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Abstract

In a recent experimental study, the beam intensity profile of the Vulcan petawatt laser beam was measured; it was found
that only 20% of the energy was contained within the full width at half maximum of 6.9 μm and 50% within 16 μm,
suggesting a long-tailed non-Gaussian transverse beam profile. A q-Gaussian distribution function was suggested
therein to reproduce this behavior. The spatial beam profile dynamics of a q-Gaussian laser beam propagating in
relativistic plasma is investigated in this article. A non-paraxial theory is employed, taking into account nonlinearity
via the relativistic decrease of the plasma frequency. We have studied analytically and numerically the dynamics of a
relativistically guided beam and its dependence on the q-parameter. Numerical simulation results are shown to trace the
dependence of the focusing length on the q-Gaussian profile.
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1. INTRODUCTION

The propagation of ultra-high intensity laser beams in plas-
mas has recently received significant attention, mainly due
to their potential applications in the development of X-ray
lasers (Faenov et al., 2007; Svanberg & Wahlstrom, 1995),
plasma-based accelerators (Joshi et al., 2002; Tajima &
Dawson, 1979; Nakajima et al., 1995; Modena et al.,
2002; Gordon et al., 1998; Malka et al., 2002; Geddes
et al., 2004; Faure et al., 2004; Mangles et al., 2004;
Lifschitz et al., 2006; Singh et al., 2010), and fast-ignition
schemes for inertial confinement thermonuclear fusion
(Deutsch et al., 2008; Hora, 2007; Kline et al., 2009;
Tabak et al., 1994; Romagnani et al., 2008; Roth et al.,
2001; Seifter et al., 2009). In all of these applications, it is
necessary for a high intensity laser beam to propagate in a
controllable manner over a long distance with high direction-
ality. If the laser peak power is high enough, a laser beam can
overcome the natural limit of refraction, and undergo a focus-
ing effect in the plasma due to non-linear self-interaction
(Askaryan, 1962; Litvak, 1969; Max et al., 1974; Borisov
et al., 1992; Monot et al., 1995). The balance between self-
focusing and diffraction can provide a condition for long-

distance propagation of beams with peak intensity higher
than otherwise achievable in vacuum. Beam self-focusing
is strongly affected by the transverse distribution of beam ir-
radiance (Sodha & Faisal, 2008; Sodha et al., 1976; Sodha
et al., 1974). In a recent series of investigations, Sodha
et al. (2009a, 2009b) have presented a modified paraxial-like
approach to analyze the propagation characteristics of a
hollow Gaussian beam (HGB) in the vicinity of its irradiance
maximum in the plasma by taking note of the saturating char-
acter of the nonlinearities (i.e., ponderomotive, collisional,
and relativistic). In continuation of previous investigations
(Sodha et al., 2009a, 2009b) Misra and Mishra (2009) mod-
eled the propagation of a hollow Gaussian electro-magnetic
beam in a plasma, considering the combined effect of relati-
vistic and ponderomotive nonlinearity. It is shown that the
critical curves and self focusing depend strongly on the
order of the HGB; the propagation of the HGB follows the
characteristic three regimes in the vicinity of the maximum
irradiance. To our best knowledge, earlier theoretical investi-
gations have tacitly considered beams with a Gaussian inten-
sity distribution along the wavefront, implying that the laser
is operated in the TEM00 mode. The aim of this article is to
investigate, for the first time, the effect of a deviation from an
initial Gaussian beam spot assumption on the actual evol-
ution of the beam profile.

The physics of laser plasma interaction in the relativistic
regime has been identified as an emerging area in the

479

Address correspondence and reprint requests to: A. Sharma, Centre for
Plasma Physics, School of Mathematics & Physics, Queen’s
University Belfast, BT7 1NN Belfast, United Kingdom. E-mail: a_physics
2001@yahoo.com

Laser and Particle Beams (2010), 28, 479–489.
©Cambridge University Press, 2010 0263-0346/10 $20.00
doi:10.1017/S0263034610000479

https://doi.org/10.1017/S0263034610000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034610000479


recent few years, and is often referred to as high-field
science. The high electric field associated with the propa-
gation of extremely intense laser beams leads to a quiver
speed of electrons on the order of the speed of light in
vacuum, causing significant increase in the mass of electrons
and a consequent increase in the dielectric constant of the
plasma; this is one of the typical mechanisms resulting in
the self-focusing of beam (Hora, 1975). Relativistic effects
are dominant for a pulse duration shorter than the time
needed for the manifestation of ponderomotive nonlinearity.
Under the action of the ponderomotive force, electrons and
ions move together at the ion sound speed cs; thus, the
characteristic time for the manifestation of the ponderomo-
tive nonlinearity is r0/cs, where r0 is the beam width.
Additional phenomena contributing to the (de)focusing of
an electromagnetic beam in a plasma are multiphoton
(tunnel) ionization (Annou et al., 1996), avalanche ionization
(Stuart et al., 1996; Derenzo et al., 1974), harmonic gener-
ation (Sodha & Kaw, 1969), modification (Gurevich, 1978)
of electron density, and nonlinear absorption (Sharma
et al., 2004). All these forms of nonlinearity are present
and operate in various relative strengths in different regimes
in terms of the irradiance, electron density, electron collision
frequency, and duration of the pulse of the beam.
A laser beam is usually assumed to be characterized by a

Gaussian intensity distribution function (df) along its wave-
front. In contrast to this picture, Patel et al. (2005) measured
the intensity profile for the Vulcan petawatt laser and found
that only 20% of the energy was contained within the
full-width-at-half-maximum (FWHM) of 6.9 μm and 50%
within 16 μm. For comparison, a Gaussian df would contain
50% of the energy within the FWHM and 97.6% within
16 μm. Nakatsutsumi et al. (2008) recently suggested a
q-Gaussian distribution function (Tsallis, 1988), namely:

f (r) = f (0)[1+ (r/4.4539μm)2]−1.4748 (1)

(see Fig. 1), to reproduce this behavior (here r is the spatial
coordinate in the radial direction, and f (0) is a real constant,
to be determined by normalization requirements). Further
investigations of the laser beam spot profile on the Vulcan
laser in Rutherford Appleton laboratories (Davies, J.R.
(2010). Private communication) seem to suggest that the
beam intensity is characterized by a function of the form

f (r) = f (0) 1+ r2

qr20

( )−q

, (2)

– cf. (1) above – or by a combination of such functions,
where the values of the relevant parameters (q and r0 here)
can be obtained by fitting experimental data. Inspired by
these challenging findings, we have here undertaken a
thorough investigation of the spatial beam profile dynamics
of a q-Gaussian laser beam propagating in relativistic plasma.
A few comments on nonthermal distributions appear to

be in order here, for the sake of rigor and completeness. In

fact, Ex. (1) is structurally reminiscent of the κ distribution
(Vasyliunas, 1968; Hellberg et al., 2009). (Various forms
of the κ distribution have appeared in the past; we refer the
reader to the discussion in the references by Hellberg et al.
(2009) and Livadiotis and McComas (2009).) As pointed
out above, it is also inspired by the Tsallis (“q-Gaussian”)
distribution (Tsallis, 1988), which lies in the foundation of
non-extensive thermodynamics. Despite a number of works
that have addressed the apparent ubiquity of the former
(kappa) distributions in various plasma contexts (Treumann,
2001; Treumann et al., 2004; Collier, 2004), there is at this
stage no comprehensive theory relating this family of distri-
butions to the fundamental underlying physics. Quite re-
markably, a recent study (Livadiotis & McComas, 2009)
claims to establish a rigorous link between the κ (family
of) distribution(s) and the Tsallis distribution. This analogy
is however certainly not algebraically straightforward, and
still appears to be a controversial topic.

2. ANALYTICAL MODEL

The effective dielectric constant of a homogeneous plasma in
the presence of a electromagnetic beam can be formally ex-
pressed as (Sodha et al., 1976)

e = 1− (ω2
p/ω

2)+ f(|E|2), (3)

where ωp is the plasma frequency, ω is the frequency, and E is
the electric field associated with the laser beam. The explicit
dependence of the function f on |E|2= EE∗ (the star here
denoting the complex conjugate) needs to be determined in
terms of the physical system considered. By increasing the
beam power, the dielectric constant tends to reach its satur-
ation value. The nonlinear character of the dielectric constant
thus affects the dynamics of the laser beam and has naturally
been attracting significant attention among researchers for
well over 30 years. Some challenging aspects of the beam
propagation characteristics are revealed by considering non-
Gaussian beam behavior, as shown and discussed in the fol-
lowing.We shall investigate here the non-paraxial propagation
characteristics of a petawatt (1015 W) laser beam with power
0.32 PW and intensity 1.37 × 1018 W/cm2 with spatial and
temporal resolution of 30 μm and 17 ps, respectively. The in-
tensity distribution profile of the beam is considered to be
given by a q-Gaussian function, in fact given by (1) above.
Let us consider a circularly polarized laser beam propagat-

ing in the axial (z-)direction:

E(r, z, t) = A(r, z, t)(ex + iey) exp [−i(ωt − kz)], (4)

where ex and ey are the unit vectors along the x and y axes,
respectively. The amplitude A is a slowly varying function
of space (r, z) and time t. The electric field E satisfies the
wave equation

∇2E− e

c2
∂2E
∂t2

= 0, (5)
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which can be directly derived from Maxwell’s equations. For
a transverse field E

∇ · E = k · E = 0, (6)

k here being the propagation vector. We note that ∇(∇.E)
has been neglected in deriving Eq. (5) (even if E has a longi-
tudinal component, the term ∇(∇·E) can be neglected pro-
vided that c2

ω2 | 1e∇2lne| ≪ 1, a condition satisfied in most
cases of interest). We need to stress that (5) is a nonlinear
equation, since e depends on |E| via (3).
The initial intensity profile of the q-Gaussian laser pulse

can be written as,

a2(r, z = 0, t) = a200 1+ r2

qr20

( )−q

F(t). (7)

where a= eA/mωc is the normalized laser field and a00 is the
initial normalized laser field amplitude. We note that
a = 0.8510−9

��
I

√
× λ, where I is expressed in W/cm2 and λ

is expressed in μm. We assume the temporal profile of the
pulse—see F(t) in Eq. (7)—to be Gaussian, viz.,

F(t) = exp (− t2/τ20). (8)

where τ0 is the initial pulse width. The deviation from the
Gaussian profile is measured by the real parameter q,
which acquires smaller (finite) values for a strongly non-
Gaussian profile. The usual Gaussian distribution is recov-
ered for q→∞. Note that the steady state dynamics is
implicitly considered in order to explore the spatial evolution
of a q-Gaussian beam profile.
Figure 2 illustrates the normalized intensity profile of the

laser beam for different values of q. Small values of q are
characterized by a long tail, while as q increases toward

higher values, the distribution gradually converges to a Gaus-
sian profile, attained at infinity.

The laser pulse propagates at the group velocity vg= c2k/
ω, where k is the wave number given by the plasma dis-
persion relation, c2k2= ω2− ωp

2. We shall introduce the co-
ordinate transformation τ= t− (z/vg) and z→ z. Now
using Eq. (4), the wave Eq. (5) can be written as,

2ik
∂a
∂z

+ ∂2a
∂r2

+ 1
r

∂a
∂r

+ ω2

c2
e(r, z, t)a = 0, (9)

Eq. (9) is the equation of evolution for the field envelope, and
includes the effects of diffraction, transverse focusing and
nonlinearity. The last term represents the nonlinearity
effect, which arises due to the dependence of the dielectric
constant on the intense laser field.

The nonlinear dielectric constant appearing in Eqs. (5) and
(9) may be expressed (in the non-paraxial approximation) as

e(r, z, t) = e0(z, t)+ r2e1(z, t)+ r4e2(z, t), (10)

where e1(z, t) and e2(z, t) express the radial spot profile
dependence (vanishing at r= 0). The exact expansion for
e(r, z, t) will be obtained later; refer to Eqs. (21)–(24) below.

The solution of Eq. (9) can be expressed as

a(r, z, t) = a0(r, z, t) exp[−ikS(r, z, t)], (11)

where both amplitude (a0) and eikonal (S ) are real quantities;
eikonal S is related with the curvature of wavefront. Substitut-
ing for a from Eq. (11) in Eq. (9) and separating the real from
the imaginary parts, one obtains

∂a20
∂z

+ ∂S
∂r

∂a20
∂r

+ a20
∂2S
∂r2

+ 1
r

∂S
∂r

( )
= 0, (12)

Fig. 1. (Color online) Image of focal spot in vacuo at low energy taken with a 16-bit CCD camera (left). Radial lineout of focal spot
intensity showing 20% and 50% encircled energy boundaries (right). Adapted from (Patel et al., 2005)
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and

2
∂S
∂z

+ ∂S
∂r

( )2

= ω2e(r, z, t)
c2k2

+ 1
k2a0

∂2a0
∂r2

+ 1
r

∂a0
∂r

( )
. (13)

Adopting the higher order paraxial theory (Liu & Tripathi,
2001; Sodha & Faisal, 2008; Sodha et al., 1976, 1974), we
anticipate a solution for Eqs. (12) and (13) in the form

a20(r, z, t) =
a200
f (z)2

1+ α0
r2

(r0f (z))2
+ α2

r4

(r0f (z))4

[ ]

× 1+ r2

q(r0f (z))2

[ ]−q

F(t), (14)

and

S(r,z,τ) = r2

2f
df

dz
+ r4

r40
S2, (15)

where α0, α2, S2 and the beam width parameter f are functions
of z. Identifying the components of the eikonal (S ) in the
latter expression, the first term above is indicative of the
spherical curvature of the wavefront, while S2 represents its
departure from the spherical nature. The parameters α0, and
α2 characterize the off-axis contribution to the beam inten-
sity; these higher order terms play a crucial role in the dy-
namics of a q-Gaussian beam, as we shall show below.
The latter two Eqs. (14) and (15) have also been employed

by Liu & Tripathi (2001) and Sodha & Faisal (2008) for non-
paraxial Gaussian beam propagation.
Using Eqs. (11), (14), and (15), the intensity profile of a

q-Gaussian laser pulse can be expressed as

a2(ρ,ζ ,τ) = a200F(τ)R(0)
2

R(ζ)2
1+ α0

ρ2

R(ζ)2
+ α2

ρ4

R(ζ)4

[ ]

× 1+ ρ2

qR(ζ)2

[ ]−q

exp −ie1/20
ρ2

R(ζ)
dR(ζ)
dζ

− 2ρ4

ρ41
S̃2

[ ]
,

(16)

where R(ζ)= ρ1 f (ζ) is the beam width (in the radial direc-
tion), R(0)= ρ1= r0ω/c is the initial dimensionless beam
width [viz. f (ζ= 0)= 1], ζ= ωz/c, ρ= rω/c and
S̃2 = S2ω/c. The laser pulse profile in plasma can be
obtained by solving the following four coupled second
order ordinary differential Eqs. (ODEs):

e0(ζ , τ)
d2f

dζ2
= (1+ 8α2 − 3α02 − 2α0 + 4/q)

ρ41f
3

+ e1(ζ , τ), (17)

dS̃2
dζ

= ρ61e2(ζ , τ)
2

+ 1
f 6

α0
3 − α0

2 − 7α0α2 + 2α2 + α0 − 1
q

− 3
q2

( )

− 4S̃2
f

df

dζ
, (18)

dα0
dζ

= −16S̃2f
2, (19)

Fig. 2. (Color online) Initial intensity profile of the q-Gaussian laser pulse for q= 1.4748, 1.714, 3, and∞; from (Eqs. 8 and 7). The radial
distance (r) and time (t) are normalized by the initial beam width and initial pulse width respectively. Panels (a)–(d) show the normalized
3D intensity initial snapshots of a q-Gaussian laser pulse whose spatial beam radius (r0) is 30 μm and temporal pulse duration (τ0) is 17 ps,
respectively. Figure 2e shows the spatial intensity profiles of q-Gaussian beam. The color bar represents the variation of the initial inten-
sity. The long tail associated with small q is clearly visible.
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and

dα2
dζ

= α0
∂α0
∂ζ

− 8α0S̃2f
2 + 8S̃2f

2, (20)

where p= a002 F(τ)/f (ζ)2. At ζ= 0 and τ= 0, p= a00
2 is the

initial normalized laser field amplitude.
We have obtained Eqs. (17) and (18) by substituting (14),

(15) [along with (10)] into (13), and then equating the coef-
ficients of r2 and r4, respectively. In a similar fashion, Eqs.
(19) and (20) were obtained by substituting (14) and (15)
into (12). At this stage, knowing e0 and e1, one can solve
the first three among the equations above and then integrate
the latter one numerically, to obtain the beam width par-
ameter ( f ) as a function of z. If the functional form of e1
is known, one can easily evaluate e0 and e1. Note that their
form depends on (and reflects the physical features of) the
beam-plasma model considered (Sodha & Faisal, 2008;
Sodha et al., 1976, 1974).
The index of refraction for a small-amplitude electro-

magnetic wave (a weak laser beam) propagating in plasma
with density ne is given by n= ck/ω= (1−ωp

2/ω2)1/2. As
the laser intensity increases, the effect of the transverse
quiver motion of plasma electrons becomes stronger and
the electron mass is modified by the relativistic effect, viz.
ωp
2 → ωp

2/γ, which eventually affects the expression for n.
The conservation of transverse canonical momentum im-
poses a= γβ, where β= v/c is the normalized velocity of
the plasma electrons, and the Lorentz factor γ (for the elec-
trons) is given by γ≈(1+a2)1/2 for a circularly polarized
laser [read (1+a2/2)1/2 for linear polarization]. Thus, the re-
lativistic refractive index of plasma can be written as n=
[1−(ωp0

2 /ω2)(1+a2)−1/2]1/2, where ωp0 is the unperturbed
plasma frequency (in the absence of the electromagnetic
field).
If the radial profile of γ attains a maximum on the axis,

i.e., for a laser beam intensity profile peaked on the axis,
or γ(0) > γ(r), then the index of refraction n(r) can reach
a maximum on the axis. This causes the wavefront to
curve inwards and the laser beam to converge, which may
result in optical guiding of the laser light. Since the laser
phase velocity vph depends on the index of refraction,
vph = c/n, it will then depend on the laser intensity. Local
variation in the phase velocity will modify the shape of
the laser pulse, and, consequently, the spatial and temporal
profile of the laser intensity. Relativistic self-focusing
occurs when the laser power exceeds a critical power,
given by Pc= 17(ω/ωp)

2 GW. On the other hand, photo-
ionization can defocus light and thus increase the self-
focusing threshold, by increasing the on-axis density and re-
fractive index. When this focusing effect just balances the
defocusing due to diffraction, the laser pulse can be self-
guided, and thus propagate over a long distance with high
intensity. For a laser with peak intensity along the axis,
this requires the relationships ∂ (a2)/∂r< 0 and ∂n/∂r< 0
to be satisfied for relativistic guiding. In the following, a

circularly polarized laser is assumed (it is nevertheless
straightforward to extend the formalism to a linearly polar-
ized beam).

A general expression of the relativistic dielectric constant
(e= n2) of plasma for a large amplitude electromagnetic
wave can be written as

e = 1− (ω2
p0/ω

2)(1+ a2)−1/2. (21)

Introducing a q-dependent field distribution (as given by Eq.
(16)) in the latter Eq. (21), one obtains the components of the
dielectric constant in (10) as

e0(ζ , τ) = 1− (ω2
p0/ω

2)(1+ p)−1/2, (22)

and

e1(ζ , τ) = −(1/2) (1− α0)
ω2

p0

ω2
p(1+ p)−3/2 1

R2(ζ)
, (23)

and

e2(ζ , τ) = −ω2
p0

ω2

3
8
p(1− α0)2

(1+ p)2
− 1

2

(α2 − α0 + 1
2(1+q−1)

(1+ p)

[ ]

× p(1+ p)−1/2 1
R4(ζ)

. (24)

The critical relation relating the beam width and the beam
power, as can be derived from Eqs. (17) and (23), will feature
a parametric dependence on q. For d2f/dζ2= 0 at ζ= 0, τ=
0, (α0= 0 and α2= 0) one obtains

ρ21 =
2(1+ 4/q)(1+ a200)

3/2

a200(ω
2
p0/ω

2)
, (25)

which for infinite q recovers the expression derived earlier
for a Gaussian beam in non-absorbing collisional plasma
(Sharma et al., 2003). Eq. (25) expresses the dimensionless
beam width ρ1 (at f= 1) as a function of the (reduced) laser
field amplitude a00 and thus related to the initial beam
power. The function can be depicted on the (a00, ρ0)
plane and is generally referred to as the critical power
curve or, simply, the critical curve. If the initial values of
a00 and ρ1 of a laser beam are such that the point (a00,
ρ0) lies on the critical curve, the value of d2f/dζ2 will
vanish at ξ= 0 (z= 0). Since the initial value of df/dζ (in
case the wave front is plane) is zero, the value of df/dζ con-
tinues to be zero as the beam propagates through the plasma.
Hence, the initial value of f, which is unity (at z= 0), will
remain unchanged. The beam thus propagates without any
change in its beam width. This regime is known as uniform
waveguide propagation. If an initial point (a00, ρ0), corre-
sponding to the initial (z= 0) normalized laser field
amplitude and beam radius, lies below the critical curve
(that is, on the same side of the curve as the origin) then
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d2f/dζ2> 0, while if a point lies on the other side of the
critical curve then d2f/dζ2< 0. We retain that, when the
initial point lies below (above) the critical curve, the beam
width parameter will increase (decrease, respectively) at
(z, f )= (0, 1).
Figure 3 illustrates the dependence of the critical curves on

the value of q. The critical curves are down-shifted as q in-
creases because of enhanced nonlinearity. The critical
curves for the homogeneous and inhomogeneous cases
remain the same, since these are dependent on the magnitude
of the parameters at z= 0; since α0=α2= 0 at z= 0, the
higher order terms do not affect the critical curves. As a
matter of fact, the critical curves (at z= 0) are not relevant
in inhomogeneous plasma, in which case the inhomogeneity
parameters increase with the value of z. To see this, we recall
that the higher order terms (α0, α2 and S2) in the non-paraxial
beam propagation are functions of z and in fact vary as the
beam propagates in the plasma. Physically, these higher
order terms represent the medium inhomogeneity in z; how-
ever, the critical relation is derived at z= 0, where these
terms vanish.
The critical curves remain the same as in paraxial beam

propagation (Sharma et al., 2008) as z increases, due to the
plasma parameter variation (higher order terms or inhom-
ogeneity parameters). The critical beam power and beam
width relation (as given by Eq. (25)) shows the inverse de-
pendence of the initial beam radius on the q-factor. This
relationship between the critical beam power and the beam
width explains clearly the beam convergence (or divergence)
of a q-Gaussian electromagnetic beam. We also see from
Figure 3 that the minimum value of ρ1 is higher for lower
q-values (i.e., for a larger deviation from the Gaussian). It
is thus predicted that larger spot-size beams with lower
q-values can be relativistically guided in a plasma, in com-
parison with smaller spot-size Gaussian beams (or, e.g.,
q-Gaussian ones with large q value).

3. NUMERICAL INVESTIGATION

The evolution of a q-Gaussian beam profile can be analyzed
by numerically by solving the ODE (17) coupled with Eqs.
(18–20). Eqs. (17) can be numerically integrated using ap-
propriate boundary conditions to evaluate the beam width
parameter f as a function of z. For an unperturbed initial
plane wave, the boundary conditions on Eq. (17) were
taken as: f= g= 1, and d f/dζ= 0 at ζ= 0. We have per-
formed a numerical computation for the following laser
plasma parameters a00= 0.1 (I0= 1.37 × 1016 W/cm2, λ=
1 μm), r0= 30 μm, n0= 4 × 1020 cm−3 and ω= 1015 rad
sec−1.
We have numerically obtained the normalized q-Gaussian

beam intensity profile a2(ρ, ζ, τ), as given by Eq. (16),
initially (at T1= 0) and then at given propagation time
(equivalent to a given propagation distance), as the beam pro-
pagates in the plasma. The results are shown in Figure 4 at
propagation time instants T2= 2 ns, T3= 5 ns, and T4=
9 ns, for various values of q. The propagation time T= ζ/c
(proportional to the propagation distance z or ζ) advances
from left to right (within a given row, for given q). The top
row (see Figs. 4a to 4d) depicts the intensity profile for a
q-Gaussian beam (for q= 1.4748) propagating through rela-
tivistic plasma, in the nonparaxial region, at instants T1, T2
and T3. The second, third, and bottom rows (see Figs. 4a to
4d, 4e to 4h, and 4i to 4l, respectively) show the variation
of the normalized intensity for higher q values (closer to a
Gaussian df) at the same time instants as the top column.
We witness a fast focusing of the laser beam in the nonpar-
axial region. Transverse focusing of the beam dominates
over diffraction, due to the nonlinear effect of relativistic
mass variation. The difference in focusing/defocusing of
the axial and off-axial rays leads to the beam profile maxi-
mum actually splitting on the plane transverse to
propagation.
It is obvious that in the paraxial region, the intensity of the

laser beam is maximum at r= 0 along the distance of propa-
gation as α0= α2= 0. While in the nonparaxial region the
laser intensity becomes minimum at r= 0, it assumes a
ring structure or a split beam-maximum profile (Sodha &
Faisal, 2008). In Eq. 18 at z= 0, dS2/dζ is positive and α0
starts decreasing, while α2 increases sharply with the increase
in z. Due to the combined effect of α0 and α2 the laser inten-
sity acquires a minimum on the axis and the intensity of the
nonparaxial region increases. Focusing becomes faster in the
nonparaxial case in comparison to the paraxial case due to
the participation of the off-axis components (α2≠α2≠0).
For higher q (see the bottom row in Fig. 4), the behavior is
essentially tantamount to that of a Gaussian beam (Liu & Tri-
pathi, 2001; Sodha & Faisal, 2008; Sharma & Chauhan,
2008). Comparing the right-end panels—cf. Figs. 4(d, h, l,
p)—we see that the focused beam intensity decreases as the
value of q increases (top to bottom row, in the plot). The
simulation results clearly suggest an intensity amplification
by a factor 80 or higher, for a q-Gaussian (for q= 1.4748)

Fig. 3. (Color online) The initial (at ζ= 0) dimensionless beam width (ρ1) is
depicted versus the normalized laser field (a00) for different values of the
q-parameter. The relation between the (ρ1) and (a00) is expressed by Eq.
(25). The beam propagation corresponding to points (a00, ρ1) which lie on
these curves (critical curve) leads to relativistic guided uniform beam
propagation.
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petawatt laser beam in femtosecond time duration, compared
to a Gaussian beam of the same other characteristics.
We see in Figure 4 that the divergence of the axial rays is

stronger than that of the off-axial ones. The intensity

distribution thus acquires a ring or split beam-maximum
shape. The coefficients α0 and α2 characterizing the non-
Gaussian shape start to grow with time (or propagation dis-
tance). Considering (in Fig. 4) a laser intensity I0= 1.37 ×

Fig. 4. (Color online) Spatial evolution of a q-Gaussian circularly polarized laser beam: the variation of the normalized intensity, as
obtained from Eqs. (8) and (16), with radial distance r and time t is shown at different propagation time (equivalent to fixed propagation
distance): at T1= 0 (first column); T2= 3 fs (second column); T3= 7 fs (third column); T4= 10 fs (fourth column) (corresponding to
propagation distance ζ= 0, 18 μm, 45 μ and 81 μm). The radial distance (r) and time (t) are normalized by the initial beam width and
initial pulse width respectively. The results are shown for different q values: q= 1.4748 (value as in Patel et al. (2005); top row); 3
(second row); 10 (third row); 20 (practically Gaussian; bottom row). The laser plasma parameters used in the computation are: a00=
0.1 (I0= 1.37 × 1016 W/cm2, λ= 1 μm), r0= 30 μm, τ0= 17 ps, n0= 4 × 1020 cm−3 and ω= 1015 rad sec−1. The color bar represents
the variation of the normalized intensity.

Fig. 5. (Color online) The dependence of the normalized focusing length on the non-Gaussianity parameter q is depicted. The focusing
length (ρ1ω/ω p0

��
2

√
) is normalized by the diffraction length (kr0

2). The laser-plasma parameters used for the numerical computation are the
same as in Figure 4.
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1016 W/cm2 and an electron density n0= 4 × 1020 cm−3, at
T4= 9 ns (equivalent to z= 81 μm), α2> 1, we see that the
laser pulse intensity becomes minimal on the axis and ac-
quires a ring-like structure at some time (distance). This
ring formation or beam splitting effect was earlier pointed
out (Liu & Tripathi, 2001; Sodha & Faisal, 2008; Sharma
& Chauchan, 2008). This effect has been observed exper-
imentally by Chessa et al. (1999), who observed a ring-
shaped distribution of the Gaussian laser pulse for intensity
I0= 6 × 1017 W/cm2, and electron density n0∼ 1020 cm3,
at z∼ 280 μm. Most interestingly, this effect appears in
fact to be intensified for non-Gaussian beams, in comparison
to Gaussian ones (compare the upper three panels to the
bottom one, in Fig. 4.)
We have numerically solved the coupled Eqs. (17)–(20)

for the beam width parameter f, the eikonal component S2,
and the nonparaxial parameters (a0 and a2), to evaluate the
focusing length of the beam. The numerical computation de-
picts the dependence of the focusing length on the non-
Gaussianity parameter q. In Figure 5, the normalized self-
focusing length is plotted over a range of q values. Here
we have scaled the focusing length (ρ1ω/ω p0

��
2

√
) by the dif-

fraction length (kr0
2). The self-focusing length in the plasma

(i.e., the minimum propagation length in the plasma where
the beam becomes focused and the beam radius attains
its minimum value (cf. Fig. 1b in Sharma et al., 2008)),
increases linearly for lower q values, as illustrated in
Figure 5a. Figure 5b shows the dependence of the normalized
focusing length on higher q-values. The simulation results

demonstrate a saturating nature, as q increases toward ∞. It
can be seen from Figure 2 that the higher the value of q,
the narrower the beam becomes.
In order to demonstrate the temporal dependence of the

beam irradiance, we have evaluated the axial intensity
(a2(ρ= 0, ζ, τ)) as a function of ζ (distance of propagation).
We have numerically solved Eq. (16) along ρ= 0, together
with Eqs. (17)–(20) for the typical values of laser-plasma
parameters as used in Figure 4. The dependence of the
axial intensity on the propagation distance (ζ) is shown in
Figure 6. Parts 6a, 6c show the variation of the axial intensity
with ζ for different values of the non-Gaussian parameter (q)
at τ/τ0= 0 and at τ/τ0= 1 respectively. Figures 6b, 6d
depict the variation of the axial intensity along ζ at various
time instants, for high and low values of the non-Gaussian
parameter (q), respectively. These results (6a-6d)) predict a
very small variation in axial intensity of beam at temporal
axis (at τ/τ0= 0) as well as at off-temporal axis (at τ/τ0≠
0) for a range of q values. Figure 6 also confirms our earlier
result (as shown by Fig. 4) that there is no significant vari-
ation of axial intensity (at τ/τ0≠0).

4. CONCLUSIONS

In conclusion, we have investigated the spatial evolution of a
non-Gaussian circularly polarized beam propagating through
relativistic plasma. A q-Gaussian distribution function was
adopted for the beam spot profile. We have shown that the
beam intensity profile converges toward a split profile due

Fig. 6. (Color online) Dependence of axial intensity a2(ρ= 0, ζ, τ) on the propagation distance (ζ). Panels (a) and (c) show the variation of
the axial intensity with ζ for different values of the non-Gaussian parameter (q) at τ/τ0= 0 and τ/τ0= 1. Panels (b) and (d) show the
variation in the axial intensity along ζ at various values of time, for high and low values of the non-Gaussian parameter q. The laser-plasma
parameters used for the numerical computation are the same as in Figure 4.
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to the off-axis field contribution to relativistic nonlinear
terms, as the beam propagates through the plasma. The
difference in focusing/defocusing of the axial and co-axial
rays leads to the formation of a split beam profile character-
ized by a minimum intensity on the axis and a maximum off
it. Earlier theoretical and experimental results on Gaussian
beam focusing and ring formation (Liu & Tripathi, 2001;
Sodha & Faisal, 2008; Sharma & Chauchan, 2008; Chessa
et al., 1999) are thus confirmed, and extended to q-Gaussian
laser beam spots. The beam-splitting effect seems to be in-
tensified by a departure from a Gaussian beam spot profile.
We have numerically investigated the focusing of a

q-Gaussian petawatt laser (I0= 1.37 × 1016 W/cm2) and
have obtained an increased beam intensity (for q=
1.4748). It is remarkable that the intensity of the final (fo-
cused) beam spot is lower for a Gaussian beam profile (i.e.,
for high q values). We also see that the self-focusing
length of a non-Gaussian beam (low q values) is consider-
ably lower than that of a Gaussian one, suggesting that devi-
ation from a Gaussian behavior enhances self-focusing
significantly.
Our results are of relevance in various contexts of beam

plasma physics. Besides of the obvious relevance to inertial
fusion, the ultra-high intensity laser channels in relativistic
plasmas can have many other applications where localized
electromagnetic fields are required. Our analytical and
numerical results on the non-paraxial propagation of
q-Gaussian beam in relativistic plasma can serve as a guide
for experimental and numerical investigations of petawatt
laser channeling in underdense plasmas. This should
expand current knowledge in the fast ignition, high energy
X-ray radiography and high energy density physics research.
Petawatt lasers (power ≃ 1015 W) focused to a few microns’
region have proven to be useful tools for the study of high
energy density physics (Board, 2003). Conditions compar-
able to those in stars, supernova remnants and other astrophy-
sical objects can now be achieved in the laboratory and such
lasers are employed in inertial confinement fusion schemes
(Tabak et al., 1994; Campbell et al., 2006).
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