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Abstract Let f (x) and g(x) be polynomials in F2[x] with deg f = n. It is shown that for n � 1, there is
an g1(x) ∈ F2[x] with deg g1 6 max{deg g, 6.7 logn} and g(x)−g1(x) having < 6.7 logn terms such that
gcd(f(x), g1(x)) = 1. As an application, it is established using a result of Dubickas and Sha that given
f(x) ∈ F2[x] of degree n > 1, there is a separable g(x) ∈ 2[x] with deg g = deg f and satisfying that
f(x)− g(x) has 6 6.7 logn terms. As a simple consequence, the latter result holds in Z[x] after replacing
‘number of terms’ by the L1-norm of a polynomial and 6.7 logn by 6.8 logn. This improves the bound
(logn)log 4+ε obtained by Filaseta and Moy.
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1. Introduction

For f(x) ∈ Z[x] of degree n, let L1(f) denote the sum of the absolute values of the
coefficients of f (x ). This is the L1-norm on the (n + 1)-dimensional real vector space
Un of real polynomials of degree 6 n. Let Vn = Un ∩ Z[x]. Further, let In ⊂ Vn be the
set of polynomials in Vn that are irreducible over the rationals. It is well-known that
asymptotically, a 100% polynomials in Vn are irreducible over the rationals in the sense
that

lim
B→∞

#{f(x) ∈ In : L1(f) 6 B}
#{f(x) ∈ Vn : L1(f) 6 B}

= 1

Thus, given f(x) ∈ Z[x] of degree n, one can naturally expect to be able to find a
polynomial g(x) ∈ In, such that L1(f − g) is ‘small’. Let C (n) denote the smallest
positive integer such that for every f(x) ∈ Z[x] with deg f = n, there is an g(x) ∈ In
such that L1(f−g) 6 C(n). It is easy to see that Eisenstein’s criterion with p=2 implies
that C (n) exists and that C(n) 6 n + 2. Pál Turán proposed the problem of showing

© The Author(s), 2024. Published by Cambridge University Press on Behalf
of The Edinburgh Mathematical Society.

1171

https://doi.org/10.1017/S0013091524000464 Published online by Cambridge University Press

mailto:pradipto@math.iith.ac.in
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0013091524000464&domain=pdf
https://doi.org/10.1017/S0013091524000464


1172 P. Banerjee and A. Kundu

that C (n) is absolutely bounded. For each odd n > 1, the example f(x) = xn shows that
C(n) > 2. Similarly, for every even n > 2, the polynomial xn−2(x2 − x− 1) suggests that
C(n) > 2. Filaseta [5] conjectured that C(n) 6 5 for all n. In the same paper, he alludes
to the possibility that C(n) 6 2 cannot be ruled out.
Turán’s conjecture remains open for n > 40. Bérczes and Hajdu [1, 2] have verified

Turán’s conjecture with C(n) 6 4, for all polynomials f(x) ∈ Z[x] with deg f 6 24.
Filaseta and Mossinghoff [6] have extended their results to all f(x) ∈ Z[x] with deg f 6 40
and with C(n) 6 5.
Turán’s conjecture is believed to be difficult. For instance, whether it is possible to do

better than C(n) 6 n+2 is unknown. The present paper is a byproduct of our attempts
to improve this bound. Although we fell short in this pursuit, our approach considerably
improved the corresponding bound in the squarefree analogue of Turán’s conjecture. We
discuss them next.
We begin with our initial idea to improve the bound on C (n). For f(x) ∈ 2[x], let

L(f ) denote the number of terms of f (x ). Now, consider Turán’s problem in 2[x], where
the distance between f (x ) and g(x ) is now taken to be L(f − g). Let C2(n) denote
the counterpart for C (n) in this case. We claim that C(n) 6 C2(n) + 1 provided that
deg g = deg f = n. To see this, for an f(x) ∈ Z[x] with deg f = n, let δ ∈ {0, 1}
be such that fδ(x) = δxn + f(x) has an odd leading coefficient. Let fδ(x) ∈ F2[x]
denote the polynomial obtained by reducing the coefficients of fδ(x) modulo 2. Observe
that deg fδ = n. Now, suppose that there is an g(x) ∈ F2[x], irreducible in F2[x] with
deg g = n, such that L(fδ − g) 6 C2(n). Consider the polynomial

gδ(x) = fδ(x)− fδ(x) + g(x) = f(x)− f(x) + g(x) ∈ Z[x]

where, by abuse of notation, we now consider fδ(x), f(x) and g(x ) as polynomials in
Z[x]. If a denotes the leading coefficient of f (x ), then the leading coefficient of gδ(x) is

a− a+ 1 ≡ 1 (mod 2).

In particular, gδ(x) has degree n. Additionally, gδ(x) ≡ g(x) (mod 2) implies that gδ(x)
is irreducible over the rationals. Furthermore,

L1(f − gδ) 6 1 + L1(fδ − g) = 1 + L(fδ − g) 6 1 + C2(n).

The assertion follows.
In view of the last observation above, it suffices to bound C2(n). For n > 1, let C ′

2(n)
denote the smallest positive integer such that given f (x ) and g(x ) in 2[x] with deg f = n,
there is a polynomial g1(x) ∈ 2[x] with

deg g1 6 max{deg g, C ′
2(n)}, L(g − g1) 6 C ′

2(n)

such that gcd(f(x), g1(x)) = 1. The better part of the paper is devoted to developing a
method to establishing that C ′

2(n) � log n.
Now, suppose for the moment that we have achieved C ′

2(n) 6 θ log n for some θ > 0.
Let deg g = m > 1, and set ` = bm/2c. Take f (x ) to be the product of all irreducible
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polynomials of degree 6 ` in 2[x]. By Lemma 3.2, [7], we have deg f 6 2`+1. The
hypothesis on C ′

2(n) would then imply that there is a polynomial g1(x) ∈ 2[x] with
deg g1 6 deg g and satisfies

L(g − g1) 6 C ′
2(deg f) 6 θ(`+ 1) log 2 6

θ(m+ 2) log 2

2

such that gcd(f(x), g1(x)) = 1. The last condition implies that g1(x) has no irreducible
factor of degree 6 deg g/2. Since deg g1 6 deg g, it would then follow that g1(x) is
irreducible in 2[x]. A suitably small θ would then give a better bound on C (m) than
m +2. In fact, any θ < 2/ log 2 = 2.885 . . . would give the first non-trivial improvement
on C (m). Our main result establishes that C ′

2(n) � log n.

Theorem 1. Let f(x) and g(x) be polynomials in 2[x] with deg f = n. For n � 1,
there is a polynomial g1(x) ∈ F2[x] with deg g1 6 max{deg g, 6.7 log n} and L(g − g1) <
6.7 log n such that gcd(f(x), g1(x)) = 1.

Next, we discuss the squarefree analogue of Turán’s conjecture. We refer to a polyno-
mial f(x) ∈ Z[x] as squarefree if it has no multiple roots. For a positive integer n, let
Sn denote the set of squarefree polynomials in Vn. Since In ⊂ Sn, it follows that the
asymptotic density of squarefree polynomials in Vn is 1. Naturally, one is prompted to
investigate the squarefree analogue Turán’s problem. Dubickas and Sha [4] were the first
to study this problem. For a positive integer n, let D(n) denote the smallest positive
integer such that given any f(x) ∈ Z[x] with deg f = n, there is an g(x) ∈ Sn with
L1(f − g) 6 D(n). It is easily seen that D(n) 6 C(n). Dubickas and Sha [4] conjecture
that D(n) 6 2. They further showed that D(n) > 2 for every n > 15 (in fact, their result
is much more explicit). Thus, the conjectured value is D(n) = 2. In some contrast to
C(n) 6 n+ 2, Filaseta and Moy [7] have obtained the bound

D(n) 6 (log n)2 log 2+ε

for n�ε 1. As a simple application of Theorem 1, we will establish that D(n) � log n.

Theorem 2. For every f(x) ∈ F2[x] of degree n� 1, there is a squarefree g(x) ∈ 2[x]
satisfying deg g = n and L(f − g) 6 6.7 log n.

Arguing as we did to establish that C(n) 6 C2(n)+1 above (in the case that deg g = n),
we obtain the following.

Corollary 1. For every f(x) ∈ Z[x] of degree n� 1, there is a squarefree g(x) ∈ Z[x]
satisfying deg g = n and L1(f − g) 6 1 + 6.7 log n < 6.8 log n.

The proof of Theorem 1 is based on a function field analogue of Brun–Hooley sieve
(see Theorem 3, § 2). Although this is identical to the usual Brun–Hooley sieve in almost
every aspect needing only minor adjustments, there is no evidence of a suitable reference
in the existing literature. This prompted the authors to establish a function field analogue
of the Brun–Hooley sieve in its full rigour. This is presented in § 2. For an exhaustive
account of the usual Brun–Hooley sieve, the reader may refer to Halberstam–Richert [9]
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or Bateman–Diamond [3]. Apart from these references, the authors have found the nice
exposition by Kevin Ford [8] particularly useful. For general arithmetic in function fields,
we refer the reader to Rosen [10].
We clarify some of the basic notation to be followed in the remainder of the paper.

Throughout, A denotes the ring 2[x]. The set of non-zero elements of A will be denoted
by A∗. Typically, in our proofs, we will use uppercase letters A, D, F and G to denote
the elements of A where D ∈ A∗, generally, will denote a divisor of some element in A.
The letter P is reserved for a non-zero prime (irreducible) in A. Following [10], we define
the norm |A| of A ∈ A∗ as

|A| = 2deg A.

As it turns out, |A| is the correct analogue for the size of an integer in Z. Sometimes, for
A and A′ in A, we will use (A,A′) to denote gcd(A,A′). The function ν(A) will denote
the number of distinct prime factors of A ∈ A∗ with ν(1) = 0. For a squarefree A ∈ A∗,
the Möbius function µ(A) = (−1)ν(A). Otherwise, µ(A) = 0. For a real number x > 0, we
will denote by log2 x the base-2 logarithm of x, and log x denotes the natural logarithm
of x.
The paper is organized as follows. We develop the necessary technical details, namely

the Brun–Hooley sieve for A, in § 2. Theorem 1 and Theorem 2 are respectively proved
in § 3 and § 4.

2. Brun–Hooley sieve for F2[x]

Let A ⊂ A with #A = X. Let z be a real number satisfying 2 6 z 6 X. Let

P = P(z) := {P ∈ A∗ is prime : |P | 6 z}, (2.1)

and define

Π = Π(z) :=
∏

P∈P

P. (2.2)

We fix a total order ≺ on A. For instance, for F and G in A, we say that F ≺ G if
F (2) < G(2) when F (x ) and G(x ) are considered as polynomials in R[x]. Observe that
F and G, when considered as polynomials in R[x], have coefficients in {0, 1}, so that

F (2) 6= G(2) ⇐⇒ F (x) 6= G(x),

as polynomials in R[x]. Hence, if F 6=G in A, then exactly one of F ≺ G and G ≺ F
holds. It is easy to see that ≺ thus defined is a total order in A. In particular, every
squarefree A 6=1 can be uniquely expressed as the product

A = P1P2 · · ·Pr,

where P1, P2, . . ., Pr are primes in A∗ satisfying
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P1 ≺ P2 ≺ · · · ≺ Pr.

Additionally, for A as above, define p−(A) = P1 and p+(A) = Pr. We also set p−(1) =
1 = p+(1).
For each D ∈ A∗, let

AD := {A ∈ A : D | A},

with the understanding that A1 = A. We suppose that there is a real-valued function ω
satisfying

ω(1) = 1, 0 6 ω(P ) 6 1 (Ω)

for every prime P ∈ A∗. Next, extend ω multiplicatively to all of A∗ by defining

ω(D) :=
∏
P |D

ω(P ).

For a D ∈ A∗, we denote by rD the quantity

rD := #AD − ω(D)

|D|
X.

We assume that

|rD| 6 ω(D), D ∈ A∗ . (r)

Further, define

W =W (z) :=
∏

P∈P

(
1− ω(P )

|P |

)
, (2.3)

and let

S(A; z) := # {A ∈ A : (A,Π) = 1} .

Our main result in this section is the following.

Theorem 3. (Brun–Hooley sieve for 2[x]) Let A, X, z, W and S(A; z) be as defined
above. Let ω be a multiplicative function on A∗ satisfying (Ω) and (r). Then for z � 1,
one has

(i) S(A; z) > 0.0001XW − z4.6385 and
(ii) S(A; z) 6 eXW + z3.6385.
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The proof of the next lemma is identical to its integer counterpart.

Lemma 1. For every A ∈ A∗, one has

∑
D|A

µ(D) =

1 if A = 1

0 otherwise.

Lemma 2. Let f be a real-valued multiplicative function defined on A∗, and let A ∈ A∗

be squarefree. Then for every integer k > 0, one has

∑
D|A

ν(D)6k

µ(D)f(D) =
∑
D|A

µ(D)f(D) + (−1)k
∑
D|A

ν(D)=k+1

f(D)
∏

P∈P
P≺p−(D)

(1− f(P )),

where an empty product is equal to 1.

Proof. Consider the terms in the sum on the right corresponding to D with ν(D) >
k + 1. Every such D can be uniquely expressed as

D = D1D2,

where ν(D1) = k + 1, and D2 is either 1 or p+(D2) ≺ p−(D1). It follows that

∑
D|A

µ(D)f(D)−
∑
D|A

ν(D)6k

µ(D)f(D) =
∑
D|A

ν(D)>k+1

µ(D)f(D)

=
∑
D1|A

ν(D1)=k+1

µ(D1)f(D1)
∑
D2|A

p+(D2)≺p−(D1)

µ(D2)f(D2)

= (−1)k+1
∑
D|A

ν(D)=k+1

f(D)
∏

P∈P
P≺p−(D)

(1− f(P )).

The lemma follows. �

Corollary 2. Let f be a multiplicative function defined on A∗ satisfying 0 6 f(P ) 6 1
for every prime P, and let A ∈ A∗ be squarefree. Then for every even integer k > 0, one
has
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D|A

µ(D)f(D) 6
∑
D|A

ν(D)6k

µ(D)f(D) 6
∑
D|A

µ(D)f(D) +
∑
D|A

ν(D)=k+1

f(D).

Let z > 2 be as defined earlier, and let 2 = zt+1 < zt < · · · < z1 = z. Partition
P = P1 ∪ P2 ∪ · · · ∪ Pt such that if P ∈ Pj , then zj+1 < |P | 6 zj if j < t and
zt+1 6 |P | 6 zt if j = t. Set

Πj =
∏

P∈Pj

P,

so that

t∏
j=1

Πj = Π.

In proving Theorem 1, we will need both upper and lower bounds on S(A; z). As
is usually the case, achieving a lower bound is relatively more difficult. We next
embark on this pursuit. To this end, we begin with Hooley’s lemma (for proof, see
Lemma 12.6, [3]), which is the key step in the usual Brun–Hooley lower bound
sieve.

Lemma 3. Suppose that 0 6 xj 6 yj for 1 6 j 6 t. Then one has

x1x2 · · ·xt = y1y2 · · · yt −
t∑

`=1

(y` − x`)
t∏

j=1
j 6=`

yj .

Let k1, k2, . . ., kt be a sequence of even non-negative integers. For each j ∈ {1, 2, . . . , t}
and A ∈ A, set

xj =
∑

D|(A,Πj)

µ(D), yj =
∑

D|(A,Πj)

ν(D)6kj

µ(D).

Setting f ≡ 1 and A = (A,Πj) in Corollary 2, we find that xj 6 yj for
every j. Furthermore, since kj is even, setting f ≡ 1 in Corollary 2 again, we
get

y` − x` 6
∑

D|(A,Π`)
ν(D)=k`+1

1.

Thus, by Lemma 3, we have

https://doi.org/10.1017/S0013091524000464 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000464


1178 P. Banerjee and A. Kundu

∑
D|(A,Π)

µ(D) >
t∏

j=1

∑
D|(A,Πj)

ν(D)6kj

µ(D)−
t∑

`=1

∑
D|(A,Π`)

ν(D)=k`+1


t∏

j=1
j 6=`


t∑

D|(A,Πj)

ν(D)6kj

µ(D)




=
∑

D1,D2,...,Dt
Dj |(A,Πj)

ν(Dj)6kj

µ(D1D2 · · ·Dt)−
t∑

`=1


∑

D1,D2,...,Dt
Dj |(A,Πj)

ν(Dj)6kj,j 6=`

ν(D`)=k`+1

µ

(
D1D2 · · ·Dt

D`

)

.

Now, using Lemma 1 and the last lower bound above, we obtain

S(A; z) =
∑
A∈A

∑
D|(A,Π)

µ(D)

>
∑
A∈A

∑
D1,D2,...,Dt
Dj |(A,Πj)

ν(Dj)6kj

µ(D1D2 · · ·Dt)−
∑
A∈A

t∑
`=1


∑

D1,D2,...,Dt
Dj |(A,Πj)

ν(Dj)6kj,j 6=`

ν(D`)=k`+1

µ

(
D1D2 · · ·Dt

D`

)


=
∑

D1,D2,...,Dt
Dj |Πj

ν(Dj)6kj

µ(D1D2 · · ·Dt)#AD1D2···Dt

−
t∑

`=1


∑

D1,D2,...,Dt
Dj |Πj

ν(Dj)6kj,j 6=`

ν(D`)=k`+1

µ

(
D1D2 · · ·Dt

D`

)
#AD1D2···Dt


.

Setting above

#AD1D2···Dt =
ω(D1D2 · · ·Dt)

|D1D2 · · ·Dt|
X + rD1D2···Dt ,

we get

S(A; z) > XΣ−R,
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where

Σ =
∑

D1,D2,...,Dt
Dj |Πj

ν(Dj)6kj

t∏
j=1

µ(Dj)
ω(Dj)

|Dj |
−

t∑
`=1


∑

D1,D2,...,Dt
Dj |Πj

ν(Dj)6kj,j 6=`

ν(D`)=k`+1

ω(D`)

|D`|

t∏
j=1
j 6=`

µ(Dj)
ω(Dj)

|Dj |


, (2.4)

and

R =
∑

D1,D2,...,Dt
Dj |Πj

ν(Dj)6kj

|rD1D2···Dt |+
t∑

`=1


∑

D1,D2,...,Dt
Dj |Πj

ν(Dj)6kj,j 6=`

ν(D`)=k`+1

|rD1D2···Dt |


.

By assumptions (Ω) and (r), we have |rD| 6 ω(D) 6 1. Therefore,

R 6
∑

D1,D2,...,Dt
Dj |Πj

ν(Dj)6kj

1 +
t∑

`=1


∑

D1,D2,...,Dt
Dj |Πj

ν(Dj)6kj,j 6=`

ν(D`)=k`+1

1


.

The above sum is over all D1, D2, . . ., Dt satisfying Dj | Πj , and either ν(Dj) 6 kj for
all j, or ν(Dj) 6 kj for all but one j for which ν(Dj) = kj + 1. This is bounded by∑

|D|6z
k1+1
1 z

k2
2 ···zktt

µ2(D) < 2z
k1+1
1 z

k2
2 · · · zktt .

Thus,

R < Z := 2z
k1+1
1 z

k2
2 · · · zktt . (2.5)

Next, for each j ∈ {1, 2, . . . , t}, define

Uj :=
∑
D|Πj

ν(D)6kj

µ(D)
ω(D)

|D|
, Wj :=

∑
D|Πj

µ(D)
ω(D)

|D|
=

∏
P∈Pj

(
1− ω(P )

|P |

)
.
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Then

∑
D1,D2,...,Dt

Dj |Πj
ν(Dj)6kj

t∏
j=1

µ(Dj)
ω(Dj)

|Dj |
= U1U2 · · ·Ut, (2.6)

and

t∑
`=1


∑

D1,D2,...,Dt
Dj |Πj

ν(Dj)6kj,j 6=`

ν(D`)=k`+1

ω(D`)

|D`|

t∏
j=1
j 6=`

µ(Dj)
ω(Dj)

|Dj


= U1U2 · · ·Ut

t∑
`=1

1

U`

∑
D`|Π`

ν(D`)=k`+1

ω(D`)

|D`|
.

(2.7)
From Equations (2.4), (2.6) and (2.7), we have

Σ = U1U2 · · ·Ut

1−
t∑

`=1

1

U`

∑
D`|Π`

ν(D`)=k`+1

ω(D`)

|D`|

 . (2.8)

By Corollary 2,

Uj >Wj , j = 1, 2, · · · , t,

so that

U1U2 · · ·Ut >W1W2 · · ·Wt :=W.

Next, in order to estimate the expression following the negative sign in Equation (2.8),
we will make use of the following lemma.

Lemma 4. We have

∑
D|Π`

ν(D)=k`+1

ω(D)

|D|
6

I
k`+1

`

(k` + 1)!
,

where

I` = log
1

W`
= −

∑
P |Π`

log

(
1− ω(P )

|P |

)
.
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Proof. Let P` = {P1, P2, . . . , PT } with

P1 ≺ P2 ≺ · · · ≺ PT .

For D | Π`, set f(D) = ω(D)/|D|. Thus, 0 6 f(D) < 1. By the multinomial theorem, we
have  ∑

P∈P`

f(P )

k`+1

=
∑

m1+m2+···+mT=k`+1
mj>0

(k` + 1)!

m1!m2! · · ·mT !

T∏
j=1

f(Pj)
mj

> (k` + 1)!
∑

Pe1≺Pe2≺···≺Pek`+1

f(Pe1
)f(Pe2

) · · · f(Pek`+1
)

= (k` + 1)!
∑
D|Π`

ν(D)=k`+1

f(D).

On the other hand, since 0 6 f(P ) < 1, we have

∑
P∈P`

f(P ) 6
∑

P∈P`

−(log(1− f(P ))) = log
1

W`
= I`.

This finishes the proof of the lemma. �

Now, by the estimate of Lemma 4, we have

∑
D|Π`

ν(D)=k`+1

ω(D`)

|D`|
6W`

(
W−1

` I
k`+1

`

(k` + 1)!

)
=W`

(
eI`I

k`+1

`

(k` + 1)!

)
.

Recalling that U` >W`, we get

1

U`

∑
d`|Π`

ν(d`)=k`+1

ω(D`)

|D`|
6
eI`I

k`+1

`

(k` + 1)!
.

Observe that if k` = 0 for some `, then U` = 1. Accordingly, in this case, the expression
on the left side of the last display is then bounded by

W`

(
eI`I

k`+1

`

(k` + 1)!

)
=W`e

I`I` = I`.
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From these estimates, we deduce from Equation (2.8) that

Σ > (1− E)W, E =
t∑

`=1

ψ(`)I
k`+1

`

(k` + 1)!
, (2.9)

where

ψ(`) =

eI` if k` 6= 0

1 if k` = 0.
(2.10)

As such,

S(A; z) > X(1− E)W − Z, (2.11)

where Z is as defined in Equation (2.5). Next, we obtain an upper bound on S(A; z). In
this case, from Corollary 2, we have

∑
D|(a,Π)

µ(D) =
t∏

j=1

∑
Dj |(a,Πj)

µ(Dj) 6
t∏

j=1

∑
Dj |(a,Πj)

ν(Dj)6kj

µ(Dj).

Accordingly, we have, using Lemma 1, that

S(A; z) =
∑
A∈A

∑
D|(A,Π)

µ(D)

6
∑
A∈A

∑
D1,D2,...,Dt
Dj |(A,Πj)

ν(Dj)6kj

µ(D1D2 · · ·Dt)

=
∑

D1,D2,...,Dt
Dj |Πj

ν(Dj)6kj

µ(D1D2 · · ·Dt)#AD1D2···Dt

= XΣ+R,

where

Σ =
∑

D1,D2,...,Dt
Dj |Πj

ν(Dj)6kj

t∏
j=1

µ(Dj)
ω(Dj)

|Dj |
=

t∏
j=1

∑
D|Πj

ν(D)6kj

µ(D)
ω(D)

|D|
,
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and

R =
∑

D1,D2,...,Dt
Dj |Πj

ν(Dj)6kj

µ(D1D2 · · ·Dt)rD1D2···Dt .

Working as before,

|R| 6
∑

D1,D2,...,Dt
Dj |Πj

ν(Dj)6kj

1 6 2z
k1
1 z

k2
2 · · · zktt =

Z

z1
=
Z

z
.

Appealing again to Corollary 2, we have

∑
Dj |Πj

ν(Dj)6kj

µ(Dj)
ω(Dj)

|Dj |
6
∑

Dj |Πj

µ(Dj)
ω(Dj)

|Dj |
+

∑
Dj |Πj

ν(Dj)=kj+1

µ(Dj)
ω(Dj)

|Dj |

=Wj +
∑

Dj |Πj
ν(Dj)=kj+1

µ(Dj)
ω(Dj)

|Dj |
.

Proceeding as in the proof of Lemma 4, we get

∑
Dj |Πj

ν(Dj)=kj+1

µ(Dj)
ω(Dj)

|Dj |
6

I
kj+1

j

(kj + 1)!
.

Therefore,

∑
Dj |Πj

ν(Dj)6kj

µ(Dj)
ω(Dj)

|Dj |
6Wj

1 +
eIj I

kj+1

j

(kj + 1)!

 .

However, if kj = 0 for some j, then the left side of the last display is equal to 1, and
consequently, it is bounded by Wj(1 + Ij) since Wj > 1. Thus,

Σ 6
t∏

j=1

Wj

1 +
ψ(j)I

kj+1

j

(kj + 1)!

 6W
t∏

j=1

exp

ψ(j)Ikj+1

j

(kj + 1)!

 =W exp(E),
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where E and ψ(j) are as defined by Equations (2.9) and (2.10), respectively. In
conclusion,

S(A; z) 6 XW exp(E) +
Z

z
, (2.12)

where Z is as defined in Equation (2.5).
Next, we choose the parameters z 2, z 3, . . ., zt and k1, k2, . . ., kt optimally to obtain

explicit upper and lower bounds on S(A; z) suitable for our purposes. Set c=0.26249.
For each j ∈ {1, 2, . . . , t}, set

αj = exp
(
c(j − 1)2

)
,

and zj = z1/αj . Let t be the maximal positive integer such that

z1/αt > 2.

That is,

t =

⌈√
1

c
log log2 z

⌉
,

where, for a real number x, we denote by dxe, the integer m satisfying m − 1 < x 6 m.
Next, set kj = 2(j − 1). In order to make the bounds (2.11) and (2.12) explicit, we need
to find suitable upper bounds on E and Z. To this end, we begin by estimating I`.

Lemma 5. We have

I` ≤


∑

log2 z`+1<deg P6log2 z`

1
|P | +

1
|P |2 if ` < t∑

16deg P6log2 z`

1
|P | +

1
|P |2 if ` = t.

Proof. Since |P | > 2 for every P ∈ P`, we have

log

(
1− ω(P )

|P |

)−1

= ω(P )
∞∑
j=1

1

j|P |j
6

1

|P |
+

1

|P |2
.

The lemma follows after recalling the definition of I`. �

For an integer d > 1, recall that Md, the number of irreducible polynomials in A of
degree d, satisfies Md 6 2d/d. Since z`+1 > 2, it follows from Lemma 5 that for every
` < t,
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I` 6
∑

log2 z`+1<d6log2 z`

(
1

d
+

1

d2d

)

6 log
α`+1

α`
+

∑
log2 z`+1<d6log2 z`

∫ 1/2

0

xd−1 dx

6 c(2`− 1) +
∑

log2 z`+1<d6log2 z`

∫ 1/2

0

xd−1 dx.

We estimate the second sum above as follows. For x ∈ (0, 1/2], one has∑
log2 z`+1<d6log2 z`

xd−1 6 2xlog2 z`+1−1.

Thus,

∑
log2 z`+1<d6log2 z`

∫ 1/2

0

xd−1 dx =

∫ 1/2

0

 ∑
log2 z`+1<d6log2 z`

xd−1

 dx

6 2

∫ 1/2

0

xlog2 z`+1−1 dx

=
2

z`+1 log2 z`+1

6
2

z`+1
,

since z`+1 > 2. It follows that

I` 6 c(2`− 1) +
2

z`+1
. (2.13)

Working similarly, for ` = t, we obtain from Lemma 5 that

It 6
∑

16deg P6log2 zt

(
1

|P |
+

1

|P |2

)

6
∑

16d6
log2 z
αt

(
1

d
+

1

d2d

)

< 2 + (log log2 z − logαt)

= 2 +
(
log log2 z − c(t− 1)2

)
.
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Next, recall that

t =

⌈√
1

c
log log2 z

⌉
>

√
1

c
log log2 z,

so that

ct2 > log log2 z.

Using the last estimate, we deduce that

It 6 2 + c(2t− 1) < 0.27(2t− 1),

for t � 1. Thus, for z � 1 (so that t � 1), the contribution of ` = t in the sum for E
in Equation (2.9) is bounded by

e0.27(2t−1) (0.27(2t− 1))
2t−1

(2t− 1)!
<
(
0.27e1.27

)2t−1
< (0.97)2t−1, (2.14)

where, we have used that (2t− 1)2t−1/(2t− 1)! < e2t−1.
We will next estimate E by separately considering the contributions from terms cor-

responding to ` < t for which α`+1 6
√
log z and α`+1 >

√
log z. First, consider the case

that α`+1 6
√
log z. In this case,

z`+1 = z1/α`+1 > z1/
√
log z = e

√
log z.

Thus, from Equation (2.13) and the above, we get that

I` 6 c(2`− 1) +
2

e
√
log z

.

Additionally, α`+1 6
√
log z implies that c`2 6 (log log z)/2. That is,

` 6 1.5
√
log log z.

Let ψ be as defined in Equation (2.10). Note that ψ(1) = 1. For 1 < ` 6 1.5
√
log log z

and for z � 1, using the estimates for I` from Equation (2.13), we have
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ψ(`)I2`−1
`

(2`− 1)!
6 e2/ exp(

√
log z)ec(2`−1)

(
c(2`− 1) + 2

e
√
log z

)2`−1

(2`− 1)!

6 ec(2`−1)
(
1 +O(e−

√
(log z))

) ((c(2`− 1))2`−1 + (2`− 1)2`−1e−
√
log z32`−1

)
(2`− 1)!

6 ec(2`−1)
(
1 +O(e−

√
(log z))

)( (c(2`− 1))2`−1

(2`− 1)!
+O(e3(2`−1)e−

√
log z)

)
= ec(2`−1)

(
1 +O(e−

√
(log z))

)( (c(2`− 1))2`−1

(2`− 1)!
+O(e−

√
log z/2)

)
=
ec(2`−1)(c(2`− 1))2`−1

(2`− 1)!
+O(e−

√
log z/3),

where, to obtain the bound in the second line above, we have used the binomial theorem
as follows:

(
c(2`− 1) +

2

e
√
log z

)2`−1

6 (c(2`− 1))2`−1 +
2`−1∑
j=1

(
2`− 1

j

)
(c(2`− 1))2`−1−j2j

< (c(2`− 1))2`−1 + (2`− 1)2`−1(2 + c)2`−1

< (c(2`− 1))2`−1 + (2`− 1)2`−132`−1.

Thus, the contribution to the sum E from the terms corresponding to α`+1 6
√
log z is

bounded above by

I1 +
∑
`>1

ec(2`−1)(c(2`− 1))2`−1

(2`− 1)!
+O(

√
log log ze−

√
log z/3) (2.15)

< c+
∑
`>1

ec(2`−1)(c(2`− 1))2`−1

(2`− 1)!
+O(e−

√
log z/4)

< 0.9997 +O(e−
√
log z/4).

Next, consider the case that α`+1 >
√
log z. In this case, ` >

√
log log z. Since z`+1 > 2,

for
√
log log z < ` < t, we have from Equation (2.13) that

I` 6 c(2`− 1) +
2

z`+1
6 c(2`− 1) + 1,
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since z`+1 > 2. Thus, for ` as above and z sufficiently large, we have

ψ(`)I2`−1
`

(2`− 1)!
6 ec(2`−1)+1 (c(2`− 1) + 1)2`−1

(2`− 1)!

< e0.27(2`−1) (0.27(2`− 1))2`−1

(2`− 1)!

< (0.27e1.27)2`−1 < 0.972`−1.

Thus, the contribution to the sum E from the terms corresponding to the ` under
consideration is less than ∑

`>
√
log log z

(0.97)2`−1 = O(0.97
√
log log z).

From the last estimate above and Equation (2.15), we deduce that

E < 0.9999

for z � 1.
It remains to estimate

Z := 2z
k1+1
1 z

k2
2 · · · zktt = 2 exp

(
log z

(
1

α1
+

2

α2
+ · · ·+ 2(t− 1)

αt

))
.

The exponent of z above is bounded by

1 +
∞∑

n=1

2n

exp (0.26249n2)
< 4.63833.

We now obtain (i) and (ii) of Theorem 3 by putting the estimates E < 0.9999 and Z <
z4.6385 (for z � 1) in Equations (2.11) and (2.12), respectively.

3. A proof of Theorem 1

Let f (x ) and g(x ) be as stated in Theorem 1 with deg f = n. Let t := b4.64 log2 nc, and
set X := 2t. Observe that t 6 4.64 log2 n < 6.7 log n. For future reference, we make a
note of the fact that

n < 2
t+1
4.64 < 2X

1
4.64 .

Let

A := {g + u : u ∈ A, deg u < t}.
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Thus, #A = X. We will establish that for n � 1, there is some g1 ∈ A satisfying
gcd(f, g1) = 1. If g1 = g + u, then

deg g1 6 max{deg g, deg u} 6 max{deg g, 6.7 log n},

and

L(g − g1) = L(u) 6 deg u+ 1 6 t < 6.7 log n,

as is required to be shown.
Let P ∈ A∗ be irreducible. If P | f , and deg P > t, then P divides at most one

polynomial in A. Thus, at most n polynomials in A have a common prime factor of
degree greater than t with f.
For every irreducible P ∈ A∗ with deg P 6 t, we define ω(P ) = 1 if P divides some

element of A, and ω(P ) = 0, otherwise. We extend ω multiplicatively to all of A∗ by
defining

ω(D) :=
∏
P |D

ω(P ), D ∈ A∗ .

For D ∈ A∗, let

AD := {A ∈ A : D | A}.

Observe that if deg D 6 t, then ω(D) = 1 implies that

#AD = 2t−deg D =
ω(D)

|D|
X.

If deg D > t and ω(D) = 1, then #AD = 1; while, ω(D) = 0 implies #AD = 0. Define

rD := |AD| − ω(D)

|D|
X.

Then rD = 0 if either deg D 6 t or ω(D) = 0. If deg D > t and ω(D) = 1, then

rD = 1− 2t−deg D < 1.

Thus, in any case, 0 6 rD 6 ω(D). In particular, ω(D) and rD satisfy (Ω) and (r). Let

Pf = {P is irreducible : P | f, ω(P ) = 1},

and

Πf =
∏

P∈Pf

P.
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Note that deg Πf 6 deg f , and if A ∈ A, then (f,A) = 1 if and only if (A,Πf ) = 1. So,
without loss of any generality, we may and do assume that f = Πf . Specifically, ω(P ) = 1
for every P | f .
Next, set z = X

1
4.64 in Theorem 3. We have

z = 2
t

4.64 = 2
b4.64 log2 nc

4.64 6 n.

Let P, Π and W have the same meaning as implied in Equations (2.1), (2.2) and (2.3),
respectively. Then the conclusion (i) of Theorem 3 implies that

S(A;X
1

4.64 ) > 0.0001XW −X
4.6385
4.64 , (3.1)

for n� 1. Let A′ denote the set {A ∈ A : (A,Π) = 1}. Thus, the norm of each irreducible

factor of every polynomial in A′ is > X
1

4.64 , and #A′ = S(A;X
1

4.64 ).
If A ∈ A′ has a common prime factor P with f, then

deg P > log2X
1

4.64 =
log2X

4.64
.

Let S 1 denote the number of elements in A′ that have a common prime factor of degree

> 2 log2 X
4.64 with f, and S 2 the same for prime factors having degrees in

[
log2 X
4.64 ,

2 log2 X
4.64

)
.

If nd denotes the number of distinct irreducible factors of f of degree d, then

S1 6
∑

deg P>
2 log2 X

4.64
P |f

#AP (3.2)

=
∑

2 log2 X
4.64 6deg P6t

P |f

#AP +
∑

deg P>t
P |f

#AP

6 X
∑

2 log2 X
4.64 6deg P6t

P |f

1

|P |
+ n

6 X
∑

d>
2 log2 X

4.64

nd
2d

+ n

6
X

2
2 log2 X

4.64

∑
d>

2 log2 X
4.64

nd + n

6 X
2.64
4.64

4.64n

2 log2X
+ n

<
4.64X

3.64
4.64

log2X
+ 2X

1
4.64 <

5X
3.64
4.64

log2X
,

for n� 1.
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We now turn to estimating S 2. We begin by observing that

2 log2X

4.64
=

2t

4.64
< t,

so that if deg P <
2 log2 X

4.64 , then

#AP =
ω(P )

|P |
X.

We will apply Theorem 3, (ii) to the sets AP where P is a prime factor of f with deg P in[
log2 X
4.64 ,

2 log2 X
4.64

)
. In what follows, we assume that P | f with deg P ∈

[
log2 X
4.64 ,

2 log2 X
4.64

)
.

Observe that for every P under consideration, we have ω(P ) = 1 so that

#AP =
X

|P |
> X

2.64
4.64 > z.

Let ω(D) be as defined earlier in this section. For D ∈ A∗, define

r′D := #ADP − ω(D)

|D|
#AP = #ADP − ω(D)

|D|
X

|P |
.

If P | D, then ω(DP ) = ω(D) whence, r′D = r(DP ). Next, consider that P - D. If
ω(D) = 1, then since ω(P ) = 1, we have

ω(DP ) = ω(D)ω(P ) = 1 = ω(D).

Conversely, if ω(DP ) = 1, then obviously ω(D) = 1. It follows that ω(DP ) = ω(D), and
as such,

r′D = rDP .

Thus,

|r′D| = |rDP | 6 ω(DP ) = ω(D).

Thus, AP and ω satisfy all the assumptions of Theorem 3. By Theorem 3 (ii), we now
have for n� 1 that

S(AP ;X
1

4.64 ) 6 e
X

|P |
W +X

3.6385
4.64 .

Since |P | > 2
log2 X
4.64 , hence

S(AP ;X
1

4.64 ) 6 eX
3.64
4.64W +X

3.6385
4.64 . (3.3)
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Thus,

S2 =
∑
P |f

log2 X
4.64 6deg P<

2 log2 X
4.64

S(AP ;X
1

4.64 ) (3.4)

6
(
eX

3.64
4.64W +X

3.6385
4.64

) ∑
P |f

log2 X
4.64 6deg P<

2 log2 X
4.64

1

6
(
eX

3.64
4.64W +X

3.6385
4.64

) 4.64n

log2X

6 10e
XW

log2X
+ 10

X
4.6385
4.64

log2X
,

since n 6 2X
1

4.64 . Now, from Equations (3.2) and (3.4), we have

S1 + S2 6 10e
XW

log2X
+ 15

X
4.6385
4.64

log2X
. (3.5)

If every polynomial in A′ has a non-trivial gcd with f, then

S1 + S2 > #A′ = S(A;X
1

4.64 ).

Substituting from Equations (3.1) and (3.5) in the last estimate above, we get

10e
XW

log2X
+ 15

X
4.6385
4.64

log2X
> 0.0001XW −X

4.6385
4.64 .

Rearranging terms, we have

XW

(
0.0001− 10e

log2X

)
6 16X

4.6385
4.64 . (3.6)

Observe that

W > V :=
∏

P∈P

(
1− 1

|P |

)
.
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Now, if Md denotes the number of irreducible polynomials in A of degree d, then

− log V =
∑

P−a prime
|P |6z

− log

(
1− 1

|P |

)

=
∑

P−a prime
|P |6z

∞∑
j=1

1

j|P |j

=
∑

d6log2 z

Md

∞∑
j=1

1

j2dj
.

Using an earlier estimate that Md 6 2d/d, we get

− log V 6
∑

d6log2 z

2d

d

∞∑
j=1

1

j2dj

=
∑

d6log2 z

1

d
+ E′,

where

E′ =
∑

d6log2 z

2d

d

∞∑
j=2

1

j2dj

<
∑

d6log2 z

2d

2d

∞∑
j=2

1

2dj

=
∑

d≤log2 z

2d

2d

1

2d(2d − 1)

<
∑

d6log2 z

1

d2d
< 1.

Therefore,

− log V <
∑

d6log2 z

1

d
+ 1 < log(log2 z) + 2.

Upon exponentiating, we get

V >
1

e2 log2 z
=

4.64

e2 log2X
>

0.6

log2X
.
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Now, using the above estimate in Equation (3.6), we obtain

0.6X

log2X

(
0.0001− 10e

log2X

)
6 16X

4.6385
4.64 .

The last inequality is impossible for n� 1 (whence X � 1). Therefore, for n� 1, there
is an g1 = g + u in A such that gcd(f, g1) = 1, as asserted. This concludes the proof of
Theorem 1.

4. A proof of Theorem 2

Let f(x) ∈ F2[x] with deg f = n. There are unique polynomials fe(x) and fo(x) in 2[x]
such that f (x ) can be expressed as

f(x) = fe(x
2) + xfo(x

2).

Let m := max{deg fe,deg fo} = bn/2c. The proof of Theorem 2 rests upon the following
result (Lemma 5.1) from [4] (also see Lemma 3.1, [7]).

Lemma 6. Let h(x) ∈ F2[x] be of degree at least 2. Then h(x) is squarefree if and only
if gcd(he(x), ho(x)) = 1.

Let u(x) ∈ {fe(x), fo(x)} be defined as

u(x) =

fe(x) if deg f ≡ 0 (mod 2)

fo(x) if deg f ≡ 1 (mod 2).

Thus, deg u = m. Let v(x) ∈ {fe(x), fo(x)} denote the other polynomial. By Theorem 1,
for n� 1, there is an v1(x) ∈ F2[x] with deg v1 6 max{deg v, 6.7 log n} and L(v− v1) <
6.7 logm such that gcd(u(x), v1(x)) = 1. In particular, deg v1 6 deg v 6 deg u = m. Set

g(x) =

u(x2) + xv1(x
2) if u(x) = fe(x)

v1(x
2) + xu(x2) if u(x) = fo(x).

Then g(x ) is squarefree by Lemma 6. Furthermore,

L(f − g) = L(v − v1) < 6.7 logm < 6.7 log n,

as required. We conclude by clarifying that deg g = deg f . Assuming deg f = 2m is
even, we have u(x) = fe(x) with deg fe = m. Furthermore, deg v < m in this case.
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Consequently deg v1 < m (for n� 1). It follows that

deg g = max{2deg u, 1 + 2deg v1} = max{2m, 1 + 2deg v1} = 2m.

Similarly, if deg f is odd, say, deg f = 2m + 1, then u(x) = fo(x) with deg fo = m.
Then,

deg g = max{2deg v1, 1 + 2deg u} = 2m+ 1 = deg f.
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