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We consider the loss probability of a customer in a single-server queue with finite
buffer and partial rejection and show that it can be identified with the tail distri-
bution of the cycle maximum of the associated infinite-buffer queue+ This equiv-
alence is shown to hold for theGI0G01 queue and for dams with state-dependent
release rates+ To prove this equivalence, we use a duality for stochastically mono-
tone recursions, developed by Asmussen and Sigman~1996!+As an application,we
obtain several exact and asymptotic results for the loss probability and extend
Takács’ formula for the cycle maximum in theM0G01 queue to dams with variable
release rate+

1. INTRODUCTION

Queuing models with finite buffers are useful to model systems where losses are of
crucial importance, as in inventory theory and telecommunications+ Unfortunately,
finite-buffer queues are often more difficult to analyze than their infinite-buffer
counterparts+ An important exception is theGI0G01 queue where the total amount
of work is upper bounded byK and customers are rejected under the partial rejec-
tion discipline+ This rejection discipline operates such that if a customer’s sojourn
time would exceedK, the customer only receives a fraction of its service require-
ment to make its sojourn time equal toK+ This model is also known as the finite
dam; see Section 2 for a precise description of the dynamics of this queue+
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We consider the probabilityPK that a customer gets partially rejected when
entering the system in steady state+ It is readily seen that

PK 5 P~WK 1 S$ K !, (1)

with WK being the steady-state waiting time andS being a generic service time+
Thus, information aboutPK can be recovered from the distribution ofWK +

Cohen@11, Chap+ III +6# analyzed the distribution ofWK in the case that both
the interarrival times and service times have a rational Laplace transform+ For the
M0G01 queue with traffic intensityr , 1, the distribution ofWK can be written in
an elegant form~i+e+, in terms of the steady-state waiting-time distribution of the
M0G01 queue with infinite buffer size!+ This result is already known since Takács
@21# + Using this result, Zwart @23# showed thatPK can be identified with Takács’
formula @21# for the tail distribution of the cycle maximum in theM0G01 queue;
that is, it is shown in@23# that

PK 5 P~Cmax $ K !+ (2)

For theGI0G01 queue with light-tailed service times, Van Ommeren and De Kok
@22# derived exact asymptotics forPK asK r `+ From their main result, it imme-
diately follows that

PK ; P~Cmax $ K !,

asK r `+ This naturally leads to the conjecture that~2! can be extended to the
GI0G01 queue+ Unfortunately, the proof in@23# cannot be extended from Poisson to
renewal arrivals, as it relies on exact computations for bothPK and the distribution
of Cmax+

This brings us to the main goal of the article:Our aim is to show that~an appro-
priate modification of! ~2! is valid for a large class of queuing models+ In particu-
lar, we establish this equivalence for any positiver without the need to compute
both sides of~2! separately+ Instead, the proof method in the present article relates
the distribution ofWK 1 Sto a first-passage probability, which is, in turn, related to
the distribution ofCmax+ We will also give another proof based on a regenerative
argument+

Both proof techniques strongly rely on a powerful duality theory for stochas-
tic recursions, which has been developed by Asmussen and Sigman@7# , and dates
back to Lindley@17# , Loynes @18# , and Siegmund@20# + For a recent textbook
treatment, see Asmussen@1# + This type of duality, also known as Siegmund dual-
ity, relates the stationary distribution of a given model to the first passage time of
another model, called the dual model+ Thus, Siegmund duality provides the right
framework for proving~2!+ In its simplest form, Siegmund duality yields the well-
known relationship between waiting-time probabilities for infinite-buffer queues
and ruin probabilities+

This article is organized as follows+ We treat theGI0G01 queue in Section 2+
Section 3 extends the results of Section 2 to queues with state-dependent service
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rates+ The final result for this class of models is somewhat more complicated than
~2!+ In both sections, we give two proofs+ These two proofs lead to different iden-
tities in Section 3+ In Section 4, we show that~2! is not only useful to derive new
results for the loss probabilityPK but also for the distribution ofCmax+ Our main
results in this section are~1! a much shorter proof of the light-tailed asymptotics for
PK derived in@22# , ~2! asymptotics ofPK for heavy-tailed service times, and~3! an
extension of Takács’ formula forP~Cmax. {! to M0G01 queues with state-dependent
release rates+ Concluding remarks can be found in Section 5+

2. THE GI/G/1 QUEUE

In this section, we consider theGI0G01 queue with partial rejection, which is also
known as the finiteGI0G01 dam+ Before we present our main result, we first intro-
duce some notation and give a detailed model description+

Let T1,T2, + + + be the interarrival times of customers and denote thenth arrival
epoch after time 0 byPTn ~i+e+, PTn 5 (k51

n Tk!+We assume that the interarrival times
form an independent and identically distributed~i+i+d+! sequence and thatE@T1# ,`+
The service requirement of thenth customer is denoted bySn, n51,2, + + + , whereas
S1,S2, + + + are also assumed to be i+i+d+ Definer :5 E@S1#0E@T1# as the load of the
system+ We like to emphasize thatr may take any~positive! value+ To obtain a
nontrivial model though, we additionally assume thatP~T1 . S1! . 0 ~otherwise
PK [ 1!+

The workload process$D~t !, t [ R% is now defined recursively by~cf+ @11# !

D~t ! 5 max~min~D~ PTk
2! 1 Sk,K ! 2 ~t 2 PTk!,0!, t [ @ PTk, PTk11!+

Since the workload in the system is uniformly bounded, the process$D~t !, t [ R%
is regenerative with customer arrivals into an empty system being regeneration points,
independent of the load of the system+ Let a regeneration cycle start at time 0 and
define the first return time to state 0 by

t0 :5 inf $t . 0 :D~t ! # 0%+

Furthermore, let Cmax be the cycle maximum of a busy cycle or, more formally,

Cmax :5 sup$D~t !, 0 # t # t0%+

Observe that, for x # K, P~Cmax$ x! is the same for the finite dam and its infinite-
buffer counterpart+ So, without affecting the results, we will henceforth adopt the
above definition ofCmaxwhen we consider the cycle maximum in theGI0G01 queue
with infinite-buffer capacity+ Note thatP~Cmax5`! . 0 if K 5` andr . 1+

From the workload process in the finiteGI0G01 dam we construct a process
$R~t !, t [ R% , as in@19# , by defining

R~t ! :5 K 2 D~t !+
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Away from the boundaries, this process increases linearly at rate 1 and negative jumps
occur at times PTn of sizeSn, n 5 1,2, + + + + By definition, jumps below zero are trun-
cated and if the process hits stateK, it remains inK until the next~downward! jump
~see Fig+ 1 for an illustration!+ In fact, we are only interested in the behavior ofR~t !
until it hits one of the boundaries, and in this region, the process$R~t !, t [ R% shows
a strong resemblance to a risk process~where 0 is supposed to be an absorbing state!+

Due to the finite capacity, the process$R~t !, t [ R% is also regenerative, and
regeneration points in the process correspond to downward jump epochs from levelK+
Hence, t0 can be alternatively defined byt0 :5 inf $t . 0 :R~t ! $ K % +

Figure 1. Two sample paths ofD~t ! until it hits one of the boundaries, with cor-
respondingR~t !+

244 R. Bekker and B. Zwart

https://doi.org/10.1017/S0269964805050138 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964805050138


Recall thatPK is the steady-state probability that an arriving customer is~par-
tially! rejected+ The main result in this section is the following theorem+

Theorem 2.1: For the GI0G01 queue, we have

PK 5 P~Cmax $ K !+

In the remaining part of this section, we present two proofs of Theorem 2+1+ In
the first proof, to be presented in Section 2+1, we take a direct approach, using the
representationPK 5 P~WK 1 S $ K ! and the above-mentioned definition of the
cycle maximum+ Equivalence is then shown using the machinery developed in@7# +

The second proof, given in Section 2+2, establishes a link between the loss rate
and the cycle maximum using an insightful regenerative argument+ In particular,
we utilize the fact that the number of losses in a cycle, given that at least one loss
occurs, is geometrically distributed+ The main step in this approach is the compu-
tation of the success parameter of that distribution+ This is, again, established by
results in@7# +

2.1. Direct Approach

As mentioned, to determine the tail distribution of the cycle maximum in an infinite-
capacity model, we may also assume that the workload is uniformly bounded as
described earlier+ So, consider one regeneration cycle of the process$D~t !, t [ R%
~or equivalently$R~t !, t [ R%! and let a customer enter the system at time 0+ Since
the workload process has peaks at time epochs just after an arrival instant, we may
write

P~Cmax $ K ! 5 P~ ∃n # t0 :Wn 1 Sn $ K !

5 P~ ∃n # t0 :R~ PTn
2! 2 Sn # 0!+ (3)

Observe that the right-hand side of~3! corresponds to a hitting probability; starting
in stateK, ~3! may be interpreted as the probability that state 0 is reached before
R~t ! hits stateK again+ Note that the process$R~t !, t [ R% embedded at pointsPTn is
also recursively defined by the interarrival times and the service requirements+ These
two observations allow us to rewrite this embedded process as a monotone stochas-
tic recursion with two absorbing states~0 andK ! : We defineR0 5 K,Rn11 5
g~Rn,Un!, whereUn :5 ~Sn11,Tn! and

g~x,s, t ! 5 5
0 if x 5 0 or if x [ ~0,K # ands$ x

x 2 ~s2 t ! if x [ ~0,K # ands , x

` if x . K+

Thus, we start our recursion with initial reserveK, after which it evolves as an
unrestricted random walk, until it leaves~0,K # + Moreover, it is always checked
ahead whether a downward jump will not cause a negative workload, leading to
absorption in state 0+
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Now, Example 4 of Asmussen and Sigman@7# gives the corresponding dual
stochastic recursion$Vn% , which is defined asVn11 5 f ~Vn,Sn11,Tn!, where

f ~ y,s, t ! 5 min~~~ y 2 t !1 1 s!,K !+

This recursion corresponds to the workload rightafter a jump, or the sojourn time,
of a finiteGI0G01 dam+ Under i+i+d+ assumptions, Vn weakly converges to a random
variableV asn r `; see, for example, Cohen@11, Chap+ III +6# + Let

g~x,K ! :5 min$n $ 1 :R0 5 x,Rn Ó ~0,K #%

denote the first exit time of~0,K # + Then, Corollary 3+1 of @7# yields the following
fundamental result:

P~V $ x! 5 lim
nr`

P~Rn # 06R0 5 x! 5 P~Rg~x,K ! # 0!+ (4)

Thus, the distribution ofV can be written as a first-passage probability+ Using ~3!
and takingx 5 K in ~4!, we have

P~Cmax $ K ! 5 P~Rg~K,K ! # 0!

5 P~V $ K !+

Hence,

PK 5 P~WK 1 S$ K ! [ P~V $ K ! 5 P~Cmax $ K !,

which completes the proof+

2.2. Regenerative Approach

Let LK be the number of not fully accepted customers and letNK be the total num-
ber of customer arrivals during a regeneration cycle+A basic regenerative argument
yields

PK 5
ELK

ENK

+ (5)

The denominator follows easily by

P~WK 5 0! 5
1

ENK

EF(
i51

NK

I ~Wi
K 5 0!G5

1

ENK

, (6)

whereI ~{! is the indicator function+ The numerator may be rewritten as

ELK 5 E@LK I ~LK $ 1!#

5 E@LK 6LK $ 1#P~LK $ 1!

5 E@LK 6LK $ 1#P~Cmax $ K !+ (7)
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Moreover, observe that whenever the workload reaches levelK and a customer is
~partially! rejected, the process continues from levelK starting with a new inter-
arrival time, which clearly is independent of the past+ Then the probability of an
additional customer loss in the regeneration cycle is equal to the probability that the
workload process reaches levelK again before the end of the busy cycle+ Denoting
tK :5 inf $t . 0 :D~t ! $ K 6D~0! 5 K % , this leads to

P~LK $ n 1 16LK $ n! 5 P~tK , t06D~0! 5 K ! (8)

:5 12 qK +

Iterating this argument, we conclude thatLK 6LK $ 1 is geometrically distributed
with success parameter 12 qK + Since the expectation of such a geometric distribu-
tion equals 10~1 2 qK !, we have to show thatqK 5 P~WK . 0! to complete the
proof+To do so,we use a similar construction of the “risk-type” process$R~t !, t [ R%
as we did in the first proof+ Note that~8! corresponds to the probability that from
initial level 0, R~t ! reaches level 0 again before it hits levelK+ Again, this can be
transformed into a monotone stochastic recursion with two absorbing barriers, 0
andK: DefineRn11 5 g~Rn,Sn11,Tn!, with

g~x,s, t ! 5 5
0 if x 5 0 or if 0 , x , s2 t

x 2 ~s2 t ! if 0 , s2 t # x # K 2 t

` if x 1 t . K+

Thus, starting from level 0,Rn evolves as an unrestricted random walk until it leaves
~0,K # + Note that it is indeed checked ahead whether the workload increases above
level K before the next downward jump+

Now, another example of Asmussen and Sigman@7# provides the dual stochas-
tic recursion$Vn% + In particular, Example 3 of@7# gives the dual function

f ~ y,s, t ! 5 ~min~ y 1 s,K ! 2 t !1,

defining the dual recursionVn11 5 f ~Vn,Sn11,Tn!+ This recursion corresponds to the
workload rightbeforea jump ~or the waiting time! in a finite GI0G01 dam+ Use
Corollary 3+1 of @7# and takex 5 e . 0 in ~4! to show that

qK 5 lim
ef0

P~Rg~e,K ! # 0!

5 lim
ef0

P~V $ e! 5 P~V . 0!+ (9)

Recall that theVn corresponds to the waiting time of thenth customer, andV thus
represents thewaiting time in steady state+ Combining~5!–~9! completes the proof+

Remark 2.1:Both proofs rely on computing the dual of a recursion driven by a
specific functionf ~x, z!, which is monotone inx for everyz+ In general, the driving
function f and its dualg are related by
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g~x, z! 5 inf $ y : f ~ y, z! $ x%,

f ~ y, z! 5 inf $x : g~x, z! $ y%+

We refer to@7# ~in particular, Eq+ ~2+4!! for details+

3. DAMS WITH STATE-DEPENDENT RELEASE RATES

In this section, we consider theGI0G01 dam with general release rate+We start with
introducing some definitions and a description of the driving sequence of the queu-
ing process+ Next, we state the main result and give two proofs, analogous to the
proofs in Section 2+

Consider the model of Section 2, but let the release rate ber ~x! when the work-
load equalsx+ We assume thatr ~0! 5 0 and thatr ~{! is strictly positive, left-
continuous, and has a strictly positive right limit on~0,`!+ Also, define

u~x! :5E
0

x 1

r ~ y!
dy, 0 , y , `,

representing the time required for a workloadx to drain in the absence of arrivals+
We assume thatu~x! , `, 0 , x , `, indicating that state 0 can be reached in a
finite amount of time+ This ensures thatCmaxis well defined+Note thatu~{! is strictly
increasing and we can, thus, unambigously speak ofu21~t !+ Similar to@14,19# , we
define

q~u, t ! :5 u21~u~u! 2 t !+

Thenq~u, t ! represents the workload level at timet if we start off from levelu at
time 0 and no arrivals have taken place in between+

Denote the workload process of theGI0G01 queue with finite bufferK and
general release rate functionr ~{! by $Dr ~{!~t !, t [ R% + Let T0 5 0 andDr ~{!~0! 5 x+
Between jump epochs, the workload process is defined recursively by~cf+ @19# !

Dr ~{! ~t ! 5 q~Dr ~{! ~ PTk
2!, t !, PTk , t , PTk11,

and at the~k 1 1!st jump epoch after time 0,

Dr ~{! ~ PTk11! 5 min~q~ PTk,Tk11! 1 Sk11,K !+

To exclude trivial cases where the workload is bounded from below,we assume that
P~q~x 1 S1,T1! , x! . 0, for all x . 0+ Combined with the finite capacity and
u~x! , ` for all finite x, this ensures that the workload process$Dr ~{!~t !, t [ R% is
still regenerative with customer arrivals into an empty system as regeneration points+

Define Ir ~x! :5 r ~K 2 x!, for 0 # x # K ,`, and let all random variablesXr ~{!

andX Ir ~{! correspond to the model with release ratesr ~x! and Ir ~x!, respectively, if
the process is at levelx+ Similar to Section 2, we construct a “risk-type” process
$R Ir ~{!~t !, t [ R% by takingR Ir ~{!~t ! 5 K 2 Dr ~{!~t !+ In between~the downward! jumps,
the newly defined process is governed by the input rate functionIr ~x! 5 r ~K 2 x!
and satisfies
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dR Ir ~{! ~t !

dt
5 Ir ~R Ir ~{! ~t !!+

Also, the risk-type process starts atR Ir ~{!~0! :5 K 2 Dr ~{!~0!+ In addition, if
$R Ir ~{!~t !, t [ R% starts aty and no jumps occur fort time units, its value increases,
similar to the decrease in the workload process, to

Iq~ y, t ! :5 Du21~ Du~ y! 1 t !+

Here, Du~x! :5 *0
x~r ~ y!!21dy, represents the time required to move from zero to

x in the absence of negative jumps, with inverse Du21~t !+ Note that, for finite K,
*0

x~ Ir ~ y!!21dy , `, meaning that state 0 can be reached in a finite amount of time
and the cycle maximum is also well defined in this case+

Theorem 3.1 For the GI0G01 queue with general release rate, we have

PK
r ~{! 5 P~Cmax

Ir ~{! $ K ! (10)

or, alternatively,

PK
r ~{! 5

P~WK, r ~{! 5 0!

P~WK, Ir ~{! 5 0!
P~Cmax

r ~{! $ K !+ (11)

We use a direct approach to show~10!, thereby extending the proof in Sec-
tion 2+1+ To show~11!, we follow the lines of Section 2+2, using an insightful regen-
erative argument and noting that the number of losses in a cycle, given that at least
one loss occurs, has a geometric distribution+ Let us start with~10!+

Proof of (10): As noted earlier, the workload process$Dr ~{!~t !, t [ R% is still regen-
erative with customer arrivals into an empty system as regeneration points+The obser-
vation that the workload process has peaks at epochs right after an arrival instant,
together with~3! and the construction of the process$R Ir ~{!~t !, t [ R% , leads to

P~Cmax
r ~{! $ K ! 5 P~ ∃n # t0 :R Ir ~{! ~Tn2! 2 Sn # 0!+ (12)

The probability in~12! can be interpreted as the probability that state 0 is reached
beforeR Ir ~{!~t ! hits stateK again, starting off from levelK+ Define R0 5 K and
Rn11
Ir ~{! 5 g~Rn

Ir ~{! ,Sn11,Tn!, with

g~x,s, t ! 5 5
0 if x 5 0 or if x [ ~0,K # ands$ x

Du21~ Du~x 2 s! 1 t ! if x [ ~0,K # ands , x

` if x . K+

Following @7# , we construct the dual function corresponding to the described pro-
cess$R Ir ~{!~t !, t [ R% , yielding

f ~ y,s, t ! 5 min~ Du21~ Du~ y! 2 t ! 1 s,K !,
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and define$Vn% recursively byVn11
Ir ~{! 5 f ~Vn

Ir ~{! ,Sn11,Tn!+ This process corresponds
to a GI0G01 queue with release rateIr ~x! 5 r ~K 2 x! if the workload equalsx,
embedded at epochs rightaftera jump+We now complete the proof of~10! by com-
bining the duality~4! between storage and risk processes with the expression~1!
for PK :

P~Cmax
r ~{! $ K ! 5 P~Rg~K,K !

Ir ~{! # 0!

5 P~V Ir ~{! $ K !

5 P~WK, Ir ~{! 1 S$ K !

5 PK
Ir ~{! + n

Next we turn to~11!, which we show following the lines of Section 2+2+

Proof of (11): As mentioned earlier, the workload process is still regenerative,
and we consider the total number of~partially! rejected customers during a regen-
eration cycle+We apply the same regenerative argument as in Section 2+2 and note
that customers are rejected if and only if the process reaches levelK before the end
of the cycle~which happens with probabilityP~Cmax

r ~{! $ K !!+ Moreover, after a cus-
tomer rejection, the process continues from levelK, starting with a new interarrival
time+ This implies that the probability of an additional customer loss is independent
of the past or, equivalently, thatK is also a regeneration point+ Therefore, we may
conclude that, given that at least one loss occurs and the process starts off from
level K, the additional number of customer rejections is geometrically distributed
with success parameter 12 qK :5 P~tK , t06Dr ~{!~0! 5 K !+ Thus, we have to show
thatqK 5 P~WK, Ir ~{! . 0! and combine~5!–~8! to complete the proof+

We start with the construction of the “risk-type” process$R Ir ~{!~t !, t [ R% defined
at the beginning of the section+ We rewrite 12 qK as the probability that, starting
from level 0, R Ir ~{!~t ! hits level 0 again before it reaches levelK+ Interpreting our
process as a monotone stochastic recursion with two absorbing barriers, we define
Rn11
Ir ~{! 5 g~Rn

Ir ~{! ,Sn11,Tn!, where

g~x,s, t ! 5 5
0 if x 5 0 or if Du~x! , Du~s! 2 t

Du21~ Du~x! 1 t ! 2 s if Du~s! 2 t , Du~x! , Du~K ! 2 t

` if Du~x! 1 t . Du~K !+

Again, using @7# , it can be seen that the dual recursion is defined asVn11
Ir ~{! 5

f ~Vn
Ir ~{! ,Sn11,Tn!, with

f ~ y,s, t ! 5 Du21~ Du~min~ y 1 s,K !! 2 t !+

The latter recursion corresponds to the workload at time epochs rightbeforea jump+
As the speed of the server is determined by the general release function, this does
not equal the waiting time+
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Finally, using Corollary 3+1 of @7# once more, we obtain

qK 5 lim
ef0

P~Rg~e,K !
Ir ~{! # 0!

5 lim
ef0

P~V Ir ~{! $ e!

5 P~Wk
Ir ~{! . 0!+ (13)

Hence, by combining~5!–~8!, and~13!, we also have shown the second part of the
result+ n

Remark 3.1:The constantP~WK, r ~{! 5 0!0P~WK, Ir ~{! 5 0! in ~10! can easily be inter-
preted+As the interarrival times in both systems follow the same distribution, using
~6!, the constant equals the ratio of the respective cycle lengths+

Remark 3.2:A sample path argument can also provide some intuition into the
equivalence between~10! and ~11!+ First, the process$R Ir ~{!~t !6 t $ 0% can easily
be interpreted as the available buffer capacity of a dam with release rater ~x!
when the content equalsx+ Second, to convert the risk-type process into a queuing
process again, we use a reversibility argument, as in Asmussen and Kella@4# and
Asmussen and Schock Petersen@6#+ The sample path of this queuing process can
essentially be obtained by time-reversing the sample path of$R Ir ~{!~t !6 t $ 0% , result-
ing in a queuing process with service speedIr ~x! when the workload equalsx+

4. APPLICATIONS

In this section,we state some exact and asymptotic results forPK by applying results
for Cmax, which are available in the literature+ Given the results derived earlier, this
leads to more transparent proofs of existing results and to results that are new+

4.1. Exact Expressions for PK

In the literature, there are several studies devoted to the distribution ofCmax for a
variety of queuing models+We refer to Asmussen@2# for a survey of these results+
TheM0G01 case has already been treated in@23# + Here, we give an analogous result
for theGI0M01 queue+

Corollary 4.1: Consider the finite GI0M01 dam withr , 1 and service rate µ.
Then

PK 5
1

H~K !
,

where H~x!, x $ 0, is a function with Laplace–Stieltjes transform (LST)

1

s2 µ~12 a~s!!
,
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with a~s! the LST of the interarrival time distribution.

Proof: The result follows immediately from Theorem 2+1 and formula~7+76! of
Cohen@11# , stating that for theGI0M01 queue,

P~Cmax $ K ! 5
1

H~K !

with H~x!, x $ 0, defined as earlier+ n

4.2. Asymptotics

Van Ommeren and De Kok@22# derived asymptotics forPK in the GI0G01 queue
under light-tailed assumptions+ They conclude, after a lengthy argument, that~under
their assumptions! PK ;P~Cmax. K !, wheref ~x! ; g~x! denotesf ~x!0g~x! r 1 as
xr `+Asymptotics for the latter are due to Iglehart@16#: Under certain regularity
conditions~see@16# !, it holds that

P~Cmax $ K ! ; De2gK, (14)

for certain positive constantsg andD+ Using Theorem 2+1, the proof of the main
result of@19# is now trivial: Just combine Theorem 2+1 with ~14! to ~re-!obtain

PK ; De2gK+

For more details concerning specific assumptions and expressions forg andD we
refer to@16,22# +

We conclude by giving results for the heavy-tailed case: Consider, again,
theGI0G01 queue, but assume now that service times belong to the subclassS * of
the class of subexponential distributions~see, e+g+, Embrechts, Klüppelberg, and
Mikosch @13# for a definition!+ This class contains all heavy-tailed distributions of
interest, such as the Pareto, lognormal, and certain Weibull distributions+

Asymptotics for the cycle maximum can be found in@3# + If we combine these
asymptotics with Theorem 2+1, we obtain~with N being the number of customers
served in one busy cycle in the infinite buffer version of theGI0G01 queue! the
following corollary+

Corollary 4.2: If r , 1 and the service time S[ S *, then

PK ; ENP~S$ K !+

Also, in case of Poisson arrivals, this result can be extended to queues with
general service speeds; see@3# for details+ Note that~10! and~11!, combined with
Remark 3+1, indeed result in the same asymptotics+
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4.3. Poisson Arrivals and Takács’ Formula

The equivalence in Theorem 2+1 can also be used the other way around: Given
information onPK , we derive a new identity for the distribution ofCmax for queues
with a general release rate+ For the specialM0G01 case, the distribution ofCmax is
known through Takács’ formula+We combine the results of Section 3 with an iden-
tity for PK , which is valid under the additional assumptions of Poisson arrivals, and
a stationary~embedded! workload distribution in case of infinite-buffer capacity
~see, e+g+, @1,9# for details!+ Under these assumptions, the steady-state distribution
of the amount of work in the system found by a customerWK, r ~{! satisfies the fol-
lowing proportionality result:

P~WK, r ~{! # x! 5
P~Wr ~{! # x!

P~Wr ~{! # K !
+ (15)

Here,Wr ~{! is the steady-state amount of work in the system withK 5` ~assuming
it exists!+ For theM0G01 queue, this result is well known; see, for example, Takács
@21# , Cohen@11# , and Hooghiemstra@15# + For a rigorous proof of~15! in the case
of a general release rate, we refer to Asmussen@1, Chap+ XIV, Prop+ 3+1# +

Writing 1 2 PK 5 P~WK, r ~{! 1 S, K !, conditioning onS, applying~15!, and
deconditioning onS then results in

PK
r ~{! 5 12 P~WK, r ~{! 1 S, K !

5
P~Wr ~{! 1 S$ K ! 2 P~Wr ~{! . K !

P~Wr ~{! # K !
+

Combining this result with~11! then results in the following corollary+

Corollary 4.3: Assume that the M0G01 queue with infinite buffer size and gen-
eral release rate has a stationary (embedded) workload distribution. Then

P~Cmax
r ~{! $ x! 5

P~Wx, Ir ~{! 5 0!

P~Wx, r ~{! 5 0!

P~Wr ~{! 1 S$ x! 2 P~Wr ~{! . x!

P~Wr ~{! # x!
+

This is an extension of the classical formula for the distribution ofCmax in the
M0G01 queue, which is due to Takács@21# ~see also Cohen@10# , and Asmussen and
Perry@5# for alternative proofs!+ His result can be easily recovered from Corollary
4+3, since, for the M0G01 queue, we haver ~x! [ Ir ~x! [ 1+ This yields the well-
known formula

P~Cmax , x! 5
P~W1 S, x!

P~W# x!
+

Related results for first-exit probabilities as well as expressions for the distribution
of Wr ~{! in terms of Volterra functions can be found in Harrison and Resnick@14#
and Bekker@8# + Although Corollary 4+3 does not give a very explicit formula for
the distribution ofCmax in general, we expect that this representation may be useful
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to obtain asymptotics and0or bounds+Asymptotic results in the light-tailed case are
hardly known; see Asmussen@2,3# +

5. CONCLUSION

We have considered several queuing models that operate under the partial rejection
mechanism+ For these models, we have shown that the loss probability of a cus-
tomer can be identified with the tail probability of the cycle maximum+

The present work raises several questions that could be interesting for further
research+ First, we believe that an appropriate modification of Theorem 2+1 still
holds for other queuing models, such as queueing models with Markov-modulated
input+ This is potentially useful, since the distribution of the cycle maximum is
known for a large class of such models; see Asmussen and Perry@5# +

Furthermore, we expect that Siegmund duality and related results can also be
fruitful in other queuing problems+ In the context of the present article, we believe
that an analog of~2! can be shown for queues that can be modeled as birth–death
processes: Siegmund-type duality results for birth and death processes have been
derived by Dette, Fill , Pitman, and Studden@12# +

Acknowledgments
This work was supported by a research grant from Philips Electronics~to R+ B+! and a grant from NWO
~to B+ Z+!+

References

1+ Asmussen, S+ ~2003!+ Applied probability and queues, 2nd ed+ New York: Springer-Verlag+
2+ Asmussen, S+ ~1998!+ Extreme value theory for queues via cycle maxima+ Extremes2: 137–168+
3+ Asmussen, S+ ~1998!+ Subexponential asymptotics for stochastic processes: Extremal behaviour,

stationary distributions and first passage times+ Annals of Applied Probability8: 354–374+
4+ Asmussen, S+ & Kella, O+ ~1996!+ Rate modulation in dams and ruin problems+ Journal of Applied

Probability 33: 523–535+
5+ Asmussen, S+ & Perry, D+ ~1992!+ On cycle maxima, first passage problems and extreme value

theory for queues+ Stochastic Models8: 421–458+
6+ Asmussen, S+ & Schock Petersen, S+ ~1988!+ Ruin probabilities expressed in terms of storage pro-

cesses+ Advances in Applied Probability20: 913–916+
7+ Asmussen, S+ & Sigman, K+ ~1996!+ Monotone stochastic recursions and their duals+ Probability in

the Engineering and Informational Sciences10: 1–20+
8+ Bekker, R+ ~2004!+ Finite-buffer queues with workload-dependent service and arrival rates+ SPOR

Report 2004-01, Eindhoven University of Technology, The Netherlands+
9+ Browne, S+ & Sigman, K+ ~1992!+Work-modulated queues with applications to storage processes+

Journal of Applied Probability29: 699–712+
10+ Cohen, J+W+ ~1976!+ Regenerative processes in queueing theory.Berlin: Springer-Verlag+
11+ Cohen, J+W+ ~1982!+ The single server queue.Amsterdam: North-Holland+
12+ Dette, H+, Fill , J+A+, Pitman, J+, & Studden, W+J+ ~1997!+ Wall and Siegmund duality relations for

birth and death chains with reflecting barrier+ Journal of Theoretical Probability10: 349–374+
13+ Embrechts, P+, Klüppelberg, C+, & Mikosch, T+ ~1997!+ Modelling extremal events.Berlin:

Springer-Verlag+

254 R. Bekker and B. Zwart

https://doi.org/10.1017/S0269964805050138 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964805050138


14+ Harrison, J+M+ & Resnick, S+I+ ~1976!+ The stationary distribution and first exit probabilities of a
storage process with general release rule+ Mathematics of Operations Research1: 347–358+

15+ Hooghiemstra, G+ ~1987!+ A path construction for the virtual waiting time of anM0G01 queue+
Statistica Neerlandica41: 175–181+

16+ Iglehart, D+G+ ~1972!+ Extreme values in theGI0G01 queue+ Annals of Mathematical Statistics43:
627–635+

17+ Lindley, D+V+ ~1959!+ Discussion of a paper by C+B+Winsten+ Proceedings of the Cambridge Phil-
osophical Society48: 277–289+

18+ Loynes, R+M+ ~1965!+On a property of the random walks describing simple queues and dams+ Jour-
nal of the Royal Statistical Society Series B27: 125–129+

19+ Perry, D+ & Stadje,W+ ~2003!+ Duality of dams via mountain processes+ Operations Research Let-
ters31: 451–458+

20+ Siegmund, D+ ~1976!+ The equivalence of absorbing and reflecting barrier problems for stochasti-
cally monotone Markov processes+ Annals of Probability4: 914–924+

21+ Takács, L+ ~1967!+ Combinatorial methods in the theory of stochastic processes.New York:Wiley+
22+ Van Ommeren, J+C+W+ & De Kok, A+G+ ~1987!+ Asymptotic results for buffer systems under heavy

load+ Probability in the Engineering and Informational Sciences1: 327–348+
23+ Zwart,A+P+ ~2000!+A fluid queue with a finite buffer and subexponential input+ Advances in Applied

Probability 32: 221–243+

EQUIVALENCE BETWEEN LOSS RATES AND CYCLE MAXIMA 255

https://doi.org/10.1017/S0269964805050138 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964805050138

