
Adv. Appl. Prob. 52, 266–290 (2020)
doi:10.1017/apr.2019.61

© Applied Probability Trust 2020

THE EXISTENCE OF A GIANT CLUSTER
FOR PERCOLATION ON LARGE
CRUMP–MODE–JAGERS TREES

G. BERZUNZA,∗ Department of Mathematics, Uppsala University

Abstract

In this paper we consider random trees associated with the genealogy of Crump–Mode–
Jagers processes and perform Bernoulli bond-percolation whose parameter depends on
the size of the tree. Our purpose is to show the existence of a giant percolation cluster for
appropriate regimes as the size grows. We stress that the family trees of Crump–Mode–
Jagers processes include random recursive trees, preferential attachment trees, binary
search trees for which this question has been answered by Bertoin [7], as well as (more
general) m-ary search trees, fragmentation trees, and median-of-(2�+ 1) binary search
trees, to name a few, where to our knowledge percolation has not yet been studied.

Keywords: Random tree; percolation; giant component; Crump–Mode–Jagers processes

2010 Mathematics Subject Classification: Primary 60J80
Secondary 60K35; 05C05

1. Introduction and main results

Consider a graph Gn of large but finite size n ∈N and perform Bernoulli bond-percolation
with parameter pn ∈ (0, 1) that depends on the size of Gn (typically the size of a graph refers
to its number of vertices but not necessarily). This means we first pick a finite graph and
then remove each edge with probability 1 − pn, independently of the other edges, inducing a
partition of its set of vertices into connected clusters. A natural problem in this setting is to
show the existence of a giant cluster for appropriate regimes of the percolation parameter pn,
when the size of the graph grows. More precisely, we are interested in finding a supercritical
pn such that, with high probability as n → ∞, there exists a cluster that is of a size comparable
to the entire graph. Let us recall some known answers to this question in some important
instances.

In the case of the complete graph with n vertices, a classical result due to Erdős and Rényi
(see e.g. [12]) shows that for pn ∼ c/n as n → ∞ with c> 1 fixed, with high probability, there
is a unique giant cluster of size close to θ (c)n where θ (c) is the unique strictly positive solution
to the equation x + e−cx = 1; recall that for two sequences of real numbers (an)n≥1 and (bn)n≥1,
we write an ∼ bn if an/bn → 1 as n → ∞. Second, consider a uniform Cayley tree with n ver-
tices (i.e. a tree picked uniformly at random among the nn−2 trees on a set of n labeled vertices).
Pitman [30, 31] showed that for 1 − pn ∼ c/

√
n as n → ∞ with a fixed c> 0, the sequence of

sizes of the percolation clusters ranked in decreasing order and renormalized by a factor 1/n
converges weakly as n → ∞ to a random mass partition which can be described explicitly in

Received 21 December 2018; revision received 22 November 2019.
∗ Postal address: Lägerhyddsvägen 1, Hus 1, 6 och 7, Box 480, 751 06 Uppsala, Sweden.
Email address: gabriel.berzunza-ojeda@math.uu.se

266

https://doi.org/10.1017/apr.2019.61 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.61
http://www.appliedprobability.org
https://doi.org/10.1017/apr.2019.61

The existence of a giant cluster for percolation on large Crump–Mode–Jagers trees 267

terms of a conditioned Poisson measure. Finally, Bertoin [7] has shown that for fairly general
families of trees with n vertices, the supercritical regime corresponds to percolation parameters
of the form 1 − pn ∼ c/�(n) as n → ∞, where c> 0 fixed and �(n) is an estimate of the height
of a typical vertex in the tree structure. Roughly speaking, Bertoin [7] established that under
the previous regime the size of the cluster containing the root is of order n as n → ∞. The
latter result includes, for instance, some important families of random trees, such as random
recursive trees, preferential attachment trees, binary search trees, etc., where it is well known
that �(n) = ln n; see [15] and [16, Section 4.4].

The main purpose of this work is to investigate the same question for large random Crump–
Mode–Jagers trees, or CMJ-trees for short. More precisely, CMJ-trees are the family trees
(or genealogical trees) of Crump–Mode–Jagers processes, also referred to as general or age-
dependent branching processes; for further details we refer to the classic book of Jagers [20].
These are general branching population models where the number of individuals can be mea-
sured or counted in many different ways: those born, those alive, or in some sub-phase of
life, for instance. More generally, we can assign random characteristics or weights to each of
the individuals and measure the size of the population according to those characteristics (for
instance, special choices of reproduction point process and counting yield the classical Galton–
Watson or Bellman–Harris processes). We postpone its formal definition to later in this work
and continue by informally describing our main results. Loosely speaking, we study Bernoulli
bond-percolation on CMJ-trees at the time when the total weight (‘size’) of the underlying
CMJ-process reaches n in three different regimes:

• weakly supercritical, 1/(ln n) 	 1 − pn 	 1,

• supercritical, 1 − pn ∼ c/(ln n) for some c> 0 fixed, and

• strongly supercritical, 0< 1 − pn 	 1/(ln n).

Recall that for two sequences of real numbers (an)n≥1 and (bn)n≥1, we write an 	 bn or
bn
 an if and only if an/bn → 0 as n → ∞. We show that, under standard conditions on
the underlying CMJ-process, the root cluster is of order nκ(pn)/α , where κ(pn)> 0 is a function
of the percolation parameter and α > 0 is the so-called Malthusian parameter. We have used
the same terminology as in [4], where only random recursive trees are studied. In Section 3
we shall see that several important families of random trees can be constructed as family trees
of a CMJ-process stopped at a suitable time: for example, random recursive trees, preferential
attachment trees, and binary search trees where the existence of a giant cluster has been shown
by Bertoin [7]. On the other hand, the general nature of the CMJ-processes will allow us to
provide new results on percolation for (more general) m-ary search trees [27], fragmentation
trees [22], median-of-(2�+ 1) binary search trees [13], and so-called splitting trees introduced
in [17], to name a few.

In the rest of the introduction we are going to describe our setting more precisely and give
the exact definition of CMJ-trees. This will enable us to state our main result in Section 1.2.

1.1. Crump–Mode–Jagers trees

We start by recalling the definition of Crump–Mode–Jagers processes (CMJ-processes)
whose associated family trees are called CMJ-trees. Following Jagers [20], we present a CMJ-
process as a general branching process that starts with a single individual born at time 0. We
use the usual Ulam–Harris notation and introduce the set of labels U=⋃∞

n=0 N
n, with the

convention N
0 = {∅}. The ancestor has label ∅. An individual with label u = (u1, . . . , un) ∈U

https://doi.org/10.1017/apr.2019.61 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.61

268 G. BERZUNZA

belongs to the nth generation and is understood to be the unth descendant of (u1, . . . , un−1),
which is the un−1th descendant of (u1, . . . , un−2) and so on. The initial individual has a ran-
dom number N of children, born at random times (ξi)N

i=1 where 0 ≤ N ≤ ∞ and 0 ≤ ξ1 ≤ ξ2 ≤
· · · ≤ ξN . Formally, we describe the birth times (ξi)N

i=1 as a point process � on [0,∞), that is,
�=∑N

i=1 δξi is an integer-valued random measure, where δt is a point mass (Dirac measure)
at time t ≥ 0; see e.g. [23]. We let μ(·) :=E[�(·)] denote the intensity measure of �, and write
μ(t) :=μ([0, t]) =E[�([0, t])]. In particular, we have N =�([0,∞)), and thus μ(∞) =E[N].
Every child that is born evolves in the same way, that is, every individual u has its own copy
�u of � (where now ξi means the age of the mother when child i is born); these copies are
assumed to be independent and identically distributed. We denote the time an individual u is
born by σu. We also assume that each individual has a random lifetime λ ∈ [0,∞] (for sev-
eral of our applications we assume λ≡ ∞). Formally, we assign to each possible individual u
a copy (�u,Fu, νu) of some generic probability space (�,F , ν) on which we define �, and
possibly a random characteristic or weight φ. The general branching process is then defined on
the product

∏
u (�u,Fu, νu) of these probability spaces.

The simplest way to measure or monitor the evolution of the CMJ-process is to consider
the process Z = (Z(t), t ≥ 0) of the total number of individuals that have been born up to time
t ≥ 0, i.e. the number of births in [0, t]. More precisely,

Z(t) =
∑

u

1{σu≤t}, t ≥ 0;

see e.g. [20] and [21]. Following Jagers’ work on CMJ-processes (see e.g. [20], [21], [28],
and [29]), it is going to be relevant to monitor the evolution of individuals that satisfy some
random property, instead of the total number of births in some fixed time interval. This ran-
dom property or characteristic of an individual might be unrelated or heavily dependent on
its reproduction behavior. More precisely, a characteristic or weight of an individual is a ran-
dom function φ : R+ →R+ that assigns the value φ(t) when the individual’s age is t ≥ 0. We
assume that φ is càdlàg (we may extend φ to R by setting φ(t) = 0 for t< 0). We assume
that each individual u has its own copy φu and thus we associated each of them with a triple
(�u, λu, φu). These triples for all individuals are independent and identically distributed. We
then define the φ-counted process Zφ = (Zφ(t), t ≥ 0) by

Zφ(t) :=
∑

u : σu≤t

φu(t − σu), t ≥ 0,

and say that Zφt is the total weight at time t of all individuals that have been born so far (recall
that u is born at time σu and thus has age t − σu at time t). If φ ≡ 1, we have Zφ = Z. On
the other hand, the characteristic φ = 1[0,λ) yields the number Zφ(t) =∑

u 1{σu≤t<σu+λu} of
individuals alive at time t ≥ 0.

Following [19], we let T(∞) be the family tree of the entire CMJ-process or (complete)
CMJ-tree. This tree is obtained from the general branching process described at the beginning
of this section by ignoring the time structure. Specifically, the individuals in the population
are seen as vertices where the initial individual is the root. The children of a vertex in the tree
are the same as the children in the general branching process. The tree T(∞) may be infinite,
which happens when the process does not die out, i.e. Z(∞) = ∞. For t ≥ 0, we let T(t) be the
CMJ-tree consisting of all individuals born up to time t. Note that the number of vertices at
time t ≥ 0 is given by Z(t). Clearly, T(t) is an unordered tree for t> 0. However, one could get
an ordered tree by adding an additional ordering of the children of each individual. This can

https://doi.org/10.1017/apr.2019.61 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.61

The existence of a giant cluster for percolation on large Crump–Mode–Jagers trees 269

be done by taking the children in order of birth, or by choosing a random order; we refer to
[19, Remark 5.1] for further details. Finally, observe that the random tree T(t) has a random
size for t> 0 (possibly infinite). In this work we shall be mainly interested in CMJ-trees with a
given number of vertices or when some random property is fulfilled. More precisely, we have
the following definition.

Definition 1. Fix a random characteristic or weight φ. For n ∈N, we let

τφ(n) := inf{t ≥ 0: Zφ(t) ≥ n}
be the first time the total weight is at least n (as usual inf ∅= ∞). We exclude the case φ ≡ 0,
which would yield τφ(n) = ∞ almost surely (a.s). We then define

Tφn := T(τφ(n)),

the CMJ-tree at the time when the total weight or ‘size’ reaches n (provided this ever happens).

Random trees Tφn defined in this way, for some CMJ-process and some weight φ, are the
focus of the present paper. From now on we usually refer to Tφn as the CMJ-tree, whose size is
given by |Tφn | := Z(τφ(n)). If φ ≡ 1, then Tφn is the family tree of a CMJ-process stopped when
its number of vertices is greater than n. In particular, if the birth times have continuous dis-
tributions and there are no twins, then a.s. no two vertices are born simultaneously. Therefore
|Tφn | = n.

Note that Tφn could be an infinite random tree, or also the time τφ(n) could be infinite. In
order to avoid such possibilities, we only study cases where Zφ(t)<∞ for every finite t ≥ 0,
but Z(∞) = ∞. In this direction, we define the Laplace transform of a function f on [0,∞) by

f̂ (θ) = θ

∫ ∞

0
e−θ tf (t) dt, θ > 0,

and the Laplace transform of a measure ν on [0,∞) by

ν̂(θ) =
∫ ∞

0
e−θ tν(dt), −∞< θ <∞. (1)

Throughout this work and unless we specify otherwise, we make the following assumptions.

Assumption 1. We consider CMJ-processes that satisfy the following.

(A1) μ({0}) =E[�({0})]< 1. This excludes a trivial case with explosions at the start (in our
examples, μ({0}) = 0).

(A2) μ is not concentrated on any lattice hZ, h> 0.

(A3) N ≥ 1 a.s. (in this case every individual has at least one child, so the process never dies
out and Z(∞) = ∞).

(A4) There exists θ1 > 0 such that μ̂(θ1) ∈ (1,∞). Note that μ̂(·) is monotone decreasing on
(θ1,∞), and that μ̂(θ) → 0, as θ → ∞, by the dominated convergence theorem. Thus
there exists a real number α > 0 (the Malthusian parameter) such that μ̂(α) = 1.

(A5) For θ1 as in (A4), we have Var (�̂(θ1))<∞.

https://doi.org/10.1017/apr.2019.61 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.61

270 G. BERZUNZA

(A6) The random variable supt≥0 (e−θ2tφ(t)) has finite expectation for some 0< θ2 <α.

(A7) Var (φ(t)) is bounded in finite intervals. Furthermore, there exists 0< θ3 ≤ 2α such that
limt→∞ e−θ3t Var (φ(t)) = 0.

Observe that (A1)–(A5) are conditions on the general branching process, while (A6)–(A7)
are conditions on the characteristic φ. The following result shows that Tφn is well-defined.

Proposition 1. Under assumptions (A1)–(A4) and for any characteristic φ satisfying (A6), we
have the following.

(i) limt→∞ Zφ(t) = ∞ almost surely. Thus a.s. τφ(n)<∞ for every n ≥ 0 and Tφn is a well-
defined finite random tree.

(ii) limn→∞ |Tφn |/n = 1/E[φ̂(α)] ∈ (0,∞) a.s., and limn→∞ τ
φ
n /(ln n) = 1/α almost

surely.

Proof. See [19, Theorem 5.12]. �
We end this section by making a few remarks on our assumptions. Note that (A4) implies

that E[N]> 1 (this is known as the supercritical case). Note also that (A4) implies that μ(t)<
∞ for every 0 ≤ t<∞. However, μ(∞) =E[N] may be infinite. Furthermore, this condition
also implies that Z(t) and E[Z(t)] are finite for every 0 ≤ t<∞; see e.g. [20, Theorem 6.3.3].
Finally, we do not really need the assumption N ≥ 1 in (A3); it suffices that E[N]> 1. In
this case the extinction probability P(Z(∞)<∞)< 1, so there is a positive probability that
the process is infinite, and Proposition 1 and the results below hold conditioned on the event
{Z(∞) = ∞} (this is a standard setting in [21], [28], and [29]).

1.2. Main results

We now consider Bernoulli bond-percolation with parameter pn ∈ (0, 1) on the CMJ-tree Tφn
with given weight φ (recall Definition 1). Following the idea of [10], we incorporate Bernoulli
bond-percolation on the growth algorithm of the random tree process (T(t), t ≥ 0) in a dynamic
way and stop at the time τφ(n). This will lead us to interpret Bernoulli bond-percolation in
terms of neutral mutations which are superposed to the structure of the CMJ-process and that
appear at the birth events. More precisely, at each birth event, independently of all other indi-
viduals, the newborn is a clone of its parent with probability pn or a mutant with probability
1 − pn. The mutations are considered to be neutral, that is, the behavior (reproduction laws and
lifetimes) of the individuals is the same regardless of whether they are clones or mutants. A
mutation event corresponds to the insertion of an edge in T(t) that is immediately destroyed.
This creates a new percolation cluster (with one vertex or individual) that grows following the
same dynamic. We write T (pn)(t) for the resulting combinatorial structure at time t ≥ 0. That is,
T (pn)(t) has the same set of vertices as T(t) and its set of intact edges is a subset of the edges of
T(t). Thus the connected clusters of T (pn)(t) are the subtrees of T(t) formed by the subsets of
vertices which can be connected by a path of intact edges.

In this work we are interested in the evolution of the percolation cluster that contains the
root. In this direction, we write T (pn)

∅
(t) for the subtree of T(t) at time t ≥ 0 that contains the

progenitor of the entire population at time 0. It should be clear that the sub-population with

https://doi.org/10.1017/apr.2019.61 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.61

The existence of a giant cluster for percolation on large Crump–Mode–Jagers trees 271

the ancestral type is a CMJ-process whose generic birth process, denoted by�(pn), has intensity
measure given by

μ(pn)(dt) := pnμ(dt), (2)

where μ is the intensity measure of the birth process � of the original CMJ-process. This is a
consequence of the thinning property of point processes. For a characteristic φ, we let

Z(pn),φ
∅

= (Z(pn),φ
∅

(t), t ≥ 0)

denote the φ-counted process associated with the (clonal) CMJ-process of the sub-population
bearing the same type as the initial individual. In particular, if φ ≡ 1, then Z(pn),φ

∅
= Z(pn)

∅
=

(Z(pn)
∅

(t), t ≥ 0) counts the number of vertices in the root cluster. Clearly, if pn ≡ 1, we recover
the original CMJ-process. Let

Tn,φ
∅

:= T (pn)
∅

(τφ(n))

be the sub-tree which contains the original root of the CMJ-tree Tφn (associated with the
weight φ) after performing percolation of parameter pn ∈ (0, 1). Recall that τφ(n) := inf{t ≥
0: Zφ(t) ≥ n} is the first time that the total weight or ‘size’ of the tree process (T(t), t ≥ 0) is at
least n. Therefore the size of the root percolation cluster is given by

|Tn,φ
∅

| := Z(pn)
∅

(τφ(n)).

We now turn to the statement of our main result, Theorem 1. Recall that we consider
the regimes weakly supercritical, supercritical, and strongly supercritical of pn ∈ (0, 1), with
pn → 1 as n → ∞. First, we need to introduce some notation that we will use in the rest of the
work. Note that (A4) implies that there exists n∗ ∈N such that for n ≥ n∗ there is αpn > 0 (the
Malthusian parameter of μ(pn)) such that μ̂(pn)(αpn) = 1. We write

μ̄(α) :=
∫ ∞

0
t e−αtμ(dt), (3)

which is finite and strictly positive due to our assumptions; see Remarks 1 and 2 below.

Theorem 1. Let φ be any characteristic that does not depend on pn. Under assumptions (A1)–
(A7), we have

lim
n→∞ n−αpn/α|Tn,φ

∅
| =E[φ̂(α)], in probability,

where α − αpn ∼ (1 − pn)μ̄(α)−1 as n → ∞. In particular:

(i) in the weakly supercritical regime, limn→∞ n−1|Tn,φ
∅

| = 0 in probability,

(ii) in the supercritical regime, limn→∞ n−1|Tn,φ
∅

| = e−c/(αμ̄(α))
E[φ̂(α)] in probability,

(iii) in the strongly supercritical regime, limn→∞ n−1|Tn,φ
∅

| =E[φ̂(α)] in probability.

The parameters α and αpn are difficult to compute explicitly. Nevertheless, in the supercriti-

cal and strongly supercritical regimes, we note that nαpnα
−1 ∼ n1−(1−pn)(αμ̄(α))−1

as n → ∞. We
also note that in the weakly supercritical regime, the size of the root cluster is o(n) whereas in
the other regimes it is of order n.

On the other hand, in the supercritical regime (i.e. 1 − pn ∼ c/ ln n as n → ∞, with c> 0
fixed), we find that Theorem 1 (ii) agrees with [7, Theorem 1]. However, it must be pointed out

https://doi.org/10.1017/apr.2019.61 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.61

272 G. BERZUNZA

that Theorem 1 (ii) cannot always be deduced from [7, Theorem 1]. More precisely, note that
[7, Theorem 1] considers size as the number of vertices in the tree structure, whereas the size
of a CMJ-tree depends on the underlying characteristic or weight (recall Definition 1) that does
not always coincide with the number of vertices, for instance m-ary search trees, fragmenta-
tion trees, or the so-called splitting trees where the notion of ‘size’ is different; see Section 3
below for details. Then the arguments used in [7] do not always apply in our setting except in
particular cases, for example random recursive trees, preferential attachment trees, or binary
search trees that agree with a type of CMJ-tree when the correct birth process, lifespan, and
characteristic are chosen. Moreover, Bertoin [7] did not treat the strongly and weakly supercrit-
ical regimes as we will do in this work. Therefore Theorem 1 may be seen as complementary
to (or an extension of) the results in [7].

Inspired by Bertoin and Uribe Bravo [10], our approach relies on the connection between
CMJ-processes with neutral mutations and Bernoulli bond-percolation. This leads us to inves-
tigate the asymptotic behavior of a CMJ-process with neutral mutations up to a large random
time, in certain regimes when the small mutation parameter is related to the size of the total
population. In [10], the authors connected Bernoulli bond-percolation in preferential attach-
ment trees with a Markovian system of branching processes with neutral mutations. This is
clearly not the case here, since it is well known that CMJ-processes are not always Markovian.
Thus we have to use different tools, although some guidelines are similar to [10]. We stress that
similar connections with systems of (Markovian) branching processes have been used before
to study percolation on random recursive trees [4, 5] and m-ary random increasing trees [11].

This work leaves open some natural questions that we plan to investigate in the future.
One can consider estimating the sizes of the largest clusters which do not contain the root. In
this work we restrict ourselves to the root cluster because the absence of the Markov property
makes the analysis much harder. This is not the case in [10] and [4], where the connection
with a Markovian branching system with neutral mutations is used to answer this question for
random recursive trees and preferential attachment trees. We refer also to Bertoin [9], where
this question has been answered for random recursive trees by using a different approach. The
second direction of future work would be to analyze the fluctuations of the giant component
that we expect to be non-Gaussian as for random recursive trees [8], preferential attachment
trees, and m-ary random increasing trees [11]. Finally, it would be interesting to estimate the
size of the largest percolation clusters in the sub-critical regime, i.e. 1 − pn
 c/ ln n as n → ∞
and c> 0 is fixed; see e.g. [5], where the case of the random recursive tree has been studied.

The rest of this paper is organized as follows. In Section 2 we prove our main result.
Section 3 is devoted to the application of Theorem 1 to important families of random trees
that can be constructed via CMJ-processes. Finally, the key results used in the proof of
Theorem 1 are proved in Section A. More precisely, we investigate the asymptotic behavior of
CMJ-processes with mutations and deduce some crucial properties that may be of independent
interest.

2. Proof of Theorem 1

In this section we prove our main result, Theorem 1. Recall that the size of the root cluster
is related to the clonal CMJ-process with generic birth process �(pn) whose intensity measure
μ(pn) is given in (2). The starting point is to investigate the asymptotic behavior of the φ-
counted clonal process Z(pn),φ

∅
= (Z(pn),φ

∅
(t), t ≥ 0) as pn → 1 and t → ∞. The approach relies

crucially on the use of a remarkable martingale that can be found in the work of Nerman
[28]. More precisely, we improve the results in [28] and [21] on the convergence of Nerman’s

https://doi.org/10.1017/apr.2019.61 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.61

The existence of a giant cluster for percolation on large Crump–Mode–Jagers trees 273

martingale in order to hold uniformly in the percolation parameter (see Lemmas 2 and 3
below). Then these results and further remarks are put together to conclude with the proof
of Theorem 1.

Recall that (A4) implies that there exists n∗ ∈N such that for n ≥ n∗ there is αpn > 0
(the Malthusian parameter of μ(pn)) such that μ̂(pn)(αpn) = 1. This implies that μ(pn)(∞) =
pnE[N]> 1 (i.e. the clonal process is supercritical). Since αpn → α as pn → 1, we choose n∗
large enough such that 0< θ1 < infn≥n∗ αpn , where θ1 satisfies (A4)–(A5). Moreover, con-
sider n∗ even larger such that 0< θ2 < infn≥n∗ αpn and 0< θ3 < 2 infn≥n∗ αpn , where θ2 and
θ3 satisfy (A6) and (A7), respectively.

Remark 1. Note for future reference that μ(pn)
α (dt) := e−tαpnμ(pn)(dt), for n ≥ n∗, is a probabil-

ity measure concentrated on (0,∞). Moreover, condition (A4) implies that

μ̄(pn)(αpn) :=
∫ ∞

0
tμ(pn)
α (dt)<∞. (4)

We write W(pn),φ
∅

= (W(pn),φ
∅

(t), t ≥ 0) for the process given by

W(pn),φ
∅

(t) := e−tαpn Z(pn),φ
∅

(t), t ≥ 0.

For pn ≡ 1, we sometimes remove the superscript (pn) and the subscript ∅ from the previous
notations. That is, we write Wφ = (Wφ(t), t ≥ 0) for the process given by Wφ(t) := e−tαZφ(t).
For n ≥ n∗, consider the characteristic

ψ (pn)(t) = 1{t≥0} etαpn

∫ ∞

t
e−sαpn�(pn)(ds), t ≥ 0. (5)

The next lemma shows that ψ (pn) satisfies the conditions (A6)–(A7).

Lemma 1. Assume that conditions (A1)–(A5) are fulfilled. Then we have the following.

(i) supn≥n∗ supt≥0 e−θ1tψ (pn)(t) has finite expectation, for θ1 as in (A4).

(ii) supn≥n∗ Var (ψ (pn)(t)) is bounded in finite intervals. Furthermore, there exists 0<
θ ≤ 2 infn≥n∗ αpn such that limt→∞ supn≥n∗ e−θ t Var (ψ (pn)(t)) = 0.

Proof. For t ≥ 0 and 0< θ < αpn , we note that ψ (pn)(t) ≤ etθ
∫∞

t e−sθ�(ds) ≤ etθ �̂(θ). This
inequality and conditions (A4)–(A5) imply our claim. �

Henceforth, and for the sake of simplicity, we omit the superscript (pn) from ψ (pn) and only
write ψ for the characteristic defined in (5).

It is well known that the process W(pn),ψ
∅

is a nonnegative square-integrable martingale

whose terminal value will be denoted by W(pn),ψ
∅

(∞). Furthermore, W(pn),ψ
∅

(∞) ≥ 0 almost
surely (see [28, Proposition 2.4] for the proof of the martingale property and [21, Theorem
4.1 and Corollary 4.2] for the convergence result). In particular, if pn ≡ 1, [21, Corollary 4.2]
and condition (A3) imply that W(pn),ψ (∞) = Wψ (∞)> 0 almost surely. An important result
established by Nerman [28] and Jagers and Nerman [21, Theorem 4.3] (see also Jagers [20,
Section 6.10]) implies that, for n ≥ n∗,

lim
t→∞ W(pn),φ

∅
(t) = m(pn),φ∞ W(pn),ψ

∅
(∞), (6)

https://doi.org/10.1017/apr.2019.61 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.61

274 G. BERZUNZA

almost surely and in L2(P), where

m(pn),φ∞ := E[φ̂(αpn)]

αpμ̄(pn)(αpn)
<∞, (7)

with μ̄(pn)(αpn) defined in (4).

Remark 2. Note that the previous convergence implies that μ̄(pn)(αpn)> 0. Furthermore,

m(pn),φ∞ > 0 (or equivalently, E[φ̂(αpn)]> 0) whenever φ ≡ 0 almost surely.

Remark 3. In particular, a simple computation shows that m(pn),ψ∞ = 1, where ψ is defined in
(5); see e.g. [21, Theorem 4.1].

The next two results are the key ingredients in the proof of Theorem 1. The first lemma
shows that the L2(P) convergence of the square-integrable martingale W(pn),ψ

∅
holds uniformly

for n ≥ n∗. Furthermore, it shows that the L2(P) convergence in (6) also holds uniformly for
n ≥ n∗. The second lemma establishes an even stronger convergence result by showing that the
convergence remains true as t → ∞ and pn → 1.

Lemma 2. Assume that conditions (A1)–(A5) are fulfilled. We have

lim
t→∞ sup

n≥n∗
E

[
sup
s≥t

|W(pn),ψ
∅

(s) − W(pn),ψ
∅

(∞)|2
]
= 0,

where ψ is defined in (5). Furthermore, if φ is a characteristic that does not depend on pn and
that satisfies (A6)–(A7), then we have

lim
t→∞ sup

n≥n∗
E[|W(pn),φ

∅
(t) − m(pn),φ∞ W(pn),ψ

∅
(∞)|2] = 0.

Lemma 3. Assume that conditions (A1)–(A5) are fulfilled. For a characteristic φ that does not
depend on pn and that satisfies (A6)–(A7), we have

lim
n→∞,t→∞ E[|W(pn),φ

∅
(t) − mφ∞Wψ (∞)|2] = 0,

where ψ is defined in (5) with pn ≡ 1 (the limit must be understood as a double limit).

The proofs of these lemmas are rather technical and it is convenient to postpone their proofs
to the Appendix. We will then finish the proof of Theorem 1, but first we need the next result.

Lemma 4. Assume that conditions (A1)–(A4) are fulfilled. We have α− αpn ∼ (1 − pn)
μ̄(α)−1, as n → ∞, where μ̄(α) is defined in (3).

Proof. Recall the definition of μ̂(·) in (1). Recall also that (A4) implies that μ̂(·) is a con-
tinuous monotone decreasing function on (θ1,∞), where θ1 is defined in (A4). Furthermore,
(A4) and the dominated convergence theorem show that μ̂(·) is differentiable with continuous
derivative given by

μ̂′(θ) := d

ds
μ̂(s)

∣∣∣∣
s=θ

= −
∫ ∞

0
t e−θ tμ(dt) for θ ∈ (θ1,∞). (8)

https://doi.org/10.1017/apr.2019.61 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.61

The existence of a giant cluster for percolation on large Crump–Mode–Jagers trees 275

Since pn ∈ (0, 1), we have αpn <α for n ≥ n∗. Then, for n ≥ n∗, the mean value theorem implies
that there exists εn ∈ (αpn, α) such that

μ̂′(εn) = μ̂(α) − μ̂(αpn)

α− αpn

.

Recall that (A4) implies that μ̂(α) = 1 and μ̂(αpn) = 1/pn. Moreover, we have 0< μ̄(α)<
−μ̂′(εn)<∞, where μ̄(α) is defined in (3). Hence

α − αpn = −μ̂′(εn)−1 1 − pn

pn
.

Finally, we use the continuity of μ̂′(·), since αpn → α, as n → ∞, and −μ̂′(α) = μ̄(α). �
Proof of Theorem 1. We deduce from Lemmas 2 and 3 that

lim
n→∞ e−ατφn Z(τφn) = lim

n→∞ e−αpn τ
φ
n Z(pn)

∅
(τφn) = m∞Wψ (∞),

in probability, where ψ is defined in (5) with pn ≡ 1 and m∞ = (αμ̄(α))−1 ∈ (0,∞); see
Remark 2. Proposition 1 implies that limn→∞ n−1Z(τφn) =E[φ̂(α)] a.s. Then

lim
n→∞ nαpn/α e−αpn τ

φ
n = m∞E

−1[φ̂(α)]Wψ (∞).

Since Wψ (∞)> 0 almost surely (by (A3) together with [21, Corollary 4.2]), we obtain that

lim
n→∞ n−αpn/αZ(pn)

∅
(τφn) =E[φ̂(α)],

in probability. Therefore our claim follows by Lemma 4. �

3. Applications

In this section we use Theorem 1 to deduce known and new results on the existence of a
giant percolation cluster in the supercritical regime for several families of trees. We begin in
Subsection 3.1 with some examples where the result has been established in [7]. In Subsections
3.2, 3.3, 3.4, and 3.5 we present several new examples.

3.1. General preferential attachment trees

We introduce the procedure studied by Rudas, Tóth, and Valkó [35] and Rudas and Tóth
[34] to grow a so-called general preferential attachment tree. Fix a sequence of nonnegative
weights w = (wk)∞k=0 with w0 > 0. Start the construction from a unique tree with a single vertex

and build a random tree T (w)
n with n vertices recursively as follows. Suppose that T (w)

n has been
constructed for n ≥ 1, and for every vertex v ∈ T (w)

n let d+
n (v) denote its outdegree. Given T (w)

n ,

the tree T (w)
n+1 is derived from T (w)

n by incorporating a new vertex u and creating an edge between

u and a vertex vn ∈ T (w)
n chosen at random according to the law

P(vn = v | T (w)
n) = wd+

n (v)

(∑
v′

wd+
n (v′)1{v′∈T(w)

n }

)−1

for v ∈ T (w)
n .

We point out that different choices of the sequence w yield well-known families of trees. Some
of these families are summarized in Table 1; see [36], [1], [26], and [32] for background.

https://doi.org/10.1017/apr.2019.61 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.61

276 G. BERZUNZA

TABLE 1: Examples of general preferential attachment trees.

w = (wk)∞k=0

Random recursive tree wk = 1 for all k ≥ 0
Binary search tree w0 = 2, w1 = 1 and wk = 0 for k ≥ 2
m-ary increasing tree (m ≥ 2) wk = m − k, for k = 0, 1, . . . ,m − 1, and wk = 0 for k ≥ m
Linear preferential attachment wk = βk + ρ, where β ∈ {−1, 0, 1}, and ρ ∈R+ \ {0}
Binary pyramid w0 = w1 = 1 and wk = 0 for k ≥ 2.

Preferential attachment trees can be constructed via CMJ-processes as in Definition 1. More
precisely, consider the characteristic (or weight) φ ≡ 1 and a CMJ-process with birth times
ξi =∑i

k=1 Xk for i ∈N∪ {0} (with the convention ξ0 =∑0
k=1 Xk = 0), where Xi = ξi − ξi−1,

for i ∈N, are independent random variables and distributed according as an exponential ran-
dom variable of parameter wi−1. In other words, we find that the process (�([0, t]), t ≥ 0) is a
pure birth process starting at 0 with birth rate wk when the state is k ∈N∪ {0}. In this exam-
ple, the lifetime of the individuals λ≡ ∞. Henceforth we assume that the pure birth process
(�([0, t]), t ≥ 0) is non-explosive, that is,

∞∑
k=0

1

wk
= ∞; (9)

see [2] for details. This implies that each individual in the CMJ-process has a.s. a finite number
of children in each finite interval. Furthermore, note that �̂(θ) =∑∞

k=1 e−θξk for θ > 0. Then

μ̂(θ) =
∞∑

k=1

E[e−θξk] =
∞∑

k=1

k∏
i=1

E[e−θXi] =
∞∑

k=1

k−1∏
i=0

1

1 + θ/wi
.

Assume that
there exists ε1 > 0 such that 1< μ̂(ε1)<∞. (E1)

This implies that w1 > 0 and that the condition of non-explosion (9) is fulfilled. At the same
time, it should be plain that condition (A4) is verified. Thus the Malthusian parameter exists,
that is, there exists α > ε1 such that μ̂(α) = 1. Finally, we further assume that

Var (�̂(ε1))<∞. (E2)

Hence the conditions (A1)–(A7) are satisfied and Theorem 1 implies the following result.

Corollary 1. In the supercritical regime, under (E1)–(E2), we have

lim
n→∞ n−1|T (w)

n | = e−c/(αμ̄(α)) in probability.

Finally, Corollary 1 allows us to recover some of the cases studied in [7]; see [19, Section
6] for details of the calculations. See Table 2.

3.2. The m-ary search tree

The m-ary search trees, where m ≥ 2 is a fixed integer, were first introduced in [27]. In
particular, m = 2 corresponds to the binary search tree described in Table 1 (Section 3.1).
An m-ary search tree is an m-ary tree constructed recursively from a sequence of keys (real

https://doi.org/10.1017/apr.2019.61 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.61

The existence of a giant cluster for percolation on large Crump–Mode–Jagers trees 277

TABLE 2: Some values of μ̂(θ), α, and μ̄(α) for several distributions.

μ̂(θ) α μ̄(α)

Random recursive tree
1

θ
, θ > 0 1 1

Binary search tree
2

θ + 1
, θ >−1 1

1

2

m-ary increasing tree (m ≥ 2)
m

θ + 1
, θ >−1 m − 1

1

m

Linear preferential attachment
ρ

θ − β
, θ > β β + ρ

1

ρ

Binary pyramid
1

1 + θ
+ 1

(1 + θ)2
, θ >−1

√
5 − 1

2

4
√

5

(1 + √
5)2

numbers), where each vertex stores up to m − 1 keys. More precisely, we start from a tree
containing just an empty vertex (the root). Assume that the keys are i.i.d. random variables
with a continuous distribution on R. Then add keys one by one until the (m − 1)th key is
placed in the root (i.e. the root becomes full) and add m new empty vertices as children of the
root. Furthermore, the m − 1 keys in the root divide the set of real numbers into m intervals
I1, . . . , Im that we associate with each of the m children of the root. Then each further key is
passed to one of the children of the root depending on which interval it belongs to, that is, a
key in Ii is stored in the ith child. Finally, we continue by iterating this procedure in an obvious
way every time a vertex becomes full. This construction yields the extended m-ary search
tree. In this setting, the vertices containing at least one key are called internal and the empty
vertices are called external. In this work we have decided to eliminate the external vertices and
consider the tree consisting of the internal nodes only. This is the m-ary search tree (in any case
our results also apply to extended m-ary search tree). We also consider m-ary search trees with
a fixed number of keys, say n ∈N. In other words, we stop the previous procedure at the time
when the nth key is added and let T (m)

n denote the resulting (random) m-ary search tree with n
keys. Note that the number of vertices of T (m)

n is actually random.
Following [19, Section 7.2], we can construct T (m)

n as the family tree of a CMJ-process.
Consider a continuous-time version of the construction procedure of an m-ary search tree and
start with one vertex (the root) with a single key. The root acquires more keys after succes-
sive independent waiting times Y2, . . . , Ym−1, where Yi is an exponential random variable of
parameter i ∈ {2, . . . ,m}. At the arrival of the (m − 1)th key, at time

∑m−1
i=2 Yi (with the con-

vention that the sum is equal to 0 when m = 2), the root gets m children with one key for each
of them, marked by 1, . . . ,m, with the child k born after a further waiting time Xk, i.e. at
time

∑m−1
i=2 Yi + Xk, where X1, . . . , Xm are independent and exponentially distributed random

variables of parameter 1. Finally, we continue growing the tree in an obvious way. Clearly, the
CMJ-process associated with an m-ary search tree possesses birth times ξk =∑m−1

i=2 Yi + Xk,
for k = 1, . . . ,m (note that N = m is non-random), and lifetime of each individual λ≡ ∞. By
considering the characteristic

φm(t) = k for
k∑

i=2

Yi ≤ t<
k+1∑
i=2

Yi, and k = 1, 2, . . . ,m − 1, t ≥ 0,

https://doi.org/10.1017/apr.2019.61 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.61

278 G. BERZUNZA

we see that Tφm
n , in Definition 1, is a random m-ary search tree with n keys. Note that

�̂(θ) =
m∑

k=1

exp

(
−θ
(m−1∑

i=2

Yi + Xk

))
.

Hence a simple computation implies that

μ̂(θ) =
m∑

k=1

E

[
exp

(
−θ
(

m−1∑
i=2

Yi + Xk

))]
= m!

m−1∏
i=1

(i + θ)−1, θ >−1. (10)

In particular, we see that the Malthusian parameter is α= 1. Furthermore,

E[�̂(θ)2] = μ̂(2θ)

(
1 + (m − 1)(m − 2)

m

1 + 2θ

(1 + θ)2

)
, θ >−1/2,

which implies that Var (�̂(θ))<∞ for θ >−1/2. Thus it should be clear that conditions (A1)–
(A7) are satisfied. Consequently, Theorem 1 implies the following result.

Corollary 2. In the supercritical regime, we have limn→∞ n−1|T (m)
n | = 2(Hm − 1)e−c/(Hm−1)

in probability, where Hm =∑m
i=1 i−1.

Proof. The result follows from Theorem 1 by computing μ̄(1) and E[φ̂m(1)]. Note that (8)
and (10) show that μ̄(1) = −μ̂′(1) = Hm − 1. Note also that

φ̂m(1) =
∫ ∞

0
e−tφm(t) dt = 1 +

m−1∑
k=2

e−∑k
i=2 Yi .

Therefore a direct computation shows that

E[φ̂m(1)] = 1 +
m−1∑
k=2

E[e−∑k
i=2 Yi] = 1 + 2

m−1∑
k=2

1

k + 1
= 2(Hm − 1),

which concludes the proof. �

3.3. Median-of-(2� + 1) binary search tree

The random median-of-(2�+ 1) binary search tree, for � ∈N (see e.g. [13]), is a modifica-
tion of the binary search tree (or 2-ary search tree), where each internal vertex contains exactly
one key, but each external vertex can contain up to 2� keys (recall that keys are real numbers).

This tree is constructed recursively from an initial tree with a single external vertex without
any keys. Then we add keys one by one until the (2�+ 1)th key is placed at this first external
vertex (or to another external vertex later in the process). The vertex becomes an internal one
with two new external vertices as its children, say vL and vR. Immediately, the median of the
2�+ 1 keys at the vertex is computed and put at the external vertex, while the � keys that are
smaller than the median are put in the left child vL and the � keys that are larger than the median
are put in the right child vR. We continue by adding new keys to the root and send them to the
left or to the right whenever they are smaller or larger than the median of the first 2�+ 1 keys.
Finally, we iterate this procedure in an obvious way in order to grow the tree until n ∈N keys

https://doi.org/10.1017/apr.2019.61 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.61

The existence of a giant cluster for percolation on large Crump–Mode–Jagers trees 279

have been added. We let T (�)
n denote the random median-of-(2�+ 1) binary search tree with n

keys.
Following [19, Section 8], we can construct a median-of-(2�+ 1) binary search tree via

a CMJ-process. Start with one vertex (the root) with � keys (note that this is not a problem
because the first � keys always go there). Then each external vertex will contain between �
and 2� keys, throughout the process. On the other hand, a vertex acquires �+ 1 additional keys
after successive independent waiting times Y1, . . . , Y�+1, where Yi has exponential distribution
of parameter �+ i, for i = 1, . . . , �+ 1. At the time when the (�+ 1)th key arrives, the vertex
immediately gets two children, each containing � keys. Therefore it should be clear that the
CMJ-process related to the median-of-(2�+ 1) binary search tree has birth times ξ1 = ξ2 =∑�+1

i=1 Yi (in distribution) and where each individual has lifetime λ≡ ∞. In this case N = 2.
Define the characteristic

φ�(t) =
⎧⎨
⎩
�+ k

∑k
i=1 Yi ≤ t<

∑k+1
i=1 Yi, 0 ≤ k ≤ �,

1
∑�+1

i=1 Yi ≤ t,

for t ≥ 0 (with the convention
∑0

i=1 Yi = 0). Therefore the tree Tφ�n in Definition 1 is
a median-of-(2�+ 1) binary search tree with n keys. In this example, note that �̂(θ) =
2 exp (−θ∑�+1

i=1 Yi). Hence

μ̂(θ) =E

[
2 exp

(
−θ

�+1∑
i=1

Yi

)]
= 2

�+1∏
i=1

�+ i

�+ i + θ
, θ >−(�+ 1). (11)

We deduce that the Malthusian parameter is α = 1. Furthermore, it is not difficult to see that

Var (�̂(θ)) = 2μ̂(2θ) − μ̂(θ)2 <∞, θ >−(�+ 1)/2.

Thus it should be plain that all the conditions (A1)–(A7) are satisfied. Consequently, Theorem 1
implies the following result.

Corollary 3. In the supercritical regime, we have

lim
n→∞ n−1|T (�)

n | = (�+ 1)(H2�+2 − H�+1) e−c(H2�+2−H�+1)−1
, in probability.

Proof. By Theorem 1, we only need to compute μ̄(1) and E[φ̂�(1)]. Note that (8) and (11)
show that μ̄(1) = −μ̂′(1) = H2�+2 − H�+1. Note also that

φ̂�(1) =
∫ ∞

0
e−tφ̂�(t) dt =

�∑
k=0

(e−t
∑k

i=1 Yi − e−t
∑k+1

i=1 Yi) + e−t
∑�+1

i=1 Yi .

Therefore a simple but tedious computation implies that E[φ̂�(1)] = (�+ 1)(H2�+2
− H�+1). �

3.4. Fragmentation trees

In this section we study family trees induced by fragmentation processes. These processes
were introduced in [24]; see also [6] and [22] for general background and further references.

https://doi.org/10.1017/apr.2019.61 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.61

280 G. BERZUNZA

Fix b ≥ 2 and consider a random vector V = (V1, . . . , Vb); this is the so-called dislocation
law. Assume that 0 ≤ Vi < 1 a.s., for i = 1, . . . , b, and

∑b
i=1 Vi = 1, that is, V belongs to the

standard simplex.
We then describe the construction of the fragmentation tree. Start with a vertex (the root)

with mass x0. This vertex has b children with masses x0V1, . . . , x0Vb, that is, we break x0 into
b pieces with masses driven by the dislocation law V. Consider a threshold x1 ∈ (0, x0], and
continue recursively with each vertex that has mass larger than x1, using new (independent)
copies of V each time. The process terminates a.s. after a finite number of steps, leaving a
finite set of vertices (or fragments) with masses smaller than x1. We regard the vertices of mass
larger than x1 that occur during this process as the internal vertices and the resulting vertices
of mass strictly less than x1 as external. Note that the fragmentation tree depends only on the
ratio x0/x1, so we denote it by T f

x0/x1
.

One can relate the fragmentation process to a CMJ-process by regarding a fragment of mass
x as born at time log (x0/x). In other words, a vertex will have b children that are born at times
ξi = − log Vi, for i = 1, . . . , b (observe that N = b in this case). If Vi = 0, we have ξi = ∞,
meaning that this child is not born, and thus a vertex has fewer than b children. Note also that
the lifetime λ= ∞. Finally, it is easy to see that the fragmentation tree Tf

x0/x1
is the same as

the family tree of this CMJ-process at time log (x0/x1), i.e. T(log (x0/x1)) in the notation of
Section 1.1.

By using the characteristic φ ≡ 1, we define the fragmentation tree T f
n := T(τφn) of fixed size

n ∈N as in Definition 1. This means that we choose a threshold x1 > 0 to be the mass of the
nth largest fragment in the process, so that there will be exactly n fragments of size x1 (unless
there is a tie). In this case, note that �̂(θ) =∑b

i=1 e−θξi =∑b
i=1 Vθi . Then

μ̂(θ) =
b∑

i=1

E[Vθi], θ ≥ 0. (12)

Thus we conclude that the Malthusian parameter is α= 1. This has the consequence that the
martingale Wψ (with pn ≡ 1), in Section 2, is constant 1. Then we find that its limit Wψ (∞) ≡
1. Furthermore, we also find that Var (�̂(θ))<∞, for θ ≥ 0. Thus the conditions (A1)–(A7)
are satisfied and Theorem 1 implies the following result.

Corollary 4. In the supercritical regime, we have limn→∞ n−1|T f
n| = e−c/β , in probability,

where β :=∑b
i=1 E[Vi log (1/Vi)].

Proof. The result follows from Theorem 1. Since φ ≡ 1, we need only compute μ̄(1), but
note that (8) and (12) imply that μ̄(1) = −μ̂′(1) = β. �
Example 1. (Binary splitting.) Consider b = 2 and V = (V1, V2) = (V1, 1 − V1), where V1 is a
uniform random variable on (0,1). Thus, at each fragmentation event, the fragment is split into
two parts, with uniformly random sizes. In the corresponding CMJ-process the birth times ξ1
and ξ2 are exponential random variables with parameter 1, where one of them determines the
other by e−ξ1 + e−ξ2 = 1. Furthermore, μ̂(θ) = (1 + θ)−1 for θ ≥ 0, and μ̄(1) = 1/2. Finally,
note also that there are similarities with the CMJ-process associated with the binary search tree
in Table 1 (Section 3.1); the difference is that there ξ1 and ξ2 are independent, while here they
are dependent.

Finally, we should mention that the split trees defined by Devroye [14] are related to frag-
mentation trees. A split tree is a b-ary tree defined using a number of balls that enter the root

https://doi.org/10.1017/apr.2019.61 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.61

The existence of a giant cluster for percolation on large Crump–Mode–Jagers trees 281

and are distributed (randomly and recursively) to the subtrees of the root and further down in
the tree according to certain rules that are based on a splitting law V; see [14] for details. For
instance, binary search trees are a particular type of split tree. Percolation on split trees will be
studied in another paper.

3.5. Homogeneous CMJ-trees

Let � be a finite positive measure on (0,∞] with total mass b :=�((0,∞]) such that m :=∫
(0,∞] t�(dt) satisfies

1<m<∞. (E3)

Consider a CMJ-process with birth process � whose intensity measure is given by μ(dt) =
dt�((t,∞]). Moreover, each individual has lifetime given by a random variable λ with dis-
tribution �(·)/b. Note that, conditional on the birth time and lifetime, the birth point process
of an individual is distributed as a Poisson point process during his life. We can say that the
CMJ-process is homogeneous (constant birth rate) and binary (birth occurs singly). Set

�(θ) = θ −
∫

(0,∞]
(1 − e−θ t)�(dt), θ ≥ 0,

and observe that � is a convex function such that �(0 +) = 0 and � ′(0 +) = 1 − m< 0.
Hence there exists a unique α > 0 such that �(α) = 0.

In this section we are interested in studying Bernoulli bond-percolation on the family tree
of this CMJ-process. More precisely, we consider the characteristic φ ≡ 1 and define the CMJ-
tree Thom

n := T(τφn) as in Definition 1. The family tree of this particular CMJ-process was called
a splitting tree in [17], [18], and [25]. Further, these papers studied the case when � is not
necessary finite, but for simplicity we have decided to restrict ourselves to finite measures.
Nevertheless, our results can be applied to the general case.

In [33, Chapter 3], the author studied this CMJ-process under neutral rare mutations, where
mutations occur at birth with probability 1 − p ∈ [0, 1]. The difference from our setting is that
in [33, Chapter 3] the probability of mutation (or percolation parameter) does not depend on
the ‘size’ of the tree. Therefore the result in this section may be of independent interest.

We now check that assumptions (A1)–(A7) are satisfied. Clearly, (A1)–(A2) are fulfilled
by the assumptions made on �. Note that in this case (A3) is not fulfilled. Nevertheless,
[33, Proposition 2.1; see also (2.1)] shows that the extinction probability P(Z(∞)<∞) =
1 − α/b< 1. This has the consequence that the limit of the martingale Wψ (with pn ≡ 1),
in Section 2, is strictly positive (i.e. Wψ (∞)> 0 a.s.) on the event {Z(∞) = ∞}; see [21,
Corollary 4.2]. Thus our results hold conditioned on the event {Z(∞) = ∞} since (A3) is only
needed to guarantee that Wψ (∞)> 0 almost surely. On the other hand,

μ̂(θ) =
∫ ∞

0

∫
(t,∞]

e−θ t dt�(du) =
∫

(0,∞]

1 − e−θ t

θ
�(dt) = θ −�(θ)

θ
, θ ≥ 0,

which clearly shows that (A4) is satisfied. Moreover, the Malthusian parameter is given by
α > 0. Note also that Campbell’s formula implies that

Var (�̂(θ)) =
∫ ∞

0

∫
(t,∞]

e−2θ t dt�(du) = 2θ −�(2θ)

2θ
<∞, θ ≥ 0,

which implies (A5). Finally, (A6)–(A7) follow immediately since φ ≡ 1. Therefore Theorem 1
implies the following result.

https://doi.org/10.1017/apr.2019.61 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.61

282 G. BERZUNZA

Corollary 5. In the supercritical regime and under (E3), conditional on the event {Z(∞) =
∞}, we have limn→∞ n−1|Thom

n | = e−c/(� ′(α)), in probability.

Proof. The result follows from Theorem 1 by computing μ̄(α) since φ ≡ 1. This follows
from (3):

μ̄(α) =
∫ ∞

0
t e−αtμ(dt)

=
∫ ∞

0

∫
(t,∞]

t e−αt dt�(du)

=
∫

(0,∞]

(
− t e−αt

α
+ 1 − e−αt

α2

)
�(dt)

= � ′(α)

α
. �

Appendix A. Proofs of Lemmas 2 and 3

In this section we establish some general results on the long time behavior of the CMJ-
process with neutral mutations that may be of independent interest. It will be helpful to write
p rather than pn, omitting the integer n from the notation. To be more precise, we consider
that the percolation parameter is a real number p ∈ [0, 1] and study the behavior of the φ-
counted clonal process Z(p),φ

∅
= (Z(p),φ

∅
(t), t ≥ 0) as p → 1 and t → ∞. Recall that �(p) denotes

the generic birth process of the clonal CMJ-process whose intensity measure μ(p) is defined
in (2).

Note that (A4) implies that there exists p∗ ∈ (0, 1) such that for p ∈ [p∗, 1] there exists
αp > 0 (the Malthusian parameter of μ(p)) such that μ̂(p)(αp) = 1. This implies that pE[N]> 1
(i.e. the clonal process is supercritical). Since αp → α as p → 1, we choose p∗ such that 0<
θ1 <αp∗ where θ1 satisfies (A4)–(A5). Furthermore, we also consider p∗ such that 0< θ2 <αp∗
and 0< θ3 < 2αp∗ , where θ2 and θ3 satisfy (A6) and (A7), respectively.

We start by recalling some well-known results about the moments of Z(p),φ
∅

. For k ∈N∪ {0},
we let ν∗k denote the k-fold convolution of a measure ν on [0,∞) (here ν∗0 is a unit point mass
at 0).

Theorem 2. Assume that conditions (A1)–(A4) are fulfilled. For a characteristic φ that may
depend on p, we have

E[Z(p),φ
∅

(t)] =
∫ t

0
E[φ(t − s)]

∞∑
k=0

(μ(p))∗k(ds), t ≥ 0.

Furthermore, if E[φ(t)] is bounded on finite intervals,

Var (Z(p),φ
∅

(t)) =
∫ t

0
h∅(t − s)

∞∑
k=0

(μ(p))∗k(ds), t ≥ 0,

with

h(p)
∅

(t) = Var

(
φ∅(t) +

∫ t

0
E[Z(p),φ

∅
(t − s)]�(p)

∅
(ds)

)
, t ≥ 0, (13)

https://doi.org/10.1017/apr.2019.61 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.61

The existence of a giant cluster for percolation on large Crump–Mode–Jagers trees 283

and where (�(p)
∅
, φ∅) is the birth process and weight associated with the progenitor of the

population.

Proof. The first claim is a consequence of [21, Theorem 3.1]. Note that (A1) and (A4)
imply that the measure

∑∞
k=0 (μ(p))∗k(dt) is finite. Moreover, E[Z(p),φ

∅
(t)]<∞, for t ≥ 0,

since E[φ(t)] is bounded on finite intervals. Therefore the second claim follows from [21,
Theorem 3.2]. �

We next provide an improvement of the results of [20, Theorem 6.9.2] and [21, Theorem
3.5] on the asymptotic behavior of the first and second moment of the clonal CMJ-
process. Recall that we write W(p),φ

∅
= (W(p),φ

∅
(t), t ≥ 0) for the process given by W(p),φ

∅
(t) :=

e−tαp Z(p),φ
∅

(t), for t ≥ 0. Set

m(p),φ
t =E[W(p),φ

∅
(t)], t ≥ 0.

Recall also that for p ≡ 1 we sometimes remove the superscript (p) and the subscript ∅ from the
previous notations. That is, we write Wφ = (Wφ(t), t ≥ 0) for the processes given by Wφ(t) :=
e−tαZφ(t) and mφt =E[Wφ(t)].

Proposition 2. Assume that conditions (A1)–(A4) are fulfilled.

(i) For any characteristic φ that does not depend on p and that satisfies (A6), we have

lim
t→∞ sup

p∈[p∗,1]
|m(p),φ

t − m(p),φ∞ | = 0,

where m(p),φ∞ is defined in (7). In particular, supt≥0 supp∈[p∗,1] m(p),φ
t <∞.

(ii) For the characteristic ψ defined in (5), we have

lim
t→∞ sup

p∈[p∗,1]
|m(p),ψ

t − m(p),ψ∞ | = 0.

In particular, supt≥0 supp∈[p∗,1] m(p),ψ
t <∞.

Proof. We only prove (i). The proof of (ii) follows from exactly same argument and
Lemma 1 (i). Recall from Remark 1 that μ(p)

α (dt) := e−tαpμ(p)(dt), for p ∈ [p∗, 1], is a
probability measure on (0,∞). Theorem 2 implies that

m(p),φ
t =

∫ t

0
e−(t−s)αpE[φ(t − s)]

∞∑
k=0

(μ(p)
α)∗k(ds), t ≥ 0,

where we have used that

e−sαp

∞∑
k=0

(μ(p))∗k(ds) =
∞∑

k=0

(μ(p)
α)∗k(ds).

From (A6), we deduce that the family of functions t �→ e−tαpE[φ(t)], for p ∈ [p∗, 1], it is uni-
formly directly Riemann integrable (see [37, Definition 2.8]). Furthermore, (A4) implies that

https://doi.org/10.1017/apr.2019.61 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.61

284 G. BERZUNZA

the family of probability measures {μ(p)
α : p ∈ [p∗, 1]} is weakly compact (treated as a set of

measure on (0,∞)), and uniformly integrable, that is,

lim
a→∞ sup

p∈[p∗,1]

∫
[a,∞)

tμ(p)
α (dt) = 0.

Therefore the point (i) is a consequence of the uniform version of the key renewal theorem [37,
Theorem 2.12] since μ satisfies (A2). The second claim in (i) follows from the definition of
m(p),φ∞ by noting that

αp∗ ≤ αp ≤ α, μ̄(p)(αp) ≥ p∗μ̄(1)(α) and E[φ̂(αp)] ≤ α

αp∗
E[φ̂(αp∗)];

we also need to recall that μ̄(1)(α)> 0 by Remark 2. �
By Proposition 2,

v(p),φ
t = Var (W(p),φ

∅
(t)), t ≥ 0,

is well-defined. For p ≡ 1, we sometimes write vφt = Var (Wφ(t)), for t ≥ 0.

Proposition 3. Assume that conditions (A1)–(A5) are fulfilled.

(i) For any characteristic φ that does not depend on p and that satisfies (A6)–(A7), we have

lim
t→∞ sup

p∈[p∗,1]
|v(p),φ

t − v(p),φ∞ | = 0,

where

v(p),φ∞ := (m(p),φ∞)2 Var (�̂(p)(αp))

1 − μ̂(p)(2αp)
.

(ii) For the characteristic ψ defined in (5), we have

lim
t→∞ sup

p∈[p∗,1]
|v(p),ψ

t − v(p),ψ∞ | = 0,

where v(p),ψ∞ := Var (�̂(p)(αp))(1 − μ̂(p)(2αp))−1.

(iii) For the characteristic φ′ = φ + m(p),φ∞ ψ , we have

lim
t→∞ sup

p∈[p∗,1]
|v(p),φ′

t − v(p),φ′
∞ | = 0,

where v(p),φ′
∞ = 4v(p),φ∞ .

Proof. We only prove (i). The proofs of (ii) and (iii) follow similarly by using Lemma 1 and
Remark 3. Theorem 2 implies that

v(p),φ
t =

∫ t

0
e−2(t−s)αp h(p)

∅
(t − s) e−2sαp

∞∑
k=0

(μ(p))∗k(ds), t ≥ 0,

https://doi.org/10.1017/apr.2019.61 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.61

The existence of a giant cluster for percolation on large Crump–Mode–Jagers trees 285

where the function h(p)
∅

is defined in (13). First, note the identity

∫ ∞

0
e−2sαp

∞∑
k=0

(μ(p))∗k(ds) =
∞∑

k=0

μ̂(p)(2αp)k = 1

1 − μ̂(p)(2αp)
<∞, (14)

since μ̂(p)(2αp)< μ̂(p)(αp) = 1. Then the triangle inequality implies that

|v(p),φ
t − v(p),φ∞ |

≤
∫ t

0
e−2(t−s)αp Var (φ∅(t − s)) e−2sαp

∞∑
k=0

(μ(p))∗k(ds)

+ 2
∫ t

0
e−(t−s)αp

∣∣∣∣Cov

(
φ∅(t − s),

∫ t−s

0
m(p),φ

t−s−u e−uαp�
(p)
∅

(du)

)∣∣∣∣ e−2sαp

∞∑
k=0

(μ(p))∗k(ds)

+
∫ ∞

0
g(p)(t − s) e−2sαp

∞∑
k=0

(μ(p))∗k(ds), (15)

where (�(p)
∅
, φ∅) is the birth process and weight associated with the progenitor of the

population, and

g(p)(t − s) =
∣∣∣∣1{s∈[0,t]} Var

(∫ t−s

0
m(p),φ

t−s−u e−uαp�
(p)
∅

(du)

)
− (m(p),φ∞)2 Var (�̂(p)

∅
(αp))

∣∣∣∣.
Let I(p)

1 (t), I(p)
2 (t), and I(p)

3 (t), respectively, denote the first, second, and third terms on the right-
hand side of (15). Then the claim in Proposition 3 follows by showing that

(a) limt→∞ supp∈[p∗,1] I(p)
1 (t) = 0,

(b) limt→∞ supp∈[p∗,1] I(p)
2 (t) = 0, and

(c) limt→∞ supp∈[p∗,1] I(p)
3 (t) = 0.

We start by showing (a). By assumption (A7),

lim
t→∞ sup

p∈[p∗,1]
e−2tαp Var (φ(t)) ≤ lim

t→∞ e−2tαp∗ Var (φ(t)) = 0. (16)

Then (14) and the dominated convergence theorem prove point (a).
Next we show (b). The Cauchy–Schwarz inequality and Proposition 2 imply that∣∣∣∣Cov

(
φ∅(t),

∫ t

0
m(p),φ

t−u e−uαp�
(p)
∅

(du)

)∣∣∣∣
≤ (Var (φ∅(t)))1/2

(
Var

(∫ t

0
m(p),φ

t−u e−uαp�
(p)
∅

(du)

))1/2

≤
(

Var (φ∅(t)) Var

(∫ t

0
e−uαp�

(p)
∅

(du)

))1/2

sup
t≥0

sup
p∈[p∗,1]

m(p),φ
t .

https://doi.org/10.1017/apr.2019.61 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.61

286 G. BERZUNZA

Since e−uαp�(p)(du) is dominated by e−uαp∗�(du), (A4)–(A5) and (16) allow us to deduce that

lim
t→∞ sup

p∈[p∗,1]
e−tαp

∣∣∣∣Cov

(
φ∅(t),

∫ t

0
m(p),φ

t−u e−uαp�
(p)
∅

(du)

)∣∣∣∣= 0.

Hence an application of the dominated convergence theorem shows (b).
Finally, we prove (c). We show that

lim
t→∞ sup

p∈[p∗,1]
g(p)(t − s) = 0, (17)

which together with an application of the dominated convergence theorem implies (c). Observe
that

g(p)(t − s) ≤ g(p)
1 (t − s) + g(p)

2 (t − s) + g(p)
3 (t − s)

+ g(p)
4 (t − s) + 1{s∈(t,∞)}(m(p),φ∞)2 Var (�̂(p)(αp)), (18)

where

g(p)
1 (t − s) = 1{s∈[0,t]} Var

(∫ t−s

0
(m(p),φ

t−s−u − m(p),φ∞) e−uαp�(p)(du)

)
,

g(p)
2 (t − s) = 21{s∈[0,t]}

∣∣∣∣Cov

(∫ t−s

0
(m(p),φ

t−s−u − m(p),φ∞) e−uαp�(p)(du),

m(p),φ∞
∫ t−s

0
e−uαp�(p)(du)

)∣∣∣∣,
g(p)

3 (t − s) = 2(m(p),φ∞)21{s∈[0,t]}
∣∣∣∣Cov

(
�̂(p)(αp),

∫ ∞

t−s
e−uαp�(p)(du)

)∣∣∣∣, and

g(p)
4 (t − s) = 1{s∈[0,t]}(m(p),φ∞)2 Var

(∫ ∞

t−s
e−uαp�(p)(du)

)
.

Proposition 2 and (A5) imply that

lim
t→∞ sup

p∈[p∗,1]
g(p)

4 (t − s) = 0, (19)

and
lim

t→∞ sup
p∈[p∗,1]

1{s∈(t,∞)}(m(p),φ∞)2 Var (�̂(p)(αp)) = 0. (20)

Furthermore, Proposition 2 implies that

sup
t≥0

sup
p∈[p∗,1]

|m(p),φ
t − m(p),φ∞ |<∞.

Recall that e−sαp�(p)(ds) is dominated by e−sαp∗�(ds) and that
∫∞

0 e−sαp∗�(ds)<∞, by (A4).
Thus the dominated convergence theorem shows that

lim
t→∞ sup

p∈[p∗,1]

∣∣∣∣1{s∈[0,t]}
∫ t−s

0
(m(p),φ

t−s−u − m(p),φ∞) e−uαp�(p)(du)

∣∣∣∣= 0,

https://doi.org/10.1017/apr.2019.61 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.61

The existence of a giant cluster for percolation on large Crump–Mode–Jagers trees 287

almost surely. This implies that

lim
t→∞ sup

p∈[p∗,1]
g(p)

1 (t − s) = 0, (21)

once again using the dominated convergence theorem. Similarly, we can deduce that

lim
t→∞ sup

p∈[p∗,1]
g(p)

2 (t − s) = 0 and lim
t→∞ sup

p∈[p∗,1]
g(p)

3 (t − s) = 0. (22)

Finally, our claim in (17) follows by combining (18), (19), (20), (21), and (22). �
We now have all the ingredients to prove Lemma 2.

Proof of Lemma 2. Note that

E

[
sup
s≥t

|W(p),ψ
∅

(s) − W(p),ψ
∅

(∞)|2
]

≤ 2E[|W(p),ψ
∅

(t) − W(p),ψ
∅

(∞)|2] + 2E
[

sup
s≥t

|W(p),ψ
∅

(s) − W(p),ψ
∅

(t)|2
]

(23)

for t ≥ 0. On the one hand, from properties of square-integrable martingales, we obtain that

E[|W(p),ψ
∅

(t) − W(p),ψ
∅

(∞)|2] =E[W(p),ψ
∅

(∞)2] −E[W(p),ψ
∅

(t)2] (24)

for t ≥ 0. On the other hand, by Doob’s inequality

E

[
sup
s≥t

|W(p),ψ
∅

(s) − W(p),ψ
∅

(t)|2
]
≤ 4E[W(p),ψ

∅
(∞)2] − 4E[W(p),ψ

∅
(t)2] (25)

for t ≥ 0. By combining (23), (24), and (25), we deduce that

E

[
sup
s≥t

|W(p),ψ
∅

(s) − W(p),ψ
∅

(∞)|2
]

≤ 10(v(p),ψ∞ − v(p),ψ
t) + 10((m(p),ψ∞)2 − (m(p),ψ

t)2)

= 10(v(p),ψ∞ − v(p),ψ
t)

since W(p),ψ
∅

is a martingale. Therefore the first statement follows from Proposition 3. We turn
our attention to the second claim. Observe that

E[|W(p),φ
∅

(t) − m(p),φ∞ W(p),ψ
∅

(∞)|2]

≤ 2E[|W(p),φ
∅

(t) − m(p),φ∞ W(p),ψ
∅

(t)|2] + 2(m(p),φ∞)2
E[|W(p),ψ

∅
(t) − W(p),ψ

∅
(∞)|2], (26)

for t ≥ 0. It follows from the first part that

lim
t→∞ sup

p∈[p∗,1]
E[|W(p),ψ

∅
(t) − W(p),ψ

∅
(∞)|2] = 0.

In order to conclude, it is enough to show that the first term on the right-hand side of (26) tends
to 0 uniformly on p ∈ [p∗, 1] as t → ∞. By Proposition 2, this is equivalent to showing that

lim
t→∞ sup

p∈[p∗,1]
Var (W(p),φ

∅
(t) − m(p),φ∞ W(p),ψ

∅
(t)) = 0 (27)

https://doi.org/10.1017/apr.2019.61 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.61

288 G. BERZUNZA

since W(p),φ
∅

(t) + m(p),φ∞ W(p),ψ
∅

(t) = W(p),φ′
∅

(t), where φ′(t) = φ(t) + m(p),φ∞ ψ(t). But (27) fol-
lows from Proposition 3, Remark 3, and the identity

Var (W(p),φ
∅

(t) − m(p),φ∞ W(p),ψ
∅

(t))

= 2 Var (W(p),φ
∅

(t)) + 2 Var (m(p),φ∞ W(p),ψ
∅

(t)) − Var (W(p),φ
∅

(t) + m(p),φ∞ W(p),ψ
∅

(t)). �
Finally, we conclude this section with the proof of Lemma 3. The idea of the proof is similar

to that of [10, Lemma 3].

Proof of Lemma 3. We first prove that the double limit

lim
p→1,t→∞ W(p),φ

∅
(t) exists in L2(P). (28)

Denote the L2(P)-norm by ‖ · ‖2. We claim that

lim
p→1

‖W(p),φ
∅

(t) − Wφ(t)‖2 = 0 for t ≥ 0. (29)

Recall that at each birth event, independently of all the other individuals, the newborn is a clone
of its parent with probability p or a mutant with probability 1 − p. Then it should be plain from
the thinning property of point measure processes that the birth process of the mutant children
of the ancestor ∅, denoted by �(p),m

∅
, has intensity measure given (1 − p)μ(dt). Furthermore,

the latter is independent of the birth process of the clonal children of the ancestor described
in Section 1.2. Let Z(p),m = (Z(p),m(t), t ≥ 0) be the process that counts the number of mutants
born up to time t ≥ 0 and define

b(p)
1 = inf{t ≥ 0: Z(p),m(t)> 0}

to be the first birth time of a mutant. Plainly, limp→1 b(p)
1 = ∞ in probability, and the probability

of the event {t ≥ b(p)
1 } can be made as small as we wish by choosing p sufficiently close to 1.

On the one hand, as Z(p),φ
∅

(t) ≤ Zφ(t), we have

E[|W(p),φ
∅

(t) − Wφ(t)|2, t ≥ b(p)
1] ≤ (e2(α−αp)t + 1)E[|Wφ(t)|2, t ≥ b(p)

1],

and the right-hand side goes to 0 as p → 1. On the other hand, on the event {t< b(p)
1 }, we have

Z(p),φ
∅

(t) = Zφ(t) and hence W(p),φ
∅

(t) = e(α−αp)tWφ(t). This yields

E[|W(p),φ
∅

(tε) − Wφ(t)|2, t< b(p)
1] ≤ (e(α−αp)t − 1)E[|Wφ(t)|2],

and the right-hand side goes to 0 as p → 1. This establishes the convergence in (29).
Let ε > 0 be arbitrary. By Lemma 2, we can find tε > 0 such that

sup
p∈[p∗,1]

‖W(p),φ
∅

(s) − m(p),φ∞ W(p),ψ
∅

(∞)‖2 ≤ ε

6
for all s ≥ tε. (30)

By using (29), we obtain that for s ≥ tε there is δε > 0 such that 1 − p< δε (for p ∈ [p∗, 1))
implies that

‖W(p),φ
∅

(s) − Wφ(s)‖2 ≤ ε

6
. (31)

https://doi.org/10.1017/apr.2019.61 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.61

The existence of a giant cluster for percolation on large Crump–Mode–Jagers trees 289

Let us take s1, s2 ≥ tε and p1, p2 ∈ [p∗, 1) such that 1 − p1 < δε and 1 − p2 < δε. The
Minkowski inequality implies that for s ≥ tε

‖W(p1),φ
∅

(s1) − W(p2),φ
∅

(s2)‖2

≤ ‖W(p1),φ
∅

(s1) − m(p1),φ∞ W(p1),ψ
∅

(∞)‖2 + ‖W(p1),φ
∅

(s) − m(p1),φ∞ W(p1),ψ
∅

(∞)‖2

+ ‖W(p1),φ
∅

(s) − Wφ(s)‖2 + ‖W(p2),φ
∅

(s) − Wφ(s)‖2

+ ‖W(p2),φ
∅

(s2) − m(p2),φ∞ W(p2),ψ
∅

(∞)‖2 + ‖W(p2),φ
∅

(s) − m(p2),φ∞ W(p2),ψ
∅

(∞)‖2.

By (30) and (31), we deduce that ‖W(p1),φ
∅

(s1) − W(p2),φ
∅

(s2)‖2 ≤ ε. Thus W(p),φ
∅

(t) is L2(P)-
Cauchy. Therefore the claim in (28) follows from the well-known completeness of L2(P); see
[3, Theorem 6.14].

Finally, we show that the claim in Lemma 3 holds. Note that (28) implies that there exists a
square-integrable variable W such that limp→1,t→∞ W(p),φ

∅
(t) = W in L2(P). Thus it is enough

to show that W = mφ∞Wψ (∞), where ψ is defined in (5) with p ≡ 1. In this direction, for t ≥ 0,
recall that (29) shows that limp→1 W(p),φ

∅
(t) = Wφ(t) in L2(P). Furthermore, Lemma 2 implies

that
lim

t→∞ lim
p→1

W(p),φ
∅

(t) = lim
t→∞ Wφ(t) = mφ∞Wψ (∞), in L2(P). (32)

On the other hand, (28) implies that for ε > 0 there are δε, tε > 0 such that for 1 − p< δε (for
p ∈ [p∗, 1)) and s ≥ tε we have ‖W(p),φ

∅
(s) − W‖2 ≤ ε. Hence (29) and an application of the

dominated convergence theorem allow us to conclude that

lim
p→1

‖W(p),φ
∅

(s) − W‖2 = ‖Wφ(s) − W‖2 ≤ ε,

i.e. limt→∞ limp→1 W(p),φ
∅

(t) = W in L2(P), which combined with (32) concludes the proof. �

Acknowledgements

This work was started when I was member of the Institut für Mathematische Stochastik of
Georg-August-Universität Göttingen and was supported by the DFG-SPP Priority Programme
1590, Probabilistic Structures in Evolution. I would like to thank Juan Carlos Pardo for his
comments on an earlier draft of this manuscript. I am very grateful to the referee, whose
extremely careful reading and helpful comments led to several improvements in the exposition
of this paper.

References

[1] ALDOUS, D. (1991). Asymptotic fringe distributions for general families of random trees. Ann. Appl. Prob. 1,
228–266.

[2] ATHREYA, K. B. (2007). Preferential attachment random graphs with general weight function. Internet Math.
4, 401–418.

[3] BARTLE, R. G. (1995). The Elements of Integration and Lebesgue Measure (Wiley Classics Library). John
Wiley, New York.

[4] BAUR, E. (2016). Percolation on random recursive trees. Random Structures Algorithms 48, 655–680.
[5] BAUR, E. AND BERTOIN, J. (2017). Weak limits for the largest subpopulations in Yule processes with high

mutation probabilities. Adv. Appl. Prob. 49, 877–902.
[6] BERTOIN, J. (2006). Random Fragmentation and Coagulation Processes (Cambridge Studies in Advanced

Mathematics 102). Cambridge University Press, Cambridge.

https://doi.org/10.1017/apr.2019.61 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.61

290 G. BERZUNZA

[7] BERTOIN, J. (2013). Almost giant clusters for percolation on large trees with logarithmic heights. J. Appl. Prob.
50, 603–611.

[8] BERTOIN, J. (2014). On the non-Gaussian fluctuations of the giant cluster for percolation on random recursive
trees. Electron. J. Prob. 19, 24, 15 pp.

[9] BERTOIN, J. (2014). Sizes of the largest clusters for supercritical percolation on random recursive trees.
Random Structures Algorithms 44, 29–44.

[10] BERTOIN, J. AND URIBE BRAVO, G. (2015). Supercritical percolation on large scale-free random trees. Ann.
Appl. Prob. 25, 81–103.

[11] BERZUNZA, G. (2015). Yule processes with rare mutation and their applications to percolation on b-ary trees.
Electron. J. Prob. 20, 43, 23 pp.

[12] BOLLOBÁS, B. (2001). Random Graphs, 2nd edn (Cambridge Studies in Advanced Mathematics). Cambridge
University Press.

[13] DEVROYE, L. (1993). On the expected height of fringe-balanced trees. Acta Inform. 30, 459–466.
[14] DEVROYE, L. (1999). Universal limit laws for depths in random trees. SIAM J. Comput. 28, 409–432.
[15] DRMOTA, M. (2009). Random Trees: An Interplay Between Combinatorics and Probability. Springer, New

York and Vienna.
[16] DURRETT, R. (2010). Random Graph Dynamics (Cambridge Series in Statistical and Probabilistic

Mathematics 20). Cambridge University Press, Cambridge.
[17] GEIGER, J. (1996). Size-biased and conditioned random splitting trees. Stoch. Process. Appl. 65, 187–207.
[18] GEIGER, J. AND KERSTING, G. (1997). Depth-first search of random trees, and Poisson point processes. In

Classical and Modern Branching Processes (Minneapolis, MN, 1994) (IMA Vol. Math. Appl. 84), pp. 111–126.
Springer, New York.

[19] HOLMGREN, C. AND JANSON, S. (2017). Fringe trees, Crump–Mode–Jagers branching processes and m-ary
search trees. Prob. Surv. 14, 53–154.

[20] JAGERS, P. (1975). Branching Processes with Biological Applications (Wiley Series in Probability and
Mathematical Statistics: Applied Probability and Statistics). Wiley-Interscience, London, New York and
Sydney.

[21] JAGERS, P. AND NERMAN, O. (1984). The growth and composition of branching populations. Adv. Appl. Prob.
16, 221–259.

[22] JANSON, S. AND NEININGER, R. (2008). The size of random fragmentation trees. Prob. Theory Related Fields
142, 399–442.

[23] KALLENBERG, O. (2002). Foundations of Modern Probability, 2nd edn (Probability and its Applications (New
York)). Springer, New York.

[24] KOLMOGOROFF, A. N. (1941). Über das logarithmisch normale Verteilungsgesetz der Dimensionen der
Teilchen bei Zerstückelung. C.R. (Doklady) Acad. Sci. URSS (N.S.) 31, 99–101.

[25] LAMBERT, A. (2010). The contour of splitting trees is a Lévy process. Ann. Prob. 38, 348–395.
[26] MAHMOUD, H. M. (1994). A strong law for the height of random binary pyramids. Ann. Appl. Prob. 4,

923–932.
[27] MUNTZ, R. AND UZGALIS, R. (1971). Dynamic storage allocation for binary search trees in a two-level

memory. In Proceedings of 4th Annual Princeton Conference on Information Sciences and Systems, pp.
345–349.

[28] NERMAN, O. (1981). On the convergence of supercritical general (C-M-J) branching processes. Z. Wahrsch.
Verw. Gebiete 57, 365–395.

[29] NERMAN, O. AND JAGERS, P. (1984). The stable double infinite pedigree process of supercritical branching
populations. Z. Wahrsch. Verw. Gebiete 65, 445–460.

[30] PITMAN, J. (1999). Coalescent random forests. J. Combinatorial Theory A 85, 165–193.
[31] PITMAN, J. (2006). Combinatorial Stochastic Processes (Lecture Notes Math. 1875). Springer, Berlin.
[32] PITTEL, B. (1994). Note on the heights of random recursive trees and random m-ary search trees. Random

Structures Algorithms 5, 337–347.
[33] RICHARD, M. (2011). Arbres, processus de branchement non markoviens et processus de Lévy. Doctoral thesis,

Université Pierre et Marie Curie–Paris VI.
[34] RUDAS, A. AND TÓTH, B. (2009). Random tree growth with branching processes: a survey. In Handbook of

Large-Scale Random Networks (Bolyai Soc. Math. Stud. 18), pp. 171–202. Springer, Berlin.
[35] RUDAS, A., TÓTH, B. AND VALKÓ, B. (2007). Random trees and general branching processes. Random

Structures Algorithms 31, 186–202.
[36] SZYMAŃSKI, J. (1987). On a nonuniform random recursive tree. In Random Graphs ’85 (Poznań, 1985) (North-

Holland Math. Stud. 144), pp. 297–306. North-Holland, Amsterdam.
[37] TSIRELSON, B. (2013). From uniform renewal theorem to uniform large and moderate deviations for renewal-

reward processes. Electron. Commun. Prob. 18, 52, 13 pp.

https://doi.org/10.1017/apr.2019.61 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.61

	Introduction and main results
	Crump"2013`Mode"2013`Jagers trees
	Main results

	Proof of Theorem 1
	Applications
	General preferential attachment trees
	The m-ary search tree
	Median-of-(2l+1) binary search tree
	Fragmentation trees
	Homogeneous CMJ-trees

	Proofs of Lemmas 2 and 3
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

