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I discuss the behavior of the Akaike Information Criterion in the limit when the sample size

grows. I show the falsity of the claim made recently by Stanley Mulaik in Philosophy of

Science that AIC would not distinguish between saturated and other correct factor analytic

models in this limit. I explain the meaning and demonstrate the validity of the familiar, more

moderate criticism that AIC is not a consistent estimator of the number of parameters of the

smallest correct model. I also give a short explanation why this feature of AIC is compatible

with the motives for using it.

1. Introduction. It is well-known that the Akaike Information Criterion
(AIC), a model choice criterion in which philosophers of science have
shown a considerable amount of interest during the last few years, does not
produce asymptotically consistent estimates for the number of parameters
of the correct model (see, e.g., Woodroofe 1982, 1182). This criticism is
concerned with what happens in the limit when the available sample
becomes larger, and when one uses AIC for choosing between some fixed
set of statistical models on the basis of the sample.

When AIC is applied to the models, the number of the parameters of the
model that it leads one to choose can be viewed as an estimate of the
number of parameters of the smallest correct model. This is particularly
obvious in the context of the curve-fitting problems to which philosophers
have until now dedicated most of their attention. In these problems one
makes a choice between the nested models Mpol-0, Mpol-1, Mpol-2, . . . which
are such that each model Mpol-k (k = 0, 1, 2, . . .) is a model with k + 1
parameters, and contains all the curves of at most kth degree.1 In this case
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discussions on the topics addressed in this paper.

1. To be precise, the practice of viewing models of as collections of curves is legitimate

when the error distribution, which determines the extent to which the observed values are

displaced from the correct curve, is assumed to be known.
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the smallest model Mpol-0 is a one-parameter model which contains all
horizontal straight lines, the model Mpol-1 is a two-parameter model which
contains all straight lines, and the model Mpol-2 is a three-parameter model
which contains all curves of at most second degree (i.e., straight lines and
parabolas). In this case the number of the parameters of the chosen model
is also an estimate for the degree of the correct curve: one can view it as an
answer to the question whether the correct curve is a straight line, a
parabola, or a curve of some more complicated shape.

By definition, a consistent estimator of an unknown quantity is an
estimator which is such that its value converges stochastically to the actual
value of the quantity as the sample size grows larger (see, e.g., Hogg and
Craig 1965, 246). When this definition is applied to estimators of the
number of parameters of the smallest correct model, it means that, as the
sample size grows, the probability that the estimate is correct approaches
one. If one uses a finite sample for choosing between statistical models one
of which is actually correct, one cannot usually know for sure that one has
picked the right one. However, if a model choice criterion is asymptotically
consistent as an estimator of the number of parameters, one can at least
know that in this case the probability of using a model which has the
wrong number of parameters will approach zero as the sample size grows.
However, AIC is not consistent in this sense.

Stanley A. Mulaik has recently addressed a variety of topics which are
related to the statistical model selection criteria in an interesting paper
(Mulaik 2001). Some of his arguments are concerned with the behavior of
AIC in the limit in which the sample size approaches infinity. On the basis
of a mathematically incorrect argument, Mulaik makes a claim which is
much more radical than the familiar criticism that AIC is not consistent in
the sense which was explained above. He claims that ‘‘in the limit’’ AIC
does not distinguish between a saturated model (i.e., a model which has so
many adjustable parameters that it can be made to fit the evidence perfectly
independently of what the evidence is like) and a smaller, correct model
(231). According to Mulaik, this ‘‘undermines the use of the AIC in
attempts to explain the role of parsimony in curve-fitting and model
selection’’ (231).

Below I shall first present the results to which Mulaik appeals in his
mathematically incorrect argument. I shall show that these results do not
imply that, in the limit of large samples, AIC could not be used for
discarding models with many parameters when a model with a smaller
number of parameters is correct. I shall also illustrate the correctness of the
closely related, more moderate criticism of AIC according to which it is
not consistent. In order to give a clear presentation of Mulaik’s argument it
will be necessary to begin by considering on a more general level the
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model choice problems which he discusses. These problems belong to the
field of factor analysis.

2. Some Background. A factor analytic model is concerned with the
connections between some observed variables and a number of other
variables whose values have not been observed. In the typical case which
Mulaik uses as his example the available measurement results consist of
the measurements of n different quantities for each item in the available
sample, which is a sample of size N. When these measurement results have
become available, one can use them for calculating the sample variance of
each of the n measured quantities, and the sample covariance between
each pair of different measured quantities. Since there are (1/2)n(n� 1)
such pairs, the number of variances and covariances which can be
calculated in this manner is n+ (1/2)n(n� 1)=(1/2)n(n+ 1). Among other
things, factor analysis provides models for the values of such variances and
covariances.2

The values of such variances and covariances are regularly represented
in the form of a table called the covariance matrix. A factor analytic model
postulates that, besides the observed variables, there are also unobserved
latent variables, and specifies connections between them and the observed
variables. These connections are expressed by probabilistic equations, in
which the value of each observed variable is equated with a sum which
contains the values of the unobserved variables and an error term.
Normally, these equations also contain adjustable parameters which are
such that, if one gives some particular, fixed values to them and to the error
terms, the model will yield a value for each item in the covariance matrix.
This implies that, when the values of the parameters have been specified,
the model will yield for the observed covariance matrix a probability
distribution which depends on the probability distributions of the error
terms. When one further sets the error terms to zero, the model will predict
which values will appear in the observed covariance matrix.

The values of the parameters of a model can be estimated by choosing
for them the values which have the maximal likelihood relative to the
observed covariance matrix. Just like in the case of curve-fitting problems,
in which the models with many parameters will, in general, contain curves
which are close to the points which represent observations, the factor
analytic models with many parameters will, in general, have a larger
likelihood than the models with few parameters. In the extreme case in
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which their are just as many parameters—i.e., (1/2)n(n+ 1)—in the model
as there are variance and covariance values which the model is supposed to
explain, the equations which connect these values with the parameters will
have a solution in which all the error terms have the value zero. In this case
and the prediction concerning the covariance matrix that the model yields
will be identical with the covariance matrix which has been observed.

A model like this is a saturated model. Also more generally, a model is
called saturated if it has so many parameters that it will fit the evidence
perfectly, no matter what the evidence is like. In his argument Mulaik
appeals to a result which is concerned with the likelihood ratio of a
saturated model and the model which is under consideration (Mulaik 2001,
230). The references which he gives to this result are McDonald 1989 and
McDonald and Marsh 1990, but it seems that a clearer presentation of the
result to which he appeals has been given in e.g. Bozdogan 1987, a paper
to which McDonald and Marsh also refer (1990, 251).

Bozdogan contrasts a saturated model with K parameters with a smaller
model with k parameters, and considers a likelihood ratio statistic with
which the success of the smaller model can be evaluated. If the available
evidence is denoted by E, the best-fitting parameter values of the saturated
model are denoted by Q̂K and those of the smaller model by Q̂k, and the
probability distribution of the evidence relative to each given set of
parameters is denoted by f (Ej�), the definition of this statistic can be
expressed as3

kgK ¼ �2log
f ðEAQ̂kÞ
f ðEAQ̂KÞ

; ð1Þ

According to Bozdogan, in the limit of large samples this statistic is
asymptotically distributed as a non-central c2 random variable with
df = K�k degrees of freedom and with the non-centrality parameter Nd,
where N is the sample size and d is a quantity whose value does not depend
onN (Bozdogan 1987, observe the change in notation). This quantity, which
we shall below call the normalized non-centrality parameter, can be viewed
as a measure of the distance between the model and the actual probability
distribution of the evidence, and it has the value zero for the models which
are compatible with the actual distribution (like e.g. the saturated model).

AIC is a quantity which is used for choosing between models by
calculating its value for each considered model and picking the model for
which this value is smallest. In the literature there are several definitions of
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the quantity AIC, but these lead to identical choices between models.
According to the most usual definition the AIC value of a model with k
parameters is (see, e.g., Burnham and Anderson 1998, 46)

�2log f ðEAQ̂kÞ þ 2k:

One will, of course, end up with the same model if one instead of
minimizing this quantity minimizes the quantity

�2log f ðEAQ̂kÞ þ 2k þ C;

where C is an arbitrary constant. In particular, if the saturated model is kept
fixed, the chosen model will not change if C has the value

C ¼ 2log f ðEAQ̂KÞ � 2K:

In this case the above quantity will equal

AICðkÞ ¼ �2log f ðEAQ̂kÞ þ 2k þ C

¼ �2log f ðEAQ̂kÞ þ 2log f ðEAQ̂KÞ þ 2k � 2K

¼ kgK � 2df

ð2Þ

where df = K�k.
I have referred to the quantity which is defined by formula (2) as AIC,

because Hirotugu Akaike has suggested that in the context of factor
analysis AIC should be defined to have the value which it has according
to formula (2) (Akaike 1987, 321). This definition has the same contents
with the one used in Mulaik 2001, 230–231.

We shall now discuss the probability distribution of AIC(k). It is well-
known that the non-central c2 random variable with df degrees of freedom
and with the non-centrality parameter D has the expected value D + df and
the variance 4D + 2df (cf. Hogg and Craig 1965, 318–320). When this
result is applied to the distribution of kgK, it implies that when N is large,
E(kgK) c Nd + df and that D2(kgK) c 4Nd + 2df. Together with the
definition of AIC, this implies that

EðAICðkÞÞ ¼ EðkgKÞ � 2dfcNd� df ;

and that

D2ðAICðkÞÞ ¼ D2ðkgKÞc4Ndþ 2df :

#03170 UCP: PHOS article # 700534
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The result on which Mulaik bases his argument states that (Mulaik 2001,
230)

EðAICðkÞÞcðN � 1Þd� df ð3Þ

The reason why N� 1 appears here instead of N seems to be that, in a
sense, the first item in the sample is worthless in the context of estimating
the covariance matrix, since variances and covariances become well-
defined only when the sample contains at least two items. Below I shall
follow Mulaik in assuming that (3) is approximately valid, and—making a
corresponding modification to the formula of the variance of AIC(k)—that

D2ðAICðkÞÞc4ðN � 1Þdþ 2df ð4Þ

The difference between these formulas and the ones which we presented
before them, and which contained N in the place of N� 1, will be
irrelevant for the discussion below. In particular, our results concerning
the behavior of AIC in the limit in which N!l would not change if we
used our earlier formulas instead of (3) and (4).

3. Comparing AIC Values in the Limit of Large Samples. Mulaik uses
the approximation (3) for comparing the expected values of the AIC values
of three models M1, M2, and M3. When AIC is used for making a choice
between, e.g., the models M1 and M2 on the basis of a sample of some
fixed size N, it will produce the methodological recommendation that the
model M1 should be preferred to the model M2 if

AICðM1Þ < AICðM2Þ

If the symbol sN is used for denoting a sample of size N, and if the
probability that the use of AIC will yield the above recommendation is
denoted by p({sNjAIC(M1) < AIC(M2)}), the limit of the probability that
M1 will be preferred to the model M2 when N grows is

P ¼ limN!lpðfsNAAICðM1Þ < AICðM2ÞgÞ: ð5Þ

If this limit had the value 1/2 for some particular models M1 and M2, one
could conclude AIC would not ‘‘distinguish between the two models in the
limit’’: in this case AIC would recommend each of the two models with
almost same probability for sufficiently large samples. If, however, P > 1/2,
AIC will recommend M1 more often than M2 when the sample is
sufficiently large, and if P < 1/2, the opposite will be the case.
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While discussing the question which of the two models M1 and M2 will
be preferred in the limit, Mulaik considers their expected AIC values, and
addresses the question under which circumstances it will be the case that4

EðAICðM1ÞÞ < EðAICðM2ÞÞ: ð6Þ

It should be observed, however, that the question whether this condition
is valid is quite distinct from the question how probable it is that the use
of AIC leads one to choose the model M1, or to choose the model M2,
when this criterion is used for choosing between the two models. By
itself, the validity of the condition (6) does not imply that, if AIC is applied
to the models M1 and M2, it will pick more often the model M1 than the
model M2. This does not follow, because it is conceivable that the
probability distributions of AIC(M1) and AIC(M2) were correlated in such
a way that (6) was valid and AIC(M1) had nevertheless a large probability of
being larger than AIC(M2). Similarly, even if it could be shown that
E(AIC(M1)) = E(AIC(M2)), this would not imply that AIC would recom-
mend the two models M1 and M2 equally often.

Hence, if one wants to find out which of the two modelsM1 andM2 AIC
will recommend in the limit in which N!l, one should try to find out the
value of the quantity P defined by (5), rather than to find out whether the
condition (6) is valid in the limit. The problem of calculating the value of P
is, in general, quite difficult when M1 and M2 are two arbitrarily chosen
factor analytic models. However, this problem becomes manageable if the
modelM2 is the saturated model, as it is in the two examples which Mulaik
considers.

As explained above, in the context of factor analysis the claim thatM2 is
saturated implies that the estimates which M2 yields for the numbers in the
covariance matrix of the observed variables will be identical with their
observed values. Denoting the normalized non-centrality parameters of the
two modelsM1 andM2 by d1 and d2, respectively, and their df values by df1
and df2, respectively, it can be observed that ifM2 is saturated, d2 = df2 = 0.
In addition, also AIC(M2) will necessarily have to be zero in this case, so
that the model M1 will be preferred to M2 if and only if AIC(M1) < 0.

Mulaik considers first a case in which the ‘‘smaller’’ model M1 is, as a
matter of fact, correct. This implies that also d1 = 0, so that in this case
E(AIC(M1))c�df1 and D2(AIC(M1))c2df1. If df1 is large—which means

#03170 UCP: PHOS article # 700534
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normalized non-centrality parameters d1 and d2 and the df values df1 and df2, respectively,

the approximation (3) implies that E(AIC(M1)) < E(AIC(M2)) if and only if (N � 1)

d1 � df1 < (N � 1)d2 � df2 or, equivalently, if and only if (d1 � d2) < (df1 � df2) / (N � 1).

He then considers the question whether this inequality remains valid when N!l. (See

Mulaik, 2001, 230–231.)
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that the number of the adjustable parameters of M1 is essentially smaller
than the number of the parameters of M2—it is legitimate to approximate
the distribution of AIC(M1) with a normal distribution. If we denote the
distribution function of the normalized normal distribution by F, we can
conclude that in this case

P ¼ lim N!lpðfsNAAICðM1Þ < 0gÞcF
0� EðAICðM1ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2ðAICðM1ÞÞ
p

 !

¼ F
� ffiffiffiffiffiffiffiffiffiffiffi

df1=2
p �

When df1 is large, this number will be quite close to 1, and it will be
very probable that AIC yields the correct recommendation according to
which M1 should be preferred. Hence, Mulaik is mistaken when he claims
that in the case that we are considering AIC would not distinguish
‘‘between a perfectly fitting model with zero d and positive df, and a
saturated model with zero d and zero df ’’ (Mulaik 2001, 231).

This example is well-suited not only for illustrating the falsity of
Mulaik’s claim, but also the correctness of the more moderate criticism
of AIC, according to which it is not consistent. One would hope that, if the
model M1 is correct, the probability of choosing it instead of a saturated
model would grow larger when the sample size increases. However, the
approximate value of the probability of making the correct choice that we
deduced above, Fð ffiffiffiffiffiffiffiffiffiffiffi

df1=2
p Þ, does not depend on N. This means that, even

if one has collected a very large sample of observations, there is a small but
positive chance of 1� Fð ffiffiffiffiffiffiffiffiffiffiffi

df1=2
p Þ of choosing the wrong model, and this

probability cannot be made to diminish by collecting still more data.
It is also natural to ask what happens when the ‘‘smaller’’ model M1 is

false but only ‘‘slightly off’’ in the sense that it is compatible with a
covariance matrix which is quite close to the actual one. In this case d1 will
have a small, positive value, and—in accordance with (3) and (4)—it will
be the case that E(AIC(M1))c(N � 1)d1 � df1 and D2(AIC(M1))c
4(N � 1)d1 + 2df1. Again, if df1 is large, it will be legitimate to approx-
imate the distribution of AIC(M1) with a normal distribution, and one can
conclude that in this case

P ¼ lim N!lp sNAAICðM1Þ < 0f gð Þ

¼ lim N!lF
0� ½ðN � 1Þd1 � df1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ðN � 1Þd1 þ 2df1
p

 !

¼ lim N!lF
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN � 1Þd1

p
=2
�
¼ 0
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In other words, in this case the probability of choosing the smaller model
which is ‘‘slightly off’’ will approach zero as the sample size grows, as also
Mulaik correctly observes while considering this case (Mulaik 2001, 231).

This result can be motivated intuitively by considering, e.g., a case in
which there are theoretical reasons for believing that the correlations
between many of the observed variables are very small, and in which
the model M1 yields the result that the covariances between such observed
variables is zero. In this case being ‘‘slightly off’’ means that there are
small non-zero correlations between some of these pairs or variables. Also
the fact that P = 0 has a simple intuitive interpretation in this case. If the
empirical evidence consists of a small sample, it might be good method-
ology to stick to the simple modelM1 even if it is strictly speaking false. In
this case the estimates of the small covariances that can be calculated using
the available sample are probably worse than the estimate 0 would be.
However, the situation changes as the sample size grows: if the sample is
very large, the estimates of the variances and covariances which are
calculated using it can be expected to be very accurate, and in this case
it might be a good idea to accept these estimates as such. Hence, the choice
which AIC in this case recommends—which is with a very great proba-
bility the saturated model, since P = 0—seems to be a reasonable one in
this case.

This intuitive argument would not be valid in the context of a curve-
fitting problem. If a simple model—like e.g. the linear model Mpol-1—was
false but only slightly off in the context of a curve-fitting problem, it
would, of course, not be good methodology to prefer a saturated model to
it. In the context of curve-fitting problems, choosing a saturated model
amounts to drawing a curve which goes through all the points which
represent observations, which is a rather absurd thing to do, independently
of the sample size. However, the above proof of the result that that P = 0
when a saturated model is compared with false but ‘‘slightly off’’ model
implicitly assumed that the number of the parameters of the saturated
model stays constant when the size of the sample grows. This assumption
is valid in the context of factor analysis, but it is not valid in the context of
curve-fitting problems, because in the latter case a saturated model is a
model which has the same number of parameters as there are items in the
available sample. Hence, the above discussion is not applicable to curve-
fitting problems, and it does not show that the use of AIC would be likely
to lead one to prefer saturated models and their perfectly-fitting curves to
the curves of models which are false, but only ‘‘slightly off.’’

4. Concluding Remarks. The paper by Stanley Mulaik to which I have
repeatedly referred above has broadened the scope of philosophers’
discussion concerning model selection criteria, which has otherwise been

#03170 UCP: PHOS article # 700534

1273AIC and large samples

https://doi.org/10.1086/377406 Published online by Cambridge University Press

https://doi.org/10.1086/377406


almost exclusively concerned with curve-fitting problems, by taking an
example from the field of factor analysis. My own discussion of the
usefulness of AIC in this field has been based on the approximately valid
results (3) and (4), which have been presented in the literature earlier, and
in this short paper I have not made any attempt to evaluate the range within
which these approximations are legitimate. Being mathematically simpler,
curve-fitting examples would have suited better for illustrating the points
that were made above in so far that they could have been discussed without
introducing these approximations.

It would, of course, be more interesting to ask which recommendations
AIC will yield when two ordinary, ‘‘small’’ models are evaluated using it,
than to ask what these recommendations are when it is used for comparing
a ‘‘small’’ model with a saturated model. When the considered models
belong to the hierarchy Mpol-0, Mpol-1, Mpol-2, . . . , the former question,
which we have not addressed above, can be answered with calculations
which are lengthy, but which can be carried through with elementary
methods. For example, one can show—although I am for reasons of space
excluding from this paper the calculations which prove that this is the
case—that if the true curve belongs to the model Mpol-0 of all horizontal
straight lines, and if AIC is applied to choosing between Mpol-0 and the
model Mpol-1 of all straight lines, the probability with which AIC will
produce the recommendation that the unnecessarily large model Mpol-1

should be used is for large samples approximately 5%. In other words,
when the sample size is large and the true curve is actually a horizontal
straight line, the probability with which AIC will correctly recommend the
model which contains only horizontal straight lines is approximately 95
percent, and the probability that it will recommend the larger model which
contains also all the other straight lines is approximately 5 percent.

This result is well suited for illustrating the inconsistency of AIC as an
estimator of the number of parameters of the smallest correct model. It also
illustrates the fact that the motives for introducing Akaike Information
Criterion are quite different from the motives for introducing Bayesian
information criteria. Although an easily accessible presentation of the
theoretical background of AIC is already available (see Forster and Sober
1994), it is, perhaps, worthwhile to explain why the inconsistency of AIC
is compatible with the results which motivate its introduction.

An argument which motivates the use of a Bayesian information
criterion claims that the researcher can maximize his probability of picking
the correct model by using the information criterion in question. Such
probabilities depend on the likelihood of the evidence, given the various
elements of the considered models, and on the prior probabilities of the
models and their elements. However, by using AIC one is not supposed to
maximize this probability, but something else: one is supposed to max-
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https://doi.org/10.1086/377406 Published online by Cambridge University Press

https://doi.org/10.1086/377406


imize what philosophers of science have earlier called the ‘‘predictive
accuracy’’ of a chosen probability distribution, e.g. a chosen curve.

The ‘‘predictive accuracy’’ of a probability distribution is a quantitative
measure for the distance between it and the actual distribution. In the
context of a curve-fitting problem such distances are easy to visualize,
since the ‘‘predictively accurate’’ curves are close to the correct curve. For
example, if the actual distribution is represented by a horizontal line, there
will be both horizontal straight lines and other curves (like straight lines
which are not horizontal) which are ‘‘predictively accurate’’ in the sense of
being very close to the correct curve. In this case the curve which actually
gets chosen when AIC recommends a larger family of curves than Mpol-0

will with a very great probability be very close to the correct straight line.
Hence, it will with a very great probability be an acceptable choice, if the
aim of the researcher is to find a curve which is ‘‘predictively accurate,’’
although it will be a bad choice if her aim is to find out whether the true
curve is a horizontal line or not.

Above we have seen that it is incorrect to claim that AIC would be
useless as a tool of model choice in the limit of large samples. Regarding
the correct statement that AIC is not consistent in the limit of large
samples, we can now observe that this statement is not a criticism which
states that AIC would in some cases fail to realize to its aim. Rather, it is a
criticism which states that, even if, with AIC, one could successfully
realize the aims which are supposed to be realizable by using it, there are
also other aims which a statistician could have, and one should not draw
exaggerated conclusions from this success.
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