
“S0269964809000096jra” — 2008/11/11 — 19:47 — page 101 — #1

�

�

�

�

Probability in the Engineering and Informational Sciences, 23, 2009, 101–119. Printed in the U.S.A.
doi:10.1017/S0269964809000096

DYNAMIC ROUTING POLICIES
FOR MULTISKILL CALL CENTERS

SANDJAI BHULAI

VU University Amsterdam
Faculty of Sciences

1081 HV Amsterdam,
The Netherlands

E-mail: sbhulai@few.vu.nl

We consider the problem of routing calls dynamically in a multiskill call center.
Calls from different skill classes are offered to the call center according to a Poisson
process. The agents in the center are grouped according to their heterogeneous skill
sets that determine the classes of calls they can serve. Each agent group serves calls
with independent exponentially distributed service times. We consider two scenarios.
The first scenario deals with a call center with no buffers in the system, so that every
arriving call either has to be routed immediately or has to be blocked and is lost.
The objective in the system is to minimize the average number of blocked calls. The
second scenario deals with call centers consisting of only agents that have one skill and
fully cross-trained agents, where calls are pooled in common queues. The objective
in this system is to minimize the average number of calls in the system. We obtain
nearly optimal dynamic routing policies that are scalable with the problem instance
and can be computed online. The algorithm is based on one-step policy improvement
using the relative value functions of simpler queuing systems. Numerical experiments
demonstrate the good performance of the routing policies. Finally, we discuss how
the algorithm can be used to handle more general cases with the techniques described
in this article.

1. INTRODUCTION

A call center is a collection of resources providing a telephony interface between a
service provider and its customers. The resources consist, among others, of agents
(i.e., people who talk to customers over the telephone) and information and commu-
nication technology (ICT) equipment. The complexity in the design and management
of call centers stems from the fact that each incoming call requires an agent with

© 2009 Cambridge University Press 0269-9648/09 $25.00 101
https://doi.org/10.1017/S0269964809000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809000096

“S0269964809000096jra” — 2008/11/11 — 19:47 — page 102 — #2

�

�

�

�

102 S. Bhulai

specific skills, such as knowledge of a particular language or knowledge of specific
products and services. In order to establish efficient workforce management, one needs
to address the problem of effective routing of incoming calls to the agents with the
right skill.

One strategy to deal with the different skills is to establish a single pool of agents,
each of whom is cross-trained in all of the skills. This system can then be viewed
as a classical call center with a single skill. The personnel costs for the multiskilled
agents may be very high, however, especially if the number of skills supported is
large. A different approach is to staff a separate pool of agents for each skill. This
case corresponds to several smaller, independent call centers operating in parallel.
However, there is a cost for the loss of economies of scale. In between, one might
partition the skills into separate subsets. This approach still excludes the possibility
of hiring agents who do not have an entire subset, and it does not fully use agents who
have skills beyond a subset.

The solution is to use the more flexible skill-based routing. In this scheme, each
agent is acknowledged for his or her subset of skills. Arriving calls are then identified
by the skill they require and are routed to a qualified agent. With the ICT equipment
it is possible to obtain relevant data for making the routing decision, but so far only
rudimentary algorithms are used. The state of research into solving skill-based routing
problems is still in its infancy. A special case in which two classes of calls are served
by a single pool of cross-trained agents is studied in Bhulai and Koole [3], Gans and
Zhou [8], Perry and Nilsson [18], and by Gurvich, Armony, and Mandelbaum [9], who
studied multiple classes of calls. Shumsky [21], Stanford and Grassmann [22], and
Wallace and Whitt [24] considered fixed, static priority policies. A similar approach
was adopted by Koole and Talim [14] and Franx, Koole and Pot [6], who provided
an approximate analysis of the overflow behavior from one pool of agents to another.
For a literature survey on asymptotic heavy-traffic regimes, we refer to Koole and
Mandelbaum [12] and Gans, Koole and Mandelbaum [7].

Borst and Seri [4] studied skill-based routing in a dynamic setting. For a fixed
set of agents, they proposed a dynamic scheme in which the number of calls of each
class that actually has been served is compared to the number that, nominally, should
have been served under a long-run average allocation scheme. The actual number
of services that are farther behind are given a higher resulting priority. The results
of Borst and Seri can be improved upon by using dynamic state-dependent routing
policies (e.g., by taking the state of the agents and the state of the queues into account).

A standard approach for deriving effective state-dependent routing policies is
via dynamic programming. This technique results in dynamic policies that depend
on the current state of the call center (i.e., the number of calls requiring a particular
skill currently in service and the number of calls in the queue). The identification
of effective routing policies via dynamic programming is often impractical. For a
call center with many types of skills, the dimensionality of the state space becomes
very large, making the derivation of effective policies difficult, both analytically and
numerically. Hence, standard algorithms, such as value iteration or policy iteration,
for computing optimal policies break down.

https://doi.org/10.1017/S0269964809000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809000096

“S0269964809000096jra” — 2008/11/11 — 19:47 — page 103 — #3

�

�

�

�

DYNAMIC ROUTING POLICIES 103

A possible way of circumventing the computation with high-dimensional state
spaces is a one-step policy improvement—a simple approximation method that is
distilled from the policy iteration algorithm. In policy iteration, one starts with an
arbitrary policy. For this policy, the expected average costs are determined and also the
total difference in costs between starting in a particular state and some fixed reference
state. The function describing the differences for all states is known as the relative value
function. It can be obtained by solving a set of equations, called the Poisson equations,
induced by the initial policy. Next, using these expressions, one can improve the policy
by doing one policy improvement step. The procedure can now be repeated with the
improved policy, generating a sequence of policies converging to the optimal policy.

Instead of repeatedly solving the Poisson equations for the relative value function
(which suffers from the large dimensionality of the state space), a one-step policy
improvement consists of executing the policy improvement step once only. In this
case, the algorithm starts with an approximation of the relative function, which might
be motivated by a heuristic or a reasonable policy. The resulting improved policy is then
used as an approximation for the optimal policy. This method has proven to be close to
optimal in a variety of routing and assignment problems (see, e.g., Bhulai and Koole
[2], Koole and Nain [13], Ott and Krishnan [17], and Sassen, Tijms, and Nobel [20]).

In this article we study the problem of routing calls dynamically in a multiskill
call center. Calls from different skill classes are offered to the call center according to a
Poisson process. The agents in the center are grouped according to their heterogeneous
skill sets that determine the classes of calls that they can serve. Each agent group serves
calls with independent exponentially distributed service times.

We consider two scenarios. The first scenario deals with a call center with no
buffers in the system, so that every arriving call either has to be routed immediately or
has to be blocked and is lost. The objective in the system is to minimize the average
number of blocked calls. The second scenario deals with call centers consisting of
only agents that have one skill and fully cross-trained agents, where calls are pooled
in common queues. The objective in this system is to minimize the average number
of calls in the system. In Section 2 the problems of both scenarios are described in
greater detail.

We present an algorithm to obtain nearly optimal dynamic routing policies that
is scalable with the problem instance and can be executed online. The algorithm is
based on a one-step policy improvement using the relative value functions of simpler
queuing systems. This is explained in Section 3. In Section 4 we demonstrate by
numerical experiments that the routing policies have a good performance. Finally, in
Section 5 we conclude the article by discussing how the algorithm can be used to
handle more general cases with the techniques described in this article.

2. PROBLEM FORMULATION

Consider a multiskill call center in which agents handle calls that require different
skills. We represent the skill set S by S = {1, . . . , N}. We assume that calls that require

https://doi.org/10.1017/S0269964809000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809000096

“S0269964809000096jra” — 2008/11/11 — 19:47 — page 104 — #4

�

�

�

�

104 S. Bhulai

skill s ∈ S arrive at the call center according to a Poisson process with rate λs. Let
G = P(S) denote the groups with different skill sets defined by the power set of all
the skills. Let Gs = {G ∈ G | s ∈ G} denote all skill groups that include skill s ∈ S.
The agents are grouped according to their skills and can therefore be indexed by
the elements of G. Each group G ∈ G consists of SG agents and serves a call that
requires a skill within group G with independent exponentially distributed times with
parameter μG.

2.1. Scenario 1: A Call Center With No Waiting Room

Suppose that we are dealing with a loss system; that is, there are no buffers at all in
our model. Hence, there is no common queue for calls to wait, so every arriving call
has either to be routed to one of the agent groups immediately or has to be blocked
and is lost. In addition, when a call is routed to a group that has no idle servers left,
the call is lost. The objective in this system is to minimize the average number of lost
calls.

Let us formulate the problem as a Markov decision problem. Fix an order of the
elements of G, say G = (G1, . . . , G2N −1), and define the state space of the Markov
decision problem by X = ∏2N −1

i=1 {0, . . . , SGi}. Then the |G|-dimensional vector �x ∈ X
denotes the state of the system according to the fixed order; that is, xG is the number
of calls in service at group G ∈ G. In addition, represent by the |G|-dimensional unit
vector eG the vector with 0 at every entry, except for a 1 at the entry corresponding to G
according to the fixed order. When a call that requires skill s ∈ S arrives, the decision-
maker can choose to block the call or to route the call to any agent group G ∈ Gs for
which xG < SG. Hence, the action set is defined by As = {G ∈ Gs | xG < SG} ∪ {b},
where action b stands for blocking the call. Therefore, for an arriving call that requires
skill s ∈ S, the transition rates p(�x, a, �y) of going from �x ∈ X to �y ∈ X after taking
decision a ∈ As are given by p(�x, b, �x) = λs and p(�x, a, �x + ea) = λs when a �= b,
and zero otherwise. The transition rates for the service completions are given by
p(�x, a, �x − eG) = xGμG for �x ∈ X , G ∈ G, and any action a. The objective is modeled
by the cost function c(�x, a) = 1 for any �x ∈ X and a = b.

The tuple (X , {As}s∈S , p, c) defines the Markov decision problem. After uni-
formizing the system (see Puterman [19, Sect. 11.5]), we obtain the dynamic
programming optimality equation for the system given by

g +
[∑

s∈S
λs+

∑
G∈G

SGμG

]
h(�x) =

∑
s∈S

λs min{1 + h(�x), h(�x + eG) | G ∈ Gs, xG < SG}

+
∑
G∈G

xGμG h(�x − eG) +
∑
G∈G

(SG − xG)μG h(�x), (1)

where g is the long-term expected average costs and h is the relative value function.
Note the unusual place of the minimization in (1): The actions in our case

depend on the type of arriving call. It is easy to rewrite the optimality equation in

https://doi.org/10.1017/S0269964809000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809000096

“S0269964809000096jra” — 2008/11/11 — 19:47 — page 105 — #5

�

�

�

�

DYNAMIC ROUTING POLICIES 105

standard formulation (see, e.g., Koole [10]), but this would complicate the notation
considerably.

A policy π is defined as the set of decision rules (π1, . . . , πN), where the map-
ping πs(�x) ∈ As describes a feasible action to take in state �x ∈ X when a call that
requires skill s ∈ S arrives. The long-term average optimal policy π is a solution of
the optimality equation. It can also be obtained by the policy iteration algorithm. In
this case, one starts with an arbitrary policy π̂ . This policy is evaluated by solving
for the average costs ĝ and the relative value function ĥ in (1), with the minimiza-
tion replaced by the actions described by the policy π̂ . Once the relative value
function ĥ has been derived, the policy in state �x can be improved by computing
arg min{1 + ĥ(�x), ĥ(�x + eG) | G ∈ Gs, xG < SG}.

The policy iteration algorithm converges to an optimal policy in a finite num-
ber of steps. The identification of optimal policies via this algorithm, however, is
often impractical. The algorithm, in the policy improvement step, requires stor-
age of the relative value function for the complete state space, which is of order

O
(∏2N −1

i=1 (SGi + 1)
)

. For a moderately sized call center, the dimensionality of the

state space becomes very large, prohibiting the derivation of optimal routing poli-
cies numerically. The policy improvement step can be carried out, though, if the
relative value function ĥ is given, but solving the Poisson equations becomes very
difficult after one or two iteration steps, so that iterating analytically is not an option
either.

One way to circumvent the computational problems associated with policy itera-
tion is a one-step policy improvement. In this case, one does not start with an arbitrary
policy, but with an approximation of the relative value function ĥ. This approximation
might be motivated by a heuristic or a policy that although perhaps is not optimal
is not unreasonable either. In many cases, this is sufficient if the approximation has
the right structure (i.e., linear, quadratic, etc.) (see, e.g., Bertsekas and Tsitsiklis [1]).
Once the (approximate) relative value function has been obtained, the policy improve-
ment step can be executed to obtain a better policy. Note that this step will result in
a deterministic dynamic policy that is dependent on the state of the system, even if
the starting relative value function was motivated by a randomized policy. Because
the resulting policy will be too complicated to repeat the policy evaluation step, the
algorithm stops here. In practice, for a suitably chosen approximation, the resulting
policy is nearly optimal (see, e.g., Bhulai and Koole [2], Koole and Nain [13], Ott and
Krishnan [17], and Sassen et al. [20]).

For the problem of skill-based routing, we will base the approximate relative value
function on a static randomized policy for the initial routing policy. Let G(n) = {G ∈
G | |G| = n} be all agent groups that have exactly n skills for n = 1, . . . , N . Define,
accordingly, G(n)

s = {G ∈ G(n) | s ∈ G} to be all agent groups that have n skills, includ-
ing skill s ∈ S. For a given skill s, this creates a hierarchical structure G(1)

s , . . . , G(N)
s

from specialized agents having only one skill to cross-trained generalists having all
skills. For a call center with three skills, we would have three levels in the hierarchy:
the specialists (groups {1}, {2}, and {3}), the agents with two skills (groups {1, 2},

https://doi.org/10.1017/S0269964809000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809000096

“S0269964809000096jra” — 2008/11/11 — 19:47 — page 106 — #6

�

�

�

�

106 S. Bhulai

{1, 3}, and {2, 3}), and the generalists (group {1, 2, 3}). In the following subsections
we will describe the steps in the one-step policy improvement algorithm in more detail
using this call center with three skills as an illustration.

2.1.1. Initial policy. The initial policy π̂ , on which we will base the approxi-
mate relative value function, tries to route a call requiring skill s through the hierarchy;
that is, it tries G(1)

s first and moves to G(2)
s if there are no idle agents in G(1)

s . In G(2)
s

there might be more than one group to which one can route. The initial policy routes
the call according to fixed probabilities to the groups in G(2)

s ; that is, it splits the over-
flow stream from G(1)

s into fixed fractions over the groups in G(2)
s . The call progresses

through the hierarchy whenever it is routed to a group with no idle agents until it is
served at one of the groups or it is blocked at G(N)

s eventually. The rationale behind
the policy that sends calls to the agents with the fewest number of skills first has been
rigorously justified in Örmeci [16] and Chevalier, Tabordon, and Shumsky [5]. To
illustrate this for three skills, the overflow of calls from group {1} are split by fixed
fractions α and α = 1 − α in order to be routed to groups {1, 2} and {1, 3}, respec-
tively. The overflow process from groups {2} and {3} are treated accordingly by the
fractions β and γ , respectively.

We have yet to define how to choose the splitting probabilities in the initial routing
policy. In order to define these, we ignore the fact that the overflow process is not a
Poisson process and we consider all overflows to be independent. Thus, we procede
as if the overflow process at group G ∈ G(i)

s is a Poisson process with rate λG times
the blocking probability. Together with the splitting probabilities, one can compute
the rate of the Poisson arrivals at each station in G(i+1) composed of the assumed
independent Poisson processes. The splitting probabilities are then chosen such that
the load at every group in G(i+1) is balanced. To illustrate this for the call center with
three skills, recall the Erlang loss formula B(λ, μ, S) for an M/M/S/S queue with
arrival rate λ and service rate μ:

B(λ, μ, S) = (λ/μ)S/S!∑S
i=0(λ/μ)i/i! . (2)

The overflow rate at group {i} for i = 1, 2, 3 is then given by λi B(λi, μ{i}, S{i}). Hence,
the arrival rates at the groups in G(2) are given by

λ{1,2} = λ1 B(λ1, μ{1}, S{1}) α + λ2 B(λ2, μ{2}, S{2}) β,

λ{1,3} = λ1 B(λ1, μ{1}, S{1}) (1 − α) + λ3 B(λ3, μ{3}, S{3}) γ ,

λ{2,3} = λ2 B(λ2, μ{2}, S{2}) (1 − β) + λ3 B(λ3, μ{3}, S{3}) (1 − γ).

The splitting probabilities can be determined by minimizing the average cost in the
system. Because the average cost under this policy is the sum of the blocking prob-
abilities of each queue in the system, the optimal splitting probability could create
asymmetry in the system; that is, one queue has a very low blocking probability,

https://doi.org/10.1017/S0269964809000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809000096

“S0269964809000096jra” — 2008/11/11 — 19:47 — page 107 — #7

�

�

�

�

DYNAMIC ROUTING POLICIES 107

whereas another has a high blocking probability. Numerical experiments show that
a situation with a more balanced blocking probability over all queues leads to better
one-step improved policies. Therefore, we choose the splitting probabilities such that

λ{1,2}
S{1,2}μ{1,2}

= λ{1,3}
S{1,3}μ{1,3}

= λ{2,3}
S{2,3}μ{2,3}

.

In case this equation does not have a feasible solution, we choose the splitting
probabilities such that we minimize

∣∣∣∣ λ{1,2}
S{1,2}μ{1,2}

− λ{1,3}
S{1,3}μ{1,3}

∣∣∣∣ +
∣∣∣∣ λ{1,2}
S{1,2}μ{1,2}

− λ{2,3}
S{2,3}μ{2,3}

∣∣∣∣
+

∣∣∣∣ λ{1,3}
S{1,3}μ{1,3}

− λ{2,3}
S{2,3}μ{2,3}

∣∣∣∣ .

Finally, the arrival rate at the last group with all skills is given by

λ{1,2,3} =
∑

G∈G(2)

λG B(λG, μG, SG).

2.1.2. Policy evaluation. In the policy evaluation step, one is required to
solve the long-run expected average costs and the relative value function from the
Poisson equations for the policy π̂ . Note that for our purpose of deriving an improved
policy, it suffices to have the relative value function only. Under the initial policy,
this leads to solving the relative value function of a series of multiserver queues in
tandem. This is a difficult problem that is yet unsolved even for a tandem series of
single-server queues. Therefore, we choose to approximate the relative value function
based on the assumptions made in defining the initial policy.

For the approximation, we assume that the overflow process is indeed a Poison
process and that it is independent of all other overflow processes. We approximate
the relative value function by the sum of the relative value functions for each agent
group. More formally, let hG(xG, λG, μG, SG) be the relative value function for an
M/M/SG/SG system with arrival rate λG and service rate μG, evaluated when there
are xG calls present. The value function for the whole system is then approximated by

ĥ(�x) =
∑
G∈G

hG(xG, λG, μG, SG). (3)

2.1.3. Policy improvement. By substitution of the relative value function
determined in the policy evaluation step into the optimality equations, one can derive

https://doi.org/10.1017/S0269964809000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809000096

“S0269964809000096jra” — 2008/11/11 — 19:47 — page 108 — #8

�

�

�

�

108 S. Bhulai

a better policy by evaluating

min{1 + ĥ(�x), ĥ(�x + eG) | G ∈ Gs, xG < SG}
= min{1, hG(xG + 1, λG, μG, SG) − hG(xG, λG, μG, SG) | G ∈ Gs, xG < SG}.

The last term follows by subtracting h(�x) from all terms in the minimization and using
the linear structure of h(�x).

2.2. Scenario 2: A Call Center With Specialists and Generalists Only

Suppose that we are dealing with a call center having agents with one skill (specialists)
and fully cross-trained agents (generalists) only; that is, G = (G1, . . . , G|S|, G|S|+1) =
({1}, . . . , {N}, {1, . . . , N}). In this scenario we assume that calls that require skill s ∈ S
are pooled in a common infinite buffer queue, after which they are assigned to a
specialist or a generalist in a first-come first-served order. The objective in this system
is to minimize the average number of calls in the system, which in its turn is related
to the average waiting time of a call.

In addition to the state of the agents groups, we also have to include the state
of the queues in the state space. For this purpose, let the |S|-dimensional vector �q
denote the state of the queues; that is, qs is number of calls in queue s that require skill
s ∈ S. Moreover, the system also has to address the agent-selection problem and the
call-selection problem. The first problem occurs when one has to assign an agent to an
arriving call. The second problem occurs when an agent becomes idle and a potential
call in the queue can be assigned. Following the same approach as in scenario 1, we
obtain the dynamic programming optimality equation given by

g +
[∑

s∈S
λs +

∑
G∈G

SGμG

]
h(�q, �x) =

∑
s∈S

qs +
∑
G∈G

xG +
∑
s∈S

λsh̃(�q + es, �x)

+
∑
G∈G

xGμG h̃(�q, �x − eG)

+
∑
G∈G

(SG − xG)μG h(�q, �x), (4)

where h̃(�q, �x) = min{h(�q − es, �x + eG) | s∈ S, G ∈ Gs, qs > 0, xG < SG} ∪ {h(�q, �x)}.
The first two terms on the right-hand side represent the cost structure (i.e., the number
of calls in the system). The third and fourth terms represent the agent-selection and
the call-selection decisions, respectively.

2.2.1. Initial policy. In principle, we could take as initial policy π̂ a policy
similar to that used in scenario 1: A fraction αs of type s calls are assigned to the
corresponding specialists, and a fraction 1 − αs are assigned to the generalists. Instead
of using the relative value function for the M/M/S/S queue, we could use the relative

https://doi.org/10.1017/S0269964809000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809000096

“S0269964809000096jra” — 2008/11/11 — 19:47 — page 109 — #9

�

�

�

�

DYNAMIC ROUTING POLICIES 109

value function for the M/M/S queue. However, this approximation would then assume
a dedicated queue in front of the group of generalists. Consequently, a customer that
is sent to the group of generalists that are all busy would still have to wait until a
specialist of that call type is idle. Therefore, this Bernoulli policy does not efficiently
use the resources in the system and leads to an inefficient one-step improved policy.
To overcome the inefficiency of the Bernoulli policy, we instead use a policy that uses
the specialists first and assigns a call to a generalist only if a generalist is available
when all specialists who can handle that call type are busy. The effectiveness of this
policy has been rigorously justified in Örmeci [16] and Chevalier et al. [5].

2.2.2. Policy evaluation. The relative value function for the policy π̂ , which
uses specialists first and then generalists, is complicated. The policy π̂ creates a
dependence between the different agent groups that prohibits the derivation of a closed-
form expression for the relative value function. Therefore, we approximate the relative
value function by ĥ as follows. Let hW (x, λ, μ, S) be the relative value function of an
M/M/S queuing system. The approximation ĥ for the policy π̂ is then given by

ĥ(�q, �x) =
∑
s∈S

hW (qs + xs, λ̃s, μ{s}, S{s}) + hW
(
(q1 + x1 − S1)

+

+ · · · + (qN + xN − SN)+ + xN+1, λGN+1 , μGN+1 , SGN+1

)
,

with λ̃s = λs
(
1 − B(λs, μ{s}, S{s})

)
the approximate rate to the specialists of call type

s and with λGN+1 = ∑
s∈S λsB(λs, μ{s}, S{s}) the approximate rate to the generalists.

Note that this approximation follows the idea of the motivating initial policy in that it
ensures that all idle specialists of type s, given by Ss − xs, are used for all calls in the
queue of the same type. This results in (qs − [Ss − xs])+ = max{qs + xs − Ss, 0} calls
that cannot be served. These calls are therefore waiting for a generalist to become idle.
The approximation does take into account also the fact that a specialist can become
idle before a generalist, and it immediately assigns a call to the specialist.

The idea behind the approximation is that it roughly estimates the different flows
to the different agent groups and then computes the value function as if the calls are
waiting simultaneously at the two queues where they can be served. Note that strictly
hierarchical architectures in which agents groups are structured so that no overflow
of calls has to be split between two possible subsequent agent pools can be dealt
with similarly. Observe that it might be possible that the overflow to the generalists
is larger than their service rate. However, the system will still be stable because the
actual number of calls that will be served by the specialists will be higher, unless the
system load is quite close to unity.

2.2.3. Policy improvement. In the policy improvement step, the initial
policy π̂ is improved by evaluating

min{ĥ(�q − es, �x + eG) | s ∈ S, G ∈ Gs, qs > 0, xG < SG} ∪ {ĥ(�q, �x)}.

https://doi.org/10.1017/S0269964809000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809000096

“S0269964809000096jra” — 2008/11/11 — 19:47 — page 110 — #10

�

�

�

�

110 S. Bhulai

Note that in this case the policy has to be determined for both the agent-assignment
and the call-selection decisions.

3. RELATIVE VALUE FUNCTIONS

In this section we will study relative value functions for multiserver queuing systems
with Poisson arrivals and identical independent servers with exponentially distributed
service times. We will derive a closed-form expression for the long-run expected
average costs and the relative value function by solving the Poisson equations (in
particular, we will derive expressions for hG and hW , which were discussed in the
previous section). Typically, the Poisson equations of these models give rise to linear
difference equations. Due to the nature of the Poisson equations, the difference equa-
tions have a lot of structure when the state description is one dimensional. Therefore,
it is worthwhile to study difference equations prior to the analysis of the multiserver
queue. We will restrict our attention to second-order difference equations, as this is
general enough to model a birth–death queuing process that has the multiserver queue
as a special case.

Let f (x) be an arbitrary function defined on N0. Define the backward difference
operator � by

�f (x) = f (x) − f (x − 1)

for x ∈ N. Note that the value of f (x) can be expressed as

f (x) = f (k − 1) +
x∑

i=k

�f (i) (5)

for every k ∈ N such that k ≤ x. This observation is the key to solving first-order
difference equations and to solving second-order difference equations when one solu-
tion to the homogeneous equation is known. We first state the result for first-order
difference equations. The result can be found in Mickens [15, Chap. 2], but is stated
less precisely there.

LEMMA 3.1: Let f (x) be a function defined on N satisfying the relation

f (x + 1) − γ (x)f (x) = r(x), (6)

with γ and r arbitrary functions defined on N such that γ (x) �= 0 for all x ∈ N. With
the convention that an empty product equals 1, f (x) is given by

f (x) = f (1) Q(x) + Q(x)
x−1∑
i=1

r(i)

Q(i + 1)
with Q(x) =

x−1∏
i=1

γ (i).

https://doi.org/10.1017/S0269964809000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809000096

“S0269964809000096jra” — 2008/11/11 — 19:47 — page 111 — #11

�

�

�

�

DYNAMIC ROUTING POLICIES 111

PROOF: Let the function Q(x) be as stated in the theorem. By assumption we have
that Q(x) �= 0 for all x ∈ N. Dividing (6) by Q(x + 1) yields

�

[
f (x + 1)

Q(x + 1)

]
= f (x + 1)

Q(x + 1)
− f (x)

Q(x)
= r(x)

Q(x + 1)
.

From (5) with k = 2, it follows that

f (x) = Q(x)
f (1)

Q(1)
+ Q(x)

x∑
i=2

r(i − 1)

Q(i)
= f (1) Q(x) + Q(x)

x−1∑
i=1

r(i)

Q(i + 1)
.

�

Note that the condition γ (x) �= 0 for all x ∈ N is not very restrictive in practice.
If there is a state y ∈ N for which γ (y) = 0, then the analysis can be reduced to two
other first-order difference equations, namely the part for states x < y and the part for
states x > y for which γ (y) = 0 is the boundary condition.

The solution to first-order difference equations plays an important part in solving
second-order difference equations when one solution to the homogeneous equation
is known. In that case, the second-order difference equation can be reduced to
a first-order difference equation expressed in the homogeneous solution. Applica-
tion of Lemma 3.1 then gives the solution to the second-order difference equation.
The following theorem summarizes this result.

THEOREM 3.2: Let f (x) be a function defined on N0 satisfying the relation

f (x + 1) + α(x)f (x) + β(x)f (x − 1) = q(x), (7)

with α, β, and q arbitrary functions defined on N such that β(x) �= 0 for all x ∈ N.
Suppose that one homogeneous solution is known, say f h

1 (x), such that f h
1 (x) �= 0

for all x ∈ N0. Then, with the convention that an empty product equals 1, f (x) is given
by

f (x)

f h
1 (x)

= f (0)

f h
1 (0)

+
[
�

[
f (1)

f h
1 (1)

]] x∑
i=1

Q(i) +
x∑

i=1

Q(i)
i−1∑
j=1

q(j)

f h
1 (j + 1) Q(j + 1)

,

where Q(x) = ∏x−1
i=1 β(i) f h

1 (i − 1)/f h
1 (i + 1).

PROOF: Note that f h
1 always exists, since a second-order difference equation

has exactly two linearly independent homogeneous solutions (see Mickens

https://doi.org/10.1017/S0269964809000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809000096

“S0269964809000096jra” — 2008/11/11 — 19:47 — page 112 — #12

�

�

�

�

112 S. Bhulai

[15, Thm. 3.11]). The known homogeneous solution f h
1 (x) satisfies

f h
1 (x + 1) + α(x)f h

1 (x) + β(x)f h
1 (x − 1) = 0. (8)

Set f (x) = f h
1 (x) u(x) for an arbitrary function u defined on N0. Substitution into (7)

yields

f h
1 (x + 1) u(x + 1) + α(x)f h

1 (x) u(x) + β(x)f h
1 (x − 1) u(x − 1) = q(x).

By subtracting (8) u(x) times from this expression and rearranging the terms, we
derive

�u(x + 1) − γ (x)�u(x) = r(x),

with

γ (x) = f h
1 (x − 1)

f h
1 (x + 1)

β(x) and r(x) = q(x)

f h
1 (x + 1)

.

From Lemma 3.1 it follows that

�u(x) = [�u(1)] Q(x) + Q(x)
x−1∑
j=1

r(j)

Q(j + 1)
with Q(x) =

x−1∏
i=1

γ (i).

From (5) it finally follows that

u(x) = u(0) + [�u(1)]
x∑

i=1

Q(i) +
x∑

i=1

Q(i)
i−1∑
j=1

r(j)

Q(j + 1)
.

Since f (x) = f h
1 (x) u(x), it follows that u(x) = f (x)/f h

1 (x) for x = 1, 2. �

The result of Theorem 3.2 is very useful for solving relative value functions
from Poisson equations expressed as (7) for queuing systems with a one-dimensional
state description. Note that the general form of the Poisson equations is given by
g · e + f = c + Pf (in vector form) after uniformization and rescaling the uniformiza-
tion factor to 1. Here, c are the direct costs, P is the transition probability matrix,
g · e is the vector with long-run expected average costs, and f is the relative value
function, where f (x) describes the asymptotic difference in total costs that results
from starting the process in state x instead of some fixed reference state y. With-
out loss of generality, we can take the reference state to be y = 0, so that for the
relative value function, we have f (0) = 0. Moreover, note that f h

1 (x) = 1 is always
a solution to the homogeneous Poisson equations. Hence, we have the following
corollary.

https://doi.org/10.1017/S0269964809000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809000096

“S0269964809000096jra” — 2008/11/11 — 19:47 — page 113 — #13

�

�

�

�

DYNAMIC ROUTING POLICIES 113

COROLLARY 3.3: Let f (x) represent the relative value function in the Poisson equations
of a queuing system defined on N0 satisfying the relation

f (x + 1) + α(x)f (x) + β(x)f (x − 1) = q(x). (9)

The relative value function is then given by

f (x) =
x∑

i=1

Q(i)

[
f (1) +

i−1∑
j=1

q(j)

Q(j + 1)

]
where Q(x) =

x−1∏
i=1

β(i). (10)

We are now ready to study the relative value function of the M/M/s/s and the
M/M/s queue.

3.1. The Blocking Costs in an M/M/s/s Queue

Consider a queuing system with s identical independent servers and no buffers for
customers to wait. The arrivals are determined by a Poisson process with parameter λ.
The service times are exponentially distributed with parameterμ.An arriving customer
that finds no idle server is blocked and generates a cost of one monetary unit. Let
state x denote the number of customers in the system. The Poisson equations for this
M/M/s/s queue are then given by

g + λ h(0) = λ h(1),

g + (λ + xμ) h(x) = λ h(x + 1) + xμ h(x − 1), x = 1, . . . , s − 1,

g + sμ h(s) = λ + sμ h(s − 1).

From the first equation we can deduce that h(1) = g/λ. The second equation can be
written as (9) with α(x) = −(λ + xμ)/λ, β(x) = xμ/λ, and q(x) = g/λ. From (10)
we have that

h(x) = g

λ

x∑
i=1

i−1∑
k=0

(i − 1)!
(i − k − 1)!

(
λ

μ

)−k

= (λ/μ)s/s!∑s
i=0(λ/μ)i/i!

x∑
i=1

i−1∑
k=0

(i − 1)!
(i − k − 1)!

(
λ

μ

)−k

.

(11)

The last term follows from the last equation, from which we derive that

g = (λ/μ)s/s!∑s
i=0(λ/μ)i/i! λ.

https://doi.org/10.1017/S0269964809000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809000096

“S0269964809000096jra” — 2008/11/11 — 19:47 — page 114 — #14

�

�

�

�

114 S. Bhulai

3.2. The Average Number of Customers in an M/M/s Queue

Consider the previous queuing system with s identical independent servers. Let state
x again denote the number of customers in the system. Suppose that a buffer of infinite
size is added to the system so that blocking does not occur anymore. Instead, we focus
on the average number of customers in the system represented by generating a cost of
x monetary units when x customers are present in the system. The Poisson equations
for this M/M/s queue are then given by

g + λ h(0) = λ h(1),

g + (λ + xμ) h(x) = x + λ h(x + 1) + xμ h(x − 1), x = 1, . . . , s − 1,

g + (λ + sμ) h(x) = x + λ h(x + 1) + sμ h(x − 1), x = s, s + 1, . . .

In order to obtain the relative value function h, we repeat the argument as in the case
of the M/M/s/s queue. In this case, we use Theorem 3.2 instead of Corollary 3.3 to
match the boundary conditions, and we then shift from x to x − s. Let ρ = λ/(sμ);
then for x = 0, . . . , s, the relative value function is given by

h(x) = g

λ

x∑
i=1

i−1∑
k=0

(i − 1)!
(i − k − 1)!

(
λ

μ

)−k

− 1

λ

x∑
i=1

(i − 1)

i−2∑
k=0

(i − 2)!
(i − k − 2)!

(
λ

μ

)−k

.

For x = s, s + 1, . . . , we have

h(x) = h(s) − (x − s)ρ

1 − ρ

g

λ
+

[
(x − s)(x − s + 1)ρ

2(1 − ρ)
+ (x − s)(ρ + s(1 − ρ))ρ

(1 − ρ)2

]
1

λ

+ (1/ρ)x−s − 1

1 − ρ

[
ρ

1 − ρ

g

λ
+ h(s) − h(s − 1) − (ρ + s(1 − ρ))ρ

λ(1 − ρ)2

]
.

The long-term expected average costs, which represents the average number of
customers in the system in this case, is given by

g = (sρ)sρ

s!(1 − ρ)2

[s−1∑
n=0

(sρ)n

n! + (sρ)s

s!(1 − ρ)

]−1

+ sρ.

4. NUMERICAL EXPERIMENTS

In this section we illustrate the one-step policy improvement method by studying
the routing problem for the call center under scenario 1 and scenario 2 described in
Section 2. The examples are chosen small enough so that the optimal policies can be
computed and compared to the one-step improved policies. We first start with a call
center with three skills under scenario 1.

The algorithm is started with the overflow policy described in Section 2 as the
initial policy.We denote the long-run expected average costs (divided byλ1 + λ2 + λ3)
for this policy by g. The average costs g are computed using (1) with the decisions

https://doi.org/10.1017/S0269964809000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809000096

“S0269964809000096jra” — 2008/11/11 — 19:47 — page 115 — #15

�

�

�

�

DYNAMIC ROUTING POLICIES 115

chosen according to the initial policy. The reason for dividing by λ1 + λ2 + λ3 is to
get the blocking probability instead of the average number of blocked calls. In this
way we can compare our results with the results stated in Tabordon [23], who used
the same policy in her work. The approximation to the relative value function of this
policy is given by (3), as described in Section 2, where hG is given by (11). The
relative value function is used to get an improved policy. The blocking probability
obtained by this policy is denoted by g′. Note that g′ is also computed using (1), where
the decisions have been chosen according to the improved policy. After this, we also
compute the optimal blocking probability g∗ under the optimal policy and the relative
error � = 100(g′ − g∗)/g∗.

In Table 1 we find the results of the one-step policy improvement algorithm for
scenario 1. The parameters for λX , μX , and SX in Table 1 are organized for groups
{1}, {2}, and {3}. The parameters for μXY and SXY are ordered for groups {1, 2}, {1, 3},
and {2, 3}, respectively. The greatest proportional extra cost (g′ − g∗)/g∗ over all
experiments in Table 1 is 12.9% (the last experiment). Other experiments show that the
proportional extra costs lies within the range of 0% to 13%. Thus, we can see that the
improved policy has a good performance already after one step of policy improvement.

For scenario 2 we consider a call center with three skills also. However, the call
center only consists of agents with one skill (specialists) or all skills (generalists) only.
Calls that require the same skill are pooled into a common queue. The initial policy
adopted in this system is to use the specialists first and to route to generalists when
there is a generalist idle and all specialists of the required call type are busy. Table 2
lists the results under this scenario with the same notation as under scenario 1.

The first line of Table 2 seems to suggest that no significant gains over the static
policy can be obtained when the service rates of the specialists and the generalists
are equal to each other. In Tables A1–A3 in the Appendix, we have varied the service
rate of the generalists under different loads. The results show that as the system is
offered higher loads, the gains by using the one-step improved policy are also higher
compared to the static routing policy. Next, we scale the system such that the increase
in the offered load was compensated by faster service rates or by an increase in the
number of servers. Table A4 shows that when the service rates are scaled, the gains

TABLE 1. Numerical Results for Scenario 1 with μ{1,2,3} = 1 and S{1,2,3} = 2

λX μX μXY SX SXY g g′ g∗ �

6 6 6 1.0 1.0 1.0 1.0 1.0 1.0 2 2 2 2 2 2 0.361 0.349 0.344 1.505
6 5 4 2.0 1.5 1.0 1.5 1.0 1.0 2 2 2 2 2 2 0.170 0.147 0.143 2.781
7 6 5 2.0 1.5 1.0 1.5 1.5 1.0 3 3 3 2 2 2 0.119 0.099 0.096 3.264
7 6 5 1.5 1.0 1.0 1.5 1.0 1.0 3 3 3 3 3 2 0.130 0.107 0.103 3.930
6 5 4 2.0 1.5 1.0 1.5 1.0 1.0 3 3 3 2 2 2 0.072 0.057 0.054 5.672
6 5 4 2.0 1.5 1.0 1.5 1.5 1.0 3 3 3 2 2 2 0.061 0.046 0.042 8.011

10 4 4 1.5 1.0 1.0 1.5 1.5 1.0 2 2 2 2 2 2 0.281 0.274 0.252 8.816
10 6 3 1.5 1.0 1.0 1.5 1.0 1.0 3 3 3 3 3 2 0.160 0.148 0.131 12.851

https://doi.org/10.1017/S0269964809000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809000096

“S0269964809000096jra” — 2008/11/11 — 19:47 — page 116 — #16

�

�

�

�

116 S. Bhulai

TABLE 2. Numerical Results for Scenario 2

λX μX SX μ{1,2,3} S{1,2,3} g g′ g∗ �

6 6 6 2.0 2.0 2.0 3 3 3 2.0 3 11.043 10.899 10.746 1.429
6 3 3 1.5 1.0 1.0 3 3 3 1.0 3 20.122 19.259 18.361 4.892
6 5 4 2.5 2.0 1.5 2 2 2 2.0 3 13.186 11.562 11.314 2.187
6 5 4 1.8 1.8 1.2 3 3 3 1.2 3 16.348 14.931 14.602 2.253
7 6 5 2.5 2.0 1.5 3 3 3 2.0 2 15.269 13.310 13.127 1.397
7 6 5 1.8 1.8 1.2 3 3 3 1.8 3 23.260 20.091 19.125 5.054

10 6 3 3.0 2.0 1.0 3 3 3 1.0 2 31.834 26.844 25.184 6.594
6 5 4 3.0 2.0 1.0 3 3 3 1.0 2 20.083 14.403 13.795 4.404

over the static policy remain roughly unaffected. However, when more servers are
added, it slightly decreases. From the other lines in Table 2 we can conclude that the
gain over the static policy is greater in asymmetric systems. In conclusion, we can
observe that the improved policy has a good performance and that its performance is
close to the performance of the optimal policy.

Note that our proposed method is scalable and can easily be used for larger call
centers. In this section, however, we restricted ourselves to a call center with three
skills, as the computation of optimal policies becomes numerically difficult for larger
call centers. The optimal policy grows exponentially in the number of skills, whereas
a single step of policy iteration has linear complexity.

5. DISCUSSION AND FURTHER RESEARCH

We have described nearly optimal dynamic routing policies for two call center set-
tings. The settings differ in terms of whether blocking or queuing occurs in the call
center. The dynamic policies are based on the one-step policy improvement algorithm
using the relative value function of the M/M/s/s queue (in case of blocking) and the
M/M/s queue (in case of queueing). The policies can be easily obtained even when
the problem instance grows large and can be computed online as well. Numerical
experiments suggest that the routing policies have a good performance. However,
these results cannot be compared with the optimal policies for large systems due to
computational difficulties.

In the problem, we have assumed that the service rates vary with the agent group
rather than the call type. A further extension of the model could take the variation in
the call content, rather than the agent type, into account. This can be done by deriving
the relative value function for a multiclass multiserver queuing system. The current
model, however, is still useful as an approximation to a call center in which the service
rates are close to each other or to handle the special case when all service rates are
equal to each other.

In scenario 2 we have chosen the average number of calls in the system as perfor-
mance measure. Alternatively, one could study tail probabilities of the waiting time.

https://doi.org/10.1017/S0269964809000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809000096

“S0269964809000096jra” — 2008/11/11 — 19:47 — page 117 — #17

�

�

�

�

DYNAMIC ROUTING POLICIES 117

The relative value function for this performance measure cannot be obtained from
Theorem 3.2 and requires a different approach. Note that both performance mea-
sures might lead to poor service for some customer classes if discriminating against
those classes helps the overall performance measure. Koole [11] suggested some new
performance measures that do not suffer from this.

A different avenue for further research could be to include abandonments to the
call center in case of queuing. In principle, Theorem 3.2 is general enough to compute
the value function of a multiserver queue with abandonments. However, it requires
insight into the call center to choose an initial policy such that the relative value
function can be approximated sufficiently well. This extension would also enable one
to study mixed call center architectures (i.e., queues with finite and infinite buffers,
call types with finite and infinite patience, etc.). It would be interesting to see how our
model can be extended along these dimensions.

References

1. Bertsekas, D. & Tsitsiklis, J. (1996). Neuro-dynamic programming. Bellmont, MA: Athena Scientific.
2. Bhulai, S. & Koole, G. (2003). On the structure of value functions for threshold policies in queuing

models. Journal of Applied Probability 40: 613–622.
3. Bhulai, S. & Koole, G. (2003). A queueing model for call blending in call centers. IEEE Transactions

on Automatic Control 48: 1434–1438.
4. Borst, S. & Seri, P. (2000). Robust algorithms for sharing agents with multiple skills. Working paper,

Bell Laboratories, Murray Hill, NJ.
5. Chevalier, P., Tabordon, N., & Shumsky, R. (2004). Routing and staffing in large call centers with

specialized and fully flexible servers. Louvain-la-Neuve, Belgium: Université Catholique de Louvain.
6. Franx, G., Koole, G., & Pot, S. (2006).Approximating multi-skill blocking systems by hyperexponential

decomposition. Performance Evaluation 63: 799–824.
7. Gans, N., Koole, G., & Mandelbaum, A. (2003). Telephone call centers: tutorial, review, and research

prospects. Manufacturing and Service Operations Management 5: 79–141.
8. Gans, N. & Zhou,Y. (2003).A call-routing problem with service-level constraints. Operations Research

51: 255–271.
9. Gurvich, I., Armony, M., & Mandelbaum, A. (2008). Service level differentation in call centers with

fully flexible servers. Management Science 54: 279–294.
10. Koole, G. (1995). Stochastic scheduling and dynamic programming. CWI Tract 113.Amsterdam: CWI.
11. Koole, G. (2003). Redefining the service level in call centers. Technical report, Vrije Universiteit,

Amsterdam.
12. Koole, G. & Mandelbaum, A. (2002). Queueing models of call centers: an introduction. Annals of

Operations Research 113: 41–59.
13. Koole, G. & Nain, P. (2000). On the value function of a priority queue with an application to a controlled

polling model. Queueing Systems 34: 199–214.
14. Koole, G. & Talim, J. (2000). Exponential approximation of multi-skill call centers architecture. In

Proceedings of QNETs 2000, pp. 23/1–23/10.
15. Mickens, R. (1990). Difference equations: Theory and applications. New York: Chapman & Hall.
16. Örmeci, E. (2004). Dynamic admission control in a call center with one shared and two dedicated

service facilities. IEEE Transactions on Automatic Control 49: 1157–1161.
17. Ott, T. & Krishnan, K. (1992). Separable routing: A scheme for state-dependent routing of circuit

switched telephone traffic. Annals of Operations Research 35: 43–68.
18. Perry, M. & Nilsson, A. (1992). Performance modeling of automatic call distributors: Assignable grade

of service staffing. In XIV International Switching Symposium, pp. 294–298.

https://doi.org/10.1017/S0269964809000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809000096

“S0269964809000096jra” — 2008/11/11 — 19:47 — page 118 — #18

�

�

�

�

118 S. Bhulai

19. Puterman, M. (1994). Markov decision processes: Discrete stochastic dynamic programming. New
York: Wiley.

20. Sassen, S., Tijms, H., & Nobel, R. (1997). A heuristic rule for routing customers to parallel servers.
Statistica Neerlandica 51: 107–121.

21. Shumsky, R. (2004). Approximation and analysis of a queueing system with flexible and specialized
servers. OR Spektrum 26: 307–330.

22. Stanford, D. & Grassmann, W. (2000). Bilingual server call centres. In D. McDonald & S. Turner
(eds.), Call centres, traffic and performance, Providence, RI: American Mathematical Society. Fields
Institute Communications, Vol. 28, pp. 31–48.

23. Tabordon, N. (2002). Modeling and optimizing the management of operator training in a call center.
Ph.D thesis, Université Catholique de Louvain.

24. Wallace, R. & Whitt, W. (2005). A staffing algorithm for call centers with skill-based routing.
Manufacturing and Service Operations Management pp. 276–294.

APPENDIX

TABLE A1. Scenario 2 – λX = 5, μX = 2, SX = 3, and S{1,2,3} = 3

μ{1,2,3} g g′ g∗ �

1.5 9.012 8.933 8.928 0.051
1.6 8.773 8.707 8.703 0.045
1.7 8.559 8.504 8.500 0.047
1.8 8.366 8.320 8.316 0.045
1.9 8.192 8.154 8.150 0.044
2.0 8.035 8.006 7.999 0.091
2.1 7.892 7.864 7.851 0.166
2.2 7.762 7.713 7.675 0.496
2.3 7.644 7.561 7.489 0.962
2.4 7.535 7.405 7.302 1.418
2.5 7.436 7.238 7.118 1.690

TABLE A2. Scenario 2 – λX = 6, μX = 2, SX = 3, and S{1,2,3} = 3

μ{1,2,3} g g′ g∗ �

1.5 13.674 13.142 12.877 2.055
1.6 12.995 12.595 12.344 2.035
1.7 12.405 12.106 11.872 1.969
1.8 11.891 11.665 11.453 1.848
1.9 11.440 11.265 11.080 1.671
2.0 11.043 10.899 10.746 1.429
2.1 10.692 10.449 10.445 0.046
2.2 10.379 10.179 10.160 0.189
2.3 10.101 9.934 9.881 0.532
2.4 9.851 9.712 9.610 1.062
2.5 9.626 9.494 9.347 1.568

https://doi.org/10.1017/S0269964809000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809000096

“S0269964809000096jra” — 2008/11/11 — 19:47 — page 119 — #19

�

�

�

�

DYNAMIC ROUTING POLICIES 119

TABLE A3. Scenario 2 – λX = 7, μX = 2, SX = 3, and S{1,2,3} = 3

μ{1,2,3} g g′ g∗ �

1.5 27.101 25.142 23.387 7.502
1.6 25.138 22.841 21.638 5.559
1.7 23.306 20.923 20.099 4.097
1.8 21.623 19.326 18.755 3.042
1.9 20.099 17.992 17.586 2.304
2.0 18.737 16.867 16.571 1.784
2.1 17.533 15.910 15.690 1.401
2.2 16.475 15.086 14.920 1.114
2.3 15.551 14.370 14.240 0.915
2.4 14.746 13.741 13.631 0.802
2.5 14.044 13.183 13.082 0.771

TABLE A4. Scenario 2: Scaling of the System

λX μX SX μ{1,2,3} S{1,2,3} g g′ g∗ �

6 5 4 2.5 2.0 1.5 2 2 2 2.0 3 13.186 11.562 11.314 2.187
12 10 8 5.0 4.0 3.0 2 2 2 4.0 3 13.187 11.564 11.313 2.215
24 20 16 10.0 8.0 6.0 2 2 2 8.0 3 13.190 11.567 11.310 2.273
12 10 8 2.5 2.0 1.5 4 4 4 2.0 6 18.625 17.789 17.562 1.290
24 20 16 5.0 4.0 3.0 4 4 4 4.0 6 18.628 17.792 17.559 1.326
24 20 16 2.5 2.0 1.5 8 8 8 2.0 12 31.925 31.380 30.991 1.253
30 20 10 2.5 2.0 1.5 15 15 15 2.0 15 28.924 27.996 27.256 2.714
30 20 20 2.5 2.0 1.5 20 20 20 2.0 20 35.290 34.829 32.015 8.788

https://doi.org/10.1017/S0269964809000096 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809000096

