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1. INTRODUCTION

The investigation of the behavior of expectations of order statistics in a random sample
has a long history, since the order statistics have several applications in statistics and
reliability. The earliest results in this direction are those by Placket [24], concerning the
sample range, followed by the well-known papers by Hartley and David [12] and Gumbel
[11], regarding the expected extremes. At those years, a pioneer paper by Moriguti [17]
established a powerful projection method, making possible to evaluate tight expectation
bounds for the nonextreme order statistics in terms of the population mean and variance.
Since then, a large number of generalization extensions and improvements have been found,
including linear estimators from dependent samples (Arnold and Groeneveld [3]; Rychlik
[27,28,29,30]; Balakrishnan [5]; Gascuel and Caraux [10], Papadatos [21]; Papadatos and
Rychlik [23]; Miziula and Navarro [16]), record values and kth records (Raqab [25], Raqab
and Rychlik [26]) as well as distribution bounds (Caraux and Gascuel [7]; Papadatos [22];
Okolewski [18]), to mention a few. The reader is referred to the monographs by Arnold and
Balakrishnan [2]; Rychlik [31]; Ahsanullah and Raqab [1] for a comprehensive presentation
on characterizations and bounds through order statistics and records.

Beyond the well-developed theory on expectation bounds for order statistics and
records, the corresponding theory to other moments does not seem to have received much
attention. Of course, some exceptions exist concerning variances; see, e.g., Papadatos [19];
Jasiński and Rychlik [13,14]; Rychlik [32,33]. The purpose of the present work is to obtain
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tight upper bounds for the moments of a single order statistic from a nonnegative popu-
lation. These bounds are useful at least for reliability systems, since, as is well-known, the
kth order statistic, Xk:n, represents the time-to-failure in a (n + 1 − k)-out-of-n system –
clearly, the individual components cannot have negative lifetimes, hence the assumption of
nonnegativity is natural for this kind of systems.

In general, let X1, . . . , Xn be n iid (independent identically distributed) copies of the
random variable (rv) X and consider the corresponding order statistics X1:n ≤ · · · ≤ Xn:n.
It is well-known that if X is integrable then the same is true for any order statistic Xi:n

(for all n and i). Moreover, an old result by Sen [34] showed that the condition

E|X|δ < ∞ for some δ ∈ (0, 1]

is sufficient for

E|Xi:n| < ∞ for all i with
1
δ
≤ i ≤ n + 1 − 1

δ
.

It is natural to look at similar conditions when X is nonnegative (cf. Papadatos [20]),
since this is the case for several applications including k-out-of-n systems. Hence, the main
purpose of the present work is to obtain best possible bounds for the moments of a single
order statistic from nonnegative populations, in terms of the population mean.

The paper is organized as follows. In Section 2 we provide results on the existence of
moments of a single order statistic in the general (not necessarily identically distributed)
nonnegative independent case. Section 3 presents tight upper bounds for the moments of
the sample minimum in the general independent case, which represents the lifetime of a
serial system with possibly different components. The main results are given in Section 4,
providing tight upper bounds for the moments of order statistics in terms of the population
mean in the independent, identically distributed nonnegative case.

2. EXISTENCE OF MOMENTS IN THE INDEPENDENT CASE

The results of the present section concern the existence of moments in the more general
case where the Xi’s are merely independent. First we have the following result.

Theorem 1: If X1, . . . , Xn are nonnegative independent rv’s with EXi = μi ∈ (0,∞) then

E(Xk:n)n+1−k ≤
∑

1≤i1<···<in+1−k≤n

μi1 · · ·μin+1−k
, k = 1, . . . , n. (1)

The equality in (1) is attainable for k = 1, and is best possible and nonattainable for k ≥ 2.

Proof: Observe that

(Xk:n)n+1−k ≤ Xk:n · · ·Xn:n

≤
∑

1≤i1<···<in+1−k≤n

Xi1:n · · ·Xin+1−k:n

=
∑

1≤i1<···<in+1−k≤n

Xi1 · · ·Xin+1−k
.

Hence, taking expectations and using the fact that the Xi’s are independent, we deduce
(1). We shall now verify that for k ≥ 2 the equality is nonattainable. Indeed, if k ≥ 2, the
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above sum contains at least two summands. Let

Y1 = (Xk:n)n+1−k, Y2 = Xk:n · · ·Xn:n, Y3 =
∑

1≤i1<···<in+1−k≤n

Xi1:n · · ·Xin+1−k:n,

so that Y1 ≤ Y2 ≤ Y3. Assuming equality in (1), that is, EY1 = EY3, we see that E(Y3 −
Y2) = 0. Therefore, taking expectations to the obvious inequalities 0 ≤ (X1:n)n+1−k ≤
X1:n · · ·Xn+1−k:n ≤ Y3 − Y2 (the last one is valid because k ≥ 2), we obtain

0 ≤ E(X1:n)n+1−k ≤ E(Y3 − Y2) = 0.

Hence, X1:n = 0 with probability (w.p.) 1. However, this fact is impossible, since

P(X1:n > 0) = P(X1 > 0, . . . , Xn > 0) =
n∏

j=1

P(Xj > 0) > 0,

because EXi > 0.
We now examine the case of equality. For k = 1, (1) reads as

E(X1:n)n ≤ μ1 · · ·μn,

and it is readily verified that the independent rv’s Xi with P(Xi = M) = μi/M = 1 −
P(Xi = 0) (with M ≥ max{μi}) attain the equality, since P(X1:n = M) = μ1 · · ·μn/Mn =
1 − P(X1:n = 0). We finally show that inequality (1) is best possible for k ≥ 2. Indeed, fix
M ≥ maxi{μi} and, as before, consider independent two-valued rv’s Xi with

P(Xi = 0) = 1 − μi

M
, P(Xi = M) =

μi

M
,

so that EXi = μi for all i. It is easy to see that

P(Xk:n = M) = P(at least n + 1 − k among X1, . . . , Xn are equal to M)

≥ P(exactly n + 1 − k among X1, . . . , Xn are equal to M)

=
∑

1≤i1<···<in+1−k≤n

μi1 · · ·μin+1−k

Mn+1−k

∏
j∈S(i1,...,in+1−k)

(
1 − μj

M

)
,

where S(i1, . . . , in+1−k) = {1, . . . , n} \ {i1, . . . , in+1−k}. The smallest term in the product
is at least 1 − maxi{μi}/M , hence,

P(Xk:n = M) ≥
(

1 − maxi{μi}
M

)k−1 1
Mn+1−k

∑
1≤i1<···<in+1−k≤n

μi1 · · ·μin+1−k
.

It follows that

E(Xk:n)n+1−k = Mn+1−k
P(Xk:n = M)

≥
(

1 − maxi{μi}
M

)k−1 ∑
1≤i1<···<in+1−k≤n

μi1 · · ·μin+1−k

→
∑

1≤i1<···<in+1−k≤n

μi1 · · ·μin+1−k
, as M → ∞,

and the proof is complete. �
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Corollary 1: If μ1 = · · · = μn = μ > 0 (in particular, if the Xi’s are iid), the best possible
upper bound is given by

E(Xk:n)n+1−k ≤
(

n

k − 1

)
μn+1−k, k = 1, . . . , n,

and it is attainable only in the case k = 1.

Corollary 2: If X1, . . . , Xn are nonnegative independent rv’s with EXi < ∞ then
E(Xk:n)n+1−k < ∞. That is, X1:n has finite n-th moment, X2:n has finite (n − 1)-th
moment, . . ., Xn:n has finite first moment.

Finally, a converse to Theorem 1 reads as follows.

Theorem 2: Given μ1, . . . , μn > 0, there are nonnegative independent rv’s X1, . . . , Xn with
EXi = μi for all i and E(Xk:n)n+1−k+δ = ∞ for all k ∈ {1, . . . , n} and for any δ > 0.
Moreover, if μ1 = · · · = μn, the rv’s X1, . . . , Xn can be chosen to be iid.

Proof: For μ > 0 consider the function

Rμ(x) =

⎧⎨
⎩

1, if x ≤ μ/2,
1

(2x/μ)(1 + log(2x/μ))2
if x ≥ μ/2.

It is easy to check that Rμ(x) is a reliability function of an rv, Yμ, say, that is, Yμ ∼ Fμ =
1 − Rμ. Obviously, Yμ is supported in (μ/2,∞) and, moreover, λYμ ∼ Fλμ, λ > 0; hence,

Yμ
d= μY1, where d= denotes equality in distribution. Furthermore,

EY1 =
∫ ∞

0

R1(x)dx =
1
2

+
∫ ∞

1/2

1
2x(1 + log 2x)2

dx =
1
2

+
1
2

∫ ∞

0

1
(1 + t)2

dt = 1,

where we made use of the substitution log 2x = t. For any α > 0, a similar calculation yields

E(Y1)α = α

∫ ∞

0

xα−1R1(x)dx =
1
2α

+
α

2α

∫ ∞

0

e−(1−α)t

(1 + t)2
dt;

note that this formula holds even if (Y1)α is nonintegrable (see, e.g., Jones and Balakrishnan
[15]). Hence, E(Y1)α < ∞ if and only if α ∈ (0, 1].

Without loss of generality assume that 0 < μ1 ≤ · · · ≤ μn and consider the independent
rv’s X1, . . . , Xn with Xi

d= μiY1, i = 1, . . . , n. It is clear that the Xi’s are iid if and only
if the μi’s are all equal. Moreover, consider the iid rv’s Z1, . . . , Zn with Zi = (μ1/μi)Xi,
i = 1, . . . , n. Since the function (x1, . . . , xn) �→ xk:n(x1, . . . , xn) is nondecreasing in its
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arguments and Zi ≤ Xi, we have

Zk:n ≤ Xk:n, k = 1, . . . , n.

Hence, it suffices to show that E(Zk:n)n+1−k+δ = ∞ for δ > 0. To this end, observe that the
Zi’s are iid from Fμ1 and

P(Zk:n > x) =
n∑

j=n+1−k

(
n

j

)
Rμ1(x)jFμ1(x)n−j ≥

(
n

k − 1

)
Rμ1(x)n+1−kFμ1(x)k−1;

the lower bound is just the first term of the sum. Therefore, since Fμ1(x) > 1/2 for x ≥ μ1,
we have

E(Zk:n)n+1−k+δ = (n + 1 − k + δ)
∫ ∞

0

xn−k+δ
P(Zk:n > x)dx

≥ n + 1 − k + δ

2k−1

(
n

k − 1

)∫ ∞

μ1

xn−k+δRμ1(x)n+1−kdx

=
(n + 1 − k + δ)(μ1)n+1−k+δ

2n+δ

(
n

k − 1

)∫ ∞

log 2

eδt

(1 + t)2(n+1−k)
dt

= ∞,

completing the proof. �

3. MOMENT BOUNDS FOR THE MINIMUM IN THE INDEPENDENT CASE

Through this section we assume that X1, . . . , Xn are independent, nonnegative rv’s with
finite means EXi = μi > 0 (i = 1, . . . , n), and we set X1:n = min{X1, . . . , Xn}. Our pur-
pose is to derive best possible upper bounds for the moments of X1:n, and to provide the
populations that attain the bounds. Reformulating Theorem 1 for k = 1 we get:

Theorem 3: The random variable X1:n has finite n-th moment and, moreover, the
inequality

E(X1:n)n ≤ μ1 · · ·μn (2)

is valid, with equality if and only

P(Xi = M) =
μi

M
= 1 − P(Xi = 0), i = 1, . . . , n,

for some M ≥ maxi{μi}.

Proof: The inequality (2) is the same as (1) for k = 1, obtained by taking expectations to
the obvious (deterministic) inequality

(X1:n)n ≤ X1 · · ·Xn.

Moreover, observe that X1 · · ·Xn = X1:n · · ·Xn:n, where X1:n ≤ · · · ≤ Xn:n are the corre-
sponding order statistics of X1, . . . , Xn. Thus, for the equality to hold, it is necessary and
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sufficient that
E[X1:n(X2:n · · ·Xn:n − (X1:n)n−1)] = 0.

This implies the relation

P({X1:n = 0} ∪ {X1 = · · · = Xn > 0}) = 1. (3)

Let pi = P(Xi > 0) > 0 (since μi > 0). It follows that P(X1:n > 0) =
∏n

i=1 pi > 0 and, from
(3),

P(X1 = · · · = Xn > 0 | X1:n > 0) = 1. (4)

Define now the independent rv’s Yi with Yi
d= (Xi | Xi > 0); that is, FYi

(y) = (FXi
(y) −

1 + pi)/pi, y ≥ 0. Then (4) reads as P(Y1 = · · · = Yn) = 1 and, by the independence of Yi, it
follows that we can find a constant M > 0 such that P(Yi = M) = 1 for all i; hence, P(Xi =
0) + P(Xi = M) = 1. From μi = EXi = Mpi we get pi = μi/M and, thus, M ≥ maxi{μi}.
As a final check, it is easily verified that the rv’s Xi with P(Xi = M) = μi/M = 1 − P(Xi =
0) attain the equality in (2). �

Remark 1: Applied to the case of sample minimum (k = 1), Theorem 2 yields the follow-
ing result: For given strictly positive numbers μ1, . . . , μn (n ≥ 2) we can find independent
nonnegative rv’s X1, . . . , Xn such that

EXi = μi (i = 1, . . . , n) and E(X1:n)n+δ = ∞ for all δ ∈ (0,∞).

Furthermore, if μ1 = · · · = μn, the rv’s X1, . . . , Xn can be chosen to be iid.

Therefore, in the particular iid case we have obtained the following corollary.

Corollary 3: Let X be a nonnegative rv with EX = μ ∈ (0,∞), and assume that
X1, . . . , Xn (n ≥ 2) are iid rv’s distributed like X. Then, the random variable X1:n =
min{X1, . . . , Xn} has finite n-th moment. Moreover, the inequality

E(X1:n)n ≤ μn (5)

holds true, and the equality is attained if and only if P(X = μ/p) = p = 1 − P(X = 0) for
some p ∈ (0, 1].

Remark 2: Corollary 3 can be viewed in another form, as follows: If X is a nonnegative
rv with EX1/n < ∞ for some n, then the minimum X1:N is integrable for all N ≥ n, and,
moreover,

EX1:N ≤ EX1:n ≤ (EX1/n)n, N ≥ n.

Note that, for any N ≥ n, the upper bound (EX1/n)n is best possible for EX1:N ; this
happens because we did not exclude a degenerate rv X.

Remark 3: The result of Corollary 3 cannot be extended to any higher moment; see
Remark 1. A somewhat more direct computation is as follows: consider the rv X with df

F (x) = 1 − e
x(log x)2

, x ≥ e.

Using the well-known formula

EX =
∫ ∞

0

(1 − F (t))dt, (6)

which is valid for any nonnegative rv, it is easily seen that EX = 2e < ∞. Also, since for
any δ ∈ (0,∞) and n ∈ {2, 3, . . .}, the df of (X1:n)n+δ is 1 − (1 − F (t1/(n+δ)))n, t ≥ 0, (6)

https://doi.org/10.1017/S0269964819000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964819000287


322 Nickos Papadatos

yields

E(X1:n)n+δ = (n + δ)
∫ ∞

0

xn+δ−1(1 − F (x))ndx ≥
∫ ∞

e

(n + δ)en

x1−δ(log x)2n
dx = ∞.

It is clear that for arbitrary μ > 0, the rv Y = μX/(2e) ≥ 0 has mean μ, and the rv (Y1:n)n+δ

is nonintegrable for any δ ∈ (0,∞) and for any n ∈ {2, 3, . . .}.
Remark 4: Corollary 3 yields the best upper bound for any fractional moment of X1:n as
follows: Since x �→ xp (0 < p < 1) is concave in [0,∞), Jensen (or Lyapounov) inequality,
combined with (5), yields

E(X1:n)α = E[((X1:n)n)α/n] ≤ (E(X1:n)n)α/n ≤ μα, 0 < α ≤ n.

The upper bound μα is clearly best possible, since it is attained (uniquely, unless α = n)
by a degenerate X at μ.

It became clear from Remarks 1 and 3 that we cannot hope for finiteness of moments
of order higher than n (for X1:n) without additional assumptions. It is, thus, desirable, to
derive upper bounds for lower moments. Indeed, turning to the general independent case
we have the following result.

Theorem 4: Let X1, . . . , Xn be independent, nonnegative, rv’s with finite expectations
EXi = μi > 0 and, without loss of generality, assume that 0 < μ1 ≤ μ2 ≤ · · · ≤ μn. Then,
for every α ∈ (0, n] we have

E(X1:n)α ≤ μ1 · · ·μk−1(μk)α−k+1, α ∈ (k − 1, k], k = 1, . . . , n. (7)

The bound is best possible, since the equality is attained by the independent rv’s Xi with

P(Xi = μk) = μi

μk
= 1 − P(Xi = 0), i = 1, . . . , k,

P(Xi = μi) = 1, i = k + 1, . . . , n,
(8)

where k ∈ {1, . . . , n} is the unique integer such that k − 1 < α ≤ k.

Proof: Since it is easily checked that the rv’s in (8) attain the equality in (7), we pro-
ceed to verify the inequality (7). To this end, fix α ∈ (k − 1, k] and consider the following
deterministic inequalities, valid for Xi ≥ 0:

min{X1, . . . , Xn} ≤ X1

min{X1, . . . , Xn} ≤ X2

...

min{X1, . . . , Xn} ≤ Xk−1

(min{X1, . . . , Xn})α−(k−1) ≤ (Xk)α−(k−1).

Multiplying, we get
(X1:n)α ≤ X1 · · ·Xk−1(Xk)α−k+1. (9)

Hence, taking expectations in (9) and using independence, we deduce the inequality

E(X1:n)α ≤ μ1 · · ·μk−1E(Xk)α−k+1.

Finally, since 0 < α − k + 1 ≤ 1, the function x �→ xα−k+1 is concave in [0,∞), and Jensen
(or Lyapounov) inequality yields (7). �
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Notice that the inequality (9) shows that (X1:n)α (for α ∈ (k − 1, k]) is integrable even
if μk+1 = ∞. This is explained from the fact that X1:n ≤ min{X1, . . . , Xk} and, by Theorem
3, X1:k has finite k-th (hence α-th) moment. Note also that (7) yields Remark 4 for the iid
case.

4. MOMENT BOUNDS FOR THE INDEPENDENT, IDENTICALLY DISTRIBUTED
CASE

In this section we assume that X1, . . . , Xn are iid nonnegative rv’s distributed like X, and
EX = μ is nonzero and finite. Our purpose is to derive the best possible upper bounds
for the moments E(Xk:n)α, for α > 0; however, due to Theorems 1 and 2, we see that the
problem is meaningful only for α ∈ (0, n + 1 − k]. Note that Papadatos [20] treats the case
α = 1, which, as we shall see below, is a boundary case between α < 1 and α > 1. Also, we
shall obtain the populations that attain the equality in the bounds.

We first prove some auxiliary results. In the following lemma we consider the usual
Borel space

L1(0, 1) =
{

g : (0, 1) → R, g is Borel,
∫ 1

0

|g(t)|dt < ∞
}

,

where two functions that differ at a set of Lebesgue measure zero are considered as equal.

Lemma 1: Let α > 1. If a function g : (0, 1) → [0,∞) is nondecreasing and belongs to
L1(0, 1), then

α

∫ 1

0

(1 − t)α−1g(t)αdt ≤
(∫ 1

0

g(t)dt

)α

, (10)

and the equality holds if either g is constant or

g(t) =
{

0, 0 < t ≤ t0,
θ, t0 < t < 1,

for some t0 ∈ (0, 1) and some θ > 0.

Proof: It is obvious that any constant function attains the equality in (10), and the same
is true for the function g(t) = θI(t0,1)(t), resulting in the identity θα(1 − t0)α = (θ(1 − t0))α.
To prove the inequality, assume first that g is simple nonnegative and nondecreasing, that
is,

g(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δ1, t ∈ (0, s1],
δ1 + δ2, t ∈ (s1, s2],
...
δ1 + δ2 + · · · + δk, t ∈ (sk−1, 1),

where δi ≥ 0 and 0 < s1 < · · · < sk−1 < 1. Note that the value of g at the end-points do
not affect the value of the integrals, so we have assumed that g is left-continuous. With the
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notation s0 = 0, sk = 1, it is easily seen that∫ 1

0

g(t)dt =
k∑

j=1

(sj − sj−1)(δ1 + · · · + δj) =
k∑

j=1

(1 − sj−1)δj .

Similarly,

α

∫ 1

0

(1 − t)α−1g(t)αdt = (δ1)α +
k−1∑
j=1

(1 − sj)α [(δ1 + · · · + δj+1)α − (δ1 + · · · + δj)α] .

Therefore, (10) for simple functions reduces to the inequality⎛
⎝ k∑

j=1

(1 − sj−1)δj

⎞
⎠

α

− (δ1)α −
k−1∑
j=1

(1 − sj)α [(δ1 + · · · + δj+1)α − (δ1 + · · · + δj)α] ≥ 0

(11)
for k ≥ 2, 0 = s0 < s1 < · · · < sk−1 < sk = 1 and δj ≥ 0 (j = 1, . . . , k). Note that k = 1
leads to the constant function g ≡ δ1, and in this case we have equality in (10). We shall
show (11) using induction on k. For k = 2, (11) reads as

f(δ2) := [δ1 + (1 − s1)δ2]α − (δ1)α − (1 − s1)α [(δ1 + δ2)α − (δ1)α] ≥ 0.

However, this follows easily because f(0) = 0 and

f ′(δ2) = α(1 − s1)
[
(δ1 + (1 − s1)δ2)α−1 − ((1 − s1)δ1 + (1 − s1)δ2)α−1

] ≥ 0,

since α > 1 and δ1 + (1 − s1)δ2 ≥ (1 − s1)δ1 + (1 − s1)δ2. Assuming that (11) holds for
some k ≥ 2, we shall verify it for k + 1. Set

f(δk+1) :=

⎛
⎝k+1∑

j=1

(1 − sj−1)δj

⎞
⎠

α

− (δ1)α

−
k∑

j=1

(1 − sj)α [(δ1 + · · · + δj+1)α − (δ1 + · · · + δj)α] .

It is easily seen that f(0) ≥ 0, due to the induction argument. Moreover,

f ′(δk+1) = α(1 − sk)

⎡
⎢⎣
⎛
⎝k+1∑

j=1

(1 − sj−1)δj

⎞
⎠

α−1

−
⎛
⎝k+1∑

j=1

(1 − sk)δj

⎞
⎠

α−1
⎤
⎥⎦ ≥ 0,

since α > 1 and
∑k+1

j=1 (1 − sj−1)δj ≥ ∑k+1
j=1 (1 − sk)δj . Hence, (11) is valid for simple

functions. If g ≥ 0 is an arbitrary nondecreasing left-continuous function, we can use
standard arguments to find simple functions gn such that gn ↗ g pointwise. Then,
α(1 − t)α−1gn(t) ↗ α(1 − t)α−1g(t) and, by Lebesgue’s monotone convergence theorem and
(11) we get

α

∫ 1

0

(1 − t)α−1g(t)αdt = lim
n

{
α

∫ 1

0

(1 − t)α−1gn(t)αdt

}

≤ lim
n

(∫ 1

0

gn(t)dt

)α

=
(

lim
n

∫ 1

0

gn(t)dt

)α

=
(∫ 1

0

g(t)dt

)α

,

completing the proof. �
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Corollary 4: Let F be a distribution function of a nonnegative rv X with mean μ ∈
(0,∞). Then, for all α > 1,

α

∫ ∞

0

xα−1(1 − F (x))αdx ≤
(∫ ∞

0

(1 − F (x))dx

)α

,

and the equality is attained if X assumes two values, one of which is zero.

Proof: It is trivial to check that any distribution function (df) F (x) that is constant in
[0, x0) and equals to one in [x0,∞) attains the equality. We now verify the inequality.
Note that for integral values of α > 1, say α = n, it becomes obvious if we consider the rv
X1:n = min{X1, . . . , Xn}, where X1, . . . , Xn are iid with df equal F . Then,

E(X1:n)n ≤ E(X1:n · · ·Xn:n) = E(X1 · · ·Xn) = μn,

and this inequality is equivalent to the desired one for α = n. However, this simple argu-
ment is not sufficient to prove the result for nonintegral values of α > 1. In order to verify
the inequality in its general form, let F−1(u) = inf{x : F (x) ≥ u}, 0 < u < 1, be the left-
continuous inverse of F . Moreover, consider an rv Yα with df Fα(x) = 1 − (1 − F (x))α. It
is easy to see that F−1

α (u) = F−1(1 − (1 − u)1/α). Hence, from Lemma 1 with g = F−1,

E(Yα)α =
∫ 1

0

(F−1
α (u))αdu = α

∫ 1

0

(1 − t)α−1(F−1(t))αdt ≤
(∫ 1

0

F−1(t)dt

)α

= μα,

where we used the substitution t = 1 − (1 − u)1/α. Moreover, since

E(Yα)α = α

∫ ∞

0

xα−1(1 − F (x))αdx and μα =
(∫ ∞

0

(1 − F (x))dx

)α

,

the result is proved. �

Lemma 2: Let n ≥ 3, k ∈ {2, . . . , n − 1} and α ∈ [1, n + 1 − k). Let also

Gk:n(x) =
n∑

j=k

(
n

j

)
xj(1 − x)n−j , 0 ≤ x ≤ 1, (12)

be the df of Uk:n from an iid sample U1, . . . , Un from the standard uniform df, and

gk:n(x) = G′
k:n(x) =

1
B(k, n + 1 − k)

xk−1(1 − x)n−k, 0 < x < 1, (13)

the corresponding Beta density function. Then,

1 − Gk:n(x) ≤ Ak:n(α)(1 − x)α, 0 ≤ x ≤ 1, (14)

where

Ak:n(α) =
1 − Gk:n(ρ)

(1 − ρ)α
(15)

and ρ = ρk:n(α) is the unique solution to the equation

α(1 − Gk:n(ρ)) = (1 − ρ)gk:n(ρ), 0 < ρ < 1. (16)

The equality in (14) is attained if and only if x = ρ or x = 1.
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Proof: Define the function

h(x) =
1 − Gk:n(x)

(1 − x)α
, 0 ≤ x ≤ 1.

where the value at x = 1 is defined by continuity: h(1) = 0. We have h(0) = 1, h(1) = 0 and

h′(x) = (1 − x)−α−1(α(1 − Gk:n(x)) − (1 − x)gk:n(x)), 0 < x < 1.

Setting t(x) = α(1 − Gk:n(x)) − (1 − x)gk:n(x), we calculate

t′(x) =
gk:n(x)

x
((n − α)x − (k − 1)).

This shows that t(x) is strictly decreasing in (0, (k − 1)/(n − α)] and strictly increasing
in [(k − 1)/(n − α), 1). Since t(0) > 0 and t(1) = 0, the function t has a global negative
minimum at (k − 1)/(n − α) and, therefore, there exists a ρ ∈ (0, (k − 1)/(n − α)) such that
t(x) > 0 for x ∈ (0, ρ) and t(x) < 0 for x ∈ (ρ, 1). Since h′(x) = t(x)/(1 − x)α+1, we see that
the function h is strictly increasing in (0, ρ) and strictly decreasing in (ρ, 1), attaining its
global maximum at x = ρ, where ρ is the unique root of (16). �

Remark 5: Due to (16), we can write Ak:n(α) = gk:n(ρ)/[α(1 − ρ)α−1].

We can now state and prove the main result for the moments of the nonextreme order
statistics.

Theorem 5: Let X1, . . . , Xn (n ≥ 3) be iid nonnegative rv’s with mean μ ∈ (0,∞). Then,
for any k ∈ {2, . . . , n − 1} and α ∈ [1, n + 1 − k),

E(Xk:n)α ≤ Ak:n(α) μα, (17)

where Ak:n(α) is given by (15). The equality in (17) is attained if and only if P(Xi = 0) = ρ,
P(Xi = μ/(1 − ρ)) = 1 − ρ, where ρ = ρk:n(α) is given by (16).

Proof: If F is the df of the Xi’s then Gk:n ◦ F is the df of Xk:n (see David [8]; Arnold et
al. [4]; David and Nagaraja [9]). Therefore,

E(Xk:n)α = α

∫ ∞

0

xα−1(1 − Gk:n(F (x)))dx

≤ Ak:n(α)α
∫ ∞

0

xα−1(1 − F (x))αdx

≤ Ak:n(α)
(∫ ∞

0

(1 − F (x))dx

)α

= Ak:n(α) μα,

where the first inequality follows from Lemma 2 and the second one from Corollary 4. In
order to have equality in (17), it is necessary and sufficient that the set {F (x), 0 < x < ∞}
coincides with {ρ, 1} (see (16) and Corollary 4). Therefore, X1 assumes the value 0 w.p. ρ and
a positive value x0 w.p. 1 − ρ. Finally, the condition EX1 = μ shows that x0 = μ/(1 − ρ),
completing the proof. �

Remark 6: Note that for k = n the interval [1, n + 1 − k) is empty, and so this case is
not treated by Theorem 5. For α = 1 the bounds coincide with the upper bounds given
in Papadatos [20], Theorem 2.1.
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Example 1: For k = 2, n ≥ 3, one finds

ρ =
α

(n − 1)(n − α)
and A2:n(α) =

(
1 +

α

n − α

)n−α (
1 − α

n − 1

)n−1−α

,

1 ≤ α < n − 1. It is easy to verify that

A2:n(α) = 1 +
α2

2n2
+ o(n−2) as n → ∞.

Closed forms can be found for k = 3 too; then (16) is reduced to a second degree polynomial
equation (see Balakrishnan [6]).

We now turn to the case 0 < α < 1, showing the following result.

Theorem 6: Let X1, . . . , Xn be iid nonnegative rv’s with mean μ ∈ (0,∞). If n ≥ 2 and
k ∈ {2, . . . , n}, then

E(Xk:n)α ≤ Ak:n(α) μα, 0 < α < 1, (18)

where

Ak:n(α) =
(∫ 1

0

gk:n(u)1/(1−α)du

)1−α

(19)

and gk:n is the derivative of Gk:n, the greatest convex minorant of the function Gk:n given
in (12). The equality in (18) is attained if and only if the inverse df of X1 is given by

F−1(u) = μ gk:n(u)1/(1−α)
/∫ 1

0

gk:n(t)1/(1−α)dt, 0 < u < 1. (20)

Proof: We shall apply a slight variation of the pioneer projection method due to Moriguti
[17]. Since Xk:n

d= F−1(Uk:n) where Uk:n is the k-th order statistic from the standard
uniform df, we have (see Moriguti [17]; Rychlik [31]; Ahsanullah and Raqab [1], Lemma
3.1.1)

E(Xk:n)α =
∫ 1

0

gk:n(u)F−1(u)αdu ≤
∫ 1

0

gk:n(u)F−1(u)αdu,

by Moriguti’s inequality (the function (F−1)α is, clearly, nondecreasing). Applying Hölder’s
inequality, ∫

fg ≤ (∫
fp

)1/p (∫
gq

)1/q (p, q > 1, 1/p + 1/q = 1),

to the last integral, with f = gk:n, g = (F−1)α, p = 1/(1 − α) > 1 and q = 1/α > 1, we
obtain the inequality

∫ 1

0

gk:n(u)F−1(u)αdu ≤
(∫ 1

0

gk:n(u)1/(1−α)du

)1−α (∫ 1

0

F−1(u)du

)α

,

which verifies (18). We now examine the case of equality: it is well-known that for the Hölder
inequality to hold as equality it is necessary and sufficient that gq = c fp for some c ≥ 0
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(note that f, g ≥ 0 in our case); that is, F−1(u) = c gk:n(u)1/(1−α). Taking into account the
condition EX1 = μ we get

μ =
∫ 1

0

F−1(t)dt = c

∫ 1

0

gk:n(t)1/(1−α)dt.

Therefore, c is unique and, consequently, F is unique and its distribution inverse is given by
(20). Finally, observe that with this choice of F−1, the equality is also attained in Moriguti’s
inequality, because F−1 is constant in the interval where Gk:n < Gk:n. �

Remark 7: It is known that for n ≥ 3 and k ∈ {2, . . . , n − 1},
gk:n(u) = gk:n(min{u, ρ}), 0 < u < 1,

where ρ = ρk:n is the unique root to the equation

1 − Gk:n(ρ) = (1 − ρ)gk:n(ρ), 0 < ρ < 1,

and gk:n, Gk:n are given by (13) and (12), respectively (see, e.g., Rychlik [31]).

Remark 8: For k = n ≥ 2 the optimal bound (18) for the maximum reads as

E(Xn:n)α ≤ n

(
1 − α

n − α

)1−α

μα, 0 < α < 1.

This is so because Gn:n(u) = Gn:n(u) = un and gn:n(u) = gn:n(u) = nun−1. Therefore, the
optimal population is given by

F−1(u) = μ

(
n − α

1 − α

)
u(n−1)/(1−α), 0 < u < 1,

and this corresponds to a power-type distribution function:

F (x) =
(

(1 − α)x
(n − α)μ

)(1−α)/(n−1)

, 0 ≤ x ≤ n − α

1 − α
μ.

It is worth pointing out that limα↗1 n((1 − α)/(n − α))1−α = n, yielding the best possible
nonattainable bound EXn:n ≤ nμ (see Corollary 1).

Example 2: Due to a result of Balakrishnan [6], the value of ρ2:n can be calculated in a
closed form. In fact, ρ2:n = 1/(n − 1)2 and, consequently,

g2:n(u) =

{
n(n − 1)u(1 − u)n−2, 0 < u ≤ 1

(n−1)2 ,

n(n − 1)ρ2:n(1 − ρ2:n)n−2 = nn−1(n−2)n−2

(n−1)2n−3 , 1
(n−1)2 ≤ u < 1.

Hence, for n ≥ 3, (19) reads as

A2:n(α) = n(n − 1)
{

ρ
1/(1−α)
2:n (1 − ρ2:n)(n−1−α)/(1−α)

+
∫ ρ2:n

0

u1/(1−α)(1 − u)(n−2)/(1−α)du

}1−α

, 0 < α < 1.

This expression should be compared to the corresponding one in Example 1, highlighting
the different nature of the cases α < 1, α ≥ 1.
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