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We consider the loss probability of a customer in a single-server queue with finite
buffer and partial rejection and show that it can be identified with the tail distri-
bution of the cycle maximum of the associated infinite-buffer quéins equiv-
alence is shown to hold for th®l/G/1 queue and for dams with state-dependent
release ratego prove this equivalenceve use a duality for stochastically mono-
tone recursiongleveloped by Asmussen and Signia896). As an applicationwe
obtain several exact and asymptotic results for the loss probability and extend
Takacs' formula for the cycle maximum in thd/G/1 queue to dams with variable
release rate

1. INTRODUCTION

Queuing models with finite buffers are useful to model systems where losses are of
crucial importancgas in inventory theory and telecommunicatiodsfortunately
finite-buffer queues are often more difficult to analyze than their infinite-buffer
counterpartsAn important exception is th&l/G/1 queue where the total amount

of work is upper bounded b and customers are rejected under the partial rejec-
tion discipline This rejection discipline operates such that if a customer’s sojourn
time would exceed, the customer only receives a fraction of its service require-
ment to make its sojourn time equal ko This model is also known as the finite
dam see Section 2 for a precise description of the dynamics of this queue
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We consider the probabilitx that a customer gets partially rejected when
entering the system in steady stdtas readily seen that

P« = P(WK + S=K), (1)

with WK being the steady-state waiting time aBdbeing a generic service time
Thus information abouPy can be recovered from the distribution\af<,

Cohen[11, Chap Il .6] analyzed the distribution aV¥ in the case that both
the interarrival times and service times have a rational Laplace transfamthe
M/G/1 queue with traffic intensity < 1, the distribution ofW ¥ can be written in
an elegant fornfi.e, in terms of the steady-state waiting-time distribution of the
M/G/1 queue with infinite buffer size This result is already known since Takacs
[21]. Using this resultZwart[23] showed thaPy can be identified with Takacs’
formula[21] for the tail distribution of the cycle maximum in thd/G/1 queue
that is it is shown in[23] that

IDK = IP)(Cmaxz K) (2)

For theGl/G/1 queue with light-tailed service timggan Ommeren and De Kok
[22] derived exact asymptotics f& asK — oco. From their main resultt imme-
diately follows that

P ~ IED(CmaxZ K),

asK — oo. This naturally leads to the conjecture tHaj can be extended to the
Gl/G/1 queueUnfortunatelythe proof in[23] cannot be extended from Poisson to
renewal arrivalsas it relies on exact computations for bé&thand the distribution
of Craxe

This brings us to the main goal of the artict@ur aim is to show thain appro-
priate modification of (2) is valid for a large class of queuing modelis particu-
lar, we establish this equivalence for any positpvevithout the need to compute
both sides of2) separatelyinstead the proof method in the present article relates
the distribution ofWK + Sto a first-passage probabilitywhich is in turn, related to
the distribution ofC,,.,. We will also give another proof based on a regenerative
argument

Both proof techniques strongly rely on a powerful duality theory for stochas-
tic recursionswhich has been developed by Asmussen and Sigmhrand dates
back to Lindley[17], Loynes[18], and Siegmund20]. For a recent textbook
treatmentsee Asmussefll]. This type of dualityalso known as Siegmund dual-
ity, relates the stationary distribution of a given model to the first passage time of
another modelcalled the dual modelThus Siegmund duality provides the right
framework for proving(2). In its simplest form Siegmund duality yields the well-
known relationship between waiting-time probabilities for infinite-buffer queues
and ruin probabilities

This article is organized as followsVe treat theGl/G/1 queue in Section.2
Section 3 extends the results of Section 2 to queues with state-dependent service
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rates The final result for this class of models is somewhat more complicated than
(2). In both sectionswe give two proofsThese two proofs lead to different iden-
tities in Section 3In Section 4 we show that{2) is not only useful to derive new
results for the loss probabilitx but also for the distribution o€, Our main
results in this section aK&) a much shorter proof of the light-tailed asymptotics for
Px derived in[22], (2) asymptotics oPx for heavy-tailed service timeand(3) an
extension of Takacs’ formula f@(C,a> -) to M/G/1 queues with state-dependent
release ratesConcluding remarks can be found in Sectian 5

2. THE G//G/1 QUEUE

In this sectionwe consider th&1/G/1 queue with partial rejectignwvhich is also
known as the finites1/G/1 dam Before we present our main resulte first intro-
duce some notation and give a detailed model description

Let T, T,,... be the interarrival times of customers and denotenthearrival
epoch after time 0 by, (i.e., T, = 2¢_; T,). We assume that the interarrival times
form an independent and identically distributedd.) sequence and th&{ T, ] < co.
The service requirement of timth customer is denoted 8, n=1,2,..., whereas
S,,S,... are also assumed to béd. Definep := E[S,]/E[T;] as the load of the
system We like to emphasize that may take any(positive value To obtain a
nontrivial model thoughwe additionally assume th&(T, > S;) > 0 (otherwise
P« =1).

The workload procesfD(t),t € R} is now defined recursively bgcf. [11])

D(t) = max(min(D(Ty ) + S, K) — (t — Ty),0), t e [Ty, Tern).

Since the workload in the system is uniformly boundés& proces$D(t),t € R}

is regenerative with customer arrivals into an empty system being regeneration points
independent of the load of the systelnet a regeneration cycle start at time 0 and
define the first return time to state 0 by

To:=inf{t > 0:D(t) =0}
Furthermorelet C,,, be the cycle maximum of a busy cycle arore formally
Cmax:: SUP{D(t), O=t= TO}-

Observe thaffor x = K, P(C,ax= X) is the same for the finite dam and its infinite-
buffer counterpartSa without affecting the resulfsve will henceforth adopt the
above definition ofZ,,,Wwhen we consider the cycle maximum in {8&G/1 queue
with infinite-buffer capacityNote thatP(C,,.x= c0) > 0 if K = 0o andp > 1.

From the workload process in the fini@&l/G/1 dam we construct a process
{R(t),t € R}, as in[19], by defining

R(t) := K—D(t).
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Away from the boundarigshis process increases linearly at rate 1 and negative jumps

occur at timedT,, of sizeS,, n=1,2,.... By definition, jumps below zero are trun-

cated and if the process hits stitgt remains inK until the next{downward jump

(see Fig1 for an illustration. In fact, we are only interested in the behaviorR(ft)

until it hits one of the boundarieand in this regionthe proces$R(t), t € R} shows

a strong resemblance to arisk proc@glsere 0 is supposed to be an absorbing gtate
Due to the finite capacifythe procesgR(t),t € R} is also regenerativeand

regeneration points in the process correspond to downward jump epochs froi. level

Hence 7o can be alternatively defined by := inf{t > 0: R(t) = K}.
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Ficure 1. Two sample paths dD(t) until it hits one of the boundariewvith cor-
respondingR(t).
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Recall thatPk is the steady-state probability that an arriving customépis-
tially) rejected The main result in this section is the following theorem

THEOREM 2.1: For the GI/G/1 queue, we have
PK = IP)(Cmaxz K)

In the remaining part of this sectipwe present two proofs of Theorenil2In
the first proof to be presented in Sectionl2we take a direct approagchsing the
representatio’, = P(WKX + S= K) and the above-mentioned definition of the
cycle maximumEquivalence is then shown using the machinery developgd]in

The second progfjiven in Section 2, establishes a link between the loss rate
and the cycle maximum using an insightful regenerative argunhemgarticular
we utilize the fact that the number of losses in a cygigen that at least one loss
occurs is geometrically distributedrhe main step in this approach is the compu-
tation of the success parameter of that distributibmis is, again established by
results in[7].

2.1. Direct Approach

As mentionedto determine the tail distribution of the cycle maximum in an infinite-
capacity modelwe may also assume that the workload is uniformly bounded as
described earlieiSq consider one regeneration cycle of the prodgs&), t € R}

(or equivalently{R(t), t € R}) and let a customer enter the system at timgi@ice

the workload process has peaks at time epochs just after an arrival jwetamiy
write

P(Chax=K) =P(ON=179:W,+ S, =K)
=P(ON=170:R(T;) — S, =0). (3)

Observe that the right-hand side(8J corresponds to a hitting probabilitgtarting

in stateK, (3) may be interpreted as the probability that state 0 is reached before
R(t) hits stateK again Note that the procedR(t), t € R} embedded at poinfg, is

also recursively defined by the interarrival times and the service requireribete

two observations allow us to rewrite this embedded process as a monotone stochas-
tic recursion with two absorbing stat€é8 andK): We defineRy = K,R,;; =
g(Rn,Up), whereU, := (S,;1, T,) and

0 if x=0orifxe (0,K]ands= x
g(x,st)=1x—(s—t) ifxe (0,K]ands<x
oo if x> K.

Thus we start our recursion with initial reserdg after which it evolves as an
unrestricted random walluntil it leaves(0,K]. Moreover it is always checked
ahead whether a downward jump will not cause a negative workleading to
absorption in state.0

https://doi.org/10.1017/50269964805050138 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964805050138

246 R. Bekker and B. Zwart

Now, Example 4 of Asmussen and Sigmgfi gives the corresponding dual
stochastic recursiofV,}, which is defined a®/,+1 = f (Vi, Sh+1, Tn), Where

f(y,st) = min(((y —t)* +s),K).

This recursion corresponds to the workload rigfier a jump or the sojourn timg
of a finite GI/G/1 dam Under ii.d. assumptionsV, weakly converges to a random
variableV asn — co; see for example Cohen[11, Chap Il1.6]. Let

v(x,K):=minin=1:Ry,=x,R, & (0,K]}

denote the first exit time of0, K]. Then Corollary 31 of [7] yields the following
fundamental result

P(V=x) = lim P(R,=0|Ry=x) =P(R,x k) = 0). (4)
Thus the distribution ofV can be written as a first-passage probahilidging (3)
and takingx = K in (4), we have
IP)(Cmaxz K) = P(Ry(K,K) = O)
=P(V=K).
Hence
P« = P(WK+S=K)=P(V=K) =P(Cprax=K),

which completes the proof

2.2. Regenerative Approach

Let Lk be the number of not fully accepted customers andllebe the total num-
ber of customer arrivals during a regeneration cyéleasic regenerative argument
yields

ELy
K= EN,’ (5)
The denominator follows easily by
Nk
P(WK =0) = ENy E{Izl I (WK = 0)1 = EN, (6)
wherel (-) is the indicator functionThe numerator may be rewritten as
ELg = E[Lg!(Lg = 1)]
=E[L¢|Lx = 1]P(Lx =1)
= E[Lx|Lx = 1]P(Crax= K). (7)
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Moreover observe that whenever the workload reaches |&vahd a customer is
(partially) rejected the process continues from levé€lstarting with a new inter-
arrival time which clearly is independent of the pashen the probability of an
additional customer loss in the regeneration cycle is equal to the probability that the
workload process reaches lewehgain before the end of the busy cydbenoting

T« ;= inf{t > 0:D(t) = K|D(0) = K}, this leads to

P(Lx = n+1|Lx =n) = P(7¢ < 79/D(0) =K) (8)
=1-0k.

Iterating this argumentve conclude thaty|Lx = 1 is geometrically distributed
with success parameter-1gx. Since the expectation of such a geometric distribu-
tion equals 1(1 — gx), we have to show thag = P(WK > 0) to complete the
proof. To do sgwe use a similar construction of the “risk-type” procgRét), t € R}

as we did in the first proofNote that(8) corresponds to the probability that from
initial level O, R(t) reaches level 0 again before it hits lewelAgain, this can be
transformed into a monotone stochastic recursion with two absorbing ba@iers
andK: DefineR,,1 = 9(Rn, Si11, Tn), with

0 ifx=0o0rif0<x<s-—t
g(x,5t)={x—(s—t) if0<s—t=x=K-t
00 if x+t>K.
Thus starting from level OR, evolves as an unrestricted random walk until it leaves
(0,K]. Note that it is indeed checked ahead whether the workload increases above
level K before the next downward jump

Now, another example of Asmussen and Sigrfi#jrprovides the dual stochas-
tic recursion{V,,}. In particular Example 3 of 7] gives the dual function

f(y,st) = (min(y + s,K) — t)7,

defining the dual recursiow, ;1 = f (V,, Si+1, T)- This recursion corresponds to the
workload rightbeforea jump (or the waiting time in a finite GI/G/1 dam Use
Corollary 31 of [7] and takex = € > 0 in (4) to show that

qK = Ielrjg ]P(Ry(e,K) = O)
= Ii?g P(V=¢€)=P(V>D0). (9)

Recall that thev,, corresponds to the waiting time of tiéh customerandV thus
represents thevaitingtime in steady stat€€ombining(5)—(9) completes the proof

Remark 2.1:Both proofs rely on computing the dual of a recursion driven by a
specific functiorf (X, z), which is monotone ix for everyz. In generalthe driving
functionf and its dualg are related by
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g(x,2) = inf{y:f(y,z) = x},
f(y,2) = inf{x:g(x,2) = y}.
We refer to[ 7] (in particular Eq. (2.4)) for details

3. DAMS WITH STATE-DEPENDENT RELEASE RATES

In this sectionwe consider th&1/G/1 dam with general release ratige start with
introducing some definitions and a description of the driving sequence of the queu-
ing processNext, we state the main result and give two prqagalogous to the
proofs in Section 2

Consider the model of Sectionlaut let the release rate béx) when the work-
load equalsx. We assume that(0) = 0 and thatr(-) is strictly positive left-
continuousand has a strictly positive right limit of0,c0). Also, define

X
1
0(x):=f—d, 0<y< oo,
0 Ty )
representing the time required for a workloatb drain in the absence of arrivals
We assume that(x) < oo, 0 < x < oo, indicating that state O can be reached in a
finite amount of timeThis ensures tha&,,,.«is well defined Note thaty (-) is strictly
increasing and we cathus unambigously speak @ 1(t). Similar to[14,19], we
define

q(u, t) == 6~ 1(0(u) — t).

Thenq(u, t) represents the workload level at tihé we start off from levelu at
time 0 and no arrivals have taken place in between

Denote the workload process of tkd/G/1 queue with finite buffeK and
general release rate functioft) by {D'"(t),t € R}. Let T, = 0 andD"(0) = x.
Between jump epochshe workload process is defined recursively(of: [19])

D'V(t) =q(D" (T 1),  Te<t<Ty,
and at thgk + 1)st jump epoch after time,0
D" (Ts1) = min(q(Ty, Tes 1) + Sera, K).

To exclude trivial cases where the workload is bounded from heleassume that

P(gq(x + S, Ty) < x) > 0, for all x > 0. Combined with the finite capacity and

6(x) < oo for all finite x, this ensures that the workload proc¢Bs)(t),t € R} is

still regenerative with customer arrivals into an empty system as regeneration points
Definef(x) := r(K — x), for 0 = x = K < o0, and let all random variable$' )

andX correspond to the model with release rates) andr(x), respectivelyif

the process is at leved Similar to Section 2we construct a “risk-type” process

{R"O(t), t € R} by takingR™ (t) = K — D")(t). In betweer(the downwardjumps

the newly defined process is governed by the input rate funétigh= r (K — x)

and satisfies
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dR'O(t)
dt

= r(Rr(-)(t))_

Also, the risk-type process starts Rf*)(0) := K — D")(0). In addition if
{RTU)(t),t € R} starts aty and no jumps occur fartime units its value increases
similar to the decrease in the workload process

aly,t) :=6-1((y) +1t).

Here 6(x) := [3(r(y)) *dy, represents the time required to move from zero to
x in the absence of negative jumpsith inversed *(t). Note that for finite K,
J5(r(y)) tdy < o0, meaning that state 0 can be reached in a finite amount of time
and the cycle maximum is also well defined in this case

Tueorem 3.1 For the GI/G/1 queue with general release rate, we have

PL = P(CHR=K) (10)
or, alternatively,
(o PWES0 =0 () =
P = m IPJ(Cmalx— K)- (11)

We use a direct approach to sh@®0), thereby extending the proof in Sec-
tion 2.1. To show(11), we follow the lines of Section.2, using an insightful regen-
erative argument and noting that the number of losses in a,ayieken that at least
one loss occurshas a geometric distributiohet us start with(10).

Proor oF (10): As noted earligthe workload proces® " (t), t € R} is still regen-
erative with customer arrivals into an empty system as regeneration.gdietsbser-
vation that the workload process has peaks at epochs right after an arrival,instant
together with(3) and the construction of the proceg®’ (1), t € R}, leads to

P(CIO.=K)=P(On=1,: R (T,-) — §,=0). (12)

The probability in(12) can be interpreted as the probability that state 0 is reached
beforeR™)(t) hits stateK again starting off from levelK. Define R, = K and
RE(-%.—)l = g(Rr’;(-)5 S’H—l’Tn)’ Wlth

0 if x=0orifx & (0,K]ands= x
g(x,st) =30 HA(x—9)+1t) if xeE (0,K]ands< x
o0 if x> K.

Following [7], we construct the dual function corresponding to the described pro-
cess{R™"(t),t € R}, yielding

f(y,s,t) =min(d *(4(y) — t) + s, K),
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and defineV,} recursively by} = f (V') S,, 1, T,,). This process corresponds
to aGl/G/1 queue with release ratgx) = r(K — x) if the workload equalx,
embedded at epochs rigdfter a jump We now complete the proof ¢1.0) by com-
bining the duality(4) between storage and risk processes with the expresgjon
for Pg:

P(Chax= K) = P(Rj{k k) = 0)

=P(V'O =K)
= ]P’(WK"’(') +S=K)
= p&@)' |

Next we turn to(11), which we show following the lines of Section2

Proor of (11): As mentioned earliethe workload process is still regenerative
and we consider the total number(@fartially) rejected customers during a regen-
eration cycleWe apply the same regenerative argument as in Sectaritl note
that customers are rejected if and only if the process reachesdéveafbre the end
of the cycle(which happens with probabilit (C/) = K)). Moreover after a cus-
tomer rejectionthe process continues from leug| starting with a new interarrival
time. This implies that the probability of an additional customer loss is independent
of the past grequivalently thatK is also a regeneration pointherefore we may
conclude thatgiven that at least one loss occurs and the process starts off from
level K, the additional number of customer rejections is geometrically distributed
with success parameter-lgy := P(7¢ < 70| D" (0) = K). Thus we have to show
thatge = P(WK ™ > 0) and combing5)—(8) to complete the proof

We start with the construction of the “risk-type” procéRS")(t), t € R} defined
at the beginning of the sectioW/e rewrite 1— gx as the probability thatstarting
from level Q R"")(t) hits level 0 again before it reaches lewelInterpreting our
process as a monotone stochastic recursion with two absorbing bangedefine
Rzi)l = g(RE(')7SW+l’Tn)’ where

0 if x=0o0rif(x) <f(s)—t
gx,5t) =40 H0(x)+1t)—s ifd(s) —t<H(X) <H(K)—t
0 if (x)+1t>6(K).

Again, using[7], it can be seen that the dual recursion is definedvay =
f(Vnr(‘)’S“ﬁl’Tn), with

f(y,st) = 0 *(6(min(y +s,K)) —t).

The latter recursion corresponds to the workload at time epochdxédbitea jump
As the speed of the server is determined by the general release fyrbi®odoes
not equal the waiting time
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Finally, using Corollary 3L of [7] once morewe obtain
Ok = Ii??) ]P(R;((‘e),r() =0
= Im PV =€)

= P(W© > 0). (13)

Hence by combining(5)—(8), and(13), we also have shown the second part of the
result [ |

Remark 3.1:The constanP(W*"") = 0)/P(WK ™™ = 0) in (10) can easily be inter-
preted As the interarrival times in both systems follow the same distribytising
(6), the constant equals the ratio of the respective cycle lengths

Remark 3.2:A sample path argument can also provide some intuition into the
equivalence betweef10) and (11). First, the procesgR""(t)|t = 0} can easily

be interpreted as the available buffer capacity of a dam with release (rate
when the content equaks Secondto convert the risk-type process into a queuing
process againve use a reversibility argumerds in Asmussen and Kel[d] and
Asmussen and Schock Petergéh The sample path of this queuing process can
essentially be obtained by time-reversing the sample paR6t(t)|t = 0}, result-

ing in a queuing process with service sp&éd) when the workload equabs

4. APPLICATIONS

In this sectionwe state some exact and asymptotic result®fdoy applying results
for Ca Which are available in the literatur&iven the results derived earlj¢his
leads to more transparent proofs of existing results and to results that are new

4.1. Exact Expressions for Py

In the literaturethere are several studies devoted to the distributio@,qf, for a
variety of queuing modeldVe refer to Asmussef2] for a survey of these results
TheM/G/1 case has already been treatefPi8]. Here we give an analogous result
for the GI/M/1 queue

CoroLLARY 4.1: Consider the finite GM/1 dam withp < 1 and service rate \.
Then

o _ 1
K — H(K)’

where Hx), x = 0, is a function with Laplace—Stieltjes transform (LST)

_
S—u(1-a(s)’
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with a(s) the LST of the interarrival time distribution.

Proor: The result follows immediately from Theoreml2and formula(7.76) of
Cohen[11], stating that for the51/M/1 queue

1
P(Cmaxz K) = %

with H(x), x = 0, defined as earlier u

4.2. Asymptotics

Van Ommeren and De KoR2] derived asymptotics foPx in the GI/G/1 queue

under light-tailed assumptioniBhey concludgafter a lengthy argumeythat(under

their assumptionsP« ~ P(C,a > K), wheref (x) ~ g(x) denotes (x)/g(x) — 1 as

X — oo. Asymptotics for the latter are due to Iglehft6]: Under certain regularity
conditions(se€[16]), it holds that

]P)(Cmaxz K) ~ De_yK, (14)

for certain positive constantsandD. Using Theorem 2, the proof of the main
result of[19] is now trivial Just combine Theorem Rwith (14) to (re-)obtain

PK -~ De_yK.

For more details concerning specific assumptions and expressiopsfuD we
refer to[16,22].

We conclude by giving results for the heavy-tailed caSensidey again
the GI/G/1 queuebut assume now that service times belong to the subdlass
the class of subexponential distributiotsee e.g., EmbrechtsKlippelberg and
Mikosch[13] for a definition. This class contains all heavy-tailed distributions of
interest such as the Paregttognormal and certain Weibull distributions

Asymptotics for the cycle maximum can be found&. If we combine these
asymptotics with Theorem.2, we obtain(with N being the number of customers
served in one busy cycle in the infinite buffer version of B&G/1 queug the
following corollary.

CoroLLARY 4.2: If p < 1 and the service time & S*, then
P« ~ ENP(S= K).
Also, in case of Poisson arrivalthis result can be extended to queues with

general service speedsee[3] for details Note that(10) and(11), combined with
Remark 31, indeed result in the same asymptotics
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4.3. Poisson Arrivals and Takacs’ Formula

The equivalence in Theorem12can also be used the other way arou@iven
information onPy, we derive a new identity for the distribution &f,,, for queues
with a general release rateor the speciaM/G/1 casethe distribution ofC,, . is
known through Takacs’ formul&Ve combine the results of Section 3 with an iden-
tity for P, which is valid under the additional assumptions of Poisson artigals

a stationary(embeddegiworkload distribution in case of infinite-buffer capacity
(see eqg., [1,9] for detailg. Under these assumptiarthe steady-state distribution
of the amount of work in the system found by a custom&r ') satisfies the fol-
lowing proportionality result

P(W'® =x)

PWRTO =x) = ————
( A TEETS)

(15)
Here W' is the steady-state amount of work in the system ith oo (assuming
it exists. For theM/G/1 queuethis result is well knownseg for example Takacs
[21], Cohen[11], and Hooghiemstrfl5]. For a rigorous proof of15) in the case
of a general release ratwe refer to Asmussefi, Chap X1V, Prop 3.1].

Writing 1 — Px = P(WK'® + S < K), conditioning onS applying(15), and
deconditioning orSthen results in

P = 1— P(WX'O + S<K)

_ P(W'Y +S=K) - P(W'” >K)
- P(W'® =K)

Combining this result witl{11) then results in the following corollary

CoroLLARY 4.3: Assume that the KG/1 queue with infinite buffer size and gen-
eral release rate has a stationary (embedded) workload distribution. Then

P(W*"®) =0) P(W'® +S=x) — P(W'® > X)
P(Wx,rw =0) p(Wr(J =X) ’

P(Cha=x) =

This is an extension of the classical formula for the distributiof, in the
M/G/1 queuewhich is due to Takad1] (see also Cohel0], and Asmussen and
Perry[5] for alternative proofs His result can be easily recovered from Corollary
4.3, since for the M/G/1 queue we haver (x) = f(x) = 1. This yields the well-

known formula
B(C.. < )_]P’(W+S<x)
max X) = P(WS X)

Related results for first-exit probabilities as well as expressions for the distribution
of W' in terms of Volterra functions can be found in Harrison and Resffigk

and Bekkel[8]. Although Corollary 43 does not give a very explicit formula for
the distribution ofC,,.«in generalwe expect that this representation may be useful
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to obtain asymptotics aidr boundsAsymptotic results in the light-tailed case are
hardly known see Asmusse}2,3].

5. CONCLUSION

We have considered several queuing models that operate under the partial rejection
mechanismFor these modeJsve have shown that the loss probability of a cus-
tomer can be identified with the tail probability of the cycle maximum

The present work raises several questions that could be interesting for further
researchFirst, we believe that an appropriate modification of Theorerm ill
holds for other queuing modelsuch as queueing models with Markov-modulated
input This is potentially usefylsince the distribution of the cycle maximum is
known for a large class of such modetee Asmussen and Pefi].

Furthermorewe expect that Siegmund duality and related results can also be
fruitful in other queuing problemsn the context of the present articlee believe
that an analog of2) can be shown for queues that can be modeled as birth—death
processesSiegmund-type duality results for birth and death processes have been
derived by DetteFill, Pitman and Studdef12].
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