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Improving upon work in [2], the precise value of the set reconstruction number is given for

all cyclic groups of odd order.

1. Introduction and problem definition

Throughout, C is a fixed cyclic group. Theorems and lemmas only require that |C| be odd

if they state so explicitly.

Definition 1. A necklace N is a subset of C . Two necklaces N1 and N2 are isomorphic if

there is some element i ∈ C with i + N1 = N2.

Informally, necklaces can be thought of as a circle of |C| pearls, coloured black

(contained in N) and white (not contained in N), where beads can be moved around the

circle. However, the necklace is on somebody’s neck, so you cannot reverse the order of

the pearls.

The necklace problem deals with whether you can identify the black/white make-up of

a necklace (knowing |C|), given a specific peculiar sight deficiency. Namely, for a given

integer k, you will be able to see the relative positions of only k black beads at a time.

Such a person is said to be k-blind.

Definition 2. Given necklaces N1, N2, N1 is a subnecklace of N2 if N1 is a subset of N2.

The k-deck N(k) of a necklace N is the multiset of isomorphism-classes of its subnecklaces

of size at most k.

Therefore someone is k-blind if all they can tell about a necklace is its k-deck. The

question in general asks for a fixed |C| and k, whether k-blind people can recognize all

necklaces of |C| beads.
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Definition 3. Given necklaces N1, N2, N1 and N2 are k-isomorphic if they have identical

k-decks. The isomorphism level of N1 and N2 r(N1, N2) is the lowest k such that N1 and

N2 are not k-isomorphic. If there is no such k, r(N1, N2) = ∞.

Here is a trivial bound on finite isomorphism levels.

Lemma 1.1. If r(N1, N2) > |C|, then r(N1, N2) = ∞ and N1 is isomorphic to N2.

Proof. Since r(N1, N2) > |C| � |N1|, N2 and N1 are |N1|-isomorphic. The |N1|-deck of

N1 consists solely of 1 set in the isomorphism class of N1.

Therefore N2 has precisely 1 subset of size |N1| and this subset is isomorphic to N1.

Therefore N2 is isomorphic to N1.

Usually the bound of |C| in Lemma 1.1 is not strict, leading to the following definition.

Definition 4. Given necklace N1, define the reconstruction number of N1, r(N1), to be

the lowest integer k such that if N1 is k-isomorphic to any necklace N2, N1 must be

isomorphic to N2.

Define the reconstruction number of C , r(C), to be the largest r(N1) for any necklace

N1 of C . Equivalently, r(C) is the lowest integer k such that if any two necklaces are

k-isomorphic, they must be isomorphic.

Then Lemma 1.1 states the following.

Corollary 1.2. r(C) � |C|.

In [1], Alon, Caro, Krasikov and Roditty prove that r(C) � 1 + log |C|. In [3], Radcliffe

and Scott prove that r(C) � 9.#(prime factors of |C|) in general and that if |C| is prime

and |C| � 5, then r(C) = 3.

In [2], the author reduced these bounds to r(C) � 6 in general, and r(C) � 4 for |C|
odd. In this paper the exact value of r(C) is given for all cyclic groups with |C| odd.

Define f(n) to be the number of not necessarily distinct prime factors n has. For example,

f(paqb) = a + b.

Theorem 1.3. Let C be a cyclic group of odd order. Then

r(C) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if |C| = 1, 3,

2, if |C| = 5,

3, if f(|C|) < 4 or |C| is a prime power,

4, otherwise.

Therefore, if a lady (or indeed a gentleman) were to wear any necklace with an odd

number of pearls, this necklace could be recognizable by 4-blind people, but there are

some odd-length necklaces which are not recognizable by 3-blind people.
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This paper first views things from the perspective of a jeweller, attempting to make

ornate necklaces. After this, it helps activists for the partially sighted, ensuring that

necklaces will never get too ornate.

2. Trivial lower bounds

In this section, the easier lower bounds in Theorem 1.3 are proved. First note that the

1-blind do not have much hope of recognizing necklaces.

Theorem 2.1. Let |C| > 3. Then r(C) � 2.

Proof. Let N1 be the necklace {0, 1}. (Here and throughout, the integers are seen as

elements of all cyclic groups.) Let N2 be the necklace {0, 2}. It is clear that N1 and N2 are

1-isomorphic.

However, N1 and N2 are not isomorphic: if they are, there exists an integer i such that

i + {0, 1} = {0, 2}(mod n). Then either i ≡ 0 and i + 1 ≡ 2, in which case n|1, or i ≡ 2 and

i + 1 ≡ 0, in which case n|3. Since n = |C| > 3, this cannot happen.

The 2-blind are not much better off. This is because 2-blind people cannot tell if a

necklace is on the right way, or back-to-front.

Theorem 2.2. Let |C| > 5. Then r(C) � 3.

Proof. Let N1 be the necklace {0, 1, 3} and let N2 be the necklace {0, 2, 3}. Then the

2-deck of N1 has 1 subnecklace isomorphic to {}, 3 subnecklaces isomorphic to {0}, and

1 subnecklace isomorphic to each of {0, 1}, {0, 2} and {0, 3}. (Note that {0, 1}, {0, 2} and

{0, 3} are pairwise non-isomorphic as |C| > 5.) Since this is also the 2-deck of N2, N1 and

N2 are 2-isomorphic.

However, suppose N1 and N2 are isomorphic. Then there must exist an i such that

i + {0, 1, 3} = {0, 2, 3}(mod n). Then i must be an element of N2 such that i + 1 ∈ N2.

Therefore i must be 2. Then i = 2 and i + 1 = 3, so i + 3 must equal 0. However, |C| > 5

so i + 3 �= 0.

Informally, the 2-deck tells you the pairwise distances of beads in N. If you reverse

N, you do not change the 2-deck, but (for |C| > 5), you may change the necklace. The

remaining lower bound requires a little more groundwork.

3. Construction

Suppose that C is a cyclic group of odd order with f(|C|) � 4 and that |C| is not a prime

power. Then |C| can be expressed as the product pqrs with gcd(r, s) = 1, p, q, r, s > 2. Fix

such an expression. It is useful to describe two properties that necklaces can have.

Definition 5. Given factor m of |C|, define a necklace S of C to be m-periodic if, for all

x ∈ C , x ∈ S if and only if x + m ∈ S .
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Define a necklace to be m-balanced if the number of elements of S equivalent to i

mod m is independent of i.

The following operation on necklaces will be of use in this section.

Definition 6. Given necklaces S0, S1, . . . , Sp−1 of Zk , define the splice of S0, S1, . . . , Sp−1,

which we denote by Splice(S0, S1, . . . , Sp−1), to be the necklace of Zpk consisting of px + i

where x ∈ Si and 0 � i < p.

These definitions are enough to construct ornate necklaces that are 3-isomorphic but not

isomorphic. Recall that we have an expression |C| = pqrs with gcd(r, s) = 1, p, q, r, s > 2.

Theorem 3.1. Suppose S1 and S2 are necklaces of Zqrs which are q-balanced, with S1 qr-

periodic and S2 qs-periodic. Let

T0 = Splice(S1, S2, ∅, . . . , ∅) and T1 = Splice(S1 + 1, S2, ∅, . . . , ∅).

Then T0 and T1 are 3-isomorphic.

Proof. Let S ⊂ C with |S | � 3. It is required to prove that the number of i ∈ C with

S + i ⊆ Ta does not depend on a.

Case I: S contains integers in 3 distinct residue classes (mod p).

Then so does S + i for all i. However, Ta does not for either value of a. Therefore the

number of such i is zero, regardless of a.

Case II: S contains integers in non-consecutive residue classes (mod p).

Then so does S + i for all i. However, Ta does not for either a. Therefore the number of

such i is zero, regardless of a. (Note that for p > 3, Case I is a subcase of Case II)

Case III: All the elements of S are in the same residue class (mod p).

Then, by translating S it can be assumed that all elements of S are multiples of p, so there

exists a qrs-necklace S ′ such that S = Splice(S ′, ∅, . . . , ∅). Then the number of S-translates

in Ta is equal to the total number of S ′-translates in S1 + a and S2 combined. As such, it

clearly does not depend on a.

Case IV: The elements of S lie in two consecutive residue classes (mod p).

Then, by translating S it can be assumed that all elements of S are equivalent to

0, 1(mod p), so there exists S ′, S ′′ such that S = Splice(S ′, S ′′, ∅, . . . , ∅). Then i + S ⊂ Ta if

and only if i = px where x + S ′ ⊂ S1 + a and x + S ′′ ⊂ S2.

Now, as S1 is qr-periodic, the validity of x + S ′ ⊂ S1 + a depends only on the qr-residue

of x. Similarly, the validity of x + S ′′ ⊂ S2 depends only on the qs-residue of x.

Now, gcd(r, s) = 1. Therefore, given the q-residue of x, the qr-residue and qs-residue

are independent. This means that the number of solutions to i + S ⊂ Ta can be evaluated

by summing over the q-residue classes of x the product of the number of solutions of

x + S ′ ⊂ S1 + a and the number of solutions of x + S ′′ ⊂ S2.

However, 3 � |S | = |S ′| + |S ′′|. Therefore, either |S ′| = 1 or |S ′′| = 1.
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If |S ′| = 1, then since S1 is q-balanced, the number of solutions of x + S ′ ⊂ S1 + a in

each residue-class is constant, say c. Therefore the number of solutions to i + S ⊂ Ta is c

times the number of solutions of x + S ′′ ⊂ S2 and does not depend on a.

If |S ′′| = 1, then since S2 is q-balanced, the number of solutions of x + S ′ ⊂ S2 in each

residue-class is constant, say c. Therefore the number of solutions to i + S ⊂ Ta is c times

the number of solutions of x + S ′′ ⊂ S2 and does not depend on a.

This proof depends on the fact that when a three-element set is split up into at least

two parts, one part has at most one element. However, this does not hold for four element

sets, leading to the following theorem.

Theorem 3.2. There exist necklaces S1 and S2 of Zqrs which are q-balanced, with S1 qr-

periodic and S2 qs-periodic, and such that if T0 = Splice(S1, S2, ∅, . . . , ∅) andT1 = Splice(S1 +

1, S2, ∅, . . . , ∅) then T0 and T1 are not isomorphic.

Proof. Let S1 be the set of elements of Zqrs such that their residue (mod qr) is at most

q, and let S2 be the set of elements of Zqrs such that their residue (mod qs) is at most q.

Then consider the number of elements x ∈ C such that x, x + 1, x + p, x + p + 1 are

all in T0. Such x are of the form py where y, y + 1 are both in S1 and S2. If y is of

residue i(mod q), then in order to be in S1, it must be of residue i(mod qr), and in order

to be in S2, it must be of residue i(mod qs). Therefore it has to be equal to i(mod qrs).

Furthermore, if i = q − 1 then y + 1 will not be in S1 or S2. Therefore there are q − 1

such x.

Then x, x + 1, x + p, x + p + 1 are all in T1 if x is of the form py, where y, y + 1 are in

S2 and y, y − 1 are in S1. The same argument as before says y has to be i(mod qrs) with

0 � i < q. Also, as before, if i = q − 1, y + 1 is not in S2. Furthermore, if i = 0, y − 1 is

not in S1. Therefore there are q − 2 such x. This shows that in this case of S1 and S2, T0

and T1 have different 4-decks, showing that they are not isomorphic.

This gives the final required lower bound.

Corollary 3.3. If C is a cyclic group of odd order with p(|C|) � 4 and |C| is not a prime

power, r(C) � 4.

Proof. Express |C| in the manner |C| = pqrs where p, q, r, s > 2 and gcd(r, s) = 1 and

then construct T0 and T1 as in the proof of Theorem 3.2. Theorem 3.1 shows that T0 and

T1 have the same 3-decks, whilst Theorem 3.2 shows that T0 and T1 are not isomorphic.

Therefore r(Zn) � 4.

The construction section of the paper is over, and now the strengths of the partially

blind must be highlighted. Since various of the main results of [2] will be used, these will

be stated in the next section. This will leave only two types of odd |C| for which r(C) is

unknown, which will be dealt with by a technical lemma about the cyclotomic roots of

0,1-polynomials.
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4. Main results of [2]

An earlier paper of the author [2] deals with the necklace problem by looking at

multinecklaces: necklaces where more than 1 pearl is allowed to be at the same place. For

ease of argument, it actually made sense to allow negative or rational numbers of pearls

at any place. Formally a multinecklace is a function f : C → Q. Multinecklaces f1, f2 are

isomorphic if f1(x) = f2(x + i) for some i ∈ C .

The k-deck of multinecklace f is the function f(k) : Ck → Q defined by

f(k)(x1, x2, . . . , xk) =

n−1∑
i=0

f(x1 + i)f(x2 + i) · · · f(xk + i).

Then f1,f2 are k-isomorphic if f(k)
1 = f

(k)
1 . The multiset reconstruction number of C , rm(C),

is the smallest k such that if f1, f2 are k-isomorphic they are isomorphic. It is trivial that

r(C) � rm(C).

Fix a primitive |C|th root of unity ω. Then, given a multinecklace f : C → Q, define

f̃ : C → C to be the finite Fourier transform of f:

f̃(k) =
∑
j∈C

f(j)ωj.

The first result of [2] describes k-isomorphism of multinecklaces in terms of their Fourier

transform.

Theorem 4.1. Let f, g be multinecklaces of C . Then f and g are k-isomorphic if and only

if, for all x1, x2, . . . , xk ∈ C with
∑i=k

i=1 xi = 0,

i=k∏
i=1

f̃(xi) =

i=k∏
i=1

g̃(xi).

This has the following corollary.

Corollary 4.2. 2-isomorphic multinecklaces have zeroes at the same places in their Fourier

transforms.

Proof. Let f, g be 2-isomorphic. Then for all i, if f̃(i) = 0 and g̃(i) �= 0, g̃(i)g̃(−i) =

f̃(i)f̃(−i) = 0. Therefore g̃(−i) = 0. However, if i, j are of the same order (for example

j = −i), then g̃(i) and g̃(j) are algebraic conjugates. Therefore g̃(i) is a root of x = 0 and

is hence 0.

Then, given 2-isomorphic multinecklaces g1, g2, the double Fourier function fg1 ,g2
(x) is

defined to be 0 if g̃1(x) = 0 and g̃2(x)
g̃1(x)

otherwise.

Corollary 4.3. Let g1, g2 be 2-isomorphic multinecklaces of C . Then g1 and g2 are k-iso-

morphic if and only if, for all x1, x2, . . . , xk with
∑

xi = 0,
∏i=k

i=1 fg1 ,g2
(x) ∈ {0, 1}.
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Proof.
∏i=k

i=1 fg1 ,g2
(x) = 0 is equivalent to

i=k∏
i=1

g̃1(x) =

i=k∏
i=1

g̃2(x) = 0.

Furthermore,
∏i=k

i=1 fg1 ,g2
(x) = 1 is equivalent to

i=k∏
i=1

g̃1(x) =

i=k∏
i=1

g̃2(x) �= 0.

Define a function f : C → C to be strong if, whenever i, j are integers with f(i) �= 0 and

f(ji) �= 0, f(ji) = f(i)j . The following corollary from [2] will be useful.

Corollary 4.4. Let g1, g2 be 3-isomorphic multinecklaces of C with |C| odd. Then fg1 ,g2

is strong.

Furthermore, an easy way to detect if g1 and g2 are isomorphic is given. Define a

function f : C → C to be trivial if there is an nth root ω of unity such that, for every i,

f(i) ∈ {ωi, 0}.

Theorem 4.5. Let g1, g2 be 2-isomorphic multinecklaces of Zn. Then g1 and g2 are iso-

morphic if and only if fg1 ,g2
is trivial.

An equivalent definition of triviality is given by the following theorem.

Theorem 4.6. Given f : C → C, f is trivial if and only if f is strong, and for all integers

x, y, z with xy and xz both factors of |C|, gcd(y, z) = 1 and y, z > 1, f(xy)z = f(xz)y or

f(xy)f(xz) = 0.

This led to an evaluation rm(C) for all finite cyclic C , and indeed rm(G) for all finite

abelian G.

Theorem 4.7. Let n be an integer. Then

rm(Zn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for n = 1,

2 for n = 2,

3 for n is an odd prime power or n = pq for odd primes p,q,

4 for n is any other odd number,

4 for n = 2k, k > 1,

4 for n = 2pk, k � 1 and some odd prime p,

5 for n = 2lpk, l > 1, k � 1 and some odd prime p,

6 for n is any other even number.
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There are only a few cyclic groups C of odd order for which the claimed value of r(C)

in Theorem 1.3 differs from the value of rm(C) in Theorem 4.7. These are those where

Theorem 1.3 claims that r(C) = 3, and yet Theorem 4.7 claims that rm(C) = 4. These are

those of the form p2q for distinct p, q and pqr for distinct p, q, r, and will be dealt with in

the next three sections. Firstly the cases n = 3, 5 must be dealt with.

Theorem 4.8. r(Z3) = 1 and r(Z5) = 2.

Proof. There are 4 isomorphism classes of Z3 necklaces, each determined by the size

(and hence 1-deck) of the set.

If a Z5 necklace is of size 0, 1, 4, 5, then it is determined by its size, and hence by its

1-deck. If it is of size 2, it is either isomorphic to {0, 1} or {0, 2}, which have the same

1-deck but differing 2-decks. If it is of size 3, it is either isomorphic to {0, 1, 2} or {0, 1, 3},
which have the same 1-deck but differing 2-decks.

5. Cyclotomic roots of 0,1 polynomials

Given a subset S of C , let the associated polynomial PS be
∑

i∈S x
i, where the sum is over

integers in the range 0 to |C| − 1 whose residues mod |C| are in S . Write r(S) for the set of

integers i > 1 such that i is a factor of |C| and all primitive ith roots of unity are roots of PS .

This has a connection with the concepts of the previous section: Ŝ(i) is PS applied to ωi
n,

which is a primitive n
gcd(n,i)

th root of unity. Therefore Ŝ(i) = 0 if and only if |C|
gcd(|C|,i) ∈ r(S).

Note that the properties of S being balanced and periodic can be detected from r(S).

Theorem 5.1. Let k be a factor of |C|. Then S is k-balanced if and only if i ∈ r(S) for all

factors i of k with 1 < i. S is k-periodic if and only if i ∈ r(S) for all factors of |C| which

are not factors of k.

Proof. The product of the ith cyclotomic polynomials, where i ranges over the factors

i of k with 1 < i, is xk−1
x−1

. Performing the division PS = Q(xk − 1) + R where degR < k,

then the xi coefficient of R is the sum of xi+kt coefficients of PS , which is the number of

elements of S whose k residue is i. Therefore S is k-balanced if and only if R is a multiple

of xk−1
x−1

, which is true if and only if PS is.

The product of the ith cyclotomic polynomials, where i ranges over all factors of |C|
that are not factors of k, is p = x|C|−1

xk−1
= 1 + xk + x2k + · · · + x|C|−k . Writing PS = Qp + R

with degR < |C| − k, then clearly degQ = degPS − (|C| − k) < k.

Indeed, since PS =
∑|C|−1

i=0 aix
i with ai = 0 if i /∈ S and ai = 1 if i ∈ S , then it can be

easily seen that Q = a|C|−1x
k−1 + a|C|−2x

|C|−2 + · · · + a|C|−k , and hence

R =

n
k

−1∑
i=0

k−1∑
j=0

(aki+j − a(n−k)+j)x
ki+j ,

and so R = 0 if and only if S is k-periodic.

Here is a simple property of root sets.
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Theorem 5.2. Let p, q be distinct primes and let S be some subset of Zpq . If pq ∈ r(S), then

either p ∈ r(S) or q ∈ r(S), and hence S is p-periodic or q-periodic.

Proof. Since pq ∈ r(S), Cpq|PS . Now x is a primitive pqth root of unity if and only if it

is a factor of both xpq−1
xp−1

and xpq−1
xq−1

. Therefore Cpq is the greatest common divisor of xpq−1
xp−1

and xpq−1
xq−1

.

If Cpq is a factor of PS , as Z[X] is a Euclidean domain, there must therefore exist

polynomials P1 and P2 such that PS = P1
xpq−1
xp−1

− P2
xpq−1
xq−1

. Now, there exists Q1, R1 with

P1 = Q1
xp−1
x−1

+ R1 and degR2 < p − 1, and Q2, R2 with P2 = Q2
xq−1
x−1

+ R2 and degR2 <

q − 1. Then PS = R1
xpq−1
xp−1

− R2
xpq−1
xq−1

.

Suppose that aix
i is a term in R1 and bjx

j is a term in R2. Then, by the Chinese

Remainder Theorem, there exists a k with 0 � k < pq such that k = i + pt for some

0 � t < q and k = j + qu for some 0 � u < q. Then the xk coefficient of the right-hand

side is ai − bj . Of the left-hand side it is 0 or 1. Therefore ai ∈ {bj , bj + 1} for all i, j.

Now since bq−1 = 0, this means that ai ∈ {0, 1} for all i. Since ap−1 = 0, this means

that bj ∈ {0,−1} for all j. Also, it is not possible that some ai = 1 and some bj = −1.

Therefore either ai ≡ 0 for all i, in which case PS is a multiple of xpq−1
xq−1

and p ∈ r(S), or

bj ≡ 0 for all j, in which case PS is a multiple of xpq−1
xq−1

and q ∈ r(S). If p ∈ r(S), then all

factors of pq which are not factors of q are in r(S), and so S is q-periodic. Similarly, if

q ∈ r(s), then S is p-periodic.

This can be generalized to a bigger setting.

Corollary 5.3. Let p, q be distinct primes, and let S be some subset of Zpqn. Suppose that

r(S) contains all factors of n (other than 1) and all factors of pqn which are not themselves

factors of pn or qn. Then r(S) must contain pn or qn.

Proof. Define subsets S0, S1, . . . , Sn−1 of Zpq by i ∈ Sj ⇔ (ni + j) ∈ S . Then

PS (z) =

n−1∑
i=0

xiPSi(x
n).

Note that all factors of n are in r(S), and hence (by Theorem 5.1) S is n-balanced,

so each Si has the same number of elements. If |Si| ≡ 0 or |Si| ≡ pq, then S = ∅ or Zpqn

respectively. Either way r(S) contains all factors of pqn (except possibly 1), and the

theorem is proved. Therefore assume that 0 < |Si| < pq.

Further, every integer j which is a factor of pqn, but not of pn or qn, is of the form pqi

with i a factor of n. Therefore i ∈ r(S). Thus every common root of xpqn−1
xpn−1

and xpqn−1
xqn−1

is a

root of PS .

Therefore, PS = T xpqn−1
xpn−1

+ U xpqn−1
xqn−1

for some polynomials T ,U. Then splitting T ,U up

as

T =

n−1∑
i=0

xiTi(x
n) and U =

n−1∑
i=0

xiUi(xn),
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it follows that PSi(z) = Ti
xpq−1
xp−1

+ Ui
xpq−1

xq−1
. Therefore pq ∈ r(Si) and hence by Theorem 5.2,

Si is either p-periodic or q-periodic. Since 0 < |Si| < pq, |Si| is not divisible by both p or

q. Therefore the period of Si can be detected from |Si|, and hence is independent of i.

Therefore either Si is p-periodic for all i, or Si is q-periodic for all i. In the first case, S

is clearly np-periodic, and hence r(S) contains qn by Theorem 5.1. In the second case, S

is clearly nq-periodic, and hence r(S) contains pn by Theorem 5.1.

This corollary, when viewed in combination with Theorem 4.6, will give the remaining

upper bounds.

6. Upper bound for p2q

Let S1, S2 be subsets of Zp2q which are not translates but have the same 3-deck. Let f be

the double Fourier function.

Theorem 6.1. It must hold that f(p)f(q) �= 0 and f(p)q �= f(q)p. Therefore f(pq) = 0 and

f(1) = 0.

Proof. By Theorem 4.5, f is not trivial (as S1, S2 are not translates). Therefore by

Theorem 4.6, there are x, y, z such that xyz|n, f(xy)f(xz) �= 0, f(xy)z �= f(xz)y , gcd(y, z) =

1, y �= 1, z �= 1. Note that, by Corollary 4.4, f(k) is a n
k
th root of unity for all k|n. Hence

xyz cannot be equal to n, as if it were, f(xy)z would be equal to 1, as would f(xz)y .

Looking for x, y, z with xyz|p2q, gcd(y, z) = 1, y �= 1 and z �= 1 shows that of y, z, one

must be a power of p, the other a power of q. That xyz < p2q implies x = 1 and {y, z}
are {q, p}. Therefore f(p)f(q) �= 0 and f(p)q �= f(q)p.

Now if f(1) �= 0, by Corollary 4.4, f(p) = f(1)p and f(q) = f(1)q , whence f(p)q = f(q)p =

f(1)pq , causing a contradiction. Similarly, if f(pq) �= 0, f(pq) = f(p)q = f(q)p.

It turns out that these conditions on f are enough to contradict Corollary 5.3.

Corollary 6.2. No such S1, S2 can exist. Therefore r(Zp2q) � 3.

Proof. Theorem 6.1 states that f(1) = 0, f(p) �= 0, f(q) �= 0 and f(pq) = 0. In terms of

r(Si), this translates to p2q, p ∈ r(Si) and p2, pq /∈ r(Si).

Now apply Corollary 5.3 with n = p. The conditions hold: r(Si) contains all factors of p

other than 1, and all factors of p2q which are not factors of p2 or pq. The theorem must

apply, and hence r(Si) must contain p2 or pq, which it does not.

7. Upper bound for pqr

Let S1, S2 be subsets of C which are not translates, but have the same 3-deck, where |C|
is the product of three distinct primes, which have yet to be labelled. Let f be the double

Fourier function.
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Theorem 7.1. There are two prime factors p, q of n such that f(p)f(q) �= 0 and f(p)q �=
f(q)p. Therefore f(pq) = 0 and f(1) = 0.

Proof. As in the proof of Theorem 6.1, there are x, y, z with xyz||C| such that f(xy)f(xz) �=
0, f(xy)z �= f(xz)y , gcd(y, z) = 1, y �= 1, z �= 1 and xyz < |C|.

Since y has at least 1 prime factor, z has at least 1 prime factor, and xyz has at most 2

prime factors, it follows that x = 1 and y and z are prime. Label p = y, and z = q. Then

f(p)q �= f(q)p and f(p)f(q) �= 0.

As in the proof of Theorem 6.1, it follows that f(pq) = 0 and f(1) = 0.

Let r be the remaining prime factor of |C|.

Theorem 7.2. f(r) = 0.

Proof. Express r as pc + qd. Then r = p(c + qt) + q(d − pt). Now since r is an odd prime

and not a factor of q, there exists a t such that r is not a factor of c + qt or c + q(t + 1).

Set a = c + qt and b = d − pt.

Note that since r is not a factor of pa, it is not a factor of qb. Also, since pa = r − qb,

q is not a factor of pa, and similarly p is not a factor of qb. Therefore gcd(qb, pqr) = q,

and hence f(−qb) is a conjugate of f(q), so f(−qb) �= 0. Therefore by Corollary 4.4

f(−qb) = f(q)−b. Similarly, f(−pa) = f(p)−a. Therefore, since f(x)f(y)f(z) ∈ {0, 1} for all

x, y, z with x + y + z = 0, it follows that f(r)f(p)−af(q)−b ∈ {0, 1}. Hence, if f(r) �= 0,

f(r) = f(p)af(q)b.

Similarly, if f(r) �= 0, f(r) = f(p)a+qf(q)b−p = f(p)af(q)b f(p)q

f(q)p
= f(p)q

f(q)p
f(r). However, f(p)q

f(q)p
�=

1 from Theorem 7.1. Thus f(r) = 0.

The required contradiction is now in place.

Corollary 7.3. No such S1, S2 can exist. Therefore r(Zpqr) � 3.

Proof. We know that f(z) = 0 for z ∈ {1, r, pq} and f(z) �= 0 for z ∈ {p, q}. This means

that {r, pq, pqr} ⊆ r(Si) and {pr, qr} ∩ r(Si) = ∅.

Then apply Corollary 5.3 with n = r. The conditions hold: r(S) contains all factors of

r other than 1, and all factors of pqr which are not factors of pr or qr. Therefore the

theorem must apply, and r(S) must contain pr or qr, contradicting what has already been

shown.

All of the bounds have now been proved.

8. Conclusion

Proof of Theorem 1.3. If |C| = 1, 3, then the all-white necklace and all-black necklace are

distinct, but are 0-isomorphic. Therefore r(|C|) � 1. If |C| = 1, by Corollary 1.2, r(C) � 1.

If |C| = 3, by Theorem 4.8, r(C) � 1. Therefore r(C) = 1.
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If |C| = 5, then by Theorem 2.1, r(C) � 2. By Theorem 4.8, r(C) � 2. Therefore r(C) = 2.

Theorem 1.3 claims that r(C) = 3 whenever C is a cyclic group of odd order of the

form pk , pq, pqr or p2q. Suppose |C| is such an integer. Then r(C) � 3 by Theorem 2.2.

Now if |C| is of the form pk or pq, r(C) � rm(C) = 3 by Theorem 4.7. If |C| is of the form

p2q, r(C) � 3 by Corollary 6.2, and if |C| is of the form C , by Corollary 7.3.

Finally, if |C| > 5 and |C| is not of the form pk , pq, pqr or p2q, by Corollary 3.3,

r(C) � 4. By Theorem 4.7, r(C) � rm(C) = 4.

Some progress has been made applying the methods of this paper to cyclic groups C

of even order. Having solved many cases, I make the following conjecture.

Conjecture 8.1. r(C) = 4 for all cyclic groups of even order with |C| > 10.

The method which has worked for many even |C| (including all |C| < 240) is to find

properties that must be true of the root set r(S) for any S which is not 4-reconstructible,

and then show that no r(S) can satisfy these properties.
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