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This study attempts to quantify and explain the systematic weakening of internal gravity
waves in fingering and diffusive thermohaline staircases. The interaction between waves
and staircases is explored using a combination of direct numerical simulations (DNS) and
an asymptotic multiscale model. The multiscale theory makes it possible to express the
wave decay rate (λd) as a function of its wavenumbers and staircase parameters. We find
that the decay rates in fully developed staircases greatly exceed values that can be directly
attributed to molecular dissipation. They rapidly increase with increasing wavenumbers,
both vertical and horizontal. At the same time, λd is only weakly dependent on the
thickness of layers in the staircase, the overall density ratio and the diffusivity ratio.
The proposed physical mechanism of attenuation emphasizes the significance of eddy
diffusion of temperature and salinity, whereas eddy viscosity plays a secondary role in
damping internal waves. The asymptotic model is successfully validated by the DNS
performed in numerically accessible regimes. We also discuss potential implications of
staircase-induced suppression for diapycnal mixing by overturning internal waves in the
ocean.

Key words: double diffusive convection

1. Introduction

Perhaps the most spectacular and intriguing effect realized in multicomponent fluids is
the spontaneous formation of a series of relatively well-mixed layers vertically separated
by sharp interfaces, known as thermohaline staircases (Schmitt 1994; Kelley et al. 2003;
Radko 2013). The origin of staircases has been linked to double-diffusive convection,
broadly defined as a combination of processes driven by dissimilar diffusivities of
density components (Stern 1960). While double-diffusive convection occurs in numerous
astrophysical, geophysical and engineering systems (e.g. Turner 1985; Radko 2013; Garaud
2018) our focus is on the ocean, where density is largely controlled by the temperature
and salinity of sea water. Most double-diffusive phenomena, including thermohaline
staircases, can be classified into two distinct categories: fingering and diffusive. The
fingering (diffusive) regime is realized when relatively salty and warm fluid is located
above (below) cold and fresh.

The interest of the oceanographic community in the dynamics and transport
characteristics of thermohaline staircases, both fingering and diffusive, is not limited to
mere intellectual curiosity. Staircases are often associated with elevated rates of diapycnal
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mixing, which in turn can influence the ocean’s ability to transport heat, salt, nutrients,
pollutants and carbon dioxide. For instance, field measurements in the fingering Caribbean
staircase reveal an increase in vertical mixing by an order of magnitude relative to
analogous smooth-gradient regions (Schmitt et al. 2005). The salt flux through this
staircase alone exceeds the net turbulent transport by overturning gravity waves – another
primary source of small-scale mixing – throughout the entire North Atlantic subtropical
thermocline. It also becomes increasingly clear that diffusive staircases, which are more
common in high-latitude oceans, can substantially influence polar climate and large-scale
circulation patterns (e.g. Turner 2010; Polyakov et al. 2017; Bebieva & Speer 2019). Low
levels of internal wave energy and the abundance of staircases in the interior of the Arctic
Ocean (e.g. Guthrie, Morison & Fer 2013; Guthrie, Fer & Morison 2015) imply that double
diffusion by default dominates vertical mixing in the halocline. As a result, staircases in
the upper Arctic act as a bottleneck for heat transport from the relatively warm and salty
waters of Atlantic origin and the overlying colder and fresher water-masses, motivating
efforts to fully understand their dynamics and properties (e.g. Radko 2019a).

There have been numerous attempts to evaluate mixing rates that can be attributed
directly to staircases using observations (e.g. Schmitt et al. 2005; Veronis 2007;
Timmermans et al. 2008), theoretical models (e.g. Linden & Shirtcliffe 1978; Kelley
1990; Worster 2004), laboratory experiments (e.g. Fernando 1989; Krishnamurti 2009)
and simulations (e.g. Carpenter, Sommer & Wuest 2012; Flanagan, Lefler & Radko 2013).
The focus of the present investigation, however, lies in a different direction – the interaction
between staircases and internal waves. It is generally accepted that a substantial fraction
of small-scale mixing in the ocean can be attributed to wave overturns (e.g. Thorpe 2005).
Thus, it is possible that staircases also indirectly influence the net diapycnal mixing by
controlling the intensity and spectrum of internal waves in their vicinity.

In this regard, it should be mentioned that the dynamics and consequences of
the interaction between waves and double-diffusive processes are highly configuration
dependent. For instance, one of the earliest results in this area was the discovery
of collective instability by Stern (1969). The term collective instability represents the
spontaneous amplification of internal waves in smooth finger-favourable stratification.
Stern’s model was later refined and generalized by Holyer (1981, 1985), Stern, Radko
& Simeonov (2001) and Traxler et al. (2011). On the other hand, laboratory studies of
Ruddick (1980, 1985) reveal rapid damping of standing internal waves in layered fingering
stratification. Direct numerical simulations (Stellmach et al. 2011) demonstrate that the
initial growth of internal waves – caused by collective instability – is promptly reversed
after the spontaneous development of staircases. The recent studies of the transmission
and reflection of remotely generated internal waves by staircases (Ghaemsaidi et al. 2016;
Sutherland 2016; Wunsch 2018) also point to the adverse impact of staircases on waves.

Our motivation to further investigate wave–staircase interactions is twofold. The first
and foremost is our belief that the physical mechanism of wave–staircase interactions
has not been fully explained yet. Key unresolved questions concern the roles of the eddy
transfer of momentum and buoyancy, the relative significance of microscale (∼1 cm in
the ocean) and fine-scale (∼ 1 − 10 m) processes and the precise identification of the
chain of events leading to the suppression of internal waves. The second item on our
wish list is the complete exploration of the relevant parameter space, which includes
the variation in the height of steps, thickness of interfaces, background parameters and
wavenumbers. The present-day computational constraints preclude the direct numerical
simulation (DNS) based investigation of many regimes realized in the ocean even in two
dimensions. Therefore, a more feasible approach – and the one adopted in this work –
involves the development of a simplified analytical model for the wave decay rate as a
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function of all relevant parameters and its validation by DNS in the numerically accessible
regimes.

Our study attempts to address these challenges using techniques of the multiscale
homogenization theory (e.g. Meshalkin & Sinai 1961; Manfroi & Young 1999, 2002;
Balmforth & Young 2002, 2005). Multiscale mechanics is a broad and active field and
its methods are now commonly used in numerous fluid dynamical applications. A review
of fundamentals and principal advancements in this area can be found, for instance, in Mei
& Vernescu (2010). Multiscale theories, including the present model, generally assume an
analytical small-scale pattern and analyse its interaction with larger-scale structures (e.g.
Gama, Vergassola & Frisch 1994; Novikov & Papanicolau 2001; Radko 2011) using two
sets of spatial and temporal scales. Theoretical development is based on the asymptotic
expansion in powers of a small parameter (ε) representing the ratio of the assumed small
and large spatial scales. Sequentially solving a series of balanced equations arising at
each order in ε makes it possible to formulate explicit large-scale equations. Using the
multiscale method, we analyse the evolution of large-scale (relative to the staircase layer
height) internal waves in layered stratification. In all cases considered, we find that the
staircases systematically suppress internal waves. The explicit and dynamically transparent
nature of the multiscale model makes it possible to unambiguously interpret the essential
physics at play.

The manuscript is organized as follows. In § 2, we formulate the problem and introduce
governing equations. Section 3 presents preliminary DNS which illustrate the suppression
of internal waves by diffusive and fingering staircases. The multiscale model representing
this interaction is described in § 4. In § 5, we validate the multiscale theory by DNS and
explore the relevant parameter space. The potential oceanographic implications of our
findings are discussed in § 6. We draw conclusions and summarize the results in § 7.

2. Formulation

The temperature and salinity fields (T∗
tot, S∗

tot) are separated into linear vertical
background profiles (T∗

bg, S∗
bg) and a departure (T∗, S∗) from them

T∗
tot=T∗

bg+T∗ = ATz∗ + AT0 + T∗

S∗
tot=S∗

bg+S∗ = ASz∗ + AS0 + S∗

}
, (2.1)

where (AT,AT0,AS,AS0) are constants. The asterisks hereafter denote dimensional
quantities and the subscripts ‘tot’ represent the total field variables. The configuration
in which background temperature and salinity decrease upward (∂T∗

bg/∂z∗ = AT <
0 and ∂S∗

bg/∂z∗ = AS < 0) is referred to as diffusive stratification. The fingering
stratification, on the other hand, is realized in regions where AT > 0 and AS > 0.
The governing system used in this study is based on the incompressible Boussinesq
approximation in two dimensions and the linear equation of state. It is expressed in terms
of perturbation variables (T∗, S∗) as follows

∂T∗

∂t∗
+ v∗ · ∇T∗ + w∗ ∂T∗

bg

∂z∗ = kT∇2T∗

∂S∗

∂t∗
+ v∗ · ∇S∗ + w∗ ∂S∗

bg

∂z∗ = kS∇2S∗

∂v∗

∂t∗
+ v∗ · ∇v∗ = − 1

ρ∗
0
∇p∗ + g(αT∗ − βS∗)k + ν∇2v∗

∇ · v∗ = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (2.2)
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where v∗ = (u∗,w∗) is the velocity, p∗ is the perturbation pressure, ρ∗
0 is the reference

density, g is gravity, α and β are the thermal expansion and haline contraction coefficients,
kT and kS are the molecular diffusivities of temperature and salinity and ν is the molecular
viscosity.

System (2.2) is non-dimensionalized using microstructure scales, on which direct effects
of molecular dissipation play an essential role in system dynamics. In particular, d =
(kTν/gα|AT |)1/4, kT/d, d2/kT and ρ∗

0νkT/d2 represent the units of length, velocity, time and
pressure respectively (e.g. Radko 2013). The expansion/contraction coefficients (α, β) are
incorporated in (T∗, S∗), and α|AT |d is used as the scale for both temperature and salinity
perturbations

αT∗ → α|AT | dT, βS∗ → α|AT | dS. (2.3a,b)

After non-dimensionalization, the governing equations reduce to

∂T
∂t

+ v · ∇T + sw = ∇2T

∂S
∂t

+ v · ∇S + s
w
Rρ

= τ∇2S

∂

∂t
v + v · ∇v = Pr[−∇p + (T − S)k + ∇2v]

∇ · v = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
, (2.4)

where Rρ = αAT/βAS is the background density ratio, τ = kS/kT is the diffusivity
ratio, Pr = ν/kT is the Prandtl number and s = −1(s = 1) for the diffusive (fingering)
stratification.

The governing system (2.4) is further simplified using the vorticity–streamfunction
formulation

∂T
∂t

+ J(ψ,T)+ s
∂ψ

∂x
= ∇2T

∂S
∂t

+ J(ψ, S)+ s
Rρ

∂ψ

∂x
= τ∇2S

∂

∂t
∇2ψ + J(ψ,∇2ψ) = Pr

[
∂

∂x
(T − S)+ ∇4ψ

]

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
, (2.5)

where ψ is the streamfunction, such that (u,w) = (−∂ψ/∂z, ∂ψ/∂x), and J(a, b) ≡
(∂a/∂x)(∂b/∂z)− (∂a/∂z)(∂b/∂x) is the Jacobian. The conversion between dimensional
and non-dimensional units is based on the following nominal values of governing
parameters:

ρ∗
0∼103 kg m−3, g ∼ 10 m s−2, ν ∼ 10−6 m2 s−1, kT ∼ 10−7 m2 s−1,

kS ∼ 10−9 m2 s−1, α ∼ 10−4 K−1, |AT | ∼ 0.01 K m−1,
(2.6)

which suggest d = 0.01 m, Pr = 10 and τ = 0.01.
The present investigation is focused on analytical and numerical solutions of governing

equations (2.5) representing the evolution of large-scale internal waves in thermohaline
staircases. Simulations are performed using a parallel dealiased spectral model (e.g.
Stellmach et al. 2011; Radko 2019b) with periodic boundary conditions for (T, S, v).
The DNS representing wave/staircase interactions are computationally expensive. The
key complication is imposed by the requirement to resolve a wide range of dynamically
significant scales – from the dimensions of an internal wave (Lx ,Lz), which we assume
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greatly exceed the staircase step height (h � Lz), to the heat dissipation scale (d � h) and,
finally, to the salinity dissipation scale (dS ∼ √

τd � d). At present, DNS that can capture
wave/staircase interactions for typical oceanic parameters can only be performed in two
dimensions. Nevertheless, two-dimensional (2-D) models in double-diffusive convection
are known to be generally consistent with their 3-D counterparts (e.g. Flanagan et al. 2013;
Radko et al. 2015) and therefore our study is expected to adequately represent the system
dynamics.

3. Preliminary simulations

To glean some insight into the basics of wave/staircase interaction, we first examine
the DNS of a diffusive (s = −1) system in figures 1–3. This experiment consists of
two distinct phases. The first (spin-up) phase (figure 1) was initiated by introducing a
set of n = 8 horizontal layers at rest with homogeneous total temperature and salinity
values (Ttot, Stot) in each layer. Small-amplitude random noise was added to those fields
to facilitate the development of active diffusive convection. The computational domain
size in this experiment was Lx × Lz = 1600 × 800, which corresponds to 16 m × 8 m for
typical oceanographic conditions, and the numerical mesh contained Nx × Nz = 6144 ×
3072 grid points. The choice of model parameters represents a compromise between the
computational cost and our desire to model an effectively unbounded ocean. In studies
of diffusive systems, it is common to characterize the background stratification using the
inverse density ratio

R(inv)ρ ≡ 1
Rρ

= βAS

αAT
, (3.1)

and the simulation in figure 1 was performed with R(inv)ρ = 3, which is generally
representative of Arctic staircases (e.g. Kelley et al. 2003; Timmermans et al. 2008). The
dimensional buoyancy frequency in this case is

N∗ ≡
√

− g
ρ∗

0

∂ρbg

∂z∗ =
√

g(βAS − αAT) =
√

gα(R(inv)ρ − 1)|AT | = 4.5 · 10−3 s−1, (3.2)

and its non-dimensional counterpart reduces to N =
√
(R(inv)ρ − 1)Pr = 4.5.

Shortly after initiation (figure 1a), the system starts its transition to fully developed
diffusive convection, which is manifested first by the formation of diffusive plumes
emanating from the interfaces between homogeneous layers (figure 1b). The growth and
vertical spreading of diffusive plumes is followed by the establishment of a quasi-steady
circulation pattern, characterized by active convective overturns in layers (figure 1c). To
ensure that the system reaches statistical equilibrium by the end of the spin-up phase, each
simulation of this nature was extended for at least 200 units of time, which is dimensionally
equivalent to approximately 60 hours.

To explore the interaction of fully developed staircases with internal waves, the second
stage of the experiment was initiated by introducing into the system a large-scale wave

Tw = T̂w cos(kx + mz),

Sw = Ŝw cos(kx + mz), Ŝw = R(inv)ρ T̂w,

ψw = ψ̂w cos(kx + mz), ψ̂w = −
√

Pr
R(inv)ρ − 1

k2 + m2
T̂w.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.3)
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FIGURE 1. The spin-up phase of the diffusive DNS. The instantaneous temperature anomaly
fields are shown at various times in (a–c). The experimental parameters are: h = 100, R(inv)ρ = 3,
τ = 0.01, Pr = 10, Lx = 1600, Lz = 800, Nx = 6144 and Nz = 3072.

The x- and z-wavelengths of this pattern match the size of the computational domain

2π

k
= Lx ,

2π

m
= Lz, (3.4a,b)

and therefore (3.3) conforms to the periodic boundary conditions assumed by the model.
In the absence of other perturbations and dissipative effects, (3.3) would represent a free

ideal wave oscillating at frequency ω = k
√

Pr((R(inv)ρ − 1)/(k2 + m2)).
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FIGURE 2. The second phase of the diffusive DNS. The internal wave (3.3) with the amplitude
of T̂w = 0.01Lz is superimposed on the fully developed state in figure 1(c). The instantaneous
temperature anomaly fields are shown at various times in (a–c).

The wave pattern (3.3) with a relatively low amplitude of T̂w = 0.01Lz was
instantaneously superimposed on the state in figure 1(c) and the evolution of the resulting
system is illustrated in figure 2. Adding the internal wave results in the visible distortion
of the staircase (figure 2a), manifested most clearly in the periodic displacement of its
interfaces. This large-scale perturbation systematically weakens in time (figure 2b) and
largely disappears by t = 166 after the initiation of the second stage (figure 2c). To quantify
the observed damping, we compute the net perturbation energy contained in the (k,m)
harmonic as a function of time. In non-dimensional units, this quantity takes the following
form:

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

56
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.563


902 A14-8 T. Radko

0
–1.0

–0.5

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0

100 200 300
t

400

ln
(E

km
)

21

FIGURE 3. The solid curve represents the temporal record of 1
2 ln(Ekm) for the simulation in

figure 2, where Ekm is the perturbation energy contained in the mode (k,m). The best linear
fit for this record is indicated by the dashed line. The dotted line represents the corresponding
pattern for the experiment without the staircase, in which the wave decay is less rapid. Also
shown (the dash-dot grey curve) is the corresponding time series for the reflected wave (k,−m).

Ekm = 1
4

(
Pr

ρ̂2
c + ρ̂2

s

R(inv)ρ − 1
+ û2

c + û2
s + ŵ2

c + ŵ2
s

)
, (3.5)

where ûc,s, ŵc,s and ρ̂c,s represent the amplitudes of the velocity components and density.
These amplitudes are evaluated for every output of field variables (u,w,T, S) as follows:

ûc = 2[u cos(kx + mz)]xz, ûs = 2[u sin(kx + mz)]xz,

ŵc = 2[w cos(kx + mz)]xz, ŵs = 2[w sin(kx + mz)]xz,

ρ̂c = 2[(S − T) cos(kx + mz)]xz, ρ̂s = 2[(S − T) sin(kx + mz)]xz,

⎫⎪⎬
⎪⎭ (3.6)

where symbol [. . .]xz denotes the spatial averaging. Using (3.5) and (3.6), the energy was
evaluated and recorded for the experiment in figure 2 and 1

2 ln(Ekm) is plotted as a function
of time in figure 3. This plot reveals that, after the initial adjustment period, the internal
wave energy starts to decay in an approximately exponential manner. The decay rate (λd)

was computed from the best linear fit to the time record of 1
2 ln(Ekm), which yielded

λd = 4.35 · 10−3, (3.7)

with the 95 % confidence interval of �λci = 1.91 · 10−4. The corresponding e-folding
decay time scale (λ−1

d ) is equivalent to 73 wave periods (2π/ω), which indicates that
the wave interaction with the staircase is relatively weak. This property is exploited in
the following asymptotic model (§ 4), which analyses the staircase-induced modification
of the ideal wave solution. For representative oceanic parameters (2.6), the dimensional
e-folding decay time scale amounts to approximately two days. To confirm that the wave
attenuation is caused by its interaction with the staircase, the experiment in figure 2 was
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FIGURE 4. The spin-up phase of the fingering DNS. The instantaneous temperature anomaly
fields are shown at various times in (a–c). The experimental parameters are: h = 200, Rρ = 1.5,
τ = 0.1, Pr = 10, Pr = 10, Lx = 2400, Lz = 1200, Nx = 6144 and Nz = 3072.

reproduced using (3.3) as the initial condition with no staircase present. This simulation,
which is also shown in figure 3, resulted in the decay rate of

λd = 3.66852 · 10−4, (3.8)

with the 95 % confidence interval of �λci = 1.75 · 10−7. Thus, the wave decay rate in a
uniform stratification is an order of magnitude less than in the staircase. In figure 3, we
also present the corresponding energy record for the reflected mode with wavenumbers
(k,−m). These diagnostics are inspired by a recent model of internal waves incident
upon a staircase from remote sources (Sutherland 2016). Sutherland’s theory attributes the
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FIGURE 5. The second phase of the diffusive DNS. The internal wave with the amplitude of
T̂w = 0.01Lz is superimposed on the fully developed state in figure 4(c). The instantaneous
temperature anomaly fields are shown at various times in (a–c).

adverse action of the staircase to the reflection of waves from high-gradient interfaces,
prompting the question of whether the analogous dynamics is realized in the present
system. The results in figure 3 indicate that wave reflection does not play a significant
role in our simulations. In the course of the experiment in figure 3, the net energy loss
by the primary mode (k,m) exceeds the energy gain by the reflected wave (k,−m) by a
factor of 430. This finding motivates the search for alternative mechanisms of suppression,
which will be identified using the multiscale model in §§ 4 and 5.

Figures 4–6 present the corresponding calculation performed in the fingering regime
(s = 1). This configuration presents a major computational challenge even in two
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FIGURE 6. The solid curve represents the temporal record of 1
2 ln(Ekm) for the simulation in

figure 5, where Ekm is the perturbation energy contained in the mode (k,m). The best linear fit for
this pattern is indicated by the dashed line. The dash-dot grey curve represents the corresponding
time series for the reflected wave (k,−m).

dimensions since structurally stable fingering staircases are only realized for sufficiently
large step heights h � 200 (Radko 2014). Fingering simulations are generally more
energetic, and therefore the salinity dissipation scale tends to be less than in the
corresponding diffusive DNS. Therefore, the fingering experiment in figures 4–6 was
performed with the dissipation ratio of τ = 0.1, which is higher than realized in the
ocean (τ ∼ 0.01) but still small. Fortunately, the actual value of the diffusivity ratio has a
limited influence on fingering dynamics and intensity as long as it is significantly less than
unity (e.g. Stern et al. 2001; Radko 2008). The step height in the following simulation is
h = 200, the computational domain size is Lx × Lz = 2400 × 1200, the number of layers
is n = 6 and the mesh contains Nx × Nz = 6144 × 3072 grid points.

The spin-up phase (figure 4) was effectively completed by t = 200, resulting in a
quasi-equilibrium state (figure 4c). Note that the interfaces realized in the fingering
simulation are not as sharp as their diffusive counterparts (cf. figure 1c) but the layered
pattern of the staircase is still well defined. Figure 5 illustrates the decay of the wave with
the amplitude of T̂w = 0.01Lz that was added to the state in figure 4(c). The perturbation
systematically weakens in time (cf. figure 5a–c). It is barely visible in the temperature
field shown in figure 5(c), which was recorded at t = 309. Figure 6 presents the temporal
record of 1

2 ln(Ekm) along with its best linear fit, from which the decay rate was determined
to be λd = 1.55 · 10−3. This rate is comparable but less than the corresponding value for
the diffusive case (figure 3). The reflected harmonic (k,−m) in the fingering simulation
is more pronounced than in the diffusive case. Still, the net loss of energy by the primary
wave in figure 6 substantially (by a factor of 43) exceeds the energy gain by the reflected
wave, which argues against the significant contribution of reflection to wave suppression.
To fully explain the dynamics of wave–staircase interaction and efficiently explore the
parameter space, we now turn to an asymptotic multiscale model.
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4. Multiscale theory

4.1. Model development
The evolution of large-scale internal waves in the staircase is described using the new set
of variables (X,Z, t2) that are related to the original ones through

(X,Z) = ε(x, z), t2 = ε2t, (4.1a,b)

where ε � 1 is the scale-separation parameter. Variables (x, z, t) are used to describe the
processes that operate on the scale of staircase steps (h), whereas (X,Z, t2) represent the
dynamics on the scale of internal waves. To be specific, the small parameter is defined as
the ratio of step height and the vertical wavelength of the internal wave

ε = h
Lz
. (4.2)

The basic state in the following model consists of z-periodic and x-independent
temperature and salinity patterns T̄(z) and S̄(z) representing the layered step-like diffusive
(s = −1) stratification.

The assumed x-invariance of staircase properties represents a significant idealization,
which lacks some attributes of observed structures, such as convective overturns in
mixed layers and double-diffusive microstructure within the interfaces. The small-scale
x-dependent patterns are clearly visible in DNS, both diffusive (e.g. figures 1 and 2) and
fingering (e.g. figures 4 and 5). Nevertheless, we believe that such an approach can offer
a deeper insight into the wave–staircase interaction problem. Aside from the obvious
advantages of simplicity and dynamical transparency, it also affords an opportunity
to compare predictions of the reduced-dynamics model with more general DNS-based
calculations. The differences and similarities in the results will inform us about the relative
significance of the processes neglected by the idealized model.

Given the x-invariance of the basic patterns and the absence of any small-scale
variability in the primary wave, their interaction is expected to generate secondary patters
that are also devoid of small-scale variability in x. Hence, it becomes unnecessary to
use the small-scale horizontal variable in the following analysis. The spatial and time
derivatives in governing equations (2.4) are therefore replaced as follows:

∂

∂x
→ ε

∂

∂X
,

∂

∂z
→ ∂

∂z
+ ε

∂

∂Z
,

∂

∂t
→ ∂

∂t
+ ε2 ∂

∂t2
, (4.3a–c)

and both sets of variables are treated as independent variables.
Using (4.3a–c), governing equations (2.5) are expressed in terms of both small-scale

and large-scale variables, resulting in

∂T
∂t

+ ε2 ∂T
∂t2

+ εJXz(ψ,T)+ ε2JXZ(ψ,T)− ε
∂ψ

∂X
= ∇2(T − T̄)

∂S
∂t

+ ε2 ∂S
∂t2

+ εJXz(ψ, S)+ ε2JXZ(ψ, S)− εR(inv)ρ

∂ψ

∂X
= τ∇2(S − S̄)

∂ς

∂t
+ ε2 ∂ς

∂t2
+ εJXz(ψ, ς)+ ε2JXZ(ψ, ς) = Pr

[
ε
∂

∂X
(T − S)+ ∇2ς

]

ς = ∇2ψ, ∇2 ≡ ε2 ∂
2

∂X2
+ ∂2

∂z2
+ 2ε

∂2

∂z ∂Z
+ ε2 ∂

2

∂Z2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (4.4)
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where JXZ(a, b) ≡ (∂a/∂X)(∂b/∂Z)− (∂a/∂Z)(∂b/∂X) and JXz(a, b) ≡ (∂a/∂X)(∂b/
∂z)− (∂a/∂z)(∂b/∂X) are the Jacobians in (X,Z) and (X, z) respectively. To ensure
that (T̄, S̄) represent the steady state, the temperature and salinity equations in (4.4) are
augmented by introducing forcing terms (−∇2T̄,−τ∇2S̄). These terms prevent diffusive
dissipation of the basic state, thereby representing the action of microscale processes
maintaining thermohaline staircases in the ocean.

To analyse the interaction between waves and the staircase, we seek the solution of
governing equations in terms of power series in ε � 1 as follows:

T = T̄(z)+ εT1(X, z,Z, t, t2)+ ε2T2(X, z,Z, t, t2)+ · · ·
S = S̄(z)+ εS1(X, z,Z, t, t2)+ ε2S2(X, z,Z, t, t2)+ · · ·

ψ = ψw(X,Z, t, t2)+ εψ1(X, z,Z, t, t2)+ ε2ψ2(X, z,Z, t, t2)+ · · ·

⎫⎪⎬
⎪⎭ , (4.5)

where ψw is the leading-order streamfunction component of a large-scale internal wave.
We assume the harmonic form for ψw

ψw = ψ̂w exp{i(KX + MZ − ω0t − ω2t2)}, (4.6)

where (K,M) = ε−1(k,m) are the large-scale wavenumbers. The zero-order frequency is
denoted by ω0, and ω2 is the correction associated with the variation on the slow time
scale. The imaginary component of the perturbation frequency measures the rate of wave
decay

λd = −Im(ω) = −Im(ω0)− ε2Im(ω2). (4.7)

We substitute (4.5) and (4.6) in governing equations (4.4) and sequentially solve the
hierarchy of balances realized at each order in ε until an explicit expression for ω2 is
found. At each order, we retain only terms that are linear in the wave amplitude (ψ̂w). This
linearization with respect to ψ̂w makes it possible to unambiguously determine the linear
decay rate of the primary wave, which is one of the principal objectives of the following
analysis.

The O(1) balances of (4.4) are trivially satisfied by the combination of primary wave
and the staircase. The O(ε) balances of T–S equations require that

T1 = (T̂w + ψ̂wT̃1(z)) exp{i(KX + MZ − ω0t − ω2t2)}
S1 = (Ŝw + ψ̂wS̃1(z)) exp{i(KX + MZ − ω0t − ω2t2)}

}
, (4.8)

where T̂w = −Kψ̂w/ω0 and Ŝw = −KR(inv)ρ ψ̂w/ω0. The coefficients (T̂w, Ŝw) represent the
amplitudes of temperature and salinity fields in the primary large-scale wave. However, the
nonlinear interaction of the primary wave with the small-scale staircase – the interaction
represented by terms JXz(ψ,T) and JXz(ψ, S) in (4.4) – also produces small-scale O(ε)
components of temperature and salinity. This dynamics is accounted for by the inclusion
of auxiliary functions (T̃1, S̃1) in (4.8), which satisfy ordinary differential equations

iK
dT̄
dz

− iω0T̃1 − d2T̃1

dz2
= 0

iK
dS̄
dz

− iω0S̃1 − τ
d2S̃1

dz2
= 0

⎫⎪⎪⎬
⎪⎪⎭ . (4.9)
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A unique solution for auxiliary functions arising at each order in the expansion is
determined by requiring their mean value in z to be zero. These functions are represented
by complex numbers and their arguments measure the phase shifts of the corresponding
flow components relative to the primary large-scale wave ψw. Note that, unlike T–S
equations, the vorticity equation at O(ε) does not reflect the interaction between primary
wave and the basic staircase pattern, and therefore we set ψ1 = 0.

The O(ε2) balances are solved using

T2 = ψ̂wT̃2(z) exp{i(KX + MZ − ω0t − ω2t2)}
S2 = ψ̂wS̃2(z) exp{i(KX + MZ − ω0t − ω2t2)}

ψ2 = ψ̂w(ψ̃2w + ψ̃2(z)) exp{i(KX + MZ − ω0t − ω2t2)}

⎫⎪⎪⎬
⎪⎪⎭ , (4.10)

where (T̃2, S̃2, ψ̃2) satisfy

2iM
dT̃1

dz
+ iω0T̃2 + d2T̃2

dz2
= 0

2iMτ
dS̃1

dz
+ iω0S̃2 + τ

d2S̃2

dz2
= 0

−iPr
d4ψ̃2

dz4
+ ω0

d2ψ̃2

dz2
− K Pr(S̃1 − T̃1) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (4.11)

The solvability condition that arises at this order requires that

ω2
0 = K2(R(inv)ρ − 1)Pr

K2 + M2
. (4.12)

In (4.12), we readily recognize the dispersion relation of free non-dissipative internal
waves in the linear background gradient, written here in the non-dimensional form. This
is an expected result since (4.6) represents is an internal wave with dimensions greatly
exceeding the staircase step height. Neither molecular dissipation nor the presence of a
staircase influences the evolution of this primary wave at the leading order. Equation (4.12)
also implies that Im(ω0) = 0 and the wave decay (4.7) reduces to

λd = −ε2Im(ω2). (4.13)

The essential dynamics of staircase-induced suppression is revealed by the third-order
balances which imply that

T3 = ψ̂w(T̃3w + T̃3(z)) exp{i(KX + MZ − ω0t − ω2t2)}
S3 = ψ̂w(S̃3w + S̃3(z)) exp{i(KX + MZ − ω0t − ω2t2)}

ψ3 = ψ̂wψ̃3(z) exp{i(KX + MZ − ω0t − ω2t2)}

⎫⎪⎪⎬
⎪⎪⎭ , (4.14)
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where

iω0K(ψ̃2w + ψ̃2)

(
dT̄
dz

− 1
)

− d2T̃3

dz2
ω0 − 2iMω0

dT̃2

dz
+ (K2 + M2 − iω2)ω0T̃1

+iKω2 − iT̃3ω
2
0 − iT̃w3ω

2
0 − K3 − KM2 = 0

iω0K(ψ̃2w + ψ̃2)

(
dS̄
dz

− R(inv)ρ

)
− d2S̃3

dz2
ω0τ − 2iMω0

dS̃2

dz
τ + (K2τ + M2τ − iω2)ω0S̃1

+iKω2R(inv)ρ − iS̃3ω
2
0 − iŜ3wω

2
0 − K3R(inv)ρ τ − KM2R(inv)ρ τ = 0

Pr
d4ψ̃3

dz4
+ 4iM Pr

d3ψ̃3

dz3
+ i

d2ψ̃3

dz2
ω0 − 2M

dψ̃2

dz
ω0 − iK Pr(S̃2 − T̃2) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(4.15)

The emergence of the secondary large-scale plane-wave harmonic with the amplitude
(ε3T̃3w, ε

3S̃3w, ε
2ψ̃2w)ψ̂w is triggered by the nonlinear interaction between the second-order

wave-induced perturbation in the streamfunction and the basic staircase pattern. These
interactions are reflected by terms iω0Kψ̃2(dT̄/dz) and iω0Kψ̃2(dS̄/dz) in temperature
and salinity equations of (4.15). Importantly, no analogous nonlinear terms arise in the
vorticity equation at this order. Since ψ̃2 is not necessarily orthogonal to the basic state,
their interaction produces patterns varying on large scales (X,Z). This dynamics is brought
to the fore by z-averaging the temperature and salinity equations in (4.15) and solving the
resulting equations for (T̃3w, S̃3w)

T̃3w = iKω−2
0 (iψ̃2wω0 − iNTω0 + K2 + M2 − iω2)

S̃3w = iKω−2
0 (iψ̃2wω0R(inv)ρ − iNSω0 + K2R(inv)ρ + M2R(inv)ρ − iω2R(inv)ρ )

}
, (4.16)

where (NT,NS) are the nonlinear terms

NT =
[
ψ̃2

dT̄
dz

]
z

, NS =
[
ψ̃2

dS̄
dz

]
z

. (4.17a,b)

These nonlinear terms, which will be shown to play a critical role in staircase-induced
wave suppression, originate from the advective components JXz(ψ,T) and JXz(ψ, S) of the
T–S equations in (4.4). They are readily interpreted as the result of large-scale vertical
divergence of diapycnal eddy fluxes of heat and salt (FT,FS)

iKNT exp{i(KX + MZ − ω0t − ω2t2)} = ∂

∂Z
FT

iKNS exp{i(KX + MZ − ω0t − ω2t2)} = ∂

∂Z
FS

⎫⎪⎬
⎪⎭ , (4.18)

where
ε3FT = l.o.{[wT]z}
ε3FS = l.o.{[wS]z}

}
. (4.19)

The notation l.o.{. . .} in (4.19) is used to represent the leading-order component, which
in this case is O(ε3). Note that the fluxes in (4.19) are averaged over small scales. This
implies that the staircase-induced suppression is ultimately driven by eddy diffusion of
temperature and salinity on the scale of staircase steps (h). The analogous effects of eddy
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viscosity do not appear at this order. The sought after expression for ω2 is obtained as a
solvability condition at O(ε4) as follows. The fourth-order balance of the vorticity equation
yields

− 4iM
∂3ψ̃3

∂z3
Prω2

0 − ω2
0(iω2 + 2K2Pr − 6M2Pr)

∂2ψ̃2

∂z2
+ 2

∂ψ̃3

∂z
Mω3

0

− iKT̃3Prω2
0 + iKS̃3Prω2

0

+ iω3
0(K

2 + M2)ψ̃2 + (iω2 − K2Pr − M2Pr)(K2 + M2)ω2
0

− iPrK2(R(inv)ρ ψ̃w2 − ψ̃w2 − NS + NT)ω0

+ iψ̃w2(K2 + M2)ω3
0 + PrK2((1 − R(inv)ρ τ )(K2 + M2)+ iω2(R(inv)ρ − 1)) = 0. (4.20)

Equation (4.20) is greatly simplified by recognizing that the coefficient of ψ̃w2 is exactly
zero as long as ω0 satisfies the dispersion relation (4.12). The resulting expression is then
averaged in z, taking advantage of the periodicity of ψ̃2(z) and ψ̃3(z):

(iω2 − K2Pr − M2Pr)(K2 + M2)ω2
0 − iPrK2(NT − NS)ω0

+PrK2((1 − R(inv)ρ τ )(K2 + M2)+ iω2(R(inv)ρ − 1)) = 0.
(4.21)

Finally, (4.21) is solved for ω2 and the result is further simplified using the dispersion
relation (4.12)

ω2 = 1
2

(NT − NS)K
√

Pr√
(K2 + M2)(R(inv)ρ − 1)

+ i
2

(K2 + M2)(Pr + 1 − (Pr + τ)R(inv)ρ )

(R(inv)ρ − 1)
. (4.22)

At this point, the multiscale analysis is completed, and we revert to the original variables
using (4.1a,b). To simplify the transition, we denote (T̃10, S̃10) = ε(T̃1, S̃1), ψ̃20 = ε2ψ̃2,
NT0 = [ψ̃20(dT̄/dz)]z, and NS0 = [ψ̃20(dS̄/dz)]z. As a result, the first-order balance (4.9)
takes the form

ik
dT̄
dz

− iω0T̃10 − d2T̃10

dz2
= 0

ik
dS̄
dz

− iω0S̃10 − τ
d2S̃10

dz2
= 0

⎫⎪⎪⎬
⎪⎪⎭ , (4.23)

and the second-order vorticity equation in (4.11) reduces to

− iPr
d4ψ̃20

dz4
+ ω0

d2ψ̃20

dz2
− kPr(S̃10 − T̃10) = 0. (4.24)

For any given periodic basic patterns (T̄, S̄), (4.23) and (4.24) are solved for (T̃10, S̃10, ψ̃20)
using the Fourier transform in z. The decay rate can now be expressed in terms of the
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original variables as follows:

λd = −ε2Im(ω2) = Im

⎛
⎝1

2
(NS0 − NT0)k

√
Pr√

(k2 + m2)(R(inv)ρ − 1)

⎞
⎠

︸ ︷︷ ︸
A

+ 1
2

(k2 + m2)((Pr + τ)R(inv)ρ − Pr − 1)

(R(inv)ρ − 1)︸ ︷︷ ︸
B

.

(4.25)

Equation (4.25) indicates that the weakening of the large-scale wave is controlled by two
effects. Term A represents the wave interaction with the staircase – the dominant damping
process and the subject of our study. Term B, on the other hand, represents the damping
component that is realized even in the absence of the staircase. It is weak, driven entirely
by the direct molecular dissipation of the large-scale wave, and can be neglected for most
intents and purposes. The relative intensity of wave suppression in the staircase and the
corresponding uniform gradient can be quantified using the diagnostic variable

rd = A
B
, (4.26)

which will be referred to as the attenuation ratio. As a consistency check, term B can
be readily evaluated for the parameters of the experiment in figure 3, which yields
B = 3.66833 · 10−4. This value agrees with the DNS-based estimate of the decay rate in
linear gradient (3.8) remarkably well, with the relative error of only 5.1 · 10−5. Theory
development for fingering staircases (s = 1) closely mimics the foregoing diffusive model,
and the counterpart of (4.25) is

λd = Im

(
1
2
(NS0 − NT0)k

√
PrRρ√

(k2 + m2)(Rρ − 1)

)
+ 1

2
(k2 + m2)((Pr + 1)Rρ − Pr − τ)

(Rρ − 1)
. (4.27)

In the absence of planetary rotation, the expressions for the decay rate in both diffusive
and fingering staircases can be readily obtained in three dimensions by replacing k in
(4.25) and (4.27) by the total horizontal wavenumber kh = √

k2 + l2.

4.2. Interpretation
To trace and explain the sequence of processes resulting in the staircase-induced wave
suppression, we now assume simple explicit patterns for (T̄, S̄)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T̄ = T̄tot + z, T̄tot = −h
2

tanh(sin(πz/h)h−1
i )

tanh(h−1
i )

S̄ = S̄tot + R(inv)ρ z, S̄tot = −h
2

R(inv)ρ

tanh(sin(πz/h)h−1
i )

tanh(h−1
i )

for − h
2
< z <

h
2
. (4.28)

Parameter hi in (4.28) measures the thickness of high-gradient interfaces relative to
the step height (h), and hi ∼ 0.1 is representative of oceanic staircases, both fingering
and diffusive. The basic patterns (figure 7a,b) reflect the step-like structure of observed
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FIGURE 7. Multiscale model. The assumed total temperature and salinity fields in the
unperturbed staircase are shown in (a). (b) shows the corresponding T–S anomalies. The real and
imaginary components of the first-order T–S perturbations are shown in (c) and (d) respectively.
The temperature (salinity) patterns are indicated by blue (red) curves. Model parameters match
those used for the diffusive DNS in figures 1–3: R(inv)ρ = 3, Pr = 10, τ = 0.01, h = 100, hi =
0.1, s = −1.

staircases (e.g. Kelley et al. 2003). The specific choice (4.28) was motivated by our desire
to construct an infinitely smooth profile that would satisfy periodic boundary conditions at
z = (−h/2, h/2) not only by (T̄, S̄), but also by all their derivatives. However, additional
calculations performed with tanh(az) and erf (az) profiles indicate that the results obtained
for the same interfacial thickness are largely insensitive to the profile choice.

The following calculation is performed for the parameters used in the foregoing
diffusive DNS (figures 1–3). The immediate consequence of wave/staircase interaction is
the tilting of high-gradient interfaces by the primary wave, which generates the first-order
perturbation temperature and salinity fields (T̃10, S̃10). These functions, obtained by solving
(4.23), are shown in figure 7(c,d). The T–S perturbations are localized in the vicinity of
interfaces and their real components substantially exceed the imaginary ones. Neglecting
Im(T̃10) and Im(S̃10) has no significant effect on the resulting solutions. This property
implies that the first-order small-scale T–S perturbations lag the vertical wave velocity
(ww) by approximately a quarter phase, which is a fully expected kinematic consequence
of vertical advection of temperature and salinity across high-gradient interfaces.
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FIGURE 8. Multiscale model (figure 7). The real and imaginary components of the
second-order streamfunction perturbation are shown in (a) and (b) respectively. The real and
imaginary components of the nonlinear advective terms NT0 and NS0 are shown in (c) and (d)
respectively. The temperature (salinity) advection terms NT0(NS0) are indicated by blue (red)
curves.

The laterally non-uniform distribution of buoyancy associated with the first-order
perturbation, in turn, induces the secondary circulation as lighter (denser) fluid at a given
z-level tends to rise (sink). This secondary pattern is represented by Re(ψ̃20) component
in figure 8(a), which was determined by solving (4.24). On its own, this response can
affect the frequency of the primary wave but does not lead to its systematic attenuation
since it is in phase with the primary large-scale wave. The secondary circulation pattern,
however, is also affected by viscous dissipation, represented by the term −iPr(d4ψ̃20/dz4)
in the vorticity equation (4.24). Molecular friction generates a small (figure 8b) but
dynamically essential correction Im(ψ̃20). This circulation component opposes the flow
pattern associated with Re(ψ̃20) and lags it by a quarter of a period. The vertical velocities
associated with Im(ψ̃20) induce finite vertical advective fluxes of temperature and salinity
(−T̄k Im(ψ̃20),−S̄k Im(ψ̃20)). The resulting flux convergence patterns (figure 8d) oppose
the T–S tendencies of the primary large-scale wave, causing its gradual dissipation.

The foregoing analysis implies that staircases play a catalytic role in damping large-scale
waves. The interaction of the large-scale primary wave with the staircase produces new
flow patterns that are localized in the vicinity of high-gradient interfaces. The advective
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FIGURE 9. The wave decay rate (λd) in the diffusive staircase, evaluated using the multiscale
theory for hi = 0.1, is plotted as a function of its horizontal wavenumber (solid curve). The
dash-dot grey curve represents the best fit of the theory and DNS, which is realized for
hi = 0.0688. The corresponding DNS-based values are indicated by the plus signs. The dashed
curve shows the theoretical prediction of the decay rate in the absence of a staircase and the
corresponding DNS results are indicated by circles.

fluxes of temperature and salinity associated with those patterns are more effective in
damping the primary wave than molecular dissipation acting directly on the primary
large-scale wave. At the same time, our interpretation also underscores the role of
molecular friction in controlling the action of eddy fluxes of temperature and salinity.
For instance, in the inviscid model (ν = 0), the eddy fluxes would lack the proper phase
alignment with the primary wave required for the staircase-induced suppression.

5. Results

The purpose of the section is twofold: (i) the validation of the multiscale theory by DNS
in the numerically accessible regime and (ii) the systematic exploration of theory-based
predictions over the relevant parameter space.

The first objective is addressed in figure 9, in which theoretical and DNS-based
estimates of the decay rate in the diffusive (s = −1) regime are plotted as a function
of k. The staircase DNS are identical to the one discussed in § 3 (figures 1–3) in all
respects except for the wavelengths, which are systematically varied. The four DNS of
this type (indicated by the plus signs) assume the horizontal wavelengths of Lx = 800,
1200, 1600 and 2000; the vertical wavelengths are assigned values Lz = 0.5Lx . The decay
rates diagnosed from DNS are consistent with the corresponding theoretical estimates,
which are indicated by the solid curve. For instance, the multiscale model predicts
λd = 3.28 · 10−3 for the case in figures 1–3, which agrees with the DNS-based estimate
(3.7) within 30 %. This modest difference is attributed to the somewhat ad hoc choice
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FIGURE 10. The wave decay rate (λd) and the attenuation ratio (rd) realized in the diffusive
case are plotted as functions of wavenumbers (k,m) in (a) and (b) respectively.

of the nominal value of relative interfacial height (hi = 0.1) – a free parameter in the
theoretical model. The best fit of the theoretical model to DNS suggests hi = 0.0688 and
the corresponding pattern of the decay rate is indicated by the grey dash-dot curve. In
figure 9, we also show (dashed curve) the theoretical estimate of the wave decay rate in
the uniform gradient, which is represented by the term B in (4.25). The corresponding
DNS-based estimates are indicated by circles, revealing the remarkable consistency of
numerical and theoretical results for linear stratification. Both the multiscale model and
DNS suggest that the presence of the staircase increases the decay rates by an order of
magnitude.
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FIGURE 11. The wave decay rate (λd) in the diffusive staircase is plotted as a function of
(a) the inverse density ratio R(inv)ρ , (b) the diffusivity ratio τ and (c) the Prandtl number Pr.

The comparison of the decay rates in the fingering case (s = 1) is also encouraging.
The DNS shown in figures 4–6 yields λd = 1.55 · 10−3, whereas the corresponding
theoretical estimate (4.27) is λd = 2.09 · 10−3. A reference should be made to 3-D
fingering simulations of Stellmach et al. (2011), which also reveal the tendency of
staircases to suppress internal waves. While those DNS lack the scale separation between
steps and waves, they still imply the decay rates of the same order (λd ∼ 10−2) as
the corresponding theoretical prediction. This qualitative consistency suggests that the
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FIGURE 12. The wave decay rate (λd) and the attenuation ratio (rd) realized in the diffusive
case are plotted as functions of step height h in (a) and (b), and as functions of the relative
interface thickness hi in (c) and (d).

mechanisms of wave suppression in two and three dimensions are analogous and can be
captured by the multiscale models in § 4.

The exploration of the parameter space starts with the analysis of the relation between
the decay rates and wavenumbers (k,m), which is shown in figure 10(a). This calculation
was performed for the following parameters:

R(inv)ρ = 3, h = 300, hi = 0.1, Pr = 10, τ = 0.01, (5.1)

which are representative of diffusive staircases in the main Arctic halocline (e.g. Kelley
et al. 2003; Timmermans et al. 2008). The predicted decay rates rapidly and monotonically
decrease with the increasing wavenumbers, both vertical and horizontal. The values
in figure 10(a) represent the cumulative effect of the staircase-induced and molecular
dissipation. Their relative significance is quantified using the attenuation ratio rd, defined
in (4.26). The pattern of rd(k,m)in figure 10(b) shows that this ratio is fairly uniform, with
rd ∼ 10 throughout much of the wavenumber space.

Figure 11 examines the dependencies of λd on environmental parameters (R(inv)ρ , τ,Pr).
The wavelengths in this calculation are kept at (Lx ,Lz) = (1600, 800) and the staircase
parameters (h, hi) are the same as in the baseline configuration (5.1). As one of the
parameters (R(inv)ρ , τ,Pr) is varied, others are assigned fixed values given in (5.1).
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FIGURE 13. The wave decay rate (λd) and the attenuation ratio (rd) realized in the fingering
case are plotted as functions of wavenumbers (k,m) in (a) and (b) respectively.

The results in figure 11 indicate that the environmental parameters have a relatively minor
impact on the decay rates. The largest variation in λd is associated with changes in Pr
(figure 11c). However, in much of the World Ocean, the Prandtl number is confined to a
relatively narrow interval of 7 < Pr < 13, and in this range λd varies by a factor of two at
most.

The dependence of λd on staircase characteristics (h, hi) is explored in figure 12. While
the variation in step height h (figure 12a) only weakly influences λd, the decay rates are
fairly sensitive to the relative thickness of high-gradient interfaces hi (figure 12c). Low
values of hi, which are realized in sharp well-defined staircases, result in substantially
elevated decay rates. Figures 12(b) and 12(d) present the ratio of staircase-induced and
molecular attenuation (rd) as functions of h and hi respectively. The dependence of this
ratio on the step height (h) is weak. However, rd rapidly increases with decreasing hi.
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FIGURE 14. The wave decay rate (λd) in the fingering staircase is plotted as a function of
(a) the density ratio Rρ , (b) the diffusivity ratio τ and (c) the Prandtl number Pr.

The analysis of decay rates is now reproduced for fingering staircases (s = 1). The
baseline set of parameters reflects characteristics of the Caribbean staircase (e.g. Schmitt
et al. 2005)

Rρ = 1.5, h = 2000, hi = 0.1, Pr = 10, τ = 0.01. (5.2)

Figure 13(a) presents the decay rate pattern, evaluated using (4.27), as a function of
wavenumbers. The corresponding attenuation ratio (rd) is shown in figure 13(b). As
previously (cf. figure 10), the decay rate rapidly increases with increasing wavenumbers,
whereas the attenuation ratio is remarkably uniform with rd ∼ 10. The dependencies
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FIGURE 15. The wave decay rate (λd) and the attenuation ratio (rd) realized in the fingering
case are plotted as functions of step height h in (a) and (b), and as functions of the relative
interface thickness hi in (c) and (d).

of λd on (Rρ, τ,Pr), evaluated for (Lx ,Lz) = (2 · 104, 104), are presented in figure 14.
These results suggest a limited sensitivity of the decay rates to environmental parameters.
Likewise, the influence of the step height on λd and rd is also minimal (figure 15a,b). The
variation in the interfacial thickness (hi), on the other hand, has a substantial impact on
both λd and rd (figure 15c,d).

6. Oceanographic implications

The foregoing analysis indicates that the presence of thermohaline staircases tends
to suppress free internal waves, but the magnitude of this effect may be limited. This
section attempts to offer a more quantitative assessment of the potential ramifications
of staircase-induced suppression. To facilitate the interpretation of our results in terms
of relevant oceanographic scales, we cast the following discussion in dimensional units.
The conversion between the non-dimensional and dimensional quantities is done using
representative parameters (2.6). For vertical wavelengths of ∼103, which is equivalent
to the dimensional scale of L∗

z ∼10 m, both DNS (figure 3) and the multiscale theory
(figure 11) predict the decay rate of λd ∼ 4 · 10−3. This estimate corresponds to the
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dimensional value of λ∗
d∼4 · 10−6 s−1, representing the e-folding decay periods of 2–3

days. Such intervals are generally less than the time scale of synoptic variability of the
atmospheric forcing (2–10 days) and the intrinsic mesoscale variability of the ocean
(10–30 days). Thus, it is reasonable to assume that the presence of staircases will adversely
affect wave components on vertical scales L∗

z ∼10 m. However, the decay rate rapidly
(nearly quadratically) decreases with increasing wavelength. Therefore, it seems unlikely
that the staircases could have much of an impact on waves with vertical scales exceeding
L∗

z � 20 m. On the other hand, the oceanic wave field is dominated by relatively low-order
components, with vertical scales of the order of hundreds of metres, generated by the
atmospheric forcing and by the interaction of abyssal flows with bathymetry. Thus, the
question arises whether the wave-suppression tendency, dynamically interesting as it may
be, can substantially influence the oceanic wave environment. Of particular interest is the
impact of the staircase-induced suppression on the intensity of irreversible mixing caused
by the internal wave overturns.

To address this concern, we turn to the canonical Garrett & Munk (1972) spectrum of
internal waves in the ocean, denoted hereafter as GM, which is used to reconstruct the
representative time series of vertical shear. Our intent is to determine how the suppression
of relatively small-scale waves affects shear and, ultimately, the intensity of small-scale
mixing. The implementation is identical to the procedure used by Radko et al. (2015) and
Radko (2019a). Therefore, only an abbreviated description is given here. The horizontal
velocity field is represented by a superposition of internal waves

U∗(z∗, t∗) = Re

⎡
⎣ J∑

j=1

∫∫
au(kGM, lGM, j) cos(mGM( j)z)

exp(i(θu(kGM, lGM, j)− σGMt)) dkGM dlGM

⎤
⎦

V∗(z∗, t∗) = Re

⎡
⎣ J∑

j=1

∫∫
av(kGM, lGM, j) cos(mGM( j)z)

exp(i(θv(kGM, lGM, j)− σGMt)) dkGM dlGM

⎤
⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (6.1)

where j represents vertical mode numbers and (kGM, lGM,mGM) are the wavenumbers.
The stochastic wave amplitudes (au, av) conform to the GM internal wave spectrum and
have random initial phase distribution. We assume uniform background stratification, and
(au, av) are set to zero for frequencies above the buoyancy frequency N∗ and below the
Coriolis parameter f ∗. The strength of shear is controlled by the maximal vertical mode
number J, which is computed by requiring the mean Richardson number

Rimean = N∗2

[U∗2
z + V∗2

z ]t

, (6.2)

to match the chosen target value; Rimean = 1 is used in the following example. It should
be mentioned that wave spectra measured in the upper Arctic Ocean (Levine, Paulson &
Morison 1987) are often characterized by a less rapid decrease of spectral energy with
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FIGURE 16. Time series of the Richardson number constructed using the GM internal wave
spectrum. Time is expressed in terms of inertial periods 2π/f . (a) shows the record of Ri for
the canonical GM spectrum. The corresponding records for modified spectra, which retain only
wave components with vertical wavelengths exceeding 5 m, 10 m, and 20 m, are presented in (b),
(c), and (d) respectively.

frequency than in the GM model. Nevertheless, we find it instructive to perform our
preliminary assessment using the canonical GM spectrum.

Using (6.1), the temporal record of shear was reconstructed at the mid-level (z∗ =
−500 m) in the ocean of depth D = 1000 m. The calculation was extended in time
for ten inertial periods (2π/f ∗) and the results are expressed (figure 16a) in terms of
the instantaneous Richardson number Ri = N∗2/(U∗2

z + V∗2
z ). The Richardson number is

traditionally used to determine the susceptibility of shear flows to Kelvin–Helmholtz (KH)
instability (von Helmholtz 1868; Kelvin 1871). Non-dissipative flows are KH-unstable
if the Richardson number is less than the critical value of Ricr = 1

4 (Richardson 1920;
Howard 1961; Miles 1961). The amplifying perturbations in this regime tend to evolve into
fully turbulent billows (e.g. Woods 1968; Thorpe 1971; Smyth, Moum & Caldwell 2001),
which are thought to be one of the principal sources of irreversible diapycnal mixing in
the ocean (e.g. Thorpe 2005).

The time series in figure 16(a) indicate that the flow meets the KH instability
conditions very intermittently and infrequently, which is consistent with the statistics
of the Richardson number derived from the open ocean measurements (e.g. Monin &
Ozmidov 1985; Polzin 1996; Polzin et al. 2003). Overall, the system spends less than
2 % of the time in the unstable regime (Ri < 1

4). Thus, the question arises whether the
staircase-induced suppression of relatively small-scale wave components can substantially
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reduce the likelihood of KH destabilization. To investigate this possibility, the calculation
in figure 16(a) was modified by suppressing all spectral components in (6.1) with vertical
wavelengths smaller than the chosen length scale L∗

cr. The resulting time series for
L∗

cr=5 m, 10 m and 20 m are shown in figure 16(b–d) respectively.
The calculations in figure 16 point to the potentially critical role that small-scale

waves play in generating KH overturns. Even the suppression of harmonics with vertical
wavelengths L∗

z < 5 m (figure 16b) has a major effect on the statistics of the Richardson
number. The mean Richardson number increases from Rimean = 1.0 in the original GM
model to Rimean = 1.91 and the minimal value increases from Rimin = 0.18 to Rimin = 0.27.
The results for L∗

cr=10 m in figure 16(c) are even more dramatic: the average and minimal
Richardson numbers increase to Rimin = 0.49 and Rimean = 2.63 respectively. Finally, the
suppression of waves with L∗

z < 20 m (figure 16d) effectively precludes any possibility
of KH destabilization: Rimin = 0.88 and Rimean = 3.90. These results support our key
thesis: the staircase-induced suppression of relatively small-scale waves (L∗

z ∼10 m) could
substantially impact the ability of internal waves to generate small-scale turbulence and
diapycnal mixing in the ocean.

7. Discussion and conclusions

This study explores the interaction between internal waves and thermohaline staircases,
diffusive and fingering, using a combination of DNS and an asymptotic multiscale model.
In all cases considered, we find that this interaction results in the systematic weakening
of large-scale waves. The simulated wave attenuation is much more intense than could
be attributed to the direct influence of molecular friction and diffusion. The multiscale
model, which attempts to conceptualize this effect, is validated by DNS in the numerically
accessible regime. Particularly encouraging is the finding that the requirement of scale
separation between interacting components, which is measured by the parameter ε in
(4.2), does not substantially limit the predictive capabilities of the model. For instance,
the multiscale theory and DNS produce accurate estimates of the wave decay rates even
when its vertical wavelength exceeds the staircase step height by as little as a factor of
four. While considerations of analytical tractability led us to explore the limit ε � 1, it
is important to note that staircases tend to suppress even relatively small-scale waves. For
instance, simulations of Stellmach et al. (2011) reveal the rapidly decay of a wave with the
vertical wavelength equal to the step height (ε = 1) after the formation of a staircase.

In our investigation, the multiscale model serves a dual purpose. The inspection
of balances that arise at each order in the expansion makes it possible to trace the
chain of events leading to wave suppression, providing an unambiguous interpretation
of system dynamics. Also important is the opportunity to efficiently explore the wide
oceanographically relevant parameter range, most of which is currently inaccessible by
DNS even in two dimensions. The damping of internal waves in the multiscale model is
associated with eddy diffusion of temperature and salinity on the scale of staircase steps
(h). The effects of eddy viscosity, on the other hand, are not reflected at the leading-order
theoretical expression of the decay rate. The agreement of the multiscale model and DNS
implies that this dynamics is likely to control wave attenuation in more general models
and perhaps in the ocean as well. The multiscale theory does not explicitly represent
several processes that occur in fully developed staircases, such as convective overturns in
the mixed layers and double-diffusive microstructure in the interfaces. Hence, its success
indicates that such phenomena play a secondary role in wave/staircase interaction.

In both fingering and diffusive systems, we find that the wave decay rates rapidly
increase with increasing wavenumbers, both horizontal and vertical. The sensitivity to
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other parameters, including the background density ratio and step height, is limited. The
adverse effect of staircases on wave activity is particularly pronounced for intermediate
modes with vertical wavelengths that are comparable to the staircase step heights. The
anticipated selective filtering of relatively high-order components is likely to reduce
the wave-induced vertical shear and, ultimately, limit the magnitude of irreversible
diapycnal mixing associated with overturning internal waves. The calculations based on
the canonical Garrett–Munk internal wave spectrum (§ 6) support this proposition. The
suppression of relatively small-scale waves (L∗

z < 10 m) increases the mean and minimal
Richardson numbers by approximately a factor of 2.5, which can substantially reduce the
probability of overturns and thereby influence the levels of wave-induced mixing.

Interestingly, such a scenario is not inconsistent with oceanographic observations. For
instance, diapycnal small-scale mixing in the well-studied fingering Caribbean staircase
(Schmitt et al. 2005) was shown to be predominantly double diffusive. Likewise, the Arctic
halocline, heavily populated by diffusive staircases, is also characterized by relatively
low levels of turbulence associated with overturning internal waves (e.g. Guthrie et al.
2013, 2015). Of course, there are numerous other reasons to expect limited internal wave
activity and wave-induced mixing in the upper Arctic. Commonly invoked explanations
include the reduced surface forcing in ice-covered regions, enhanced under-ice dissipation
and weak tides with frequencies that lie outside of the range of free internal waves (e.g.
Levine, Paulson & Morison 1985; Pinkel 2005; Cole et al. 2018). However, the suppression
mechanism advocated in the present study could play a contributing role in limiting
wave-induced mixing in staircase-rich regions of the World Ocean.

It should be emphasized at this point that the presented analysis is not meant to
offer an exhaustive treatment of the problem. The minimalistic design of the asymptotic
model, which includes only essential components, is intentional. The choices made were
influenced by the considerations of dynamic transparency, and the model can be extended
in several promising directions. For instance, the model did not take into account processes
that are nonlinear in wave amplitude, which led to a straightforward calculation of linear
decay rates. However, this simplification also precluded the analysis of fundamentally
nonlinear effects – such as harmonic generation and energy trapping (Wunsch 2018) – that
could be potentially significant for higher wave amplitudes. Another interesting question
concerns the significance of wave reflection from density interfaces in staircases. In the
present configuration, this effect does not play a significant role. Numerical simulations
(§ 3) are characterized by low levels of reflected waves, and theory in § 4 also provides
no evidence of reflection, attributing suppression to dissipative mechanisms. On the other
hand, the model of internal waves incident upon a staircase (Sutherland 2016) attributes the
wave attenuation to the reflection from interfaces, ignoring dissipative processes. Hence,
new insights can be afforded by a unified theory of suppression that represents both
regimes as limiting cases and establishes conditions when these limits are approached.

It is also desirable to develop a three-dimensional counterpart of the multiscale
theory that would incorporate planetary rotation and examine the associated changes
in staircase-induced suppression. In this regard, it should be stressed that the Coriolis
effect undoubtedly affects the dominant large-scale internal waves, remotely generated by
surface forcing and flow-bathymetry interactions. However, diapycnal wave-driven mixing
requires the presence of high-order modes that are produced through the destabilization of
large-scale waves (e.g. parametric instabilities) and nonlinear wave–wave interactions. It is
the high-wavenumber part of the spectrum that is most susceptible to the staircase-induced
suppression, and for those components, planetary rotation could be of secondary
importance. Nevertheless, it is perhaps prudent to view the present version of theory as
an attempt to rationalize the wave decay in laboratory experiments (Ruddick 1980, 1985)
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and non-rotating DNS (Stellmach et al. 2011). In terms of other applications, the proposed
model is suggestive and can provide guidance for future studies.
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