗ id − id⊗∂

id⊗∂ ∂ ⊗ T

)
, ∂1 =

(
∂ ⊗ T id⊗∂

− id⊗∂ ∂ ⊗ id

)
.

It is straightforward to check that ∂2 = id−T in C �D. Hence the tensor product C �D

is again a paracomplex.
Now let I be a G-invariant ideal in a pro-G-algebra R and define a paracomplex

H2
G(R, I) by

H2
G(R, I)0 = OG ⊗̂R/(OG ⊗̂ I2 + b(OG ⊗̂ I dR))

in degree zero and by

H2
G(R, I)1 = OG ⊗̂Ω1(R)/(b(Ω2

G(R)) + OG ⊗̂ IΩ1(R))

in degree one where the boundary operators are induced from XG(R). This paracomplex
is the equivariant analogue of the corresponding quotient of the ordinary X-complex
considered in [16].

Let A and B be pro-G-algebras. In the same way as explained in [15] we see that the
unital free product A+ ∗ B+ of A+ and B+ can be written as

A+ ∗ B+ = A+ ⊗̂B+ ⊕
⊕
j>0

Ωj(A) ⊗̂Ωj(B)

where the multiplication is given by the Fedosov product

(x1 ⊗ y1) ◦ (x2 ⊗ y2) = x1x2 ⊗ y1y2 − (−1)|x1|x1dx2 ⊗ dy1y2.

An element a0 da1 · · · dan ⊗ b0 db1 · · · dbn corresponds to a0b0[a1, b1] · · · [an, bn] in the free
product under this identification where [x, y] = xy−yx denotes the ordinary commutator.

Consider the extension

I �� �� A+ ∗ B+ π �� �� A+ ⊗̂B+

of pro-G-algebras where I is the kernel of the canonical homomorphism π : A+ ∗ B+ →
A+ ⊗̂B+. Using the description of the free product explained above we have

Ik =
⊕
j�k

Ωj(A) ⊗̂Ωj(B)

for the powers of the ideal I.
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Let us abbreviate R = A+ ∗ B+ and define a covariant map φ : XG(A+) � XG(B+) →
H2

G(R, I) by

φ(f(t) ⊗ x ⊗ y) = f(t) ⊗ xy,

φ(f(t) ⊗ x0 dx1 ⊗ y0 dy1) = f(t) ⊗ x0(t−1 · y0)[x1, t
−1 · y1],

φ(f(t) ⊗ x ⊗ y0 dy1) = f(t) ⊗ xy0 dy1,

φ(f(t) ⊗ x0 dx1 ⊗ y) = f(t) ⊗ x0 dx1y,

where again [x, y] = xy − yx denotes the commutator.

Proposition 13.1. The map φ : XG(A+) � XG(B+) → H2
G(R, I) defined above is a

covariant isomorphism of paracomplexes for all pro-G-algebras A and B.

Proof. According to the description of the free product using non-commutative differ-
ential forms we have an equivariant isomorphism

A+ ⊗̂B+ ⊕ Ω1(A) ⊗̂Ω1(B) ∼= R/I2

of A+ ⊗̂B+-bimodules. This induces an isomorphism

X0
G(A+) � X1

G(B+) ⊕ X1
G(A) � X1

G(B) ∼= H2
G(R, I)0

and using Lemma 8.2 we deduce

X0
G(A+) � X1

G(B+) ⊕ X1
G(A+) � X1

G(B+) ∼= H2
G(R, I)0.

After applying the covariant isomorphism T to X1
G(B+) this isomorphism can be iden-

tified with the map φ in degree zero.
The inclusion maps A+ → R and B+ → R induce an equivariant R-bimodule homo-

morphism

R ⊗̂A Ω1(A) ⊗̂A R ⊕ R ⊗̂B Ω1(B) ⊗̂B R → Ω1(R).

Tensoring with A+ ⊗̂B+ over R on both sides we obtain a map

B+ ⊗̂Ω1(A) ⊗̂B+ ⊕ A+ ⊗̂Ω1(B) ⊗̂A+ → Ω1(R)/(IΩ1(R) + Ω1(R)I).

Using the fact that R is unital we see as in [15] that this map determines an isomorphism

X1
G(A) � X0

G(B+) ⊕ X0
G(A+) � X1

G(B) ∼= H2
G(R, I)1

and by Lemma 8.2 we obtain an isomorphism

X1
G(A+) � X0

G(B+) ⊕ X0
G(A+) � X1

G(B+) ∼= H2
G(R, I)1

which can be identified with the map φ in degree one.
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It remains to show that φ is a chain map. To illustrate the occurrence of the operator
T we compute

∂φ(f(t) ⊗ x0 dx1 ⊗ y0 dy1)

= f(t) ⊗ d(x0(t−1 · y0)[x1, t
−1 · y1])

= f(t) ⊗ x0(t−1 · y0)[dx1, t
−1 · y1] + f(t) ⊗ x0(t−1 · y0)[x1, d(t−1 · y1)]

= f(t) ⊗ x0 dx1t
−1 · (y0y1) − f(t) ⊗ x0 dx1y0y1

+ f(t) ⊗ x0x1t
−1 · (y0 dy1) − f(t) ⊗ (t−1 · x1)x0t

−1 · (y0 dy1)

= φ∂(f(t) ⊗ x0 dx1 ⊗ y0 dy1).

The other cases are treated in a similar way. �

Lemma 13.2. Let A and B be equivariantly quasifree pro-G-algebras. Then the free
product A+ ∗ B+ is equivariantly quasifree.

Proof. Let 0 → K → E → Q → 0 be a locally nilpotent extension of pro-G-algebras
and let f : A+ ∗ B+ → Q be an equivariant homomorphism. Since A+ ∗ B+ is unital
and C is equivariantly quasifree we can lift the homomorphism C → Q induced by f

to an equivariant homomorphism C → E. We denote by e be the idempotent in E that
corresponds to this lifting as well as its image in Q. Then 0 → eKe → eEe → Q → 0 is
again a locally nilpotent extension and the pro-G-algebra eEe is unital. Since A and B

are assumed to be quasifree there exist equivariant homomorphisms hA : A → eEe and
hB : B → eEe lifting the maps A → eQe and B → eQe determined by f . Extending
hA and hB to the unitarizations and using the universal property of the free product we
obtain a lifting h : A+ ∗ B+ → eEe for f . Composing h with the evident map eEe → E

yields the claim. �

Next we discuss an analogue of the perturbation lemma [28]. Let C and D be para-
complexes. We shall assume that C and D are equipped with boundary operators b and
B satisfying

b2 = 0 = B2, Bb + bB = id − T,

such that ∂ = B + b. Consider the diagram

D
i �� C

p �� D,

where i and p are chain maps with respect to the Hochschild operator b and assume that
h : C → C is an operator such that

pi = id, ip = id + (bh + hb).

Moreover, we assume that p is a chain map with respect to B. We will call such data
a deformation retraction of C onto D. A deformation retraction is called special if in
addition the relations

hi = 0, ph = 0, h2 = 0
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hold. It is easy to see that any deformation retraction can be turned into a special
deformation retraction. More precisely, if we define a new operator k by

k = (bh + hb)h(bh + hb)

we get ki = pk = 0 since bh + hb = ip − id and pi = id. Moreover, one calculates

bk + kb = (ip − id)bh(ip − id) + (ip − id)hb(ip − id)

= (ip − id)(ip − id)(ip − id)

= ip − id .

Hence k is again a deformation retraction. We define a map l by

l = −kbk

and clearly get again li = pl = 0. Moreover, we calculate

bl + lb = −bkbk − kbkb = −(ip − id − kb)bk − kb(ip − id − bk) = bk + kb = ip − id

using that i and p are chain maps with respect to b. The relation ip = id + (bk + kb)
implies k + bk2 + kbk = 0 and k + k2b + kbk = 0. Combining these equations we obtain
bk2 − k2b = 0 and compute

l2 = kbk2bk = kb2k3 = 0.

Hence we have constructed a special deformation retraction.

Lemma 13.3. Let C and D be paracomplexes and assume that l is a special deformation
retraction of C onto D. Then we have

[(lB)ji, b] = −[(lB)j−1i, B]

and

[(lB)j , b]l = B(lB)j−1l

for all j > 0.

Proof. We use induction on j. Consider the first expression. For j = 1 we have

lBib − blBi = lBbi + (lb + id − ip)Bi

= lBbi + lbBi + Bi − ipBi

= Bi − iBpi

= Bi − iB

since l(id − T )i = li(id − T ) = 0. Assume that the claim is proved for j and compute

[(lB)(lB)ji, b] = (lB)[(lB)ji, b] + [lB, b](lB)ji

= −(lB)[(lB)j−1i, B] + (lBb − blB)(lB)ji

= −(lB)(lB)j−1iB − (lb + bl)B(lB)ji
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= −(lB)jiB + (id − ip)B(lB)ji

= −(lB)jiB + B(lB)ji

= −[(lB)ji, B]

using l2 = 0. In order to prove the second formula we proceed in the same way. For j = 1
we have

lBbl − blBl = −lbBl − blBl = (id − ip)Bl = Bl.

Assume that the claim is proved for j. Then we get

[(lB)(lB)j , b]l = (lB)[(lB)j , b]l + [lB, b](lB)j l

= lB(B(lB)j−1l) + (id − ip)B(lB)j l

= B(lB)j l.

This finishes the proof. �

Now let (T A)+ be the unitarized periodic tensor algebra of a pro-G-algebra A. Accord-
ing to Theorem 6.5 there exists a resolution of (T A)+ by projective (T A)+-bimodules of
length 1. If B is a second pro-G-algebra we obtain a projective resolution of length 2 of the
pro-G-algebra C = (T A)+ ⊗̂ (T B)+ by tensoring the resolutions of (T A)+ and (T B)+.
Using Proposition 6.8 we obtain an equivariant graded connection ∇ : Ω2(C) → Ω3(C)
for C. According to Proposition 10.2 this yields a covariant homotopy equivalence
between the Hochschild complexes of θΩG(C) and θ2ΩG(C).

Let p : θΩG(C) → θ2ΩG(C) be the natural projection, i : θ2ΩG(C) → θΩG(C) be
given by i = id− [b, ∇G] and h = −∇G : θΩG(C) → θΩG(C). This defines a deformation
retraction of θΩG(C) onto θ2ΩG(C). Let l : θΩG(C) → θΩG(C) be the special deforma-
tion retraction associated to h in the way described above. Since l increases the degree
of a differential form by 1 the formula

K =
∞∑

j=0

(lB)j

yields a well-defined operator K : θΩG(C) → θΩG(C). We define in addition I = Ki,
H = Kl and P = p. Then one has

PI = pKi = p

∞∑
j=0

(lB)ji = pi = id .

The first relation of Lemma 13.3 yields [Ki, b] = −[Ki, B] and hence [I, B + b] = 0.
Consequently, I : θ2ΩG(C) → θΩG(C) is a chain map with respect to the total boundary
B + b. The second relation of Lemma 13.3 implies [K, b]l = BKl and from the definition
of K we see K = id + KlB. This implies

IP = Kip = K + Kbl + Klb = K + BKl + bKl + Klb

= id + KlB + BKl + bKl + Klb = id + [H, B + b].

Hence we have proved the following result.
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Proposition 13.4. Let A and B be pro-G-algebras. Then the natural projection

θΩG((T A)+ ⊗̂ (T B)+) → θ2ΩG((T A)+ ⊗̂ (T B)+)

is a covariant homotopy equivalence.

Now we are ready to prove the main theorem needed for the construction of the exterior
product.

Theorem 13.5. Let A and B be pro-G-algebras. Then there exists a natural covariant
homotopy equivalence

XG((T A)+) � XG((T B)+) � XG(T (A+ ⊗̂B+))

of paracomplexes.

Proof. Let us write Q = (T A)+ ⊗̂ (T B)+ and consider the extension

I �� �� R
π �� �� Q

where R = (T A)+ ∗ (T B)+ is the unital free product of (T A)+ and (T B)+ and I is
the kernel of the canonical homomorphism π : R → Q. By Proposition 13.1 we have a
natural isomorphism

XG((T A)+) � XG((T B)+) ∼= H2
G(R, I)

of paracomplexes. Define pro-G-algebra R and I by taking the projective limit of the
pro-G-algebras R/In and I/In, respectively. Then I is locally nilpotent and we obtain
an extension

I �� �� R π �� �� Q

of pro-G-algebras. Since (T A)+ and (T B)+ are equivariantly quasifree the same holds
true for R according to Lemma 13.2. It follows easily that R is equivariantly quasifree as
well. Hence we have in fact constructed a universal locally nilpotent extension of Q. Due
to Proposition 6.14 we deduce that T Q and R are equivariantly homotopy equivalent
relative to Q and according to Proposition 10.1 there exists a natural covariant homotopy
equivalence XG(R) � XG(T Q). It is easy to see that the chain maps between XG(R)
and XG(T Q) implementing this homotopy equivalence induce chain maps between the
quotients H2

G(R, I) and H2
G(T Q,J Q). Using the explicit formula written down after

Theorem 10.1 we see that the corresponding chain homotopies also descend to opera-
tors on H2

G(R, I) and H2
G(T Q,J Q), respectively. Hence we obtain a natural covariant

homotopy equivalence
H2

G(R, I) � H2
G(T Q,J Q).

Next observe that there exists an obvious map XG(R/In) → H2
G(R, I) for n > 1.

This implies that the projection R → R/In induces an isomorphism H2
G(R, I) →

HG(R/In, I/In) for all n > 1. Hence we obtain a natural isomorphism

H2
G(R, I) ∼= H2

G(R, I).
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The definition of H2
G is made in such a way that the covariant homotopy equiva-

lence XG(T Q) � θΩG(Q) obtained in Theorem 8.6 induces a homotopy equivalence
H2

G(T Q,J Q) � θ2ΩG(Q). We apply Proposition 13.4 to obtain

θ2ΩG(Q) � θΩG(Q).

Again by Theorem 8.6 we have a natural homotopy equivalence θΩG(Q) � XG(T Q).
Finally, recall that tensor products of the form J C ⊗̂D with arbitrary pro-G-algebras C

and D are locally nilpotent by Lemma 6.2. Using this fact we obtain a natural covariant
homotopy equivalence

XG(T Q) � XG(T (A+ ⊗̂B+))

by applying the excision Theorem 12.1 to the tensor products of the extensions 0 →
J A → (T A)+ → A+ → 0 and 0 → J B → (T B)+ → B+ → 0.

Assembling these isomorphisms and homotopy equivalences yields the assertion. �

Corollary 13.6. Let A and B be arbitrary pro-G-algebras. Then there exists a natural
covariant homotopy equivalence

XG(T A) � XG(T B) � XG(T (A ⊗̂B))

of paracomplexes.

Proof. For every pro-G-algebra D there exists a natural commutative diagram

XG(T D) ��

id
��

XG(T (D+)) ��

�
��

�� XG(T C)

�
��

XG(T D) �� XG((T D)+) ���� XG(C)

Using this we obtain the assertion from Theorem 13.5 by applying the excision Theo-
rem 12.1 to all possible tensor products of the extensions 0 → A → A+ → C → 0 and
0 → B → B+ → C → 0. �

Let A, B and D be pro-G-algebras and define a map

τD : HPG
∗ (A, B) → HPG

∗ (A ⊗̂D, B ⊗̂D)

as follows. On the level of complexes we send a map

φ : XG(T (A ⊗̂ KG)) → XG(T (B ⊗̂ KG))

to the map

τD(φ) : XG(T (A ⊗̂D ⊗̂ KG)) � XG(T (A ⊗̂ KG)) � XG(T D)

φ ⊗̂ id �� XG(T (B ⊗̂ KG)) � XG(T D) � XG(T (B ⊗̂D ⊗̂ KG))
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and consider the map induced in homology. Here we have used Theorem 13.6 and sup-
pressed the canonical isomorphisms corresponding to rearrangements of tensor products.

We can now proceed to define the exterior product. Let A1, A2, D, B1, B2 be pro-
G-algebras and let φ ∈ HPG

∗ (A1, B1 ⊗̂D) and ψ ∈ HPG
∗ (D ⊗̂A2, B2) be two elements.

After reordering the tensor factors we can thus use the ordinary composition product to
compose τA2(φ) ∈ HPG

∗ (A1 ⊗̂A2 ⊗̂D, B1 ⊗̂A2) and τB1(ψ) ∈ HPG
∗ (B1 ⊗̂A2, B1 ⊗̂B2)

and obtain
φ ⊗̂D ψ = τA2(φ) · τB1(ψ)

in HPG
∗ (A1 ⊗̂A2, B1 ⊗̂B2). The following theorem summarizes some properties of the

exterior product and is easily proved by inspecting the constructions.

Theorem 13.7. Let A1, B1, D, A2, B2 be pro-G-algebras. The exterior product

HPG
∗ (A1, B1 ⊗̂D) × HPG

∗ (D ⊗̂A2, B2) → HPG
∗ (A1 ⊗̂A2, B1 ⊗̂B2)

is bilinear, contravariantly functorial in A1 and A2 and covariantly functorial in B1 and
B2.

The exterior product HPG
∗ (A1, C ⊗̂D) × HPG

∗ (D ⊗̂ C, B2) → HPG
∗ (A1, B2) can be

identified with the composition product HPG
∗ (A1, D) × HPG

∗ (D, B2) → HPG
∗ (A1, B2).

14. Compact Lie groups and the Cartan model

After having studied the general homological properties of HPG
∗ we shall now consider

a more concrete situation. We will also show that our definition of equivariant cyclic
homology generalizes previous constructions in the literature.

Let G be a compact group. Using Proposition 11.4, the fact that the trivial G-algebra
C is quasifree, Lemma 8.3 and Theorem 8.6 we see that our definition of equivariant
cyclic homology of a G-algebra A reduces to

HPG
∗ (A) = HPG

∗ (C, A) = H∗(HomG(OG[0], θΩG(A))) = H∗

(
lim←−
n

θnΩG(A)G
)

in this case. Here ΩG(A)G denotes the space of G-invariant elements in ΩG(A). It is easy
to check that T = id on ΩG(A)G which implies immediately that the invariant forms
ΩG(A)G are a mixed complex in a natural way. Moreover, HPG

∗ (A) is just the cyclic
homology of this mixed complex in the usual sense [31]. Hence there are SBI-sequences
and other standard tools in order to compute these groups. In particular there is also a
natural definition of equivariant Hochschild homology HHG

∗ (A) and equivariant cyclic
homology HCG

∗ in this case.
Moreover, we essentially reobtain the definition of equivariant cyclic homology for

compact Lie groups as it has been introduced in the work of Brylinski [5,6]. The only
difference is that Brylinski works with topological vector spaces whereas we use bornolog-
ical vector spaces.

Let us now consider the important special case of a compact Lie group acting smoothly
on a compact manifold M . We remark that in this case there is no difference between
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the topological and the bornological approach. It turns out that the equivariant periodic
cyclic homology of C∞(M) is closely related to the equivariant K-theory of M . The
following theorem was obtained by Brylinski [5] and independently by Block [3].

Theorem 14.1. Let G be a compact Lie group acting smoothly on a smooth compact
manifold M . There exists an equivariant Chern character

chG : K∗
G(M) → HPG

∗ (C∞(M))

which induces an isomorphism

HPG
∗ (C∞(M)) ∼= R(G) ⊗R(G) K∗

G(M),

where R(G) is the representation ring of G and R(G) = C∞(G)G is the algebra of smooth
conjugation invariant functions on G.

Here of course R(G) is viewed as an R(G)-module using the character map.
Block and Getzler have obtained a description of HPG

∗ (C∞(M)) in terms of equivariant
differential forms [4]. More precisely, there exists a G-equivariant sheaf Ω(M, G) over the
group G itself viewed as a G-space with the adjoint action. The stalk Ω(M, G)s at a group
element s ∈ G is given by germs of Gs-equivariant smooth maps from gs to A(Ms). Here
Ms = {x ∈ M | s · x = x} is the fixed point set of s, Gs is the centralizer of s in G and
gs is the Lie algebra of Gs. In particular the stalk Ω(M, G)e at the identity element e is
given by

Ω(M, G)e = C∞
0 (g,A(M))G,

where C∞
0 is the notation for smooth germs at 0. Hence Ω(M, G)e can be viewed as a cer-

tain completion of the classical Cartan model AG(M). The global sections Γ (G, Ω(M, G))
of the sheaf Ω(M, G) are called global equivariant differential forms and will be denoted
by A(M, G). There exists a natural differential on A(M, G) extending the Cartan dif-
ferential. Block and Getzler establish an equivariant version of the Hochschild–Kostant–
Rosenberg theorem and deduce the following result.

Theorem 14.2. Let G be a compact Lie group acting smoothly on a smooth compact
manifold M . Then there is a natural isomorphism

HPG
∗ (C∞(M)) ∼= H∗(A(M, G)).

This theorem shows that equivariant cyclic homology can be viewed as a ‘delocalized’
non-commutative version of the Cartan model. Theorem 14.2 also shows that the lan-
guage of equivariant sheaves is necessary to describe equivariant cyclic homology appro-
priately. Combining Theorems 14.1 and 14.2 one obtains the following result.

Theorem 14.3. Let G be a compact Lie group acting smoothly on a smooth compact
manifold M . Then there exists a natural isomorphism

R(G) ⊗R(G) K∗
G(M) ∼= H∗(A(M, G)).
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Hence, up to an ‘extension of scalars’, the equivariant K-theory of manifolds can be
described using global equivariant differential forms.

We emphasize that we do not define HHG
∗ and HCG

∗ for non-compact groups. It seems
to be unclear how a reasonable definition of such theories should look like. Clearly, one
would like to have SBI-sequences and a relation to equivariant periodic cyclic homology
HPG

∗ similar to the one for compact groups.
Finally, we mention that for finite groups our definition of equivariant periodic cyclic

cohomology is compatible with the constructions in [30].

15. The Green–Julg theorem

The Green–Julg theorem [21, 25] asserts that for a compact group G the equivariant
K-theory KG

∗ (A) of a G-C∗-algebra A is naturally isomorphic to the ordinary K-theory
K∗(A � G) of the crossed product C∗-algebra A � G.

In this section we prove an analogue of the Green–Julg theorem in cyclic homology.
In its original form this result is due to Brylinski [5,6] who studied smooth actions of
compact Lie groups. Independently this version of the Green–Julg theorem was obtained
by Block [3]. We follow the work of Bues [7, 8] and prove a variant of this theorem
for pro-algebras and arbitrary compact groups. Some ingredients in the proof show up
in a similar way in the computation of the cyclic cohomology of crossed products in
general [20,35,36].

Our Green–Julg theorem involves crossed products of pro-G-algebras. We remark that
the construction of crossed products for G-algebras can immediately be extended to
pro-G-algebras.

Theorem 15.1. Let G be a compact group and let A be a pro-G-algebra. Then there
is a natural isomorphism

HPG
∗ (C, A) ∼= HP∗(A � G).

For the proof of Theorem 15.1 we need some preparations. Throughout this section we
assume that the Haar measure on the compact group G is normalized and we denote by
H = D(G) the smooth group algebra of G. There are H-bimodule splittings σn : H →
H ⊗̂ n for the iterated multiplication given by

σn(f)(s1, . . . , sn) = f(s1 · · · sn).

Using this fact it is not hard to show that H is projective as an H-bimodule and quasifree
as a bornological algebra.

Proposition 15.2. Let G be a compact group and let R be a unital quasifree pro-G-
algebra. Then the pro-algebra R � G is quasifree.

Proof. We have to construct a splitting homomorphism w : R � G → T (R � G) for
the canonical projection. Since R is assumed to be quasifree there exists an equivariant
lifting homomorphism u : R → T R for the projection τR : T R → R. After taking crossed
products we obtain a homomorphism u�G : R�G → T R�G lifting the homomorphism
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τR � G. Consider the equivariant linear map h : R � G → T R � G obtained by tensoring
σR with the identity on H. It is straightforward to check that h is a lonilcur. Hence
according to Proposition 6.3 we obtain a homomorphism [[h]] : T (R � G) → T R � G

such that [[h]]σR�G = h. We obtain a linear splitting σ : T R � G → T (R � G) for [[h]] by
setting

σ(x0dx1 · · · dx2n � f)(r0, . . . , r2n)

= σ2n+1(f)(r0, . . . , r2n)x0d(r−1
0 · x1)d((r0r1)−1 · x2) · · · d((r0 · · · r2n−1)−1 · x2n).

This implies that the homomorphism [[h]] fits into an extension

J �� �� T (R � G) �� ���� T R � G

where the kernel J of [[h]] is locally nilpotent. Hence this extension is a universal locally
nilpotent extension of T R � G. Consider the homomorphism ι : H → R � G given by
ι(f) = 1R � f . We compose ι with u � G to obtain a homomorphism (u � G)ι : H →
T R � G. Since G is compact the smooth group algebra H is quasifree. By Theorem 6.5
we obtain a homomorphism φ : H → T (R � G) such that [[h]]φ = (u � G)ι. In this way
the algebra T (R � G) becomes an H-bimodule. We shall now construct another linear
lifting λ of the homomorphism τR�G : T (R � G) → R � G. Consider first the map
l : R � G → H ⊗̂ (R � G) ⊗̂H given by

l(x � f)(r, s, t) = σ3(f)(r, s, t)r−1 · x.

By construction l is an H-bimodule map splitting the canonical multiplication map
H ⊗̂ (R � G) ⊗̂H → R � G. If we compose l with φ ⊗̂σR�G ⊗̂φ and apply multipli-
cation in T (R�G) we obtain an H-bimodule map λ : R�G → T (R�G). One computes
τR�Gλ = id which implies in particular that λ is a lonilcur. By Proposition 6.3 we obtain
a homomorphism [[λ]] : T (R � G) → T (R � G) such that [[λ]]σR�G = λ. Since λ is an H-
bimodule map it follows that [[λ]] descends to a homomorphism v : T R � G → T (R � G)
satisfying v[[h]] = [[λ]]. We compute

(τR � G)[[h]]σR�G = (τR � G)h = id = τR�Gλ = τR�G[[λ]]σR�G = τR�Gv[[h]]σR�G

and again by Proposition 6.3 we deduce (τR � G)[[h]] = τR�Gv[[h]]. Composition with
the splitting σ : T R � G → T (R � G) from above yields τR � G = τR�Gv. Now we set
w = v(u � G) and compute

τR�Gw = (τR � G)(u � G) = id .

Hence w is a splitting homomorphism for τR�G. �

Let us assume that R is a unital pro-G-algebra and write B = R�G. Since R is unital
there exists a natural homomorphism H → B and we always view B as an H-bimodule
in this way. Our next goal is to define a relative version of the X-complex of B which
can be compared to the equivariant X-complex of R.
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Consider the linear map λ0 : B → B defined by

λ0(f)(t) =
∫

G

s · f(s−1ts) ds.

This map vanishes on the space of commutators [B, H] and defines a linear splitting for
the extension

[B, H] �� �� B �� ���� B/[B, H]. (15.1)

If we define K0 = [B, H] and X0(B)H = B/[B, H] we can rewrite this as

K0 �� �� X0(B) �� ���� X0(B)H . (15.2)

The space X0(B)H is the even part of the relative X-complex.
Now consider the extension

Ω1(H) �� �� H+ ⊗̂H+ �� �� H+

of H-bimodules. This extension has a left H-linear splitting, hence tensoring from the
left with H over itself we obtain an extension

H ⊗̂H Ω1(H) �� �� H ⊗̂H+ �� ���� H (15.3)

of H-bimodules. Remark that the map σ2 : H → H ⊗̂H from above yields an H-bimodule
splitting for extension (15.3). We tensor extension (15.3) over H with B on the left and
with B+ on the right to obtain the split extension

B ⊗̂H Ω1(H) ⊗̂H B+ �� �� B ⊗̂B+ �� ���� B ⊗̂H B+ (15.4)

of B-bimodules. Since R is unital we have a left B-linear splitting λB : B → B ⊗̂B

of the multiplication defined by λB(f)(s, t) = f(st) ⊗̂ 1R where we identify B ⊗̂B ∼=
R ⊗̂R ⊗̂H ⊗̂H with a flip of the tensor factors. This yields split extensions of B-
bimodules

B ⊗̂B Ω1(B) �� �� B ⊗̂B+ �� ���� B (15.5)

and
B ⊗̂B Ω1(B)H

�� �� B ⊗̂H B+ �� ���� B, (15.6)

where Ω1(B)H is the kernel of the multiplication map B+ ⊗̂H B+ → B+. Assembling
the extensions (15.4), (15.5) and (15.6) we obtain a commutative diagram

B ⊗̂H Ω1(H) ⊗̂H B+ ��

id
��

B ⊗̂B Ω1(B) ��

��

�� B ⊗̂B Ω1(B)H

��
B ⊗̂H Ω1(H) ⊗̂H B+ ��

��

B ⊗̂B+ ��

��

�� B ⊗̂H B+

��
0 �� B

id ���� B

(15.7)
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of B-bimodules with split exact rows and columns. Observe that there are natural
B-bimodule maps B ⊗̂B Ω1(B) → Ω1(B) and B ⊗̂B Ω1(B)H → Ω1(B)H . If we set
X1(B)H = Ω1(B)H/[· , B] we obtain a commutative diagram of pro-vector spaces

(B ⊗̂B Ω1(B))/[· , B]

��

�� �� (B ⊗̂B Ω1(B)H)/[· , B]

��
X1(B) �� X1(B)H

(15.8)

by taking commutator quotients with respect to B where the upper horizontal arrow
has a linear splitting according to diagram (15.7). We want to show that the vertical
arrows in diagram (15.8) are isomorphisms. Let τ : B ⊗̂B → B ⊗̂B be the flip of the
tensor factors. Moreover, let j : B ⊗̂B → (B ⊗̂B Ω1(B))/[· , B] be the map given by
j(x0 ⊗ x1) = x0 ⊗ dx1. We define a linear map ρ : Ω1(B) → B ⊗̂B Ω1(B)/[· , B] by
setting

ρ(dx1) = jλB(x1) + jτλB(x1), ρ(x0 dx1) = x0 ⊗ dx1.

Using the Leibniz rule and the fact that λB is left B-linear it is not hard to show that
ρ descends to a map ρ : X1(B) → B ⊗̂B Ω1(B)/[· , B]. Once this is established it is easy
to see that this map provides an inverse to the canonical map B ⊗̂B Ω1(B)/[· , B] →
X1(B). A similar argument shows that the map B ⊗̂B Ω1(B)H/[· , B] → X1(B)H is an
isomorphism.

If we define K1 = (B ⊗̂H Ω1(H) ⊗̂H B+)/[· , B] we now obtain an extension

K1 �� �� X1(B) �� ���� X1(B)H (15.9)

of pro-vector spaces using the first row in diagram (15.7).
The differentials in the X-complex X(B) descend to differentials in X(B)H . Hence

diagrams (15.2) and (15.9) yield an extension

K �� �� X(B) �� ���� X(B)H (15.10)

of complexes with linear splitting. The complex X(B)H will be called the relative X-
complex of B with respect to H.

Proposition 15.3. The canonical chain map X(B) → X(B)H is a homotopy equiva-
lence.

Proof. It suffices to show that the complex K is contractible. Consider the map α :
[B, H] → (B ⊗̂B+)/[· , B] given by α(x) = x ⊗ 1. Since composition of α with the
natural map (B ⊗̂B+)/[· , B] → (B ⊗̂H B+)/[· , B] is zero we can view α as a map from
K0 to K1. It is straightforward to check that α is inverse to the boundary b : K1 → K0.
This yields the claim. �

If R is a pro-G-algebra we denote by XG(R)G the invariant part of the equivariant
X-complex of R. Note that XG(R)G is in fact a pro-supercomplex.
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Proposition 15.4. Let G be a compact group and let R be a unital pro-G-algebra.
There is a natural isomorphism

XG(R)G ∼= X(R � G)H

of pro-supercomplexes where X(R � G)H denotes the relative X-complex.

Proof. Since G is compact we can identify XG(R)G with the G-coinvariants of XG(R)
by averaging over G. We will denote the space of G-coinvariants of XG(R) by XG(R)G.

In the sequel we identify elements of OG with elements in the group algebra D(G) in
the evident way. The action of s ∈ G on f ∈ OG corresponds to the adjoint action of s

on f in the group algebra D(G).
We define a map α : XG(R)G → X(R � G)H by

α0(f ⊗ x)(s) = f(s)x,

α1(f ⊗ x dy)(s, t) = f(st)xd(s−1 · y),

α1(f ⊗ dy)(t) = f(t) dy,

where we view α1(f ⊗ x dy) ∈ (R � G) ⊗̂ (R � G) as a function on G × G with values in
R × R. Moreover, we define a map β : X(R � G)H → XG(R)G by

β0(x � f) = f(r)x,

β1((x � f)d(y � g))(r) = f(r)g(r)xd(r · y),

β1(d(y � g))(r) = g(r) dy.

Some straightforward computations show that these maps are well defined and it is easy
to see that α and β are inverse to each other. We only show that α is a chain map. One
computes

(dα0)(f ⊗ x)(s) = f(s) dx = α1(f ⊗ dx)(s) = (α1d)(f ⊗ x)(s)

and

(bα1)(f ⊗ x dy)(t) = f(t)xy −
∫

G

f(r−1tr)(t−1r · y)(r · x) dr

= f(t)xy − f(t)(t−1 · y)x

= (α0b)(f ⊗ x dy)(t).

This finishes the proof of Proposition 15.4. �

Now we come back to the proof of Theorem 15.1. Using the long exact sequences
obtained in Theorem 12.2 both for equivariant cyclic homology and ordinary cyclic homol-
ogy it suffices to prove the assertion for an augmented pro-G-algebra of the form A+.

On the one hand we have to compute the equivariant periodic cyclic homology of A+.
Due to Proposition 6.11 we can use the universal locally nilpotent extension

J A �� �� (T A)+
τ+

A �� �� A+ (15.11)
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to do this. Since the group G is compact and the G-algebra C is quasifree the equivariant
periodic cyclic homology of A is consequently the homology of

HomG(XG(C), XG((T A)+)) = HomG(OG[0], XG((T A)+))

= HomG(C[0], XG((T A)+))

= XG((T A)+)G.

On the other hand, we have to calculate the cyclic homology of the crossed product
A+

� G. Taking crossed products in extension (15.11) we obtain an extension

J A � G �� �� (T A)+ � G �� �� A+
� G (15.12)

of pro-algebras. It is easy to check that the pro-G-algebra J A � G is locally nilpotent.
Proposition 15.2 shows that (T A)+�G is quasifree and hence (15.12) is in fact a universal
locally nilpotent extension of A+

� G. This means that HP∗(A+
� G) can be computed

using X((T A)+�G). Consider the relative X-complex X((T A)+�G)H described above.
Due to Proposition 15.3 the pro-supercomplexes X((T A)+ � G) and X((T A)+ � G)H

are homotopy equivalent.
From Proposition 15.4 we obtain a natural isomorphism

X((T A)+ � G)H
∼= XG((T A)+)G.

Hence we see that both theories agree. Since all constructions are natural in A this
finishes the proof of Theorem 15.1.

16. The dual Green–Julg theorem

In this section we study equivariant periodic cyclic cohomology in the case of discrete
groups. The main result is the following dual version of the Green–Julg Theorem 15.1.

Theorem 16.1. Let G be a discrete group and let A be a pro-G-algebra. Then there is
a natural isomorphism

HPG
∗ (A, C) ∼= HP ∗(A � G).

This theorem yields in particular a description of HPG
∗ (C, C). By the work of Burghe-

lea [9] it follows that the group cohomology of G with complex coefficients constitutes a
direct factor of HPG

∗ (C, C). We remark that the isomorphism in Theorem 16.1 is com-
patible with natural decompositions of HPG

∗ (A, C) and HP ∗(A � G) over the conjugacy
classes of G.

The proof of Theorem 16.1 is divided into two parts. In the first part we obtain a
simpler description of HPG

∗ (A, B) for arbitrary pro-G-algebras A and B. For this we do
not have to assume that G is discrete.

Let G be any locally compact group and let B be a pro-G-algebra. Consider the map
tr : ΩG(B ⊗̂ KG) → ΩG(B) given on n-forms by

tr(f(s) ⊗ (x0 ⊗ k0)d(x1 ⊗ k1) · · · d(xn ⊗ kn))

= f(s) ⊗ x0 dx1 · · · dxn

∫
k0(r0, r1)k1(r1, r2) · · · kn(rn, sr0) dr0 · · · drn
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and

tr(f(s) ⊗ d(x1 ⊗ k1) · · · d(xn ⊗ kn))

= f(s) ⊗ dx1 · · · dxn

∫
k1(r1, r2) · · · kn(rn, sr1) dr1 · · · drn.

One checks that tr is a covariant map and that it commutes with the Hochschild boundary
b. By definition it commutes with the operator d and it follows that tr is a map of
paramixed complexes. We remark that tr is closely related to the trace map that occurred
in the proof of the stability Theorem 11.2.

Proposition 16.2. Let G be a locally compact group and let B be a unital pro-G-
algebra. The map tr : ΩG(B ⊗̂ KG) → ΩG(B) is a linear homotopy equivalence with
respect to the equivariant Hochschild boundary.

Proof. As in ordinary Hochschild homology we may view the equivariant Hochschild
complex ΩG(C) of any pro-G-algebra C as the total complex of a double complex with
two columns. This is induced by the decomposition

Ωn
G(C) = OG ⊗̂C⊗̂n+1 ⊕ OG ⊗̂C⊗̂n.

One checks easily that the second columns of this double complex is simply the bar
complex of C tensored with OG whereas the first column is equipped with the equivariant
Hochschild boundary.

We apply this description to the G-algebras B ⊗̂ KG and B. In order to prove the
proposition it suffices to show that the columns of the corresponding bicomplexes are
linearly homotopy equivalent.

Choose a smooth function χ ∈ D(G) such that∫
G

χ2(t) dt = 1

and consider the bounded linear map σ : KG → KG ⊗̂ KG defined by

σ(k)(r1, t1, r2, t2) = k(r1, t2)χ(t1)χ(r2).

It is easy to check that σ is a KG-bimodule map that splits the multiplication KG ⊗̂ KG →
KG. We remark that the map σ can be used to show that KG is a quasifree algebra.
However, we emphasize that this algebra is usually far from being equivariantly quasifree.

Let us consider the second column in the bicomplex associated to B ⊗̂ KG. We define
a contracting homotopy for this complex by inserting the map

λ : B ⊗̂ KG → B ⊗̂B ⊗̂ KG ⊗̂ KG
∼= (B ⊗̂ KG) ⊗̂ 2

defined by λ(x⊗k) = 1⊗x⊗σ(k) in the first tensor factor. Similarly, the second column
of the bicomplex associated to B is linearly contractible since B is unital. Hence the bar
complexes of B ⊗̂ KG and B are linearly homotopy equivalent.
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Now consider the first columns. We view OG ⊗̂B ⊗̂ KG as a bimodule over B ⊗̂ KG in
two different ways. Both bimodules M and N have the obvious right action by multipli-
cation. The left action on M is given by

(x ⊗ k) ∗ (f ⊗ y ⊗ l)(s, r, t) = f(s) ⊗ (s−1 · x ⊗ s−1 · k)(y ⊗ l)(r, t)

= f(s) ⊗ (s−1 · x)y
∫

G

k(sr, sp)l(p, t) dp,

whereas the left action in N is

(x ⊗ k) · (f ⊗ y ⊗ l)(s, r, t) = f(s) ⊗ (s−1 · x)y
∫

G

k(r, p)l(p, t) dp.

The crucial point is that there is a bimodule isomorphism φ : N → M given by

φ(f ⊗ x ⊗ k)(s, r, t) = f(s) ⊗ x ⊗ k(sr, t).

Using the map φ we obtain a linear isomorphism of complexes between the first columns
of ΩG(B ⊗̂ KG) and ΩG(B ⊗̂ K) where K is the algebra KG equipped with the trivial
G-action. Under this isomorphism tr corresponds to the trace map τ : ΩG(B ⊗̂ K) →
ΩG(B) given by

τ(f(s) ⊗ (x0 ⊗ k0)d(x1 ⊗ k1) · · · d(xn ⊗ kn))

= f(s) ⊗ x0 dx1 · · · dxn

∫
k0(r0, r1)k1(r1, r2) · · · kn(rn, r0) dr0 · · · drn

on the first column. Let us show that this map is a linear homotopy equivalence on
the first columns of the bicomplexes associated to ΩG(B ⊗̂ K) and ΩG(B). The function
χ ∈ D(G) chosen above determines an idempotent p = χ ⊗ χ in K. This idempotent
induces an equivariant homomorphism ι : B → B ⊗̂ K by defining ι(x) = x ⊗ p and
a corresponding chain map ΩG(ι) : ΩG(B) → ΩG(B ⊗̂ K). One immediately checks
the relation τΩG(ι) = id on ΩG(B). As in the proof of Morita invariance in ordinary
Hochschild homology we construct a presimplicial homotopy between ΩG(ι)τ and the
identity as follows [31]. For j = 0, . . . , n we define on the first column of ΩG(B ⊗̂ K) the
operator

hj(x0 ⊗ |p0〉〈q0| ⊗ · · · ⊗ xn ⊗ |pn〉〈qn|) = x0 ⊗ |p0〉〈χ| ⊗ x1 ⊗ |χ〉〈χ| ⊗ · · ·
· · · ⊗ xj ⊗ |χ〉〈χ| ⊗ 1 ⊗ |χ〉〈qj | ⊗ xj+1 ⊗ |pj+1〉〈qj+1| ⊗ · · · ⊗ xn ⊗ |pn〉〈qn|.

It is straightforward to verify that this yields indeed a presimplicial homotopy between
ΩG(ι)τ and id for the equivariant Hochschild operator on the first column of ΩG(B ⊗̂ K).

�

Since the map tr : ΩG(KG) → ΩG(C) is a linearly split surjection we obtain a linearly
split exact sequence of paramixed complexes

K �� �� ΩG(KG) �� �� ΩG(C)

https://doi.org/10.1017/S1474748007000102 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748007000102


Equivariant periodic cyclic homology 757

where K is the kernel of tr. From Proposition 16.2 we deduce that K is linearly con-
tractible with respect to the Hochschild boundary.

Recall from § 8 the definition of the Hodge tower of a paramixed complex and consider
the nth level θnK of the Hodge tower of K. The Hodge filtration yields a finite decreasing
filtration of θnK. Since K is contractible with respect to b it follows that the paracomplex

F pθnK/F p+1θnK = b(Kp+1)
B ��

Kp+1/b(Kp+2)
b

��

is covariantly contractible for all p.
If P is a relatively projective paracomplex of covariant pro-modules the Hodge filtration

of θnK induces a finite decreasing filtration of the supercomplex HomG(P, θnK). Since
this filtration is bounded the associated spectral sequence converges and one gets

H∗(HomG(P, θnK)) = 0

for all n by our previous argument.

Lemma 16.3. With the notation as above put Cn = HomG(P, θnK). Then there exists
an exact sequence

H0(HomG(P, θK)) ��
��

H0

( ∏
n∈N

Cn

)
�� H0

( ∏
n∈N

Cn

)

��
H1

( ∏
n∈N

Cn

)
�� H1

( ∏
n∈N

Cn

)
�� H1(HomG(P, θK))

Proof. First remark that each Cn is indeed a complex. We let C be the correspond-
ing inverse system of complexes. Using Milnor’s description of lim←−

1 we obtain an exact
sequence of supercomplexes

lim←−n
Cn

�� ��
∏
n∈N

Cn
id−σ ��

∏
n∈N

Cn
�� �� lim←−

1
n

Cn

where σ denotes the structure maps in (Cn)n∈N. Since all structure maps in θK are
linearly split surjections and P is relatively projective the structure maps in the inverse
system (Cn)n∈N are surjective. This implies lim←−

1 Cn = 0. Therefore, the exact sequence
above reduces to a short exact sequence

lim←−n
Cn

�� ��
∏
n∈N

Cn
�� ��

∏
n∈N

Cn

of supercomplexes. The associated long exact sequence in homology yields the claim. �
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Theorem 16.4. Let G be a locally compact group. Then there exists a natural isomor-
phism

HPG
∗ (A, C) ∼= H∗(HomG(XG(T (A ⊗̂ KG)), XG(C))).

for every pro-G-algebra A.

Proof. According to Theorem 8.6 we have a natural isomorphism

HPG
∗ (A, C) ∼= H∗(HomG(XG(T (A ⊗̂ KG)), θΩG(KG)))

for every pro-G-algebra A. Moreover, the paracomplex P = θΩG(A ⊗̂ KG) is relatively
projective due to Corollary 7.4. Consider the linearly split extension of paracomplexes

θK �� �� θΩG(KG) �� �� θΩG(C).

This extension induces a short exact sequence of supercomplexes

HomG(P, θK) �� �� HomG(P, θΩG(KG)) �� �� HomG(P, θΩG(C)).

The supercomplex HomG(P, θK) is acyclic according to Lemma 16.3. Hence the map
tr : ΩG(KG) → ΩG(C) induces an isomorphism

HPG
∗ (A, C) ∼= H∗(HomG(XG(T (A ⊗̂ KG)), θΩG(C))).

Using Theorem 8.6 we can pass to the X-complex XG(T C) in the second variable again.
Since the G-algebra C is quasifree composition with the chain map XG(T C) → XG(C)
induced by the projection T C → C is a homotopy equivalence. This yields the assertion.

�

If G is discrete this description of HPG
∗ (A, C) can be simplified further. It is easy to

check that in this case the map OG → C induced by integration of functions with respect
to the counting measure yields an isomorphism

HomG(M, OG) ∼= HomG(M, C) ∼= Hom(MG, C)

for every covariant module M where MG denotes the quotient of M obtained by taking
G-coinvariants. Let us denote by ΩG(A ⊗̂ KG)G the mixed complex obtained by taking
coinvariants in ΩG(A ⊗̂ KG). Using the previous observation, Lemma 8.3 and Theorem 8.6
we see that Theorem 16.4 implies the following result.

Theorem 16.5. Let G be a discrete group and let A be a pro-G-algebra. There is a
natural isomorphism

HPG
∗ (A, C) ∼= HP ∗(ΩG(A ⊗̂ KG)G),

where HP ∗(ΩG(A ⊗̂ KG)G) denotes the periodic cyclic cohomology of the mixed complex
ΩG(A ⊗̂ KG)G.
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For the remaining part of this section G will be discrete. In order to complete the proof
of Theorem 16.1 we shall show that the mixed complexes ΩG(A ⊗̂ KG)G and Ω(A � G)
have isomorphic periodic cyclic cohomologies. We view s ∈ G as element of CG or OG

in the canonical way. Moreover, we write T =
∑

r,s Trs[r, s] for an element
∑

r,s Trsr ⊗ s

in KG in the sequel and occasionally omit tensor signs in order to improve legibility.
We define the map φ : Ω(A � G) → ΩG(A ⊗̂ KG)G on n-forms by

φ((a0 � s0)d(a1 � s1) · · · d(an � sn))

= s0 · · · sn ⊗ a0[e, s0]d(s0 · a1)[s0, s0s1] · · · d(s0 · · · sn−1 · an)[s0 · · · sn−1, s0 · · · sn]

for a0 � s0 ∈ A � G and

φ(d(a1 � s1) · · · d(an � sn))

= s1 · · · sn ⊗ da1[e, s1]d(s1 · a2)[s1, s1s2] · · · d(s1 · · · sn−1 · an)[s1 · · · sn−1, s1 · · · sn].

The map τ : ΩG(A ⊗̂ KG)G → Ω(A � G) is defined by

τ(s ⊗ (a0 ⊗ T 0)d(a1 ⊗ T 1) · · · d(an ⊗ Tn))

=
∑

r0,...,rn∈G

(r−1
0 · a0 � T 0

r0r1
r−1
0 r1)d(r−1

1 · a1 � T 1
r1r2

r−1
1 r2) · · · d(r−1

n · an � Tn
rn,sr0

r−1
n sr0)

for a0 ⊗ T 0 ∈ A ⊗̂ KG and

τ(s ⊗ d(a1 ⊗ T 1) · · · d(an ⊗ Tn))

=
∑

r1,...,rn∈G

d(r−1
1 · a1 � T 1

r1r2
r−1
1 r2) · · · d(r−1

n · an � Tn
rn,sr1

r−1
n sr1).

Observe that the sums occurring here are finite since only finitely many entries in the
matrices T j are non-zero.

Proposition 16.6. The bounded linear maps φ : Ω(A � G) → ΩG(A ⊗̂ KG)G and
τ : ΩG(A ⊗̂ KG)G → Ω(A � G) are maps of mixed complexes and we have τφ = id.

Proof. The formulae given above clearly define bounded linear maps. Remark that τ

is well defined since it vanishes on coinvariants. It is immediate from the definitions
that φ and τ commute with d. A direct calculation shows that both maps also commute
with the Hochschild operators. This implies that φ and τ are maps of mixed complexes.
Furthermore, one computes easily that τφ is equal to the identity on Ω(A � G). This
yields the claim. �
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We calculate explicitly

(φτ)(s ⊗ (a0 ⊗ T 0)d(a1 ⊗ T 1) · · · d(an ⊗ Tn))

= φ

( ∑
r0,...,rn∈G

(r−1
0 · a0 � T 0

r0r1
r−1
0 r1)d(r−1

0 · a1 � T 1
r1r2

r−1
1 r2) · · ·

· · · d(r−1
n · an � Tn

rn,sr0
r−1
n sr0)

)

=
∑

r0,...,rn∈G

r−1
0 sr0 ⊗ (r−1

0 · a0 ⊗ T 0
r0r1

[e, r−1
0 r1])d(r−1

0 · a1 ⊗ T 1
r1r2

[r−1
0 r1, r

−1
0 r2])

· · · d(r−1
0 · an ⊗ Tn

rn,sr0
[r−1

0 rn, r−1
0 sr0])

=
∑

r0,...,rn∈G

s ⊗ (a0 ⊗ T 0
r0r1

[r0, r1])d(a1 ⊗ T 1
r1r2

[r1, r2]) · · · d(an ⊗ Tn
rn,sr0

[rn, sr0]).

In the same way one obtains

(φτ)(s ⊗ d(a1 ⊗ T 1) · · · d(an ⊗ Tn))

=
∑

r1,...,rn∈G

s ⊗ d(a1 ⊗ T 1
r1r2

[r1, r2]) · · · d(an ⊗ Tn
rn,sr1

[rn, sr1]).

Proposition 16.7. Let G be a discrete group and assume that A is a unital pro-G-
algebra. Then the map φτ : ΩG(A ⊗̂ KG)G → ΩG(A ⊗̂ KG)G is homotopic to the identity
with respect to the Hochschild boundary.

Proof. We construct a chain homotopy connecting id and φτ on the Hochschild complex
associated to the mixed complex ΩG(A ⊗̂ KG)G.

Let us associate to an element of the form s ⊗ a0[r0, s0] da1[r1, s1] · · · dan[rn, sn] a
certain number M . If sj = rj+1 for all j = 0, . . . , n− 1 and s−1sn = r0 we set M = ∞. If
at least one of these conditions is not fulfilled, we let M be the smallest number i such
that si �= ri+1 (or M = n if all sj = rj+1 for j = 0, . . . , n − 1 and s−1sn �= r0). In a
similar way we proceed with elements of the form s ⊗ da1[r1, s1] · · · dan[rn, sn]. Here the
first condition disappears and the last condition becomes s−1sn = r1. The number M is
then defined as before.

We construct bounded linear maps h : Ωn
G(A ⊗̂ KG)G → Ωn+1

G (A ⊗̂ KG)G for all n as
follows. For an element s ⊗ a0[r0, s0] da1[r1, s1] · · · dan[rn, sn] we set

h(s ⊗ a0[r0, s0] da1[r1, s1] · · · dan[rn, sn])

= (−1)Ms ⊗ a0[r0, s0] da1[r1, s1] · · · daM [rM , sM ] d1A[sM , sM ] · · · dan[rn, sn]

if M < ∞, and
h(s ⊗ a0[r0, s0] da1[r1, s1] · · · dan[rn, sn]) = 0

if M = ∞. Here 1A denotes the unit of A.
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For elements of the form s⊗da1[r1, s1] · · · dan[rn, sn] we have to distinguish four cases.
The first case is s−1sn = r1 and M < ∞. In this case we set

h(s ⊗ da1[r1, s1] · · · dan[rn, sn])

= (−1)Ms ⊗ da1[r1, s1] · · · daM [rM , sM ] d1A[sM , sM ] · · · dan[rn, sn]

as before. The second case is s−1sn �= r1 and M = n. We set

h(s ⊗ da1[r1, s1] · · · dan[rn, sn])

= (−1)Ms ⊗ da1[r1, s1] · · · dan[rn, sn] d1A[sn, sn]

+ (−1)M+ns ⊗ d1A[s−1sn, s−1sn] da1[r1, s1] · · · dan[rn, sn].

The third case is s−1sn �= r1 and M < n. We set

h(s ⊗ da1[r1, s1] · · · dan[rn, sn])

= (−1)Ms ⊗ da1[r1, s1] · · · daM [rM , sM ] d1A[sM , sM ] · · · dan[rn, sn]

+ (−1)M+ns ⊗ (s−1 · an)[s−1rn, s−1sn] d1A[s−1sn, s−1sn] da1[r1, s1] · · ·
· · · daM [rM , sM ] d1A[sM , sM ] · · · dan−1[rn−1, sn−1].

Finally, if M = ∞ we set

h(s ⊗ da1[r1, s1] · · · dan[rn, sn]) = 0.

Remark that in all cases coinvariants are mapped to coinvariants and hence h is well
defined.

A lengthy but straightforward computation shows bh + hb = id − φτ . �

Proposition 16.8. Let G be a discrete group and let A be any pro-G-algebra. The
periodic cyclic cohomologies of Ω(A � G) and ΩG(A ⊗̂ KG)G are isomorphic. Inverse
isomorphisms are induced by the maps φ and τ .

Proof. This follows after dualizing from Proposition 16.7 using excision, the SBI-
sequence and the fact that periodic cyclic cohomology is the direct limit of the cyclic
cohomology groups. �

This finishes the proof of Theorem 16.1.
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