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Metabolic syndrome is linked to the consumption of fructose-rich diets. Nutritional and pharmacological interventions perinatally can cause epigenetic
changes that programme an individual to predispose or protect them from the development of metabolic diseases later.Hibiscus sabdariffa (HS) reportedly
has anti-obesity and hypocholesterolaemic properties in adults.We investigated the impact of neonatal intake of HS on the programming of metabolism by
fructose. A total of 85 4-day-old Sprague Dawley rats were divided randomly into three groups. The control group (n = 27, 12males, 15 females) received
distilled water at 10ml/kg body weight. The other groups received either 50mg/kg (n = 30, 13 males, 17 females) or 500mg/kg (n = 28, 11 males, 17
females) of an HS aqueous calyx extract orally till postnatal day (PND) 14. There was no intervention from PND 14 to PND 21 when the pups were
weaned. The rats in each group were then divided into two groups; one continued on a normal diet and the other received fructose (20% w/v) in their
drinking water for 30 days. The female rats that were administered with HS aqueous calyx extract as neonates were protected against fructose-induced
hypertriglyceridaemia and increased liver lipid deposition. The early administration of HS resulted in a significant (P⩽0.05) increase in plasma cholesterol
concentrations with or without a secondary fructose insult. In males, HS prevented the development of fructose-induced hypercholesterolaemia.
The potential beneficial and detrimental effects of neonatal HS administration on the programming of metabolism in rats need to be considered in the
long-term well-being of children.

Received 18 August 2016; Revised 18 May 2017; Accepted 18 May 2017; First published online 19 June 2017

Key words: dyslipidaemia, fructose, Hibiscus sabdariffa, metabolic syndrome, neonate

Introduction

Worldwide, there is a rise in the incidence of metabolic
syndrome and it is affecting all age groups.1,2 Poor dietary
choices and adoption of sedentary lifestyles have been linked to
this phenomenon. There is abundant evidence from epidemio-
logical studies linking events in the early perinatal period to adult
metabolic diseases – a phenomenon called ‘neonatal metabolic
programming’.3–5 This concept was first mooted by Hales and
Barker6 when they proposed the ‘thrifty phenotype’ hypothesis
suggesting that the fetus develops adaptations to survive in an
unfavourable environment in utero. These adaptations would
later help the individual to survive similar situations postpartum.
The perinatal period represents a critical window of develop-
mental plasticity. Recent research has shown that it is possible to
manipulate the perinatal environment using pharmacological,
nutritional or other stressor interventions causing epigenetic
changes which may have long-lasting effects that influence
metabolic health in later life.7 The consumption of a high-calorie
diet by mothers during pregnancy and/or the early neonatal
period has been shown to predispose the offspring to the

development of obesity in adulthood.8,9 The lactation period
in rats and similar altricial species is an important window for
epigenetic modifications, because it is characterized by rapid
development and maturation of organ systems.10 The gut
microbiota plays a critical role in nutrient digestion, absorption and
energy distribution.11 Nutritional pertubations during this period
when the gut microbiota is being established alter the microbiota
and subsequently affect the metabolism of the individual.11

Similarly, in altricial neonates consumption of high-calorie diets
can also predispose them to metabolic dysfunction later in life.12,13

The early life experiences do not always end up in negative
outcomes. For example, oral administration of leptin to suckling
male rats was shown to prevent the development of obesity in later
life as a positive outcome on metabolic health.14 The neonatal
period is thus a potential target for prophylatic interventions
causing epigenetic changes with long-lasting effects.
The global epidemic of obesity has been partly attributed to

the consumption of high-fructose diets.15 Fructose feeding
in rats causes increased body mass and reduced glucose toler-
ance.16 The magnitude of effect is, however, dependent on the
sex and stage of maturity of the rats at which fructose is intro-
duced.17 Younger animals tend to have some protective
mechanisms against fructose-induced metabolic syndrome.18

Female rats appear to be protected by their sex hormones
from manifesting metabolic dysfunction associated with a
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high-fructose diet.19,20 However, Korićanac et al.21 showed
that female rats were only less susceptible to blood pressure
and insulin action but developed decreased glycaemia,
hypertriglyceridaemia and increased visceral adiposity follow-
ing a high-fructose diet. The male rats on the other hand,
were more susceptible to blood pressure effects and insulin
sensitivity.21 Fructose suppresses leptin synthesis thereby
inhibiting satiety and increasing caloric intake and hence
weight gain.22

Hibiscus sabdariffa (HS) is a plant of the Malvaceae family23 that
is consumed by all age groups for recreational and medicinal
purposes. Its calyces are boiled and processed into a local drink
known as ‘sobo’ in Nigeria24 and ‘agua de Jamaica’ in Mexico.25

HS calyces are used to treat cardiac ailments and induce
diuresis.26,27 In North Africa, the calyces are used as a remedy for
cough, sore throats and genital problems.26,27 HS calyces have
been shown to have anti-obesity,25,28,29 anti-hypertensive,30,31

hypoglycaemic,32,33 hypocholesterolaemic34,35 and anti-cancer
effects.36 The safety profile of HS extracts has been studied
extensively and it is generally safe to drink without adverse effects
to health.30,37,38 The doses of HS used in this present study (50
and 500mg/kg) were within the range used by other researchers
in metabolic studies without recording adverse effects on
health.30,37,38

Despite HS aqueous calyx extracts being shown to
have therapeutic effects in metabolic conditions; they have
not been used in neonates especially in altricial species like
rats where the neonatal period is characterized by develop-
mental plasticity, and is thus a good target for epigenetic
modifications for the prevention of those conditions. In
this present study, we aimed to investigate whether HS
aqueous calyx extracts administered to neonates during
lactation would affect the response of the rats to a fructose-rich
diet later in life.

Materials and methods

The protocols used in this study were as approved by the
Animal Ethics Screening Committee of the University of the
Witwatersrand, Johannesburg (Certificate reference number:
AESC/2013/46/05).

Plant source, identification and extraction

Dried HS calyces were purchased at the Central market in
Sokoto, North Western Nigeria (coordinates: 13°05'N 05°
15'E). They were identified by Halilu E. Mshelia of the
Department of Pharmacognosy and Ethnopharmacy, Faculty
of Pharmaceutical Sciences, Usmanu Danfodiyo University,
Sokoto and a voucher specimen was deposited at the herbarium
(PCG/UDUS/Malv/0001). The calyces were then exported to
the University of the Witwatersrand, Johannesburg in the
Republic of South Africa, where the animal studies were
carried out.
The dried calyces were ground to a fine powder using a

blender (Waring®, USA); 210 g of the calyx powder were
extracted in 1400ml of distilled water (DW) at 95°C for 2 h.34

The extracted solution was then filtered through Whatman
1 filter paper. The filtrate was concentrated using a rotor
evaporator (Labocon (Pty) Ltd, Krugersdorp, South Africa) and
dried in an oven (Salvis®; Salvis Lab, Schweiz, Switzerland) at
40°C.39 The dry extracts powder was collected and stored in
dark, tightly sealed glass vials at 4°C for future use.34,40

Study design

A total of 85 4-day-old Sprague Dawley pups from nine dams
that were sourced from the Central Animal Services, University
of the Witwatersrand, were used in this study which was
conducted in three stages. A schematic diagram of the study is

Fig. 1. Schematic diagram of the study design. NRC, normal rat chow; PTW, plain tap water; FW, fructose water w/v; LHS, low-dose
Hibiscus sabdariffa (HS); HHS, high-dose HS; P, postpartum day.
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shown in Fig. 1. In the first stage, the pups were randomly
assigned to three treatment groups using a split-litter pattern.

The first group, the control group (n = 27, 12males, 15
females) received 10ml/kg of DW. The second group (n = 30,
13 males, 17 females) received 50mg/kg of aqueous HS calyx
extracts, whereas the third group (n = 28, 11males, 17 females)
received 500mg/kg of aqueous HS calyx extract. All the treat-
ments in this phase were administered via orogastric gavage for
9 consecutive days till postnatal day (PND) 14, whichmarked the
beginning of the second stage. The interventions in the first stage
were stopped on PND 14 to eliminate the effects of exploratory
feeding by the pups when their eyes become opened. During the
second stage of the study, the pups continued to nurse with their
dams till PND 21 when they were weaned. The dams were
returned to stock and the pups were then housed individually in
perspex cages lined with wood shavings. The ambient tempera-
ture was maintained at 26± 2°C with adequate ventilation and
12-h light cycle (lights on at 0700–1900 h).

In the third stage of the study, the pups in each of the three
treatment groups were further sub-divided into two groups;
one that continued on tap water (TW) as their drinking water
and another that received fructose solution (20% w/v) only as
their drinking fluid throughout the rest of the duration of the
study. The groups were as follows:

I. DW+TW = 10ml/kg of DW in the first stage and TW
in the second and third stages.

II. DW+ fructose water (FW) = 10ml/kg of DW in the first
stage, TW in the second stage and 20% fructose (w/v) in
their drinking water in the third stage.

III. Low-dose HS (LHS)+TW=50mg/kg HS aqueous calyx
extract in the first stage andTW in the second and third stages.

IV. LHS+ FW = 50mg/kg HS aqueous calyx extract in the
first stage, TW in the second stage and 20% fructose (w/v)
in their drinking water in the third stage.

V. High-dose HS (HHS)+TW = 500mg/kg of HS aqu-
eous calyx extract in the first stage and TW in the second
and third stages.

VI. HHS+ FW = 500mg/kg of HS aqueous calyx extract in
the first stage, TW in the second stage and 20% fructose
(w/v) in the third stage.

In the first stage, the pups were weighed daily to ensure uni-
form dosing and to monitor growth performance, whereas in the
second and third stages, the rats were weighed twice weekly.

Oral glucose tolerance test (OGTT)

On PND 49, the rats were subjected to an OGTT as described
by Chaturvedi et al.41 The rats were fasted overnight and then
on the morning of the test, they were placed in perpex restrai-
ners. Fasting blood glucose concentrations were determined
before the rats were administered with 2 g/kg of a 50% glucose
solution via oral gavage. Serial blood glucose concentrations
were then determined at 15, 30, 60 and 120min post-gavage
using a calibrated glucometer.

Terminal procedures

The rats were euthanased 48 h after the OGTT by intra-
peritoneal injection of sodium pentobarbitone (150mg/kg,
Euthapent; Kyron laboratories South Africa). Blood was
collected by cardiac puncture and then transferred into
heparinized tubes. The blood samples were centrifuged at 4000 g
at 4°C in a SorvallRT 6000B centrifuge (Du pont, USA) for
15min following which the plasma was collected and stored at
−20°C until the clinical biochemical parameters were assayed.
The liver was removed, weighed and then stored in a freezer

(Haier Biomedical, China) at −20°C for future determination
of hepatic lipids and glycogen content. The abdominal visceral
fat pad was also removed and weighed.

Determination of long bone parameters

The right hind limbs of the carcasses were carefully removed
and the femur and tibia were cleaned of all flesh with a scalpel
blade and a pair of scissors. The de-fleshed bones were then
dried in an oven (Salvis®) at 50°C for 7 days until their dry
mass was constant. Thereafter the bone lengths were measured
as an indicator of linear growth. The bone mass was measured
to calculate bone density.

Determination of surrogate markers of health

The stored plasma samples were used to determine the
concentration of alanine transaminase (ALT) and alkaline
phosphatase (ALP) as surrogate markers of health using a
calibrated colorimetric chemistry analyser (IDEXX Vet Test,
the Netherlands). Plasma triglyceride concentrations were
determined using a calibrated TG-meter (Accutrend® Plus;
Roche, Mannheim, Germany).

Determination of plasma insulin concentration and
computation of homoeostatic model of insulin resistance
(HOMA-IR)

Plasma insulin concentration was determined using a com-
mercial sandwich enzyme-linked immunosorbent assay kit
(DRG® Rat Insulin, High range, USA) and the HOMA IR was
computed using the formula provided by Matthews et al.42

Determination of hepatic metabolic substrates storage

Hepatic storage of lipids was determined by solvent extraction
as described by Bligh and Dyer,43 whereas hepatic glycogen
stores were measured indirectly by acid hydrolysis to glucose as
described by Passonneau and Lauderdale.44

Statistical analyses

All data from the study was expressed as mean ± standard
deviation. Data were analysed using GraphPad Prism version 5
(Graph-pad Software Inc., San Diego, CA, USA). The level of
significance was set at P⩽ 0.05. Sex-based differences in all the
measured parameters across the treatment groups were analysed
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using a two-way analysis of variance (ANOVA). This was
followed by a Bonferroni post-hoc test. The total area under the
glucose concentration curve for the OGTT of the respective
treatment groups was determined using the trapezoidal method
and analysed by a one-way ANOVA.

Results

Growth performance

Body mass changes

The growth performance of male and female Sprague Dawley
rats is presented in Fig. 2a and 2b.

Both the male and female rats in all the treatment groups
gained body mass significantly (P< 0.001, ANOVA) over the
three stages of the study. However, there was no significant
difference (P> 0.05, ANOVA) in the body masses of the rats
in the different treatment groups at each stage (induction,
weaning and termination).

Linear growth

Table 1 shows the effect of fructose administration on the
masses, lengths and densities of tibiae and femora of male and
female Sprague Dawley rats. The masses, lengths and densities
of both the tibiae and femora were similar in the male rats
across the treatment groups. Similarly, the masses, lengths and
densities of the tibiae and femora were not different in the
female rats across the treatment groups. The male rats in all the
treatment groups tended to have heavier and longer tibiae
than the corresponding females in the groups, though not
statistically significant.

Glucose tolerance

The total area under the curve of the OGTT were not signi-
ficantly different (P> 0.05, ANOVA) across the treatment
groups in both male and female rats (Figs 3 and 4).

Effects of fructose administration on circulating metabolic
substrates, insulin and HOMA-IR

Table 2 shows the effect of fructose administration on circu-
lating metabolic substrates, insulin and HOMA-IR of male and
female Sprague Dawley rats. There were no treatment, sex or
interaction effects (P> 0.05, ANOVA) in the fasting blood
glucose concentration of the rats (Table 2). Although there
were no sex or interaction effects, there was a treatment effect in
the plasma concentration of triglycerides of the female rats,
where those that received LHS and fructose later in life had
significantly higher plasma triglycerides than their counterparts
(P⩽ 0.05, ANOVA) in the other treatment groups except for
those that received fructose only. There were no treatment, sex
or interaction effects (P> 0.05) in the plasma concentration of
insulin, as well as the HOMA-IR across the treatment groups
(Table 2). However, there was no interaction (P = 0.2547)

but there was sex (P = 0.001) and treatment (P = 0.0197)
effects in the plasma concentration of cholesterol. The plasma
concentration of cholesterol in the female rats that had DW as
neonates and TW later was significantly lower (P< 0.05) than
that of their counterparts that had HHS with or without
fructose, and those that had LHS and TW in later life. The
plasma concentration of cholesterol in the male rats that only
received fructose in later life was significantly higher (P< 0.05,
ANOVA) than that of their counterparts that received either
LHS only or the HHS with fructose.

Fig. 2. (a) Effects of fructose administration on the growth pattern
of male experimental rats across the treatment groups. DW+TW,
10ml/kg distilled water + tap water in the growing period (n = 6);
DW+ FW, 10ml/kg distilled water +20% fructose (w/v) in the
drinking water (n = 6); LHS+TW, 50mg/kg Hibiscus sabdariffa
(HS) extract + tap water (n = 6); LHS+ FW, 50mg/kg HS extract
+20% fructose (w/v) in the drinking water (n = 7); HHS+TW,
500mg/kg HS + tap water (n = 6); HHS+ FW, 500mg/kg HS
extract +20% fructose (w/v) in the drinking water (n = 5).
(b) Effects of fructose administration on the growth pattern of
female experimental rats across the treatment groups. DW+TW,
10ml/kg distilled water + tap water in the growing period (n = 8);
DW+ FW, 10ml/kg distilled water +20% fructose (w/v) in the
drinking water (n = 7); LHS+TW, 50mg/kg Hibiscus sabdariffa
(HS) extract + tap water (n = 9); LHS+ FW, 50mg/kg HS
extract +20% fructose (w/v) in the drinking water (n = 8);
HHS+TW, 500mg/kg HS + tap water (n = 8); HHS+ FW,
500mg/kg HS extract +20% fructose (w/v) in the drinking water
(n = 9). Data expressed as mean ± SD. ***P< 0.001. DW, distilled
water; TW, tap water; FW, fructose water w/v; LHS, low-dose HS;
HHS, high-dose HS.
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Effect of fructose administration on liver metabolic substrates
storage and enzymes in male and female Sprague Dawley rats

Table 3 shows the liver lipid and glycogen content as well as
plasma concentration of ALP and ALT in male and female rats.
There was no interaction (P = 0.7908) and sex (P = 0.0878)
effects in the liver lipid content of the rats but there was a
treatment effect (P = 0.0083) (Table 3). The female rats that
were administered with fructose only had significantly
higher (P⩽ 0.05, ANOVA) liver lipids than their counterparts
that had no treatment at all and those that were administered
with LHS neonatally (Table 3). There was no interaction

(P = 0.6960) and no treatment (P = 0.6960) effects, but there
was a sex effect (P = 0.0015) in the liver glycogen content of
the rats across the treatment groups, with the male rats tending
to have higher concentrations than the females. The concentra-
tion of ALT in the male rats that had high dose of HS only was
significantly higher (P⩽ 0.05, ANOVA) than their male coun-
terparts that received HS and fructose (Table 3). Similarly, there
was no interaction (P = 0.6828) and treatment (P = 0.9004)
effects in the plasma concentration of ALP but there was a sex
effect (P<0.0001) with males tending to have higher
concentrations (Table 3).

Table 1. Effect of fructose administration on the masses, lengths and densities of tibiae and femora of male and female rats

Tibia Femur

Treatments Gender Mass (mg) Length (mm) Density (mg/mm) Mass (mg) Length (mm) Density (mg/mm)

DW+TW Males 344± 34 35 ± 1.60 9.9 ± 0.57 375± 65 28± 2.00 13 ± 1.40
Females 294± 29 33 ± 1.30 8.9 ± 0.64 369± 19 27± 0.92 14 ± 0.35

DW+ FW Males 327± 39 34 ± 2.10 9.7 ± 0.86 380± 61 28± 1.50 14 ± 0.35
Females 311± 26 33 ± 1.10 9.6 ± 0.67 348± 37 26± 1.70 13 ± 0.77

LHS+TW Males 334± 18 34 ± 40 9.7 ± 0.65 390± 21 28± 1.00 14 ± 0.63
Females 295± 40 33 ± 1.80 8.9 ± 0.90 357± 29 27± 0.62 13 ± 0.88

LHS+ FW Males 339± 36 34 ± 1.50 9.9 ± 0.67 370± 67 27± 1.70 14 ± 1.80
Females 297 ± 32 32 ± 1.90 9.3 ± 0.82 348± 47 26± 1.70 13 ± 1.20

HHS+TW Males 348± 32 34 ± 2.30 10 ± 1.10 395± 21 29± 0.76 14 ± 1.80
Females 297± 30 32 ± 1.20 9.2 ± 0.74 365± 13 26± 1.10 14 ± 0.37

HHS+ FW Males 343± 9.5 35 ± 0.95 9.9 ± 0.50 347± 47 27± 1.70 13 ± 1.00
Females 306± 42 33 ± 2.00 9.3 ± 0.82 355± 50 27± 1.40 13 ± 1.40

DW, distilled water; TW, tap water; FW, fructose water w/v; LHS, low-dose Hibiscus sabdariffa (HS); HHS, high-dose HS; DW + TW =
10ml/kg distilled water + tap water; DW+ FW = 10ml/kg distilled water +20% fructose (w/v) as the drinking water; LHS+TW = 50mg/kg
HS extract + tap water; LHS+ FW = 50mg/kg HS extract +20% fructose (w/v) in the drinking water; HHS+TW = 500mg/kg HS + tap
water; HHS+ FW = 500mg/kg HS extract +20% fructose (w/v) in the drinking water. Data expressed as mean ± SD.
There were no statistically significant differences (P> 0.05) observed across the treatment groups in both sexes.

Fig. 3. Effects of fructose administration on the total area under the
curve (AUC) of the oral glucose tolerance tests in male rats. There
were no statistically significant differences across the treatment
groups. DW+TW, 10ml/kg distilled water + tap water in the
growing period (n = 6); DW+ FW, 10ml/kg distilled water +20%
fructose (w/v) in the drinking water (n = 6); LHS+TW, 50mg/kg
Hibiscus sabdariffa (HS) extract + tap water (n = 6); LHS+ FW,
50mg/kg HS extract +20% fructose (w/v) in the drinking water
(n = 7); HHS+TW, 500mg/kg HS + tap water (n = 6);
HHS+ FW, 500mg/kg HS extract +20% fructose (w/v) in the
drinking water (n = 5). Data expressed as mean ± SD. DW, distilled
water; TW, tap water; FW, fructose water w/v; LHS, low-dose HS;
HHS, high-dose HS.

Fig. 4. Effects of fructose administration on the total area under the
curve (AUC) of the oral glucose tolerance tests in female rats. There
were no statistically significant differences across the treatment
groups. DW+TW, 10ml/kg distilled water + tap water in the
growing period (n = 8); DW+ FW, 10ml/kg distilled water +20%
fructose (w/v) in the drinking water (n = 7); LHS+TW, 50mg/kg
Hibiscus sabdariffa (HS) extract + tap water (n = 9); LHS+ FW,
50mg/kg HS extract +20% fructose (w/v) in the drinking water
(n = 8); HHS+TW, 500mg/kg HS + tap water (n = 8);
HHS+ FW, 500mg/kg HS extract +20% fructose (w/v) in the
drinking water (n = 9). Data expressed as mean ± SD. DW, distilled
water; TW, tap water; FW, fructose water w/v; LHS, low-dose HS;
HHS, high-dose HS.
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Effect of fructose administration on the absolute (g) and relative
(body mass (%BM)) masses of the liver and visceral fat pad in male
and female Sprague Dawley rats

There was no interaction (P = 0.8187) or treatment
(P = 0.8969) effects on the masses of the liver. However, the

male rats had significantly heavier (P< 0.0001) (absolute) liver
(Table 4) when compared with the corresponding females in all
the treatment groups. There was no interaction and treatment
effects (P> 0.05) but there were sex effects in both the absolute
(P = 0.0005) and relative (P< 0.0001) visceral fat pad masses
across the treatment groups (Table 4).

Table 2. Effect of fructose administration on metabolic substrates, insulin and HOMA-IR of male and female Sprague Dawley rats

Treatments Sex Cholesterol (mmol/l) TGs (mmol/l) FBG (mmol/l) Insulin (µU/ml) HOMA-IR

DW+TW Males 1.8 ± 0.21xy 2.5 ± 1.30 5.3 ± 0.81 15 ± 6.30 3.6 ± 1.80
Females 1.9 ± 0.25a 1.6 ± 0.36b 4.6 ± 0.70 11 ± 7.30 2.3 ± 1.50

DW+ FW Males 2.1 ± 0.12x 2.4 ± 0.73 5.1 ± 0.94 11 ± 4.70 2.6 ± 1.50
Females 2.2 ± 0.19ab 2.3 ± 0.81ab 4.9 ± 0.67 17 ± 7.20 4.0 ± 1.60

LHS+TW Males 1.7 ± 0.08y 1.8 ± 0.29 4.8 ± 1.00 12 ± 8.40 2.6 ± 1.80
Females 2.0 ± 0.20ab 1.7 ± 0.31b 5.0 ± 0.76 9.4 ± 4.50 2.2 ± 1.10

LHS+ FW Males 1.9 ± 0.31xy 2.2 ± 0.81 5.1 ± 0.79 15 ± 8.00 3.6 ± 2.10
Females 2.2 ± 0.42b 2.8 ± 0.51a 4.7 ± 0.83 15 ± 9.20 3.3 ± 2.30

HHS+TW Males 1.8 ± 0.14xy 2.0 ± 0.60 5.2 ± 0.91 13 ± 7.10 2.9 ± 1.70
Females 2.2 ± 0.27b 1.8 ± 0.49b 4.8 ± 0.60 12 ± 4.50 2.5 ± 1.00

HHS+ FW Males 1.7 ± 0.18y 2.4 ± 0.41 5.0 ± 1.00 11 ± 5.20 2.5 ± 1.30
Females 2.2 ± 0.34b 2.0 ± 0.50b 4.8 ± 0.79 13 ± 8.30 2.9 ± 2.00

DW, distilled water; TW, tap water; FW, fructose water w/v; LHS, low-dose Hibiscus sabdariffa (HS); HHS, high-dose HS; TGs, triglycerides;
FBG, fasting blood glucose; HOMA-IR, homoeostatic model of insulin resistance; DW+TW, 10ml/kg distilled water + tap water; DW+ FW,
10ml/kg distilled water + 20% fructose (w/v) in the drinking water; LHS+TW = 50mg/kg HS extract + tap water; LHS+ FW, 50mg/kg HS
extract + 20% fructose (w/v) in the drinking water; HHS+TW, 500mg/kg HS+ tap water; HHS+ FW, 500mg/kg HS extract +20% fructose
(w/v) in the drinking water. Data expressed as mean ± SD.
xyMeans with different superscripts in male rats are significantly different (P⩽ 0.05).
abMeans with different superscripts in female rats are significantly different (P⩽ 0.05).

Table 3. Effect of fructose administration on liver metabolic substrates storage and enzymes in male and female Sprague Dawley rats

Treatments Sex Liver lipids (% liver mass) Liver glycogen (mmol/l)a ALT (U/l) ALP (U/l)

DW+TW Males 2.8 ± 1.00 2.6 ± 0.86 87 ± 19.00xyz 380 ± 61
Females 2.9 ± 1.10a 2.0 ± 0.57 85 ± 20.00ab 243 ± 32

DW+ FW Males 3.9 ± 0.85 2.3 ± 1.00 67 ± 16.00x 335 ± 47
Females 4.4 ± 1.30bc 1.4 ± 0.87 74 ± 14.00ab 253 ± 58

LHS+TW Males 3.2 ± 1.00 2.1 ± 0.28 98 ± 23.00y 356 ± 45
Females 4.1 ± 0.93bc 1.8 ± 0.66 91 ± 18.00a 273 ± 82

LHS+ FW Males 3.3 ± 0.74 2.4 ± 0.69 78 ± 13.00xz 366 ± 75
Females 3.5 ± 0.54ac 1.4 ± 0.87 69 ± 12.00b 229 ± 41

HHS+TW Males 3.4 ± 0.90 2.2 ± 0.46 107 ± 28.00y 374 ± 87
Females 3.7 ± 0.48ac 1.8 ± 0.99 74 ± 6.10ab 252 ± 47

HHS+ FW Males 3.8 ± 0.93 2.0 ± 1.10 78 ± 15.00xz 359 ± 61
Females 3.8 ± 0.52ac 1.8 ± 0.69 70 ± 10.00b 241 ± 53

DW, distilled water; TW, tap water; FW, fructose water w/v; LHS, low-dose Hibiscus sabdariffa (HS); HHS, high-dose HS; ALT, alanine
transaminase; ALP, alkaline phosphatase; DW+TW, 10ml/kg distilled water + tap water; DW+ FW, 10ml/kg distilled water + 20% fructose
(w/v) in the drinking water; LHS+TW, 50mg/kg HS extract + tap water; LHS+ FW, 50mg/kg HS extract + 20% fructose (w/v) in the
drinking water; HHS+TW, 500mg/kg HS + tap water; HHS+ FW, 500mg/kg HS extract + 20% fructose (w/v) in the drinking water. Data
expressed as means ± SD.
xyzMeans with different superscripts in male rats are significantly different (P⩽ 0.05).
abcMeans with different superscripts in female rats are significantly different (P⩽ 0.05).
aGlycogen expressed as glucose equivalents.
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Discussion

This study aimed to determine whether the administration
of an aqueous calyx extract of HS to neonates during a period
of developmental plasticity would influence the subsequent
response of male and female Sprague Dawley rats to a high-
fructose diet in adolescence. In this study, although the female
rats generally had greater visceral fat pad mass than the male rats
on matched diets, the treatments did not have any impact on
visceral obesity. In previous studies, HS aqueous extracts were
shown to increase body mass index and delay onset of puberty
in female rats when consumed in the post-weaning period,45

and in growing pups whose dams were fed with HS extracts
during lactation.46 Even though the authors also speculated
that HS may predispose the female rats to the development of
obesity, they did not quantify the visceral fat of the animals.
Visceral obesity is a high-risk factor for the development of
hypertension and diabetes mellitus.47

The lipid profiles showed some interesting findings.
The female rats generally had higher plasma concentration of
cholesterol than their male counterparts. It is also notable that
the female rats that received HS as neonates with or without

fructose in their drinking water in adolescence had higher
fasting plasma cholesterol than those that had no treatment.
In the male rats, neonatal intake of HS prevented the hyper-
cholesterolaemia induced by dietary fructose.
Dietary fructose increased plasma triglycerides in the female

rats. However, the neonatal high dose of HS prevented the
fructose-induced hypertriglyceridaemia. The mechanisms by
which the neonatal intake of HS which seems to have beneficially
programmed the female rats against the negative effects of fruc-
tose on triglycerides concentration requires further investigation.
When further considering the lipid profile of the rats, of con-

cern was the hypercholesterolaemia in the female rats which was
exacerbated by the neonatal intake of HS. Hypercholesterolaemia
is associated with a high risk for cardiovascular diseases.47

Thus, there is a need to weigh the positive effects of the HS on
triglycerides v. the negative impact on cholesterol. Previous
studies had suggested that female rats were protected by their
sex hormones against the development of some effects of
high-fructose feeding such as blood pressure changes and
insulin action,19,20 but more susceptible to biochemical changes
including hypertriglyceridaemia and visceral adiposity than their
male counterparts.21

When a high-fructose diet is consumed, most of the fructose
is taken up by the liver where it serves as a substrate for hepatic
de novo lipogenesis, causing lipid overload and insulin
resistance.48

In this study, fructose administration increased hepatic lipids
in the female rats as it did in the female rats administered a low
dose of HS in the neonatal stage. No differences in hepatic lipid
content were noted in their male counterparts. The high dose
of HS extract administered to the female rats as neonates
may have provided some form of protection against the accu-
mulation of lipids in their livers.
A high-fructose diet also causes an increase in hepatic glyco-

gen stores due to increased conversion of fructose to glycogen
via gluconeogenesis.49,50 However, there was no significant
difference in hepatic glycogen content across all the treatment
groups when compared with the control group. This similarity
in hepatic glycogen content could be because the animals were
fasted overnight before their termination and sample collection.
Sex differences in rates of growth of rats usually begin to

manifest between PND 25–33 in favour of the males where
they are usually preceded by an increase in testosterone
levels.51,52 This could explain why the males in all the experi-
mental groups in this study gained more body mass than their
corresponding female counterparts.
Body mass is usually affected by several factors such as

hydration status and filling of the gastrointestinal tract,53,54 and
may therefore not be the best indicator of growth performance.
The lengths of the long bones are better markers of growth
as they correlate with growth hormone secretion in a dose-
dependent manner.55,56 In this study, there was no significant
difference in the lengths, masses and densities of the tibiae and
femora across the different groups of the same sex. The male
rats tended to have longer and heavier tibiae when compared

Table 4. Effect of fructose administration on the absolute (g) and relative
(%BM) masses of the liver and visceral fat pad in male and female Sprague
Dawley rats

Treatments Sex* Liver (g)
Liver (%
BM)

Visceral
fat (g)

Visceral fat
(%BM)

DW+TW Males 10 ± 1.40 4.0 ± 0.25 2.9 ± 0.81 1.2 ± 0.24
Females 7.0 ± 0.38 3.8 ± 0.20 3.4 ± 0.73 1.9 ± 0.42

DW+ FW Males 9.9 ± 1.10 4.2 ± 0.27 3.9 ± 1.20 1.6 ± 0.35
Females 7.5 ± 0.44 4.0 ± 0.28 4.3 ± 0.81 2.3 ± 0.42

LHS+TW Males 9.5 ± 1.70 4.0 ± 0.55 3.0 ± 0.81 1.3 ± 0.32
Females 7.4 ± 0.89 4.0 ± 0.34 3.7 ± 0.99 2.0 ± 0.47

LHS+ FW Males 9.4 ± 0.83 4.0 ± 0.26 3.4 ± 0.72 1.4 ± 0.25
Females 7.2 ± 0.54 3.9 ± 0.31 4.1 ± 1.10 2.2 ± 0.55

HHS+TW Males 9.5 ± 0.61 4.0 ± 0.22 2.7 ± 0.40 1.1 ± 0.13
Females 7.3 ± 1.00 3.9 ± 0.35 3.9 ± 0.92 2.1 ± 0.43

HHS+ FW Males 9.7 ± 0.89 4.1 ± 0.31 3.4 ± 0.54 1.4 ± 0.23
Females 7.5 ± 0.87 4.0 ± 0.21 4.7 ± 1.70 2.5 ± 0.77

DW, distilled water; TW, tap water; FW, fructose water w/v; LHS,
low-dose Hibiscus sabdariffa (HS); HHS, high-dose HS; DW+TW,
10ml/kg distilled water + tap water; DW+ FW, 10ml/kg distilled
water + 20% fructose (w/v) in the drinking water; LHS+TW,
50mg/kg HS extract + tap water; LHS+ FW, 50mg/kg HS extract
+ 20% fructose (w/v) in the drinking water; HHS+TW, 500mg/kg
HS + tap water; HHS+ FW, 500mg/kg HS extract + 20% fructose
(w/v) in the drinking water. Data expressed as mean ± SD.
No significant difference (P> 0.05) was observed with the treatments.
*Significant sex effects were observed. Males had heavier absolute liver
masses (P< 0.0001) compared with the females, but no differences
(P> 0.05) were noted in the relative liver masses. However, females
had significantly heavier absolute (P = 0.0005) and relative
(P< 0.0001) visceral fat masses compared with the males
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with their corresponding females. This might also be related to
the testosterone spurt normally associated with this phase of
growth in the rats.

Fructose consumption by rats is known to produce features of
metabolic dysfunction including impaired glucose tolerance and
insulin resistance.16,57 These parameters can be assessed by
undertaking a glucose tolerance test, measurement of insulin and
computation of the HOMA-IR. In this study, there was no
significant difference in the fasting blood glucose, area under the
curve for the glucose tolerance test, insulin concentration and the
computed HOMA-IR across the treatment groups. Fructose
intake is known to cause reduced glucose tolerance and increased
body mass gain,16 hyperinsulinaemia and insulin resistance
in rats.58 Fructose feeding for 10 weeks in adolescent rats
(150–200 g) had previously been shown to produce hyper-
insulinaemia, hypertriglyceridaemia and hyperuricaemia.59 The
findings in this study are at variance with those of Motoyama,60

who reported that fructose in feed (20%, w/v) for 2 weeks in
adult rats produced insulin resistance. The age of the rats at
termination (51 days) and the mode of fructose administration
could have been factors responsible for the variance. Indeed,
high-fructose intake has been shown to be more effective in
inducing metabolic syndrome in adults than in young rats.18

In addition, fructose in the feed rather than in drinking water
is also a more effective means of producing metabolic
syndrome18 probably because the rats would eat more food
(and hence more fructose) than when drinking it in water.
Unfortunately, even though the rats drank the fructose solution,
we were unable to take record of their actual fluid (fructose)
intake in this study.

The liver is a key organ in the body performing numerous
homeostatic functions.61 These functions include maintaining
circulating metabolic substrates, detoxification, hormone
inactivation and storage functions among many others.61–64

High-fructose consumption can cause disturbances in carbo-
hydrate and lipid metabolism, consequently affecting the
homeostatic functions of the liver.65 Conventional drugs and
plant extracts are partly metabolized in the liver and can also
alter the functions of the liver. Measurement of surrogate
markers of liver function is therefore quite important. The
plasma concentration of ALT and ALP were used as surrogate
markers of liver health in this study.

ALT is present within the cytosol of the hepatocytes and
its elevation in the plasma is specifically indicative of damage
to the hepatocytes.66–68 ALP on the other hand arises from
multiple sources and elevation of its levels could be because of
liver damage, osteoblastic, placental, intestinal or tumour
sources.67,69 It is therefore not very specific to the liver. A high-
fructose diet has been shown to cause non-alcoholic liver
diseases in rats and this has been associated with an increase in
the levels of ALT.70 However, in the current study, fructose did
not result in elevated ALT. On the contrary, the rats given HS
neonatally had significantly higher ALT concentrations than
the other rats. This was an unexpected finding as previous
reports using HS (at even higher doses than used in the current

study) reported that it was non-toxic.30,37,38 Histological
assessment of the liver for pathology may have provided greater
insight. Sex differences were found in the plasma ALP con-
centrations. As the male rats in all the treatment groups had a
significantly higher body mass, the sex differences observed in
plasma ALP levels might be from the increased osteoblastic
activity associated with growth.

Conclusion

Findings from this study showed some sex differences in
response to the fructose and HS treatments. The female rats
that were administered with HS aqueous calyx extract as neo-
nates were protected against fructose-induced hypertriglycer-
idaemia. Unfortunately, the early administration of HS
resulted in the development of dyslipidaemia (hypercholester-
olaemia) with or without a secondary fructose insult. In males,
the early administration of HS prevented the development of
fructose-induced hypercholesterolaemia. The rat is an altricial
species wherein the developmental processes that occur during
PND 1–10 are equivalent to the third trimester of pregnancy.71

The long-term implications of these findings if applicable to
humans could have an impact on the fight against obesity and
its complications.
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