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We consider the following semilinear elliptic equation:

—Au = Aexp(uP) in By, }

u=20 on 0B, ()

where Bj is the unit ball in R%, d > 3, A > 0 and p > 0. Firstly, following Merle and
Peletier, we show that there exists an eigenvalue \p oo such that () has a solution
(Ap,00; Wp) satisfying lim|,|_,o Wp(z) = co. Secondly, we study a bifurcation diagram
of regular solutions to (). It follows from the result of Dancer that (x) has an
unbounded bifurcation branch of regular solutions that emanates from (A, u) = (0, 0).
Here, using the singular solution, we show that the bifurcation branch has infinitely
many turning points around Ap oo when 3 < d < 9. We also investigate the Morse
index of the singular solution in the d > 11 case.
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1. Introduction

In this paper, we study the following semilinear elliptic equation:

—Au = Aexp(u?) in B,

(1.1)
u=20 on 0By,
where By is the unit ball in R?, d > 3, A > 0 and p > 0.

The aim of this paper is to study the existence of a singular solution and a
bifurcation diagram of regular solutions to (1.1) for a general power p > 0. By
a singular solution, we mean a positive regular solution to (1.1) in By \ {0} that
tends to oo at the origin (xz = 0). For example, setting A\ o = 2(d — 2) and
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Wi(z) = —2log |z|, we see that (A1,0, W1) is a singular solution to (1.1) in the
p =1 case.

Several studies have been made on (1.1) in the p = 1 case (see [1,3,5,6,9, 10,
15-17] and the references therein). We recall some of them. Gel’fand [6] showed
that when d = 3 (1.1) has infinitely many solutions at A = A1 o. Then, Joseph and
Lundgren [10] gave a complete classification of solutions to (1.1). More precisely,
they showed that (1.1) has infinitely many solutions at A = Aj oo when 3 < d <9
and has a unique solution for 0 < A < A o and no solution for A > A; o, when
d > 10. See [9] for a survey of this problem.

In this paper, we will treat a general power p > 0 and show that (1.1) has a
singular solution when p > 0 and d > 3. In addition, we shall show that (1.1) has
infinitely many regular solutions when p > 0 and 3 < d < 9.

First, we focus our attention on the existence of a singular solution. As we men-
tioned above, in the p = 1 case, (1.1) has the explicit singular solution (A1,c0, W1).
The singular solution plays an important role in the bifurcation analysis of regular
solutions to (1.1). However, we encounter difficulties when we seek a singular solu-
tion if the power p # 1. Therefore, it is worthwhile investigating the existence of a
singular solution for general power p > 0. Concerning this, we obtain the following.

THEOREM 1.1. Assume that d > 3 and p > 0. Then, there exists a unique eigen-
value A\p oo > 0 such that the equation (1.1) has a singular solution (Ap oo, Wp)
satisfying

1/p
Wy(x) = |~2logla| — (1- ) log(~loglz))|  +o((logla)*1/7)  (1.2)
p

as |z| — 0.

Once we have obtained the singular solution, we investigate its relationship to
regular solutions. Dancer [4] showed that for any p > 0 there exists an unbounded
bifurcation branch C C R x L*°(By), which emanates from (A, u) = (0,0). Let A\; be
the first eigenvalue of the operator —A in By with the Dirichlet boundary condition,
and let ¢ be the corresponding eigenfunction. By multiplying the equation in (1.1)
by ¢; and integrating the resulting equation, we see that if (A, u) € C, we have 0 <
A < A1. This yields that sup{||u|eo|(A,u) € C} = co. Moreover, from [12, theorem
2.1] (see also [15, proposition 6]), we see that the branch C can be parametrized by
||t||o- Namely, the branch C can be expressed as

C={(0),ul@,7) | v=llullr=, 0 <7y < oo} (1.3)
Then, we obtain the following.

THEOREM 1.2. Assume that d > 3 and p > 0. Let (A\p oo, Wp) be the singular
solution to the equation (1.1) given by theorem 1.1 and (A(vy),u(x,v)) € C. Then,
we have A\(7y) = A\p oo and

u(@, ) = Wp(x) in Cioo(B1 \ {0}) as v — oo.

From theorem 1.2, we can obtain the following result.
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THEOREM 1.3. Assume that 3 < d <9 andp > 0. Let A\, oo > 0 be the eigenvalue
given by theorem 1.1. Then, for any integer k, there exist at least k regular positive
solutions to (1.1) if A is sufficiently close to A\p . In particular, there exist infinitely
many reqular solutions to (1.1) at A = A, .

Finally, we estimate the Morse index of the singular solution W), in the d > 11
case. Here, we mean the Morse index by the maximal dimension of a subspace
X C H}(Bj) such that the associated quadratic form is negative on X \ {0}, that
is,

max{dim X | X C HJ(B;) is a subspace such that
((—A —pWé’_leW:’j)v,U} <0 forve X\ {0}}.

It is well known that the Morse index plays an important role in the bifurcation
analysis for nonlinear elliptic equations (see, for example, [2,8,11] and the references
therein). In the 3 < d < 9 case, by combining the argument in [8, proposition 2.1]
with our proposition 4.1 we see that the Morse index of the singular solution W), is
infinite. However, for the d > 11 case, we find that the situation becomes different
from that above. More precisely, we obtain the following result.

THEOREM 1.4. Assume that d > 11 and p > 0. Let W), be the singular solution

to (1.1) obtained in theorem 1.1. Then, the Morse index of the singular solution
W, is finite.

We prove theorem 1.1 in the spirit of Merle and Peletier [13]. We first transform
(1.1) to a suitable equation: from the result in [7], we find that a positive solution
to (1.1) is radially symmetric. Therefore, (1.1) can be transformed into the following
ordinary differential equation (ODE):

d—1
Uppr + ——up + Aexp(u?) =0, 0<r <1,
T

(1.4)
u(r) =0, r=1.
We set s = v/Ar and @(s) = u(r). Then, we see that @ satisfies
d—1 ;
Qs + s e =0, 0<s<VA
s (1.5)

a(s) =0, 5=V

We construct a local solution to the equation in (1.5), which has a singularity at the
origin s = 0. To this end, we employ the Emden—Fowler transformation. Namely,
we set t = —log s and @(t) = 4(s). This yields that @ satisfies the following:

Uy — (d — 2)a +exp[—2t +aP] =0, —3log\ <t < oo, } 16)

0,
a(t) =0, t=—1logA.

We give an approximate form of a singular solution near t = oco. Then, we make
an error estimate for the approximation. The proof of theorem 1.2 is also based on
that in [13]. We note that Dancer [4] proved that there exist infinitely many regular

https://doi.org/10.1017/50308210517000154 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210517000154

104 H. Kikuchi and J. Wei

positive solutions to (1.1) by calculating the Morse index. Here, following [8,14,15],
we shall show theorem 1.3 by counting the number of intersections between the
singular solution and regular solutions. Thus, we can obtain a precise bifurcation
diagram of solutions to (1.1). Let us explain this in detail. Let I be an interval in
R. For a function v(s) on I, we define the number of zeros of v by

Zifv()] = #{s € I | v(s) = 0}.

We set W,(s) = W,(r), where s = v/Ar and W, is the singular solution given by
theorem 1.1. Let (A(y),4(s, 7)) be a regular solution to (1.5) with @(0) = ~. Then,
we have

Zry[a(,7) = Wp()] = 00 asy = oo,

See lemma 4.3 for the details. From this, we can show that the bifurcation branch
C given by (1.3) has infinitely many turning points, which yields theorem 1.3.

Here, we remark that, in order to prove theorems 1.2 and 1.3, the asymptotic
scaling invariance of the equation found by Dancer [4] plays an important role. Let
us examine this in more detail. We denote by 4(s,7) a solution to the equation
in (1.5) with @(0,7) = |G| L~ = . We set

a(p, ), p = /P~ Lexp(y?)s. (1.7)

1-p

X g
as,y) =7+

It follows that @(p,~y) satisfies

rPY
Upp + U, + pexp |:’Yp+’)/p(1+ pﬂ)} =0,

0<p< vV Texp(r?), L (18)
(0) = 0,

i(p) <0, 0<p< /AP lexp(P).

We shall show that the function (p,~) converges to U in CL_([0,00)) as v tends
to oo, where U is a solution to

d—1
Upp—&—TUP—i—pexp[U]:O, 0<p< oo,

; p =0, (1.9)

0
U(p) <0, 0<p<oo.

We also use a similar transformation (see (3.6)). Since the equation in (1.9) is scale
invariant, it is rather easy to handle. This is key for our analysis.

This paper is organized as follows: in §2, we construct the singular solution
to (1.1) in case of d > 3. In §3, we investigate the asymptotic behaviour of the
regular solutions (A(7), u(r, 7)) as ¥ — oo. In §4, we count the number of intersec-
tions and prove theorem 1.3. In §5, we show that the Morse index of the singular
solution is finite when d > 11.
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2. Existence of a singular solution

To prove theorem 1.1, we first consider (1.6) and restrict ourselves to the case where
t > 0 is sufficiently large. We seek a solution to (1.6) of the form

at) = ((t) + m) P +n(t), (2.1)
where y
1 d—2)2"/P
p(t) =2t — A, logt, Ap:l_;’ m:log(p). (2.2)
Then, the function n solves
2(d — 2
me—(@= 2 +epl-2+ - XD @)
for sufficiently large ¢ > 0, where
d—2)A,(p+ k)" 1 1 _ 1 _
fle) = EEBBEED 22 (1Y () () . (24)

Then, we show the following.

THEOREM 2.1. Let d > 3 and p > 0. There exist Too > 0 and a solution ns €
C([Tso,0),R) to (2.3) satisfying lim; o0 pPneo(t) = 0.

We show theorem 2.1 by using the contraction-mapping principle. To this end,
we transform (2.3). First, we have

exp[—2t + @¥] = exp[—2t + {(¢ + K)"/? + n}7]
=exp[-2t+ (¢ + k) + (¢ + K){(L+ (¢ + &) /PP — 1}]

_ 1/p
= U222 e+ {0+ (1) 0 — 1)) (25)
Furthermore, we obtain
(p+r) {1+ (p+r)VP)P =1} =ple+K)*n+ (¢ +K)gi(t,n),  (2.6)
where
gi(tn) = {1+ (p+r) P} =1 —plo+r) 'y, (2.7)

This yields

exp[(¢ + w){(1+ (¢ + &)~ /Py)P — 1}]
= explp(p + K)**n + (9 + K)g1(t,7)]
= expp(p + K)*7n] + explp(p + #)rnl{exp[( + )1 (£, )] — 1}. (2.8)
By (2.5), (2.6) and (2.8), we have

(d —2)2/»
p
d—2)2/r
L (=22
P

exp[—2t + @P] = t—4» exp[p(p + R)Apn]

= expp(p + k) ryl{exp((¢ + K)g1(t,n)] — 1}.
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Therefore, (2.3) can be written as

Mgt — (d —2)n; +2(d — 2)n

— fl(t) _ wt*f‘p + 2(d — 2) (90 + ,{)*Ap
+2(d—2)n— WFAT’ x p(p + /@')Apn
_ 1/p
- (di)Zt‘A” exp[p(p + k) *nl{exp[(p + K)g1(t, )] — 1}
_ 1/p
D2 A explplio ) ) — 1= e+ ) )
= fi(t) + fa(t) + f3(t,n) + fa(t,n) + f5(t,n),
where
_(d=22Vr L,  2d=2) o,
fa(t) = . t o+ 5 (p+~)
= (d;ﬂ/ptAP(I — 2t (o + k)~ r), (2.9)
fs(t,n) =2(d —2)n — [@=227a, p(p + k)
=2(d — 2){1 — (2t) (¢ + K)r}n, (2.10)
(d—2)2'7 A
fa(t,n) = —#t exp[p(p + k) *nl{exp((p + K)gi(t, )] — 1},  (2.11)
_ 1/p
fottyn) = =22 b el + )] — 1= plo+ )} (212)

Thus, we seek a solution to the following equation:
e = (d = 2)ne +2(d = 2)n = f1(t) + f2(t) + fa(t,0) + fa(t,n) + f5(t,m)-
We estimate the inhomogeneous terms f;(¢) (1 < i < 5) and obtain the following.
LEMMA 2.2.
(1) f1(t) = O@t=4~1) and fo(t) = O(t=4»"Llogt) ast — oco.
(i) If n satisfies |n(t)| < et=A» for sufficiently small € > 0, we have
fs(t) =0 Hogt),  fu(t) =0~ |fs(t) <t
for sufficiently large t > 0.

Proof. By (2.4) and (2.9), we obtain (i). It follows from (2.2) that

logt
1= @) (p+r)Y| S = (2.13)
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for sufficiently large ¢ > 0. Thus, by (2.10), we have
[f3(t,m)| = [2(d = 2){1 = (2t) "7 (¢ + r) "} St~ ogt.

From (2.7), we have
lg1(t,m)| S Lo + K 7>/Pn?. (2.14)

This yields
(o +r)gr(t,m)] St
It follows that
lexp(¢ + &)gu(t,m] =1 S (¢ +r)gr(t, )] St (2.15)
From (2.11), we have f4(t) = O(t~“»~1). Similarly, we see that

lexp[p(p + k)7 n] — 1 — plo + k)| S (o + K)*Arn? < 2

Thus, we obtain |f5(t)| < e2t~4» from (2.12). O
We are now in a position to prove theorem 2.1.

Proof of theorem 2.1. We set
B(t,n) = f1(t) + f2(8) + fs(t,n) + falt,n) + f5(t,m).
In order to prove theorem 2.1, it is enough to solve the following final-value problem:
M — (d—2)m +2(d—2)n=F(t,n), T<t< —l—oo,}

e (tm(t) =0 as t — +o0. (2.16)

for some T > 0. We note that

(d—2)(d—10) <0 if3<d<9,
(d—2)2—8(d—2) =< (d—2)(d—10) =0 if d = 10,
(d—2)(d—-10) >0 ifd>11.
We consider only the 3 < d < 9 case, as the proof is similar in the other cases. Let

p = y/—(d —2)(d — 10). Then, the final-value problem (2.16) is transformed into
the following integral equation:

in which
od—2)t/2

Tl = = | " @20 Gin(u(o — 1)) F(o, ) do

Fix T > 0 to be sufficiently large and let X be a space of continuous functions on
(T, ) equipped with the following norm:

€]l = sup{|t[*7[€(®)] | ¢ > T}
We fix an arbitrary € > 0 and set
X ={¢eX|llg]] <&} (2.17)
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First, we shall show that 7 maps from X to itself. It follows from lemma 2.2 that
|E(t, 17)| £2t=4» for sufficiently large ¢ > 0. This yields

|T[’I7](t)‘ 5 e(d72)t/2/ ef(d72)cr/262o_pr do

t

< 2~ A e(d-2)t/2 /OO o (d-2)0/2 g
t

< el (2.18)

for n € X. Tt follows that T[] € X. Thus, we have proved the claim.
Next, we shall show that 7 is a contraction mapping. For 11,170 € X, we have

5 )
1T (t) — Tn2)(t)] < Celd=2)/2 Z/ e~ =292 £ (0, m) — fi(o,m2)| do.
i=3 7t

From the definition, we obtain
[f3(t,m) = f3(t,m2)| St logtlm —na| S =4~ logt|lm —12|l- (2.19)
Thus, we see that
[f3(tm) = fa(tsm)| < et™ 4 — na. (2.20)
Next, we estimate the term |f5(t,n1) — f5(¢,n2)|. It follows that

| f5(t,m1) — f5(t,m2)]
St expp(p + )] — explp(e + k)P n2] — p(e + £) 7 (1 — n2)|
=t~ exp[p(p + k) rmal{e Xp[p(w + 1) (n2 —m)] — 1} = p( + &) (m —m2)|
St expp(p + k&) rmpl{exp[p(e + &) (12 —m)] — 1 — p(@ + £)* (1 — n2) }|
+ 147 |explp(e + k)P 2] — 1p(e + £) 7 | — 12
St p(e 4+ 8) M (1 — m2) P+t (o + k) 7| [y — 7|
Set™ e (lny — e

A

Therefore, for sufficiently large ¢t > 0, we have
|f5(t,m) — fs(t,m2)| < Cet™ |l — . (2:21)
Finally, we estimate the term |f4(¢,71) — fa(t,m2)|. We can compute that
[faltm) = fa(tsmo)| S ¢ |explperm] — explpe??n]| |explgi (¢, m2)] — 1|

+t~ 4% explpo*ns]explgr (,m1)] — explga (t, m2)]]
— T4+1L (2.22)

By the Taylor expansion together with (2.15), we have
IS t=4 2 exp[prnl|explpe™ (m —m2)] — 1]
St~ 2 explpe] | (112 —m))|
St 2o — gl
St m = o (2.23)
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Similarly, by (2.14), we obtain

IT <t exp[pp™7n2] lexplgi (£, m)] — explgi (,m2)]|
St exp[pp?rna] explga (t, m2)]lexplgr (t, m) — g1(t,m2)] — 1
St gt m) — g1(t, M)

From (2.7), we obtain

(2.24)

lg1(t,m) — g1(¢,m2)]
SHL+ple+8) 7P} = {1+ p(o+8) 7P }? | + (9 + 5) P — o
R e
St — 2. (2.25)

It follows from (2.22)—(2.25) that

[fa(t,m) — fa(t,mo)| < ety — 1pa]]- (2.26)
By (2.19), (2.21) and (2.26), we see that
[ TIm](t) = The)(t)] < Cet™4»||lny = nall < 5674 1 — na - (2.27)
Thus, we find that 7 is a contraction mapping. This completes the proof. O
We are now in a position to prove theorem 1.1.

Proof of theorem 1.1. Tt follows from theorem 2.1 that there exist a constant T, >
0 and a solution 7s(t) of (2.3) for t € (T, +00) satisfying [t|47|ne(t)| < €. For
such a solution 7., we set

oo (t) = (p(t) + )17 + 1o (1).
Then we see that @ (t) satisfies

for t € (Too, +00). We shall show that @ (f) has a zero for some T € (—o0, c0).
Suppose on the contrary that s (t) is positive for all ¢ € (—o0,00). Then, we see
that 4., is monotone increasing. Indeed, otherwise, there exists a local minimum
point t, € (—o00,0). It follows that (d%us./dt?)(t.) = 0 and (diie/dt)(ts) = 0.
Then, from (2.28), we obtain

S EITI Ao
—20 () = (d—2)—=2

which is a contradiction. Since 7, is positive and monotone increasing, there exists
a constant C' > 0 such that 4., (t) — C as t — —oo. This, together with (2.28),
yields

(te) = —exp[—2t. + @B, (t.)] < 0,

X

A%l diise
= 1 — — _— = 1 — — uP = —
0=, lim { 2 (t)—(d—2) gr (t)} , lim —exp[—2t + uf ()] 00,
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which is absurd. Therefore, we see that U has a zero for some Ty € (—o0,0).
Then, ., satisfies

If we choose \p oo > 0 s0 that —log A oo = 270, that is, Ay oo = 7270, we find that
Too(s) is a solution to (1.6) with A = A\p . This completes the proof. O

3. Asymptotic behaviour of a regular solution

In this section, we give a proof of theorem 1.2. We denote by (s,~y) a positive
solution to (1.5) with @(0) = ||@|| L = 7. (Where there is no possibility of confusion,
we just denote this by @(s).) As mentioned in §1, we set

a(p, ), p = /P~ Lexp(y?)s. (3.1)

1-p

a(s,y) =+

Then, we see that @(p,y) satisfies

. d—1_ A
Upp + Tup +pexp [_’Yp'f"Yp(l‘F ’7pu>} =0,

0<p < VAP~ Lexp(y?),
a(0) = 0,

a(p) <0, 0<p< /AP Lexp(yP),

(3.2)
where A(y) > 0. Concerning the solutions to (3.2), the following lemma holds.

LEMMA 3.1. Let u(p,v) be a solution to (3.2). Then, we have u(-,7y) — U(:) in
CL.([0,00)) as v — oo, where U(p) is a solution to the following:

d—1
Upp+7Up+pexp[U]:0, 0<p< oo,

U(p)=0,  p=0, (3:3)
U(p) <0, 0<p<oo.

REMARK 3.2. Dancer [4] proved lemma 3.1 in more general situations. Here, using
an ODE approach, we shall give an alternative proof.

Proof of lemma 3.1. First, it follows from [4, p. 155] that A(y)y?~!exp(7?) — o
as 7 — oo. For each pg > 0, we shall show that @(p,~) is uniformly bounded for
p €10, po0). Since v = ||i| L, and u(p, ) is positive, (3.1) yields

-’ <ulp,v) <0. (34)
By (3.4), we have

P
0<1l+—u<l
p
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This yields
PN
P [Vp s (1 " pﬂ) ] <exp[—F +97] = 1.
It follows from the first equation in (3.2) that

- d—1_
UPP+TUP>_p~

This yields that
(p* i), = —pp™ .

Integrating the above inequality from 0 to p, we have p¢='a,(p) > —pp?/d. Thus,
we obtain @,(p) > —pp/d for p € [0, po). Integrating the inequality yields

P
- ~ p
a(p) = u(0) — g/o Tdr = _ﬁpg-

Therefore, for p € [0, pg), we have

——pr < < 0. .
2dﬂ0 <u(p) <0 (3:5)

This, together with the equation in (3.2), gives the uniform boundedness of @, and
U, for p € [0, po). Then, by the Ascoli-Arzela theorem, there exists a function U
such that @(p,v) converges to U in CL ([0, po)) as v goes to co. Moreover, by the
Taylor expansion, there exists § € (0,1) such that

exp {—71’ + 9P (1 + %ﬂ(m v)ﬂ - eXp[U]‘

p—1 YR N
exp [ﬁ + 2 (1 + 9p11> 7P ] — exp[U]‘

< exp|d]

p—1 P Y7 ]
exp |:2p (1 + 0p€c> P2 | — 1‘ + |expl] — exp[U]].

Therefore, by (3.5), we have

—p p
exp [,yp + AP (1 + %ﬁ(p, »y)) ] —exp[U]| -0 as~vy— oc.

Thus, U satisfies (3.3). This completes the proof. O

Next, we set t = —log s. We define y(t, ) using

= (t)

i(s,v) = '/P(t) + (r +y(t,7)), (3.6)

and see that y(t,) satisfies the following:

Yo — {(d —2) + 24,0 "o}y — 2(d — 2)
—1

+pp?r exp [—215 + so(l + %(Kz + y)ﬂ =fe(t,y) (3.7
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for sufficiently large ¢t > 0, where

fo(t,y) = App™ (91)? — or — Ap(Ap + D)o 2 (0)*(k + ) + A~ 'ore(r + 1)
(d—2)4,

—(d=2) A" pu(r +y) + (3.8)
For the function y(¢,v), we make the following spatial translation:
r=togp=1- L LTV ) Sy, el = ). (39)
Let U be the solution to (3.3). We set U.(7) = U(p) and
Y (1) =U.(r) — 27 —log W (3.10)
Then, Y satisfies
Yir—(d—2)Y, +2(d—2){exp[Y] -1} =0, —o0< T < 00,
TILIEO {Y(T) + 27 + log W} =0, (3.11)

2(d — 2)

Y (1) + 27 + log <0, —oo< T <00,

and the following lemma holds.

LEMMA 3.3. Let § and Y be the functions defined by (3.9) and (3.10), respectively.
Then, we have §(1,7) — Y (1) in CL _((—o0,00)) as v — oo.

loc
Proof. Tt follows from (3.1) and (3.6) that
alp,y) = —py? +prP " als, )
=t ) + (et (e}

= (=" +7"IRP() + AP A (1) (5 + (7, ) (3.12)

o~ (t)

By (2.2), (3.9) and the Taylor expansion, we have

— P+ 7P (r)

D —1 1/p
= _~yp+fyp1{27—|—fyp+(p— 1)logy — A, log (T+’}/2+p 5 log'y>}

2T A _ A ¥ p—1 p
— _ AP p) = _r p_ 7P 1
=7+ {7p+1 o log v " log(7+ 5 + 5 logv)}

2r A T 1 (p—1)logy 1/p
— _AP Pl14 = P T et =
7+7{+7” P Og<7p+2+ 2yP
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1 1 T p—1) log’y
p(ZTAplog<2+’Yp+ ))
—1 2r A, 1 p—1)1 1/p=2
+ o (1+0( =~ “2log 7+l+( Jlogy
2p*yP oA 2 29P
1 T (p—1)log~
X <27‘—Aplog (2+7p+27” (3.13)

for some 6 € (0,1). This yields that

2r A
—AP 4 APTLIGYP (1) —T—&——plogZ as y — 00 (3.14)
p p

for each 7 € (—00, 00). Similarly, we obtain

or A 1 ~1)1 e
,yp—lsapr(T): 1+l_i10g ,_,_L_Q_M —1 asy— oo.
PP 2P

2P
(3.15)
Formulae (3.12)—(3.15) imply that
lim a(p,vy) =27+ A,log2+ K+ lim §(7,7). (3.16)
y—00 Y0

It follows from lemma 3.1 that lim._,o @(p,y) = U(p) = U.(7). Thus, by (2.2),
(3.10) and (3.16), we see that

li_>m g(r,v) = =27 — Aplog2 — k + U, (1)
y—00

2(d — 2
=-21—Aylog2 —k+Y(7) +27+logg
p
d—2)2'/»
=Y(7) 7I€+10g¥
=Y (7).
This completes the proof. O

LEMMA 3.4. Let Y be a solution to (3.11). Then, Y satisfies (Y,Y;) — (0,0) as
T — —00.

Proof. Weset Zy(7) = Y (7) and Z5(7) = Y, (7). Then, the pair of functions (71, Z5)

satisfies iz
e
(TT? = (d—2)Z> — 2(d — 2)[exp[Z1] — 1].

We define an energy E by
E(7) = §(Z2)* +2(d = 2)[exp[Z1] — 1 = Z1].

From (3.17), we have
dE

E(T) = (d—2)(Z)* > 0.
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Moreover, (0,0) is an equilibrium point of (3.17) and a minimum of the energy E.
This yields that (Z1(7), Z2(7)) — (0,0) as 7 — —o0. O

We set
21 (tv 7) = y(ta 7)7 22 (tv 7) =Y (t’ 7)7 (318)

where y(t,7) is the function defined in (3.6). Then, (z1(t, ), 22(t,y)) satisfies

le
dt
@:(d—ﬂm 0 tor)za +2(d —2) + fo(t, 21)
ar ) t)%2 6\l, 21 (3.19)

petren [+ o(14 2 ka0

for t € (—1log A(v), 00).

=z forte (—3logA(y),00),

From lemma 3.4, we see that for any & > 0 there exists 7. € (—00,0) such that
|(Z1(72), Z2(72))| < 3e, where (Z1, Z3) is a solution to (3.17). We fix 7. € (—o0,0)
and set

te = 7. + %,yp + %((p - 1) 1Og’7)'

Then, by lemma 3.3, we have

[(z1(te, ), 22(t 7)) < € (3.20)

for sufficiently large v > 0. We shall show the following.

LEMMA 3.5. Let (21(t,7), 22(t,7y)) be the function defined by (3.18). For arbitrary
e >0, we set

I = {(&1,6) € R? | 2(d — 2){exp[é1] — 1 - &1} + 563 <<}

There exists a 1. that does not depend on v and t. but depends on & such that
(z1(t,y), 22(t,)) € Iae fort € (T, t.).

Proof. We define an energy by
Eqi(t) = 123 +2(d — 2){exp[z1] — 1 — 2 }.
By (3.19), we have

dE
d—tl(t) = 20290 + 2(d — 2){explz1] — 1} 22
=(d-2+ 2Ap<p71<pt)z§
o p
_ p@Ap exp {—Qt + cp(l + T(H + z1)> ]zz + fo(t, 21)22

+ 2(d — 2) explz1]22.
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Analogously to (2.5), by the Taylor expansion, we obtain
o1 P
po?tr exp {Qt + <p<1 + 7(/1 + zl)) ]
= (d — 2)2"Pp 1= explz1] exp|di (t, 21)]
— 2(d - 2) exp|z]
— (2(d — 2) exp[z1] — (d — 2)2Y /Pt~ 4% exp|z1] exp[d1 (¢, 21)]),

where )

P
it = (14 Sl 2)) — o) -
Therefore, we have

dE -

5 ()= (d =2+ 24,07 00) 25 + fs(t, 1)
+ (2(d — 2) explz1] — (d — 2)2Y/PAt= A% explz1] exp[da (¢, 21)]) 22.
(3.21)
Since I is a neighbourhood of (0,0), we can take ¢ > 0 to be so small that
Ie C {(21,22) | |21] + |22| < 1}. We choose T, > 0 so that

C, €

0<—=< 2, 3.22

<3 (3.22)

where the constant C, > 0, which does not depend on ¢, is defined by (3.26). We
shall show by contradiction that (z1(t), 22(t)) € Iae for t € (T, t.). Suppose to the
contrary that (z1(t), 22(t)) € Iy for t € (T¢,t.] and (21(T%), 22(T:)) ¢ I2e. Then,
by (3.21), we have

Ey(t:) — By (T)

te te
= / (d— 2—|—2Apg0_1<pt)z§ ds+/ fo(s,21)22ds
T Te

+ / E(2(d —2)exp[z1] — (d — 2)21/”90‘41’(5)5*‘4? explz1] exp[g1 (s, z1)]) 22 ds.
’ (3.23)

Since |z1(t)| + |z2(t)] < 1, we see from (3.8) that there exists a constant C; > 0
satisfying |fe(s, 21)| < C1/|s|. Furthermore, from (2.2), we have

12(d — 2) exp|z1] — (d — 2)2Y/P?% (s)s™ % exp|z1] exp[§1 (s, 21 )|

= 2(d — 2) exp[z1]|1 — (M)APSAP exp[gi (s, 21)]‘

2
Ay logs\'
=2(d — 2) exp[z1]|1 — <1 - 2,;0;;3) exp[g (s, zl)]‘
A, logs A
< C|1 —explgi(s, z1)]] + C‘l - (1 - 2”) explgi1 (s, z1)].

(3.24)
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Similarly to the proof of lemma 2.2, there exists a constant C' > 0 such that

AP
‘1_ (1_141010&9)
2

S

log s - C
<C f , 191(s, 21)] < "

for sufficiently large s > 0. Together with (3.24), this yields that
12(d — 2) exp[z1] — (d — 2)2'/Pp?7 (5)s™ 7 exp[z1] exp[g1 (s, 21)]| < 5374

for some constant C' > 0. Therefore, by Young’s inequality, we have

‘ / E (2(d — 2) expz1] — (d — 2)2"/PpA» s exp[z1] explgi (s, 21)]) 22 ds

te

+ ‘ fo(s,21)z2ds
Te

t
= C
é/T @ZQdS
202 [* 1 (d—2) [
gH/TE @dS‘i‘ D) /TE |22| ds

4C? d—2 [
< ds. 3.25

We set
4C?
d—2’

Then, it follows from (3.22) and (3.25) that

C, =

(3.26)

‘ / (2(d — 2) explz] — (d — 2)21/2pM s explzy] explgi (5, 21)]) 22 ds

te
—&—’/ fo(s,21)22ds
Te

C,  d—2 ("
< 4+ — |22|% ds
\/TE 2 Te ‘
e d—2 ('
<Gt . | 22| ds. (3.27)
Moreover, we take T. > 0 so that |24,¢ 7 (t)¢:(t)| < (d — 2) for ¢ > T.. Then,
we have
te d o 2 te
/ (d—2+24,0  pr)z5ds > —— / |22|% ds. (3.28)
7. 2 Jrn
It follows from (3.23), (3.27) and (3.28) that
d—2 (' e d—2 (' €
El(tE)_El(TE)>T - ‘Z|%d8_§—T - |22‘2d8>—§.
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This, together with (3.20) and (21(7%), 22(T%)) ¢ I, implies that

3
2 <BU(TL) < Bilto) + 5 = 5
which is a contradiction. Therefore, our assertion holds. O

We are now in a position to prove theorem 1.2.

Proof of theorem 1.2. Let {v,}52; C Ry be a sequence satisfying lim,,_, o ¥, = 0.
Let (z1(t,vn), 22(t,n)) be the function defined by (3.18). By lemma 3.5, we find
that (z1(t,Yn), 22(t, ¥»)) is uniformly bounded in the interval (7%, t.). This, together
with (3.7), implies that y::(t,7,) is also uniformly bounded in the interval (T, t.).
Differentiating (3.7) implies that y:+(¢,7y) is also uniformly bounded in (7%,¢.).
This yields that (z1(t,vn), 22(t,vn)) and (21¢(¢,Vn), 22t(t,vn)) are equicontinuous.
Thus, it follows from the Ascoli-Arzela theorem that there exists a subsequence
{(21(t,vn), 22(t,vn))} (which we still denote by the same letter) and a pair of func-
tions (24 1(t), 2« 2(t)) in (CH(T%,t.))? as n — oo, Since t.(> T.) is arbitrary, we find
that (21(t,vn), 22(t,yn)) converges to (2. 1(t), z«2(t)) in (C*(T,00))? as n goes to
00. We note that 0 < A(y,) < A1, where \; is the first eigenvalue of the operator
—A in B; with the Dirichlet boundary condition. Thus, there exists A, > 0 such
that A(y,) — A« as m — oco. By the result in [4], we see that A, > 0. From these
results, we see that (z. 1, 2«2, \s) satisfies

d

g =2z forte (7%10g)\*,00),

d

g =(d—2— 24,0 "¢z +2(d —2) + fo(t, 21)

~1 P
— pp?r exp [—Qt + <p<1 + %(m + zl(t))> ] for t € (—4 log A, 00).

‘We shall show that
ze1(t) = 0 ast — oo. (3.29)

Let us admit (3.29) for a moment and continue to the proof. We set

o= (1)

n(t) = "7 (t) + (5 + 2:(1) = () + 8) /7.

Then, we see that 7, satisfies (2.3). Moreover, it follows that

*”_p”(’”mm(t)) pr(e) - *”p“)

_i 1_ koL 1/p=2(p 1 2
5 (5= 1)@ e )72 )

n(t) = VP (t) +

_ W_A”(t)z 11 o~ LENYP=2 (o= 1 (£))2
—E 00~ (51 b ) e 0 (330)

for some 6, € (0,1). This, together with (3.29), implies that 7, € X, where the
function space X' is defined by (2.17). From theorem 2.1, there exists a unique
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solution 7., to (2.3) in X. Therefore, we have 7.(t) = 7 (t). This yields that
A = Apooo.

Thus, all we have to do is to prove (3.29). Suppose to the contrary that there exist
d > 0 and {tx} C Ry such that |z, 1(t)| > 6 for all £ € N and limy_, ot = 0.
Then, there exists kg € N such that ¢, > T.. Then, we see that |21 (ty,,7)| = 36
for sufficiently large v > 0. We choose £ = 4. It follows from (3.20) that

P -1 P -1
(Zl <TE+7+p logv,v),22(75+7+p 10g%7)> S

2 2 2 2
By lemma 3.5, we see that (21 (t,7), 22(t,7)) € Ise = 5o fort € (T., 7o+ 377 +5(p—
1)logy). We can take v > 0 sufficiently large that ¢y, € (T., -4 377+3 (p—1) log ),
which is a contradiction. This completes the proof. O

4. Infinitely many regular solutions in the 3 < d < 9 case

In this section, following [8, 14, 15], we shall give a proof of theorem 1.3. More
precisely, we count the number of intersections between the singular and regular
solutions. Let I be an interval in R. For a function v(s) on I, we define the number
of zeros of v by

Z10()] = #{s € I | v(s) = 0}.

Then the following result is known.

PROPOSITION 4.1. Let U(p) be a solution to (3.3). We define a function V' by
2(d—2
V(p) = —2logp+ log (p) (4.1)

Then, in the 3 < d <9 case, we have
Z10,00)[U(p) = V(p)] = o0.
See [17] or [15] for a proof of proposition 4.1.

REMARK 4.2. We can easily check that the V' defined by (4.1) is a singular solution
to the equation in (3.3).

We set
~ 1/1) @_AP
Wy(s) =@ /P(t) + T(H + Yoo (1)), (4.2)
where t = —log s and

Yoo (t) = pp™7 (¢ + K)P — p'/P) + pprn, — k.

Here, 7o, is the solution to (2.3) given by theorem 2.1. Then, it follows from theo-
rem 2.1 that limy_, o Yoo (t) = 0. Thus, we see that W, is a singular solution to (1.5)
with A = A, . Using proposition 4.1, we shall show the following.

LEMMA 4.3. Let a(s,v) be a regular solution to (1.5) with 4(0) = ~. Then, we have
Zr,[a(, ) = Wp()] = 0o as v — oo, (4.3)

where I, = [O,min{\//\p?, \/W})
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Proof. We set
(p,7) = =7 + 9" Wi(s), p= VAP Lexn(y9)s, (44)
where W, is defined by (4.2). We claim that
s (p,7) = V(p) in Cioe([0,00)) as v — oo (4.5)
It follows from (4.2) and (4.4) that
@ (p,7) = =P + 7" Wls) = =pr? + 07" e P () 47 e T (1) (K 4 yeo (1))
We fix p > 0. Then, it follows that

P —-1)1
tz—logs:—logp—i—%—&—W—)m as vy — o0.
This implies that
Yoo(t) = 0 as vy — oo. (4.6)

As in (3.14), (3.15), together with (4.6), we similarly obtain

i (p,7) = —p7? + 0V e P () + AP oA () (K + Yoo (t))

2(d—2
— —210gp+log(p) =V(p) asy— co.
Therefore, (4.5) holds.
It follows from (3.1) and (4.4) that
Zr,[a(s,7) = Wy(s)] = Zy,[alp,7) — @ (p, 7)), (4.7)

where

Iy = [0, /7L exp(v#) min{y/ Xy oo, VAC)D)-

Combining lemma 3.1, proposition 4.1 and (4.5), we find that
Tim 2, [8(6.7) ~ 1.(p,2)] = Zpp sy [U(p) ~ V()] = 0. (48)
From (4.7) and (4.8), we obtain the desired result. O

Once we have obtained lemma 4.3, we can prove theorem 1.3 by employing the
same argument as in [15, lemma 5]. However, for the reader’s convenience, we shall
give a proof.

Proof of theorem 1.3. Let (s, ~) be a solution to (1.5) with @(0) = -, and let W, (s)

be the singular solution defined by (4.2). We set (s, y) = a(s,7) — W(s). Then,
0(s,y) satisfies the following ODE:

d—1 N P P <
Vgs + by 4+ TV _ Wy =0, 0<s< A7),
s

where A(7) = min{/Ap oo, \/A(y)}. Then, if 9(s,~) has a zero at sg, we have
ﬁ(8077) = Oa 63(5077) # 0 (49)
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from the uniqueness of the solution. Moreover, for each v > 0, ©(s,~) has at most
finitely many zeros in (0, A\(y)). Indeed, if it does not, there exist a sequence of
{sn} € [0,A(7)] and s, > 0 such that lim,_,oc s, = s.. Then, we see that (s, y) =
0s(8x,y) = 0, which is a contradiction. In addition, it follows from (4.9) and the
implicit function theorem that each zero depends continuously on «y. Therefore, we
find that the number of zeros of ©(s, ) does not change unless another zero enters
from the boundary of the interval [0, A(7)]. We note that ©(0,~) = @(0, ) —W,(0) =
—o0. From this, we find that the zero of #(s,~) enters the interval [0, A(y)] from
5= A(v) only.

In order to prove theorem 1.3, it is enough to show that the function A(y) oscil-
lates infinitely many times around A, o as y — co. Suppose that there exists vo > 0
such that A(y) > Ap oo for all v > . Then, we have Ay) = VAp.oo for all v > v
and we see that

(V/Ap,oo) = v/ Ap,oo, V) = Wi/ Ap,oo) = @1/ Ap,oc,¥) > 0.

This implies that the number of zeros cannot increase. This contradicts (4.3). Next,
suppose that there exists y1 > 0 such that A(y) < A for all ¥ > ~;. By the same
argument as above, we can derive a contradiction. These results imply that the
function A(y) oscillates infinitely many times around A\, . O

5. Finiteness of the Morse index when d > 11

In this section, we investigate the Morse index of the singular solution in the d > 11
case. It is enough to restrict ourselves to radially symmetric functions. Let W, be the
singular solution to (1.5). The following lemma is key to the proof of theorem 1.4.

LEMMA 5.1. Assume that d > 11 and p > 0. Then, there exists p; > 0 such that

(d—2)*

P (5) exp(W7 ) < <

for 0 < s < py. (5.1)

Proof. We set W, (t) :7Wp(s) and t = —log s. By the proof of theorems 1.1 and 1.2,
the singular solution W,(¢) can be written as

. o~ (t)

Wy(t) = o'/2(t) + (K + (1)),

where lim¢_, oo ¥« (t) = 0. Then, for any € > 0, there exists t; = ¢1(¢) > 0 such that

WP(t) <2t—Aylogt+r+e, W2 < @) (1+e) fort>t.

This yields that

pWEL()eVr ) < p(26)4% (1 + €) exp(2t — Ay logt + K + €)
Wld =220
p
=2(d—2)(1 +¢)ee?. (5.2)

=p24(1+¢)e
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We note that 2(d—2) < ;(d—2)%if d > 11. Therefore, we can take ¢ > 0 sufficiently
small so that J )
- 5p -2
pWé)il(t)eW’J (t) < ( 1 ) o2t
Thus, we see that (5.1) holds for 0 < s < p; with p; = e, O

We are now in a position to prove theorem 1.4.

Proof of theorem 1.4. It is enough to show that the number of negative eigenvalues

of the operator Lo, on Hj .4(B 57) is finite, where Lo, = —A — pWE—1(s)e"7.

We define smooth functions x; and x2 on [0,v/Ax) by

17 0<3<%P17

S) =
xa(s) {0, p1 <8 < VA
and ya(s) = 1 — x1(s). For each ¢ € H&,rad(B\/K)» we have

o V. 212
LOO ’ = - .
(L) =was [ |

VAL dqu
[
P1 dqg

> -
/wd71/0 {’ds
\/X ~

* d¢

+Wd—1/0 {ds

where wy_1 is the volume of the unit ball in R¢~!. By (5.1) and the Hardy inequality,

we obtain
p1 d(;g 2
(-

0<xa(s) <1, 0<s <V,

i exp(W,§’<s>>¢3|2}s“ s

=p0a(s) +xa()Wp! exp<W5<s>>|¢32}sd_l o

pr ! exp(Wp ))\d)|2 }sd_l ds

2

~ pxals) W2 exp(1W, <>>|¢2}s“ds,
(5.3)

i exp(W;’(s))qSF}sd-l s

{5 -

= 0.

(d 2)

¢|2}Sd_1 ds

This together with (5.3) yields that

o VA r1d
Loy zean [ {|5

We note that the potential pxg(s)Wﬁ’l exp(W;,’(s)) is bounded. Therefore, we find
that

VoY 2
“11d
inf {wdl/ H —d)
GEHY 0a(B /xo), 0 ds

llpll L2=1

e exp(W >>¢|2}sd—1ds. (5.4)

2

—pxg(s)W;’_l exp(Wé’(s))|q§|2] sd1 ds} > —o0.
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This, together with (5.4), implies that the number of the negative eigenvalues of
the operator L., is finite. This completes the proof. O
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