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We consider the following semilinear elliptic equation:

−∆u = λ exp(up) in B1,

u = 0 on ∂B1,

}
(∗)

where B1 is the unit ball in R
d, d � 3, λ > 0 and p > 0. Firstly, following Merle and

Peletier, we show that there exists an eigenvalue λp,∞ such that (∗) has a solution
(λp,∞, Wp) satisfying lim|x|→0 Wp(x) = ∞. Secondly, we study a bifurcation diagram
of regular solutions to (∗). It follows from the result of Dancer that (∗) has an
unbounded bifurcation branch of regular solutions that emanates from (λ, u) = (0, 0).
Here, using the singular solution, we show that the bifurcation branch has infinitely
many turning points around λp,∞ when 3 � d � 9. We also investigate the Morse
index of the singular solution in the d � 11 case.
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1. Introduction

In this paper, we study the following semilinear elliptic equation:

−∆u = λ exp(up) in B1,

u = 0 on ∂B1,

}
(1.1)

where B1 is the unit ball in R
d, d � 3, λ > 0 and p > 0.

The aim of this paper is to study the existence of a singular solution and a
bifurcation diagram of regular solutions to (1.1) for a general power p > 0. By
a singular solution, we mean a positive regular solution to (1.1) in B1 \ {0} that
tends to ∞ at the origin (x = 0). For example, setting λ1,∞ = 2(d − 2) and
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W1(x) = −2 log |x|, we see that (λ1,∞, W1) is a singular solution to (1.1) in the
p = 1 case.

Several studies have been made on (1.1) in the p = 1 case (see [1, 3, 5, 6, 9, 10,
15–17] and the references therein). We recall some of them. Gel′fand [6] showed
that when d = 3 (1.1) has infinitely many solutions at λ = λ1,∞. Then, Joseph and
Lundgren [10] gave a complete classification of solutions to (1.1). More precisely,
they showed that (1.1) has infinitely many solutions at λ = λ1,∞ when 3 � d � 9
and has a unique solution for 0 < λ < λ1,∞ and no solution for λ > λ1,∞ when
d � 10. See [9] for a survey of this problem.

In this paper, we will treat a general power p > 0 and show that (1.1) has a
singular solution when p > 0 and d � 3. In addition, we shall show that (1.1) has
infinitely many regular solutions when p > 0 and 3 � d � 9.

First, we focus our attention on the existence of a singular solution. As we men-
tioned above, in the p = 1 case, (1.1) has the explicit singular solution (λ1,∞, W1).
The singular solution plays an important role in the bifurcation analysis of regular
solutions to (1.1). However, we encounter difficulties when we seek a singular solu-
tion if the power p �= 1. Therefore, it is worthwhile investigating the existence of a
singular solution for general power p > 0. Concerning this, we obtain the following.

Theorem 1.1. Assume that d � 3 and p > 0. Then, there exists a unique eigen-
value λp,∞ > 0 such that the equation (1.1) has a singular solution (λp,∞, Wp)
satisfying

Wp(x) =
[
−2 log |x| −

(
1 − 1

p

)
log(− log |x|)

]1/p

+ o((log |x|)−1+1/p) (1.2)

as |x| → 0.

Once we have obtained the singular solution, we investigate its relationship to
regular solutions. Dancer [4] showed that for any p > 0 there exists an unbounded
bifurcation branch C ⊂ R×L∞(B1), which emanates from (λ, u) = (0, 0). Let λ1 be
the first eigenvalue of the operator −∆ in B1 with the Dirichlet boundary condition,
and let φ1 be the corresponding eigenfunction. By multiplying the equation in (1.1)
by φ1 and integrating the resulting equation, we see that if (λ, u) ∈ C, we have 0 <
λ < λ1. This yields that sup{‖u‖∞|(λ, u) ∈ C} = ∞. Moreover, from [12, theorem
2.1] (see also [15, proposition 6]), we see that the branch C can be parametrized by
‖u‖∞. Namely, the branch C can be expressed as

C = {(λ(γ), u(x, γ)) | γ = ‖u‖L∞ , 0 < γ < ∞}. (1.3)

Then, we obtain the following.

Theorem 1.2. Assume that d � 3 and p > 0. Let (λp,∞, Wp) be the singular
solution to the equation (1.1) given by theorem 1.1 and (λ(γ), u(x, γ)) ∈ C. Then,
we have λ(γ) → λp,∞ and

u(x, γ) → Wp(x) in C1
loc(B1 \ {0}) as γ → ∞.

From theorem 1.2, we can obtain the following result.
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Theorem 1.3. Assume that 3 � d � 9 and p > 0. Let λp,∞ > 0 be the eigenvalue
given by theorem 1.1. Then, for any integer k, there exist at least k regular positive
solutions to (1.1) if λ is sufficiently close to λp,∞. In particular, there exist infinitely
many regular solutions to (1.1) at λ = λp,∞.

Finally, we estimate the Morse index of the singular solution Wp in the d � 11
case. Here, we mean the Morse index by the maximal dimension of a subspace
X ⊂ H1

0 (B1) such that the associated quadratic form is negative on X \ {0}, that
is,

max{dim X | X ⊂ H1
0 (B1) is a subspace such that

〈(−∆ − pW p−1
p eW p

p )v, v〉 < 0 for v ∈ X \ {0}}.

It is well known that the Morse index plays an important role in the bifurcation
analysis for nonlinear elliptic equations (see, for example, [2,8,11] and the references
therein). In the 3 � d � 9 case, by combining the argument in [8, proposition 2.1]
with our proposition 4.1 we see that the Morse index of the singular solution Wp is
infinite. However, for the d � 11 case, we find that the situation becomes different
from that above. More precisely, we obtain the following result.

Theorem 1.4. Assume that d � 11 and p > 0. Let Wp be the singular solution
to (1.1) obtained in theorem 1.1. Then, the Morse index of the singular solution
Wp is finite.

We prove theorem 1.1 in the spirit of Merle and Peletier [13]. We first transform
(1.1) to a suitable equation: from the result in [7], we find that a positive solution
to (1.1) is radially symmetric. Therefore, (1.1) can be transformed into the following
ordinary differential equation (ODE):

urr +
d − 1

r
ur + λ exp(up) = 0, 0 < r < 1,

u(r) = 0, r = 1.

⎫⎬
⎭ (1.4)

We set s =
√

λr and û(s) = u(r). Then, we see that û satisfies

ûss +
d − 1

s
ûs + eûp

= 0, 0 < s <
√

λ,

û(s) = 0, s =
√

λ.

⎫⎬
⎭ (1.5)

We construct a local solution to the equation in (1.5), which has a singularity at the
origin s = 0. To this end, we employ the Emden–Fowler transformation. Namely,
we set t = − log s and ū(t) = û(s). This yields that ū satisfies the following:

ūtt − (d − 2)ūt + exp[−2t + ūp] = 0, − 1
2 log λ < t < ∞,

ū(t) = 0, t = − 1
2 log λ.

}
(1.6)

We give an approximate form of a singular solution near t = ∞. Then, we make
an error estimate for the approximation. The proof of theorem 1.2 is also based on
that in [13]. We note that Dancer [4] proved that there exist infinitely many regular
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positive solutions to (1.1) by calculating the Morse index. Here, following [8,14,15],
we shall show theorem 1.3 by counting the number of intersections between the
singular solution and regular solutions. Thus, we can obtain a precise bifurcation
diagram of solutions to (1.1). Let us explain this in detail. Let I be an interval in
R. For a function v(s) on I, we define the number of zeros of v by

ZI [v(·)] = #{s ∈ I | v(s) = 0}.

We set Ŵp(s) = Wp(r), where s =
√

λr and Wp is the singular solution given by
theorem 1.1. Let (λ(γ), û(s, γ)) be a regular solution to (1.5) with û(0) = γ. Then,
we have

ZIλ
[û(·, γ) − Ŵp(·)] → ∞ as γ → ∞.

See lemma 4.3 for the details. From this, we can show that the bifurcation branch
C given by (1.3) has infinitely many turning points, which yields theorem 1.3.

Here, we remark that, in order to prove theorems 1.2 and 1.3, the asymptotic
scaling invariance of the equation found by Dancer [4] plays an important role. Let
us examine this in more detail. We denote by û(s, γ) a solution to the equation
in (1.5) with û(0, γ) = ‖û‖L∞ = γ. We set

û(s, γ) = γ +
γ1−p

p
ũ(ρ, γ), ρ =

√
γp−1 exp(γp)s. (1.7)

It follows that ũ(ρ, γ) satisfies

ũρρ +
d − 1

ρ
ũρ + p exp

[
−γp + γp

(
1 +

γ−p

p
ũ

)p]
= 0,

0 < ρ <
√

λγp−1 exp(γp),

ũ(0) = 0,

ũ(ρ) < 0, 0 < ρ <
√

λγp−1 exp(γp).

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(1.8)

We shall show that the function ũ(ρ, γ) converges to U in C1
loc([0,∞)) as γ tends

to ∞, where U is a solution to

Uρρ +
d − 1

ρ
Uρ + p exp[U ] = 0, 0 < ρ < ∞,

U(ρ) = 0, ρ = 0,

U(ρ) < 0, 0 < ρ < ∞.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.9)

We also use a similar transformation (see (3.6)). Since the equation in (1.9) is scale
invariant, it is rather easy to handle. This is key for our analysis.

This paper is organized as follows: in § 2, we construct the singular solution
to (1.1) in case of d � 3. In § 3, we investigate the asymptotic behaviour of the
regular solutions (λ(γ), u(r, γ)) as γ → ∞. In § 4, we count the number of intersec-
tions and prove theorem 1.3. In § 5, we show that the Morse index of the singular
solution is finite when d � 11.
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2. Existence of a singular solution

To prove theorem 1.1, we first consider (1.6) and restrict ourselves to the case where
t > 0 is sufficiently large. We seek a solution to (1.6) of the form

ū(t) = (ϕ(t) + κ)1/p + η(t), (2.1)

where

ϕ(t) = 2t − Ap log t, Ap = 1 − 1
p
, κ = log

(d − 2)21/p

p
. (2.2)

Then, the function η solves

ηtt − (d − 2)ηt + exp[−2t + ūp] − 2(d − 2)
p

(ϕ + κ)−Ap = f1(t) (2.3)

for sufficiently large t > 0, where

f1(t) =
(d − 2)Ap(ϕ + κ)−Ap

pt
+

1
p

(
1−1

p

)
(ϕ+κ)1/p−2(ϕt)2−

1
p
(ϕ+κ)−Apϕtt. (2.4)

Then, we show the following.

Theorem 2.1. Let d � 3 and p > 0. There exist T∞ > 0 and a solution η∞ ∈
C([T∞,∞), R) to (2.3) satisfying limt→∞ ϕApη∞(t) = 0.

We show theorem 2.1 by using the contraction-mapping principle. To this end,
we transform (2.3). First, we have

exp[−2t + ūp] = exp[−2t + {(ϕ + κ)1/p + η}p]

= exp[−2t + (ϕ + κ) + (ϕ + κ){(1 + (ϕ + κ)−1/pη)p − 1}]

=
(d − 2)21/p

p
t−Ap exp[(ϕ + κ){(1 + (ϕ + κ)−1/pη)p − 1}]. (2.5)

Furthermore, we obtain

(ϕ + κ){(1 + (ϕ + κ)−1/pη)p − 1} = p(ϕ + κ)Apη + (ϕ + κ)g1(t, η), (2.6)

where
g1(t, η) = {1 + (ϕ + κ)−1/pη}p − 1 − p(ϕ + κ)−1/pη. (2.7)

This yields

exp[(ϕ + κ){(1 + (ϕ + κ)−1/pη)p − 1}]

= exp[p(ϕ + κ)Apη + (ϕ + κ)g1(t, η)]

= exp[p(ϕ + κ)Apη] + exp[p(ϕ + κ)Apη]{exp[(ϕ + κ)g1(t, η)] − 1}. (2.8)

By (2.5), (2.6) and (2.8), we have

exp[−2t + ūp] =
(d − 2)21/p

p
t−Ap exp[p(ϕ + κ)Apη]

+
(d − 2)21/p

p
t−Ap exp[p(ϕ + κ)Apη]{exp[(ϕ + κ)g1(t, η)] − 1}.
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Therefore, (2.3) can be written as

ηtt − (d − 2)ηt + 2(d − 2)η

= f1(t) − (d − 2)21/p

p
t−Ap +

2(d − 2)
p

(ϕ + κ)−Ap

+ 2(d − 2)η − (d − 2)21/p

p
t−Ap × p(ϕ + κ)Apη

− (d − 2)21/p

p
t−Ap exp[p(ϕ + κ)Apη]{exp[(ϕ + κ)g1(t, η)] − 1}

− (d − 2)21/p

p
t−Ap{exp[p(ϕ + κ)Apη] − 1 − p(ϕ + κ)Apη}

= f1(t) + f2(t) + f3(t, η) + f4(t, η) + f5(t, η),

where

f2(t) = − (d − 2)21/p

p
t−Ap +

2(d − 2)
p

(ϕ + κ)−Ap

=
(d − 2)21/p

p
t−Ap(1 − (2t)Ap(ϕ + κ)−Ap), (2.9)

f3(t, η) = 2(d − 2)η − (d − 2)21/p

p
t−Ap × p(ϕ + κ)Apη

= 2(d − 2){1 − (2t)−Ap(ϕ + κ)Ap}η, (2.10)

f4(t, η) = − (d − 2)21/p

p
t−Ap exp[p(ϕ + κ)Apη]{exp[(ϕ + κ)g1(t, η)] − 1}, (2.11)

f5(t, η) = − (d − 2)21/p

p
t−Ap{exp[p(ϕ + κ)Apη] − 1 − p(ϕ + κ)Apη}. (2.12)

Thus, we seek a solution to the following equation:

ηtt − (d − 2)ηt + 2(d − 2)η = f1(t) + f2(t) + f3(t, η) + f4(t, η) + f5(t, η).

We estimate the inhomogeneous terms fi(t) (1 � i � 5) and obtain the following.

Lemma 2.2.

(i) f1(t) = O(t−Ap−1) and f2(t) = O(t−Ap−1 log t) as t → ∞.

(ii) If η satisfies |η(t)| � εt−Ap for sufficiently small ε > 0, we have

f3(t, η) = O(t−Ap−1 log t), f4(t) = O(t−Ap−1), |f5(t)| � ε2t−Ap

for sufficiently large t > 0.

Proof. By (2.4) and (2.9), we obtain (i). It follows from (2.2) that

|1 − (2t)−Ap(ϕ + κ)Ap | � log t

t
(2.13)
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for sufficiently large t > 0. Thus, by (2.10), we have

|f3(t, η)| = |2(d − 2){1 − (2t)−Ap(ϕ + κ)Ap}η| � t−Ap−1 log t.

From (2.7), we have
|g1(t, η)| � |ϕ + κ|−2/pη2. (2.14)

This yields
|(ϕ + κ)g1(t, η)| � t−1.

It follows that

|exp[(ϕ + κ)g1(t, η)] − 1| � |(ϕ + κ)g1(t, η)| � t−1. (2.15)

From (2.11), we have f4(t) = O(t−Ap−1). Similarly, we see that

|exp[p(ϕ + κ)Apη] − 1 − p(ϕ + κ)Apη| � (ϕ + κ)2Apη2 � ε2.

Thus, we obtain |f5(t)| � ε2t−Ap from (2.12).

We are now in a position to prove theorem 2.1.

Proof of theorem 2.1. We set

F (t, η) = f1(t) + f2(t) + f3(t, η) + f4(t, η) + f5(t, η).

In order to prove theorem 2.1, it is enough to solve the following final-value problem:

ηtt − (d − 2)ηt + 2(d − 2)η = F (t, η), T < t < +∞,

ϕAp(t)η(t) → 0 as t → +∞.

}
(2.16)

for some T > 0. We note that

(d − 2)2 − 8(d − 2) =

⎧⎪⎨
⎪⎩

(d − 2)(d − 10) < 0 if 3 � d � 9,

(d − 2)(d − 10) = 0 if d = 10,

(d − 2)(d − 10) > 0 if d � 11.

We consider only the 3 � d � 9 case, as the proof is similar in the other cases. Let
µ =

√
−(d − 2)(d − 10). Then, the final-value problem (2.16) is transformed into

the following integral equation:

η(t) = T [η](t)

in which

T [η](t) =
e(d−2)t/2

µ

∫ ∞

t

e−(d−2)σ/2 sin(µ(σ − t))F (σ, η) dσ.

Fix T > 0 to be sufficiently large and let X be a space of continuous functions on
(T, ∞) equipped with the following norm:

‖ξ‖ = sup{|t|Ap |ξ(t)| | t > T}.

We fix an arbitrary ε > 0 and set

Σ = {ξ ∈ X|‖ξ‖ < ε}. (2.17)
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First, we shall show that T maps from Σ to itself. It follows from lemma 2.2 that
|F (t, η)| � ε2t−Ap for sufficiently large t > 0. This yields

|T [η](t)| � e(d−2)t/2
∫ ∞

t

e−(d−2)σ/2ε2σ−Ap dσ

� ε2t−Ape(d−2)t/2
∫ ∞

t

e−(d−2)σ/2 dσ

� ε2t−Ap (2.18)

for η ∈ Σ. It follows that T [η] ∈ Σ. Thus, we have proved the claim.
Next, we shall show that T is a contraction mapping. For η1, η2 ∈ Σ, we have

|T [η1](t) − T [η2](t)| � Ce(d−2)t/2
5∑

i=3

∫ ∞

t

e−(d−2)σ/2|fi(σ, η1) − fi(σ, η2)| dσ.

From the definition, we obtain

|f3(t, η1) − f3(t, η2)| � t−1 log t|η1 − η2| � t−Ap−1 log t‖η1 − η2‖. (2.19)

Thus, we see that

|f3(t, η1) − f3(t, η2)| � εt−Ap‖η1 − η2‖. (2.20)

Next, we estimate the term |f5(t, η1) − f5(t, η2)|. It follows that

|f5(t, η1) − f5(t, η2)|
� t−Ap | exp[p(ϕ + κ)Apη1] − exp[p(ϕ + κ)Apη2] − p(ϕ + κ)Ap(η1 − η2)|
= t−Ap | exp[p(ϕ + κ)Apη2]{exp[p(ϕ + κ)Ap(η2 − η1)] − 1} − p(ϕ + κ)Ap(η1 − η2)|
� t−Ap | exp[p(ϕ + κ)Apη2]{exp[p(ϕ + κ)Ap(η2 − η1)] − 1 − p(ϕ + κ)Ap(η1 − η2)}|

+ t−Ap |exp[p(ϕ + κ)Apη2] − 1|p(ϕ + κ)Ap |η1 − η2|
� t−Ap |p(ϕ + κ)Ap(η1 − η2)|2 + t−Ap |p(ϕ + κ)Apη2|‖η1 − η2‖
� εt−Ap‖η1 − η2‖.

Therefore, for sufficiently large t > 0, we have

|f5(t, η1) − f5(t, η2)| � Cεt−Ap‖η1 − η2‖. (2.21)

Finally, we estimate the term |f4(t, η1) − f4(t, η2)|. We can compute that

|f4(t, η1) − f4(t, η2)| � t−Ap |exp[pϕApη1] − exp[pϕApη2]| |exp[g1(t, η2)] − 1|
+ t−Ap exp[pϕApη2]|exp[g1(t, η1)] − exp[g1(t, η2)]|

=: I + II. (2.22)

By the Taylor expansion together with (2.15), we have

I � t−Ap−2 exp[pϕApη2]|exp[pϕAp(η1 − η2)] − 1|
� t−Ap−2 exp[pε]|ϕAp(η2 − η1)|
� t−Ap−2ϕAp |η1 − η2|
� t−Ap−2‖η1 − η2‖. (2.23)
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Similarly, by (2.14), we obtain

II � t−Ap exp[pϕApη2]|exp[g1(t, η1)] − exp[g1(t, η2)]|
� t−Ap exp[pϕApη2] exp[g1(t, η2)]|exp[g1(t, η1) − g1(t, η2)] − 1|
� t−Ap |g1(t, η1) − g1(t, η2)|. (2.24)

From (2.7), we obtain

|g1(t, η1) − g1(t, η2)|
� |{1 + p(ϕ + κ)−1/pη1}p − {1 + p(ϕ + κ)−1/pη2}p| + (ϕ + κ)−1/p|η1 − η2|
� |ϕ + κ|−1/p|η1 − η2|
� t−1‖η1 − η2‖. (2.25)

It follows from (2.22)–(2.25) that

|f4(t, η1) − f4(t, η2)| � εt−Ap‖η1 − η2‖. (2.26)

By (2.19), (2.21) and (2.26), we see that

|T [η1](t) − T [η2](t)| � Cεt−Ap‖η1 − η2‖ � 1
2 t−Ap‖η1 − η2‖. (2.27)

Thus, we find that T is a contraction mapping. This completes the proof.

We are now in a position to prove theorem 1.1.

Proof of theorem 1.1. It follows from theorem 2.1 that there exist a constant T∞ >
0 and a solution η∞(t) of (2.3) for t ∈ (T∞, +∞) satisfying |t|Ap |η∞(t)| � ε. For
such a solution η∞, we set

ū∞(t) = (ϕ(t) + κ)1/p + η∞(t).

Then we see that ū∞(t) satisfies

ūtt − (d − 2)ūt + exp[−2t + ūp] = 0 (2.28)

for t ∈ (T∞, +∞). We shall show that ū∞(t) has a zero for some T0 ∈ (−∞,∞).
Suppose on the contrary that ū∞(t) is positive for all t ∈ (−∞,∞). Then, we see
that ū∞ is monotone increasing. Indeed, otherwise, there exists a local minimum
point t∗ ∈ (−∞,∞). It follows that (d2ū∞/dt2)(t∗) � 0 and (dū∞/dt)(t∗) = 0.
Then, from (2.28), we obtain

0 � d2ū∞
dt2

(t∗) − (d − 2)
dū∞
dt

(t∗) = − exp[−2t∗ + ūp
∞(t∗)] < 0,

which is a contradiction. Since ū∞ is positive and monotone increasing, there exists
a constant C � 0 such that ū∞(t) → C as t → −∞. This, together with (2.28),
yields

0 = lim
t→−∞

{
d2ū∞
dt2

(t) − (d − 2)
dū∞
dt

(t)
}

= lim
t→−∞

− exp[−2t + ūp
∞(t)] = −∞,
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which is absurd. Therefore, we see that ū∞ has a zero for some T0 ∈ (−∞,∞).
Then, ū∞ satisfies

ūtt + (d − 2)ūt = − exp(−2t + ūp), t ∈ (T0,∞),
ū(t) = 0, t = T0,

ū(t) > 0, t ∈ (T0,∞).

If we choose λp,∞ > 0 so that − log λp,∞ = 2T0, that is, λp,∞ = e−2T0 , we find that
ū∞(s) is a solution to (1.6) with λ = λp,∞. This completes the proof.

3. Asymptotic behaviour of a regular solution

In this section, we give a proof of theorem 1.2. We denote by û(s, γ) a positive
solution to (1.5) with û(0) = ‖û‖L∞ = γ. (Where there is no possibility of confusion,
we just denote this by û(s).) As mentioned in § 1, we set

û(s, γ) = γ +
γ1−p

p
ũ(ρ, γ), ρ =

√
γp−1 exp(γp)s. (3.1)

Then, we see that ũ(ρ, γ) satisfies

ũρρ +
d − 1

ρ
ũρ + p exp

[
−γp + γp

(
1 +

γ−p

p
ũ

)p]
= 0,

0 < ρ <
√

λ(γ)γp−1 exp(γp),
ũ(0) = 0,

ũ(ρ) < 0, 0 < ρ <
√

λ(γ)γp−1 exp(γp),

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
(3.2)

where λ(γ) > 0. Concerning the solutions to (3.2), the following lemma holds.

Lemma 3.1. Let ũ(ρ, γ) be a solution to (3.2). Then, we have ũ(·, γ) → U(·) in
C1

loc([0,∞)) as γ → ∞, where U(ρ) is a solution to the following:

Uρρ +
d − 1

ρ
Uρ + p exp[U ] = 0, 0 < ρ < ∞,

U(ρ) = 0, ρ = 0,

U(ρ) < 0, 0 < ρ < ∞.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.3)

Remark 3.2. Dancer [4] proved lemma 3.1 in more general situations. Here, using
an ODE approach, we shall give an alternative proof.

Proof of lemma 3.1. First, it follows from [4, p. 155] that λ(γ)γp−1 exp(γp) → ∞
as γ → ∞. For each ρ0 > 0, we shall show that ũ(ρ, γ) is uniformly bounded for
ρ ∈ [0, ρ0). Since γ = ‖û‖L∞ , and û(ρ, γ) is positive, (3.1) yields

−pγp < ũ(ρ, γ) � 0. (3.4)

By (3.4), we have

0 < 1 +
γ−p

p
ũ � 1.

https://doi.org/10.1017/S0308210517000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210517000154


Exponential nonlinearity solutions in higher dimensions 111

This yields

exp
[
−γp + γp

(
1 +

γ−p

p
ũ

)p]
� exp[−γp + γp] = 1.

It follows from the first equation in (3.2) that

ũρρ +
d − 1

ρ
ũρ � −p.

This yields that
(ρd−1ũρ)ρ � −pρd−1.

Integrating the above inequality from 0 to ρ, we have ρd−1ũρ(ρ) � −pρd/d. Thus,
we obtain ũρ(ρ) � −pρ/d for ρ ∈ [0, ρ0). Integrating the inequality yields

ũ(ρ) � ũ(0) − p

d

∫ ρ

0
τ dτ = − p

2d
ρ2.

Therefore, for ρ ∈ [0, ρ0), we have

− p

2d
ρ2
0 � ũ(ρ) � 0. (3.5)

This, together with the equation in (3.2), gives the uniform boundedness of ũρ and
ũρρ for ρ ∈ [0, ρ0). Then, by the Ascoli–Arzelà theorem, there exists a function U
such that ũ(ρ, γ) converges to U in C1

loc([0, ρ0)) as γ goes to ∞. Moreover, by the
Taylor expansion, there exists θ ∈ (0, 1) such that∣∣∣∣exp

[
−γp + γp

(
1 +

γ−p

p
ũ(ρ, γ)

)p]
− exp[U ]

∣∣∣∣
=

∣∣∣∣exp
[
ũ +

p − 1
2p

(
1 + θ

γ−p

p
ũ

)p−2

γ−pũ2
]

− exp[U ]
∣∣∣∣

� exp[ũ]
∣∣∣∣exp

[
p − 1
2p

(
1 + θ

γ−p

p
ũ

)p−2

γ−pũ2
]

− 1
∣∣∣∣ + |exp[ũ] − exp[U ]|.

Therefore, by (3.5), we have∣∣∣∣exp
[
−γp + γp

(
1 +

γ−p

p
ũ(ρ, γ)

)p]
− exp[U ]

∣∣∣∣ → 0 as γ → ∞.

Thus, U satisfies (3.3). This completes the proof.

Next, we set t = − log s. We define y(t, γ) using

û(s, γ) = ϕ1/p(t) +
ϕ−Ap(t)

p
(κ + y(t, γ)), (3.6)

and see that y(t, γ) satisfies the following:

ytt − {(d − 2) + 2Apϕ
−1ϕt}yt − 2(d − 2)

+ pϕAp exp
[
−2t + ϕ

(
1 +

ϕ−1

p
(κ + y)

)p]
= f6(t, y) (3.7)
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for sufficiently large t > 0, where

f6(t, y) = Apϕ
−1(ϕt)2 − ϕtt − Ap(Ap + 1)ϕ−2(ϕt)2(κ + y) + Apϕ

−1ϕtt(κ + y)

− (d − 2)Apϕ
−1ϕt(κ + y) +

(d − 2)Ap

t
. (3.8)

For the function y(t, γ), we make the following spatial translation:

τ = − log ρ = t − γp

2
− (p − 1) log γ

2
, ŷ(τ, γ) = y(t, γ), ϕ̂(τ) = ϕ(t). (3.9)

Let U be the solution to (3.3). We set U∗(τ) = U(ρ) and

Y (τ) = U∗(τ) − 2τ − log
2(d − 2)

p
. (3.10)

Then, Y satisfies

Yττ − (d − 2)Yτ + 2(d − 2){exp[Y ] − 1} = 0, −∞ < τ < ∞,

lim
τ→∞

{
Y (τ) + 2τ + log

2(d − 2)
p

}
= 0,

Y (τ) + 2τ + log
2(d − 2)

p
< 0, −∞ < τ < ∞,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.11)

and the following lemma holds.

Lemma 3.3. Let ŷ and Y be the functions defined by (3.9) and (3.10), respectively.
Then, we have ŷ(τ, γ) → Y (τ) in C1

loc((−∞,∞)) as γ → ∞.

Proof. It follows from (3.1) and (3.6) that

ũ(ρ, γ) = −pγp + pγp−1û(s, γ)

= −pγp + pγp−1
{

ϕ1/p(t) +
ϕ−Ap(t)

p
(κ + y(t, γ))

}
= p(−γp + γp−1ϕ̂1/p(τ)) + γp−1ϕ̂−Ap(τ)(κ + ŷ(τ, γ)). (3.12)

By (2.2), (3.9) and the Taylor expansion, we have

− γp + γp−1ϕ̂1/p(τ)

= −γp + γp−1
{

2τ + γp + (p − 1) log γ − Ap log
(

τ +
γp

2
+

p − 1
2

log γ

)}1/p

= −γp + γp

{
2τ

γp
+ 1 − Ap

γp
log γ−p − Ap

γp
log

(
τ +

γp

2
+

p − 1
2

log γ

)}1/p

= −γp + γp

{
1 +

2τ

γp
− Ap

γp
log

(
τ

γp
+

1
2

+
(p − 1) log γ

2γp

)}1/p
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=
1
p

(
2τ − Ap log

(
1
2

+
τ

γp
+

(p − 1) log γ

2γp

))

+
p − 1
2p2γp

(
1 + θ

(
2τ

γp
− Ap

γp
log

(
1
2

+
τ

γp
+

(p − 1) log γ

2γp

)))1/p−2

×
(

2τ − Ap log
(

1
2

+
τ

γp
+

(p − 1) log γ

2γp

))2

(3.13)

for some θ ∈ (0, 1). This yields that

−γp + γp−1ϕ̂1/p(τ) → 2τ

p
+

Ap

p
log 2 as γ → ∞ (3.14)

for each τ ∈ (−∞,∞). Similarly, we obtain

γp−1ϕ̂−Ap(τ) =
{

1+
2τ

γp
− Ap

γp
log

(
1
2

+
τ

γp
+

(p − 1) log γ

2γp

)}−Ap

→ 1 as γ → ∞.

(3.15)
Formulae (3.12)–(3.15) imply that

lim
γ→∞

ũ(ρ, γ) = 2τ + Ap log 2 + κ + lim
γ→∞

ŷ(τ, γ). (3.16)

It follows from lemma 3.1 that limγ→∞ ũ(ρ, γ) = U(ρ) = U∗(τ). Thus, by (2.2),
(3.10) and (3.16), we see that

lim
γ→∞

ŷ(τ, γ) = −2τ − Ap log 2 − κ + U∗(τ)

= −2τ − Ap log 2 − κ + Y (τ) + 2τ + log
2(d − 2)

p

= Y (τ) − κ + log
(d − 2)21/p

p

= Y (τ).

This completes the proof.

Lemma 3.4. Let Y be a solution to (3.11). Then, Y satisfies (Y, Yτ ) → (0, 0) as
τ → −∞.

Proof. We set Z1(τ) = Y (τ) and Z2(τ) = Yτ (τ). Then, the pair of functions (Z1, Z2)
satisfies

dZ1

dτ
= Z2,

dZ2

dτ
= (d − 2)Z2 − 2(d − 2)[exp[Z1] − 1].

⎫⎪⎪⎬
⎪⎪⎭ (3.17)

We define an energy E by

E(τ) = 1
2 (Z2)2 + 2(d − 2)[exp[Z1] − 1 − Z1].

From (3.17), we have
dE

dτ
(τ) = (d − 2)(Z2)2 > 0.
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Moreover, (0, 0) is an equilibrium point of (3.17) and a minimum of the energy E.
This yields that (Z1(τ), Z2(τ)) → (0, 0) as τ → −∞.

We set

z1(t, γ) = y(t, γ), z2(t, γ) = yt(t, γ), (3.18)

where y(t, γ) is the function defined in (3.6). Then, (z1(t, γ), z2(t, γ)) satisfies

dz1

dt
= z2 for t ∈ (− 1

2 log λ(γ),∞),

dz2

dt
= (d − 2 + 2Apϕ

−1ϕt)z2 + 2(d − 2) + f6(t, z1)

− pϕAp exp
[
−2t + ϕ

(
1 +

ϕ−1

p
(κ + z1(t))

)p]
for t ∈ (− 1

2 log λ(γ),∞).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.19)

From lemma 3.4, we see that for any ε > 0 there exists τε ∈ (−∞, 0) such that
|(Z1(τε), Z2(τε))| < 1

2ε, where (Z1, Z2) is a solution to (3.17). We fix τε ∈ (−∞, 0)
and set

tε = τε + 1
2γp + 1

2 ((p − 1) log γ).

Then, by lemma 3.3, we have

|(z1(tε, γ), z2(tε, γ))| < ε (3.20)

for sufficiently large γ > 0. We shall show the following.

Lemma 3.5. Let (z1(t, γ), z2(t, γ)) be the function defined by (3.18). For arbitrary
ε > 0, we set

Γε = {(ξ1, ξ2) ∈ R
2 | 2(d − 2){exp[ξ1] − 1 − ξ1} + 1

2ξ2
2 < ε}.

There exists a Tε that does not depend on γ and tε but depends on ε such that
(z1(t, γ), z2(t, γ)) ∈ Γ2ε for t ∈ (Tε, tε).

Proof. We define an energy by

E1(t) = 1
2z2

2 + 2(d − 2){exp[z1] − 1 − z1}.

By (3.19), we have

dE1

dt
(t) = z2z2t + 2(d − 2){exp[z1] − 1}z2

= (d − 2 + 2Apϕ
−1ϕt)z2

2

− pϕAp exp
[
−2t + ϕ

(
1 +

ϕ−1

p
(κ + z1)

)p]
z2 + f6(t, z1)z2

+ 2(d − 2) exp[z1]z2.
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Analogously to (2.5), by the Taylor expansion, we obtain

pϕAp exp
[
−2t + ϕ

(
1 +

ϕ−1

p
(κ + z1)

)p]
= (d − 2)21/pϕApt−Ap exp[z1] exp[g̃1(t, z1)]
= 2(d − 2) exp[z1]

− (2(d − 2) exp[z1] − (d − 2)21/pϕApt−Ap exp[z1] exp[g̃1(t, z1)]),

where

g̃1(t, z1) = ϕ

(
1 +

ϕ−1

p
(κ + z1)

)p

− ϕ(t) − κ − z1.

Therefore, we have

dE1

dt
(t) = (d − 2 + 2Apϕ

−1ϕt)z2
2 + f6(t, z1)z2

+ (2(d − 2) exp[z1] − (d − 2)21/pϕApt−Ap exp[z1] exp[g̃1(t, z1)])z2.
(3.21)

Since Γε is a neighbourhood of (0, 0), we can take ε > 0 to be so small that
Γ2ε ⊂ {(x1, x2) | |x1| + |x2| < 1}. We choose Tε > 0 so that

0 <
C∗√
Tε

<
ε

2
, (3.22)

where the constant C∗ > 0, which does not depend on ε, is defined by (3.26). We
shall show by contradiction that (z1(t), z2(t)) ∈ Γ2ε for t ∈ (Tε, tε). Suppose to the
contrary that (z1(t), z2(t)) ∈ Γ2ε for t ∈ (Tε, tε] and (z1(Tε), z2(Tε)) /∈ Γ2ε. Then,
by (3.21), we have

E1(tε) − E1(Tε)

=
∫ tε

Tε

(d − 2 + 2Apϕ
−1ϕt)z2

2 ds +
∫ tε

Tε

f6(s, z1)z2 ds

+
∫ tε

Tε

(2(d − 2) exp[z1] − (d − 2)21/pϕAp(s)s−Ap exp[z1] exp[g̃1(s, z1)])z2 ds.

(3.23)

Since |z1(t)| + |z2(t)| < 1, we see from (3.8) that there exists a constant C1 > 0
satisfying |f6(s, z1)| � C1/|s|. Furthermore, from (2.2), we have

|2(d − 2) exp[z1] − (d − 2)21/pϕAp(s)s−Ap exp[z1] exp[g̃1(s, z1)]|

= 2(d − 2) exp[z1]
∣∣∣∣1 −

(
ϕ(s)

2

)Ap

s−Ap exp[g̃1(s, z1)]
∣∣∣∣

= 2(d − 2) exp[z1]
∣∣∣∣1 −

(
1 − Ap

2
log s

s

)Ap

exp[g̃1(s, z1)]
∣∣∣∣

� C|1 − exp[g̃1(s, z1)]| + C

∣∣∣∣1 −
(

1 − Ap

2
log s

s

)Ap
∣∣∣∣ exp[g̃1(s, z1)].

(3.24)
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Similarly to the proof of lemma 2.2, there exists a constant C > 0 such that∣∣∣∣1 −
(

1 − Ap

2
log s

s

)Ap
∣∣∣∣ � C

log s

s
, |g̃1(s, z1)| � C

s

for sufficiently large s > 0. Together with (3.24), this yields that

|2(d − 2) exp[z1] − (d − 2)21/pϕAp(s)s−Ap exp[z1] exp[g1(s, z1)]| � C

s3/4

for some constant C > 0. Therefore, by Young’s inequality, we have∣∣∣∣
∫ tε

Tε

(2(d − 2) exp[z1] − (d − 2)21/pϕAps−Ap exp[z1] exp[g1(s, z1)])z2 ds

∣∣∣∣
+

∣∣∣∣
∫ tε

Tε

f6(s, z1)z2 ds

∣∣∣∣
�

∫ tε

Tε

C

s3/4 z2 ds

� 2C2

d − 2

∫ tε

Tε

1
s3/2 ds +

(d − 2)
2

∫ tε

Tε

|z2|2 ds

� 4C2

(d − 2)
√

Tε

+
d − 2

2

∫ tε

Tε

|z2|2 ds. (3.25)

We set

C∗ =
4C2

d − 2
. (3.26)

Then, it follows from (3.22) and (3.25) that∣∣∣∣
∫ tε

Tε

(2(d − 2) exp[z1] − (d − 2)21/pϕAps−Ap exp[z1] exp[g1(s, z1)])z2 ds

∣∣∣∣
+

∣∣∣∣
∫ tε

Tε

f6(s, z1)z2 ds

∣∣∣∣
� C∗√

Tε

+
d − 2

2

∫ tε

Tε

|z2|2 ds

� ε

2
+

d − 2
2

∫ tε

Tε

|z2|2 ds. (3.27)

Moreover, we take Tε > 0 so that |2Apϕ
−1(t)ϕt(t)| < 1

2 (d − 2) for t > Tε. Then,
we have ∫ tε

Tε

(d − 2 + 2Apϕ
−1ϕt)z2

2 ds � d − 2
2

∫ tε

Tε

|z2|2 ds. (3.28)

It follows from (3.23), (3.27) and (3.28) that

E1(tε) − E1(Tε) � d − 2
2

∫ tε

Tε

|z|22 ds − ε

2
− d − 2

2

∫ tε

Tε

|z2|2 ds > −ε

2
.
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This, together with (3.20) and (z1(Tε), z2(Tε)) /∈ Γ2ε, implies that

2ε � E1(Tε) < E1(tε) +
ε

2
=

3ε

2
,

which is a contradiction. Therefore, our assertion holds.

We are now in a position to prove theorem 1.2.

Proof of theorem 1.2. Let {γn}∞
n=1 ⊂ R+ be a sequence satisfying limn→∞ γn = ∞.

Let (z1(t, γn), z2(t, γn)) be the function defined by (3.18). By lemma 3.5, we find
that (z1(t, γn), z2(t, γn)) is uniformly bounded in the interval (Tε, tε). This, together
with (3.7), implies that ytt(t, γn) is also uniformly bounded in the interval (Tε, tε).
Differentiating (3.7) implies that yttt(t, γ) is also uniformly bounded in (Tε, tε).
This yields that (z1(t, γn), z2(t, γn)) and (z1t(t, γn), z2t(t, γn)) are equicontinuous.
Thus, it follows from the Ascoli–Arzelà theorem that there exists a subsequence
{(z1(t, γn), z2(t, γn))} (which we still denote by the same letter) and a pair of func-
tions (z∗,1(t), z∗,2(t)) in (C1(Tε, tε))2 as n → ∞, Since tε(> Tε) is arbitrary, we find
that (z1(t, γn), z2(t, γn)) converges to (z∗,1(t), z∗,2(t)) in (C1(Tε,∞))2 as n goes to
∞. We note that 0 < λ(γn) < λ1, where λ1 is the first eigenvalue of the operator
−∆ in B1 with the Dirichlet boundary condition. Thus, there exists λ∗ � 0 such
that λ(γn) → λ∗ as n → ∞. By the result in [4], we see that λ∗ > 0. From these
results, we see that (z∗,1, z∗,2, λ∗) satisfies

dz1

dt
= z2 for t ∈ (− 1

2 log λ∗,∞),

dz2

dt
= (d − 2 − 2Apϕ

−1ϕt)z2 + 2(d − 2) + f6(t, z1)

− pϕAp exp
[
−2t + ϕ

(
1 +

ϕ−1

p
(κ + z1(t))

)p]
for t ∈ (− 1

2 log λ∗,∞).

We shall show that
z∗,1(t) → 0 as t → ∞. (3.29)

Let us admit (3.29) for a moment and continue to the proof. We set

η∗(t) = ϕ1/p(t) +
ϕ−Ap(t)

p
(κ + z∗(t)) − (ϕ(t) + κ)1/p.

Then, we see that η∗ satisfies (2.3). Moreover, it follows that

η∗(t) = ϕ1/p(t) +
ϕ−Ap(t)

p
(κ + z∗(t)) − ϕ1/p(t) − κ

ϕ−Ap(t)
p

− 1
2p

(
1
p

− 1
)

(1 + θ∗κϕ−1(t))1/p−2(κϕ−1(t))2

=
ϕ−Ap(t)

p
z∗(t) − 1

2p

(
1
p

− 1
)

(1 + θ∗κϕ−1(t))1/p−2(κϕ−1(t))2 (3.30)

for some θ∗ ∈ (0, 1). This, together with (3.29), implies that η∗ ∈ Σ, where the
function space Σ is defined by (2.17). From theorem 2.1, there exists a unique
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solution η∞ to (2.3) in Σ. Therefore, we have η∗(t) = η∞(t). This yields that
λ∗ = λp,∞.

Thus, all we have to do is to prove (3.29). Suppose to the contrary that there exist
δ > 0 and {tk} ⊂ R+ such that |z∗,1(tk)| � δ for all k ∈ N and limk→∞ tk = ∞.
Then, there exists k0 ∈ N such that tk0 > Tε. Then, we see that |z1(tk0 , γ)| � 1

2δ
for sufficiently large γ > 0. We choose ε = 1

4δ. It follows from (3.20) that(
z1

(
τε +

γp

2
+

p − 1
2

log γ, γ

)
, z2

(
τε +

γp

2
+

p − 1
2

log γ, γ

))
∈ Γε.

By lemma 3.5, we see that (z1(t, γ), z2(t, γ)) ∈ Γ2ε = Γδ/2 for t ∈ (Tε, τε+ 1
2γp+ 1

2 (p−
1) log γ). We can take γ > 0 sufficiently large that tk0 ∈ (Tε, τε+ 1

2γp+ 1
2 (p−1) log γ),

which is a contradiction. This completes the proof.

4. Infinitely many regular solutions in the 3 � d � 9 case

In this section, following [8, 14, 15], we shall give a proof of theorem 1.3. More
precisely, we count the number of intersections between the singular and regular
solutions. Let I be an interval in R. For a function v(s) on I, we define the number
of zeros of v by

ZI [v(·)] = #{s ∈ I | v(s) = 0}.

Then the following result is known.

Proposition 4.1. Let U(ρ) be a solution to (3.3). We define a function V by

V (ρ) = −2 log ρ + log
2(d − 2)

p
. (4.1)

Then, in the 3 � d � 9 case, we have

Z[0,∞)[U(ρ) − V (ρ)] = ∞.

See [17] or [15] for a proof of proposition 4.1.

Remark 4.2. We can easily check that the V defined by (4.1) is a singular solution
to the equation in (3.3).

We set

Ŵp(s) = ϕ1/p(t) +
ϕ−Ap

p
(κ + y∞(t)), (4.2)

where t = − log s and

y∞(t) = pϕAp((ϕ + κ)1/p − ϕ1/p) + pϕApη∞ − κ.

Here, η∞ is the solution to (2.3) given by theorem 2.1. Then, it follows from theo-
rem 2.1 that limt→∞ y∞(t) = 0. Thus, we see that Ŵp is a singular solution to (1.5)
with λ = λp,∞. Using proposition 4.1, we shall show the following.

Lemma 4.3. Let û(s, γ) be a regular solution to (1.5) with û(0) = γ. Then, we have

ZIγ [û(·, γ) − Ŵp(·)] → ∞ as γ → ∞, (4.3)

where Iγ = [0, min{
√

λp,∞,
√

λ(γ)}).

https://doi.org/10.1017/S0308210517000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210517000154


Exponential nonlinearity solutions in higher dimensions 119

Proof. We set

ũ∗(ρ, γ) = −pγp + pγp−1Ŵp(s), ρ =
√

γp−1 exp(γp)s, (4.4)

where Ŵp is defined by (4.2). We claim that

ũ∗(ρ, γ) → V (ρ) in C1
loc([0,∞)) as γ → ∞. (4.5)

It follows from (4.2) and (4.4) that

ũ∗(ρ, γ) = −pγp + pγp−1Ŵp(s) = −pγp + pγp−1ϕ1/p(t) + γp−1ϕ−Ap(t)(κ + y∞(t)).

We fix ρ > 0. Then, it follows that

t = − log s = − log ρ +
γp

2
+

(p − 1) log γ

2
→ ∞ as γ → ∞.

This implies that
y∞(t) → 0 as γ → ∞. (4.6)

As in (3.14), (3.15), together with (4.6), we similarly obtain

ũ∗(ρ, γ) = −pγp + pγp−1ϕ1/p(t) + γp−1ϕ−Ap(t)(κ + y∞(t))

→ −2 log ρ + log
2(d − 2)

p
= V (ρ) as γ → ∞.

Therefore, (4.5) holds.
It follows from (3.1) and (4.4) that

ZIγ
[û(s, γ) − Ŵp(s)] = ZJγ

[ũ(ρ, γ) − ũ∗(ρ, γ)], (4.7)

where
Jγ = [0,

√
γp−1 exp(γp) min{

√
λp,∞,

√
λ(γ)}).

Combining lemma 3.1, proposition 4.1 and (4.5), we find that

lim
γ→∞

ZJγ [ũ(ρ, γ) − ũ∗(ρ, γ)] = Z[0,∞)[U(ρ) − V (ρ)] = ∞. (4.8)

From (4.7) and (4.8), we obtain the desired result.

Once we have obtained lemma 4.3, we can prove theorem 1.3 by employing the
same argument as in [15, lemma 5]. However, for the reader’s convenience, we shall
give a proof.

Proof of theorem 1.3. Let û(s, γ) be a solution to (1.5) with û(0) = γ, and let Ŵp(s)
be the singular solution defined by (4.2). We set v̂(s, γ) = û(s, γ) − Ŵp(s). Then,
v̂(s, γ) satisfies the following ODE:

v̂ss +
d − 1

s
v̂s + e(v̂+Wp)p − eW p

p = 0, 0 < s < λ̂(γ),

where λ̂(γ) = min{
√

λp,∞,
√

λ(γ)}. Then, if v̂(s, γ) has a zero at s0, we have

v̂(s0, γ) = 0, v̂s(s0, γ) �= 0 (4.9)
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from the uniqueness of the solution. Moreover, for each γ > 0, v̂(s, γ) has at most
finitely many zeros in (0, λ̂(γ)). Indeed, if it does not, there exist a sequence of
{sn} ⊂ [0, λ̂(γ)] and s∗ > 0 such that limn→∞ sn = s∗. Then, we see that v̂(s∗, γ) =
v̂s(s∗, γ) = 0, which is a contradiction. In addition, it follows from (4.9) and the
implicit function theorem that each zero depends continuously on γ. Therefore, we
find that the number of zeros of v̂(s, γ) does not change unless another zero enters
from the boundary of the interval [0, λ̂(γ)]. We note that v̂(0, γ) = û(0, γ)−Ŵp(0) =
−∞. From this, we find that the zero of v̂(s, γ) enters the interval [0, λ̂(γ)] from
s = λ̂(γ) only.

In order to prove theorem 1.3, it is enough to show that the function λ(γ) oscil-
lates infinitely many times around λp,∞ as γ → ∞. Suppose that there exists γ0 > 0
such that λ(γ) > λp,∞ for all γ > γ0. Then, we have λ̂(γ) =

√
λp,∞ for all γ > γ0

and we see that

v̂(
√

λp,∞) = û(
√

λp,∞, γ) − Wp(
√

λp,∞) = û(
√

λp,∞, γ) > 0.

This implies that the number of zeros cannot increase. This contradicts (4.3). Next,
suppose that there exists γ1 > 0 such that λ(γ) < λp,∞ for all γ > γ1. By the same
argument as above, we can derive a contradiction. These results imply that the
function λ(γ) oscillates infinitely many times around λp,∞.

5. Finiteness of the Morse index when d � 11

In this section, we investigate the Morse index of the singular solution in the d � 11
case. It is enough to restrict ourselves to radially symmetric functions. Let Ŵp be the
singular solution to (1.5). The following lemma is key to the proof of theorem 1.4.

Lemma 5.1. Assume that d � 11 and p > 0. Then, there exists ρ1 > 0 such that

pŴ p−1
p (s) exp(Ŵ p

p (s)) <
(d − 2)2

4s2 for 0 < s < ρ1. (5.1)

Proof. We set W̄p(t) = Ŵp(s) and t = − log s. By the proof of theorems 1.1 and 1.2,
the singular solution W̄p(t) can be written as

W̄p(t) = ϕ1/p(t) +
ϕ−Ap(t)

p
(κ + y∗(t)),

where limt→∞ y∗(t) = 0. Then, for any ε > 0, there exists t1 = t1(ε) > 0 such that

W̄ p
p (t) � 2t − Ap log t + κ + ε, W̄ p−1

p (t) � (2t)Ap(1 + ε) for t � t1.

This yields that

pW̄ p−1
p (t)eW̄ p

p (t) � p(2t)Ap(1 + ε) exp(2t − Ap log t + κ + ε)

= p2Ap(1 + ε)e2t (d − 2)21/p

p
eε

= 2(d − 2)(1 + ε)eεe2t. (5.2)
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We note that 2(d−2) < 1
4 (d−2)2 if d � 11. Therefore, we can take ε > 0 sufficiently

small so that

pW̄ p−1
p (t)eW̄ p

p (t) <
(d − 2)2

4
e2t.

Thus, we see that (5.1) holds for 0 < s < ρ1 with ρ1 = e−t1 .

We are now in a position to prove theorem 1.4.

Proof of theorem 1.4. It is enough to show that the number of negative eigenvalues
of the operator L∞ on H1

0,rad(B√
λ∗

) is finite, where L∞ = −∆ − pŴ p−1
p (s)eŴ p

p .
We define smooth functions χ1 and χ2 on [0,

√
λ∗) by

χ1(s) =

{
1, 0 � s < 1

2ρ1,

0, ρ1 < s <
√

λ∗,
0 � χ1(s) � 1, 0 � s �

√
λ∗,

and χ2(s) = 1 − χ1(s). For each φ̂ ∈ H1
0,rad(B√

λ∗
), we have

〈L∞φ̂, φ̂〉 = ωd−1

∫ √
λ∗

0

{∣∣∣∣dφ̂

ds

∣∣∣∣
2

− pŴ p−1
p exp(Ŵ p

p (s))|φ̂|2
}

sd−1 ds

= ωd−1

∫ √
λ∗

0

{∣∣∣∣dφ̂

ds

∣∣∣∣
2

− p(χ1(s) + χ2(s))Ŵ p−1
p exp(Ŵ p

p (s))|φ̂|2
}

sd−1 ds

� ωd−1

∫ ρ1

0

{∣∣∣∣dφ̂

ds

∣∣∣∣
2

− pŴ p−1
p exp(Ŵ p

p (s))|φ̂|2
}

sd−1 ds

+ ωd−1

∫ √
λ∗

0

{∣∣∣∣dφ̂

ds

∣∣∣∣
2

− pχ2(s)Ŵ p−1
p exp(Ŵ p

p (s))|φ̂|2
}

sd−1 ds,

(5.3)

where ωd−1 is the volume of the unit ball in R
d−1. By (5.1) and the Hardy inequality,

we obtain ∫ ρ1

0

{∣∣∣∣dφ̂

ds

∣∣∣∣
2

− pŴ p−1
p exp(Ŵ p

p (s))|φ̂|2
}

sd−1 ds

�
∫ ρ1

0

{∣∣∣∣dφ̂

ds

∣∣∣∣
2

− (d − 2)2

4s2 |φ̂|2
}

sd−1 ds

� 0.

This together with (5.3) yields that

〈L̂φ̂, φ̂〉 � ωd−1

∫ √
λ∗

0

{∣∣∣∣dφ̂

ds

∣∣∣∣
2

− pχ2(s)Ŵ p−1
p exp(Ŵ p

p (s))|φ̂|2
}

sd−1 ds. (5.4)

We note that the potential pχ2(s)Ŵ p−1
p exp(Ŵ p

p (s)) is bounded. Therefore, we find
that

inf
φ∈H1

0,rad(B√
λ∗ ),

‖φ‖L2=1

{
ωd−1

∫ √
λ∗

0

[∣∣∣∣dφ̂

ds

∣∣∣∣
2

−pχ2(s)Ŵ p−1
p exp(Ŵ p

p (s))|φ̂|2
]
sd−1 ds

}
> −∞.

https://doi.org/10.1017/S0308210517000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210517000154


122 H. Kikuchi and J. Wei

This, together with (5.4), implies that the number of the negative eigenvalues of
the operator L∞ is finite. This completes the proof.
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