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This paper assesses the potential of coherent vortex simulation (CVS) to compute
three-dimensional turbulent mixing layers. CVS splits each turbulent flow realization
into two orthogonal parts, one corresponding to coherent vortices which are kept,
and the other to an incoherent background flow which is discarded. The CVS filter
is applied to data from direct numerical simulations (DNS) of three-dimensional
forced and unforced time-developing turbulent mixing layers. The coherent flow is
represented by few wavelet modes, but these are sufficient to reproduce the vorticity
probability distribution function and the energy spectrum out to the high-wavenumber
end of the inertial range. The discarded incoherent background flow is homogeneous,
small-amplitude and decorrelated. The CVS-filtering results are then compared with
those obtained for the same compression ratio using Fourier low-pass filtering, as
employed in large-eddy simulation (LES). Compared to the incoherent background
flow of CVS filtering, the subgrid scales of LES filtering are less homogeneous, have
much larger amplitude, and exhibit spatial correlations that makes modelling them a
difficult challenge. Finally we present simulations of a time-developing mixing layer
where the CVS filter is applied at each time step. The results show that CVS preserves
the nonlinear dynamics of the flow, and that discarding the incoherent modes is
sufficient to model turbulent dissipation.

1. Introduction
Turbulent solutions of the Navier–Stokes equations exhibit coherent vortices whose

nonlinear interactions control the flow evolution. Since these vortices are localized and
excited on a wide range of scales, we have proposed using the wavelet representation
of the vorticity field to extract them in two- and three-dimensional homogeneous
turbulent flows (Farge, Schneider & Kevlahan 1999; Farge, Pellegrino & Schneider
2001). Orthogonal wavelet bases are well suited for this, because they are made
of self-similar functions localized in both physical and spectral space (Farge 1992;
Daubechies 1992). In Farge et al. (1999) we have introduced a new method to
compute turbulent flows, called coherent vortex simulation (CVS). It is based on the
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wavelet-filtered Navier–Stokes equations, whose solutions are computed on an adapt-
ive wavelet basis where wavelets are dynamically selected to track the flow evolution
with a reduced number of modes (Schneider & Farge 2000; Farge & Schneider 2001;
Schneider & Farge 2002). The success of this methodology hinges on the ability of the
wavelets to achieve a significant reduction in the number of modes needed to describe
the flow evolution. Prior to attempting the simulation of turbulent flows using CVS,
it is necessary to check that wavelets are capable of representing the complexity of
a turbulent flow field with fewer modes than conventional basis functions used in
the simulation of turbulence. To confirm this, existing direct numerical simulations
(DNS) of turbulence are analysed to determine the number of wavelets required to
represent the significant features of the flow. We also perform new simulations where
the CVS filter is applied at each time step to verify that the CVS filter preserves the
nonlinear dynamics of turbulent flows.

In this paper we focus on a prototypical free shear flow, the time-developing
turbulent mixing layer. A similar study for homogeneous isotropic turbulence has been
made by Farge et al. (2003). The mixing layers examined here are inhomogeneous,
with the turbulence statistics varying in the cross-stream direction. Despite being
turbulent, they typically contain vestiges of structures similar to those arising from
the instabilities of laminar and transitional mixing layers (Brown & Roshko 1974).
Spanwise, roughly two-dimensional rolls of vorticity are separated by braid regions
containing streamwise rib vortices, which are roughly aligned with the stretching
induced by the spanwise rolls. The dynamical significance of these structures has been
the topic of many papers. For a review we refer the reader to Ho & Huerre (1984).

Turbulent mixing layers are sensitive to their initial conditions. Even if the free-
stream velocities are the same, the layer spreading rate, the prominence of the organi-
zed large-scale structures, and the mixing efficiency of the layer all depend on the
details of the initial conditions, such as the character of the flow upstream of the
confluence of the two streams, vortical disturbances in the flow, and free-stream
disturbances. The time-developing mixing layer simulations of Rogers & Moser
(1994) include three cases with varying levels of two-dimensional forcing applied at
the inception of the layer. These flows in turn exhibit varying amounts of organized
large-scale structure. In the absence of two-dimensional forcing, such structures are
less prominent. Although spanwise rolls are still apparent, the braid regions between
them have significant vorticity and large-scale streamwise rib vortices do not persist
once the layer is evolving self-similarly. Strong forcing, on the other hand, induces
much more organization and rib vortices are observed between the well-defined rolls.
The mixing layer flow fields thus provide a good test bed for the extraction of
organized structure by wavelet-based CVS filtering. The strongly forced mixing layer
has well-organized, large-scale structures that facilitate assessment of whether the
wavelets can represent them with fewer modes than alternative descriptions. The
unforced mixing layer results will determine whether wavelets can still accomplish the
same thing in the absence of such a high level of flow organization.

In the present paper we apply a vector-valued wavelet algorithm to extract coherent
vortices from DNS data of two time-developing three-dimensional turbulent mixing
layers previously computed by Rogers & Moser (1994). Section 2 presents the wavelet-
based CVS-filtering method for extracting coherent vortices out of three-dimensional
turbulent flows. Section 3 covers the application of this method to DNS data of a
strongly forced and an unforced turbulent mixing layer. In § 4 the results are compared
with those obtained for the same compression ratio using a Fourier low-pass filter,
as typically used for large-eddy simulation (LES). In § 5 we study the influence of the
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CVS filter on the dynamics of the flow, by performing time integrations of the filtered
fields. We compare the results with a fully resolved DNS and two under-resolved
DNS, using a similar number of modes as retained by the CVS. In § 6 we compute
the time evolution of a turbulent mixing layer by retaining at each time step only
the coherent vortices, discarding the incoherent background flow to model turbulent
dissipation. The results thus obtained are compared with DNS and confirm that the
CVS-filtered simulation fully preserves the nonlinear dynamics. Finally, conclusions
are drawn and the prospects of applying CVS to the computation of three-dimensional
turbulent flows are discussed in § 7.

2. Wavelet method for coherent vortex extraction
In Farge et al. (1999, 2001) a wavelet-based method to extract coherent vortices

from both two- and three-dimensional turbulent flows was proposed. The algorithm
for the three-dimensional case is described below. We consider the vorticity field
ω(x) = ∇ × V , computed at resolution N = 23J , N being the number of grid points
and J the corresponding number of octaves. Each component is developed into
an orthogonal wavelet series, from the largest scale lmax = 20 to the smallest scale
lmin = 21−J , using a three-dimensional multi-resolution analysis (MRA) (Daubechies
1992; Farge 1992):

ω(x) = ω̄0,0,0,0φ0,0,0,0(x) +

J−1∑
j=0

2j −1∑
ix=0

2j −1∑
iy=0

2j −1∑
iz=0

7∑
µ=1

ω̃
µ
j,ix ,iy ,iz

ψ
µ
j,ix ,iy ,iz

(x), (2.1)

with

φj,ix ,iy ,iz(x) = φj,ix (x) φj,iy (y) φj,iz(z),

and

ψ
µ
j,ix ,iy ,iz

(x) =




ψj,ix (x) φj,iy (y) φj,iz(z), µ = 1,

φj,ix (x) ψj,iy (y) φj,iz(z), µ = 2,

φj,ix (x) φj,iy (y) ψj,iz(z), µ = 3,

ψj,ix (x) φj,iy (y) ψj,iz(z), µ = 4,

ψj,ix (x) ψj,iy (y) φj,iz(z), µ = 5,

φj,ix (x) ψj,iy (y) ψj,iz(z), µ = 6,

ψj,ix (x) ψj,iy (y) ψj,iz(z), µ = 7,

(2.2)

where φj,i and ψj,i are the one-dimensional scaling function and the corresponding
wavelet, respectively. Due to orthogonality, the scaling coefficients are given by
ω̄0,0,0,0 = 〈ω , φ0,0,0,0〉 and the wavelet coefficients by ω̃

µ
j,ix ,iy ,iz

= 〈ω, ψ
µ
j,ix ,iy ,iz

〉, where

〈·, ·〉 denotes the L2-inner product and µ corresponds to seven discrete directions in
three dimensions (from one corner of a cube to the other seven corners).

The extraction algorithm can be summarized as follows:
(i) given ω(x), sampled on a grid (xi, yj , zk) for i, j, k = 0, N − 1, and the total

enstrophy Z = 1
2

∫
|ω|2dx,

(ii) perform the three-dimensional wavelet decomposition by applying the Fast
Wavelet Transform (FWT) to each component of ω to obtain the three components
of ω̃

µ
j,ix ,iy ,iz

for j = 0, J − 1, ix, iy, iz = 0, 2J−1 − 1, and µ = 1, . . . , 7,
(iii) compute the threshold

εT =

√
4Z

3
lnN (2.3)
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Figure 1. Coiflet 12 wavelet. (a) Scaling function φ in physical space (left) and spectral
space (right). (b) Wavelet ψ in physical space (left) and spectral space (right).

and split the coefficients ω̃ into

ω̃C =

{
ω̃ for |ω̃| > εT

0 otherwise,
ω̃I =

{
ω̃ for |ω̃| � εT

0 otherwise,
(2.4)

(iv) perform the three-dimensional wavelet reconstruction by applying the inverse
FWT to compute ωC and ωI from ω̃C and ω̃I , respectively,

(v) use Biot–Savart’s relation

V = (∇×)−1ω (2.5)

to reconstruct the coherent and incoherent velocity fields from the coherent and
incoherent vorticity fields, respectively.

The above vortex extraction algorithm is of linear complexity, as the FWT
requires O(N) operations, where N denotes the total number of grid points. For
the decomposition one FWT is performed for each component of the vorticity vector
ω. To reconstruct the coherent vorticity ωC in physical space one inverse FWT is
required for each component. The incoherent vorticity vector ωI is obtained by taking
the difference between the total and the coherent vorticity in physical space. This
yields in total six FWTs. The wavelets used are orthogonal Coiflets (figure 1) of order
c =12 having four vanishing moments, where c denotes the length of the associated
quadratic mirror filter (Daubechies 1992; Farge 1992). As a result, the operation
count of the whole algorithm is 6Nc compared with 6N log2 N for the standard fast
Fourier transform. Therefore the FWT becomes faster than the FFT for N > 2c.

Note that the threshold εT only depends on the total enstrophy Z and on the
number of grid points N , without any adjustable parameters. The choice of this
threshold (equation (2.3)) is based on theorems (Donoho 1993; Donoho & Johnstone
1994) proving optimality of the wavelet representation to denoise signals in the
presence of Gaussian white noise, since this wavelet-based estimator minimizes the
maximal L2-error for functions with inhomogeneous regularity.
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The two vorticity fields thus obtained, ωC and ωI , are orthogonal, which ensures
a separation of the total enstrophy into Z = ZC + ZI because the interaction term
〈ωC , ωI 〉 vanishes. For the energy E the interaction term 〈V C , V I 〉 does not vanish,
as the wavelets used here are not eigenmodes of the inverse curl operator, but it does
remain negligible, less than 1 % E (Farge et al. 2001).

As the orthogonal wavelet transform does not commute with the divergence
operator and the vector-valued wavelet basis is not divergence-free, i.e. ∇ · ψλ �= 0,
the CVS filtering does not yield coherent and incoherent vorticity that are perfectly
divergence-free. There are several possible ways to ensure that the coherent vorticity
remains divergence-free:

(i) use divergence-free orthogonal wavelets (Lemarié 1992),
(ii) decompose ω into ω = ωdiv= 0 + ∇φ; then φ can be calculated by taking the

divergence which leads to a Poisson equation ∇2φ = ∇ · ω.
(iii) apply the previous decomposition, not to the solution, but to the wavelet basis

itself, which can be done as a precalculation since the wavelet decomposition is a
linear transformation.

However, this is not a key issue in practice, since the divergent component of
the decomposed vorticity field remains less than 3 % of the total enstrophy and
appears mostly in the dissipation range (Farge et al. 2003). The same problem is
also encountered for vortex methods applied to three-dimensional turbulent flows
(Winckelmans 1995). Note that the corresponding velocity fields are divergence-free
because they have been reconstructed using the Biot–Savart relation.

3. Application to mixing layers
Using compactly supported Coiflet 12 wavelets (Daubechies 1992), the above

algorithm is applied to two instantaneous three-dimensional time-developing turbulent
mixing layer flow fields previously generated by Rogers & Moser (1994). Both flows
are evolving self-similarly at the times examined and the Taylor-microscale Reynolds
number Rλ is about 150. The first flow field is the strongly forced mixing layer at
time τ = t�U/δ0

m = 101.5, where �U is the velocity difference across the layer and
δ0
m is the initial layer momentum thickness. The second flow field is the unforced

simulation at time τ = 150.0. Flow visualization of both these flow fields is given in
Rogers & Moser (1994). As noted in the introduction, the forced flow exhibits much
more large-scale organization than the unforced flow. The coordinate axes are defined
as Ox for the streamwise direction, Oy for the cross-stream (vertical) direction and
Oz for the spanwise direction.

The orthogonal wavelet decomposition used here requires that the number of
computational grid points in each of the coordinate directions be a power of 2. At
τ = 101.5, the forced mixing layer flow field was computed using 384 × 120 × 128
modes. Thus, prior to performing the wavelet filtering, the vorticity field was
interpolated onto a finer physical-space grid with 512 × 256 × 128 points. The unforced
mixing layer flow field, computed using 512 × 180 × 192 modes, was also interpolated
onto a 512 × 256 × 128 physical-space mesh (truncated spanwise representation).
Owing to memory limitations of the graphics package used for three-dimensional
flow visualization, both vorticity fields were reduced to 643 for flow visualization.

3.1. Forced mixing layer

Figure 2(a) shows the modulus of vorticity for the total flow in the forced case. Clearly
evident are four transverse ‘rolls’, produced by the two-dimensional Kelvin–Helmholtz
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Figure 2. Forced mixing layer: (a) modulus of the total vorticity of the forced three-
dimensional mixing layer; (b) modulus of the coherent vorticity; (c) modulus of the incoherent
vorticity. The same colour map is used for the three fields.
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Figure 3. Zoom of figures 2(a) and 2(b). Iso-surfaces of vorticity modulus for (a) total flow,
(b) coherent part, (c) incoherent part using the same colour map as in figures 2(a) and 2(b).

instability, and pronounced longitudinal vortex tubes, called ‘ribs’, which result from
a three-dimensional instability.

The coherent vorticity (figure 2b), which is reconstructed using only 3.8 % of the
wavelets, captures most of the turbulent kinetic energy (99 %) and enstrophy (83 %),
for all wavenumbers associated with the large scales and the inertial range (figure 4a).
The same transverse rolls and longitudinal ribs present in the total vorticity field
(figure 2a) are retained in the coherent vorticity field (figure 2b).

In figure 3 we zoom in on a pair of ‘rib’ vortices visible in figure 2(a, b). This
figure confirms that the coherent flow contains the vortex tubes present in the total
flow, including even the smaller ones such as the ribs, whereas the incoherent flow is
structureless.

To confirm this, we observe that the probability distribution function (PDF) of the
coherent vorticity is similar to that of the total vorticity, even for the extreme values
(figure 4c). In contrast, the incoherent vorticity (figure 2c), which is represented by
96.2 % of the wavelets, contains less than 1 % of the turbulent kinetic energy and
17 % of the enstrophy. It is structureless and quasi-homogeneous with low amplitude.
The PDF of the incoherent vorticity (figure 4c) decays exponentially, with much
reduced extreme values compared to the PDF of the total vorticity.

The similarity between the streamwise one-dimensional energy spectra (figure 4a)
of the coherent and the total flow indicates that the energetic turbulent motions are
well captured by the CVS filtering for all except the highest wavenumbers, where
dissipation dominates. In contrast, the incoherent part contains very little energy
(1 % of the total) and is uncorrelated in space, i.e. the energy spectrum is flat at all
scales, corresponding to an energy equipartition. The incoherent energy dominates
the coherent energy only in the highest wavenumbers, where dissipation takes over.

The cross-stream profiles of the spanwise vorticity component averaged in the
streamwise and spanwise directions ωz are shown in figure 5 for the total, coherent,
and incoherent flow. They show that the coherent vorticity exactly follows the
total vorticity, while the incoherent vorticity oscillates weakly around zero, with
an amplitude of less than 4 % of the maximal value of |ωz|, which is the maximal
vorticity of the primary rolls. This quantifies the similarity between the coherent and
total vorticity and confirms that the coherent flow retains most of the enstrophy.
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Figure 4. Comparison of CVS (a, c) with LES (b, d) filtering for the forced mixing layer.
Energy spectra in the streamwise direction (a, b) and PDF of vorticity (c, d) of total, coherent,
and incoherent flow using CVS filtering (a, c), and of low-wavenumber and high-wavenumber
components using LES filtering (b, d).
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Figure 5. Cross-stream profiles of the spanwise vorticity component averaged in the
streamwise and spanwise directions ωz, for the total, coherent, and incoherent vorticity of
the forced mixing layer.
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Figure 6. Modulus of the total vorticity of the unforced three-dimensional mixing layer.

3.2. Unforced mixing layer

Now we consider the unforced mixing layer and apply the CVS filtering to this flow.
Figure 6 shows the modulus of vorticity for the total flow. In contrast to the forced
mixing layer (figure 1), there is little evidence of organized, large-scale structures in
the unforced flow, with less pronounced transverse rolls and no obvious rib vortices.

Despite the lack of large-scale organized structure, the coherent vorticity (figure 7a),
which is represented by only 4.2 % of the wavelet coefficients, still captures the char-
acter of the total vorticity. The incoherent vorticity (figure 7b), represented by 95.8 %
of the wavelet coefficients, again appears quasi-homogeneous, with little organized
structure and much smaller amplitude.

The validity of the decomposition is further confirmed by the vorticity PDF
(figure 8c). Again, the coherent vorticity presents the same non-Gaussian distribution
as the total vorticity, whereas the PDF of the incoherent vorticity follows an exponen-
tial decay with a much reduced variance compared to the total vorticity. As for the
forced case, the coherent flow has the same spectral distribution of energy as the
total flow for all scales up to the dissipative wavenumbers (figure 8a). In contrast,
the incoherent flow is characterized by a small-amplitude, flat energy spectrum
corresponding to energy equipartition. The similarity in the number of wavelets
required to represent the large-scale organized structures in both flows indicates that
prominent large-scale structures are not a necessity for the wavelet decomposition to
successfully represent the coherent features of the flow.

4. Comparison between CVS and LES filtering
We now consider the results obtained with LES filtering applied to the two time-

developing mixing layers examined above. Here we choose the simplest LES filter, a
low-pass Fourier cut-off filter, and apply it in each of the three coordinate directions.
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Figure 7. Unforced mixing layer: (a) modulus of the coherent vorticity; (b) modulus of the
incoherent vorticity. The same colour map is used for both fields.

The resulting filtered flow retains 9 % of the 512 × 256 × 128 modes, or 3.2 % of
the original computational Fourier/Jacobi modes for the forced case (6.3 % for the
unforced case). The discarded modes correspond to the subgrid scales of a LES.
The amount of information retained in the LES and CVS-filtering schemes is thus
comparable for the forced simulation, consisting of at least 3 % of the full dataset,
and favours the LES for the unforced flow.
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Figure 8. Comparison of CVS (a, c) with LES (b, d) filtering for the unforced three-
dimensional mixing layer, at resolution N = 512 × 256 × 128. Energy spectra in the streamwise
direction (a, b) and PDF of vorticity (c, d) of total, coherent, and incoherent flow using CVS
filtering (a, c), and of large-scale and subgrid-scale components using LES filtering (b, d).

The LES filtering keeps only the scales larger than that associated with the cutoff
wavenumber (figures 4b and 8b). We observe that the LES filtering smooths the
coherent vortices since the extrema of vorticity are strongly reduced (see the PDF
on figures 4d and 8d). In contrast, the CVS filtering retains the organized features
without any smoothing, whatever their scale, and, as noted previously, the shape of
the vorticity PDF is fully preserved, even for the extreme values of vorticity (figures 4c

and 8c).
The large-scale and subgrid-scale vorticity fields, obtained by LES filtering of the

unforced mixing layer, exhibit organized features of similar magnitude (figure 9).
Additionally, their vorticity PDFs (figure 8d) have about the same variation and
the large-scale vorticity does not capture the distribution of the total flow. In fact,
the subgrid-scale modes, whose effect must be modelled in LES, have a more non-
Gaussian distribution than the large-scale modes that are resolved by LES. Therefore
the subgrid-scale models used for LES should not be based on the assumption of
Gaussian behaviour for the subgrid scales.

We now compare and contrast the character of the flow fields discarded by CVS
filtering and LES filtering. The CVS filtering extracts the coherent structures from
turbulent flows, leaving only white noise for the incoherent flow, which is discarded.
The incoherent flow is structureless and strained by the coherent flow, inhibiting
nonlinear interaction and preventing the transfer of energy from the incoherent
modes to the coherent modes. In contrast, LES filtering discards a subgrid-scale flow
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Figure 9. Unforced mixing layer: (a) modulus of the large-scale vorticity reconstructed from
9 % of the low-wavenumber Fourier modes; (b) modulus of the subgrid-scale vorticity
reconstructed from 91 % of the high-wavenumber Fourier modes. The same colour map
is used for both fields.

that has spatial structure. If these subgrid-scale coherent structures were kept, they
would interact nonlinearly and transfer energy back to larger scales (backscatter).
Moreover, the variability of the total field is not fully retained by the LES filtering as
it is by the CVS filtering. As a consequence, the discarded high-wavenumber modes
contain more enstrophy than the incoherent modes discarded by the CVS filtering.
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DNS-f CVS-f C–DNS1-f C–DNS2-f

Number of modes N 100% 3.8% 8.8% 3.7%

Cross-stream-integrated ECSI (τ = 101.5) 3.196 3.121 3.155 3.119
energy ECSI (τ = 116.4) 3.631 3.608 3.650 3.672

Cross-stream-integrated ZCSI (τ = 101.5) 16.832 13.669 11.616 9.280
enstrophy ZCSI (τ = 116.4) 16.528 15.768 16.872 15.254

Momentum thickness τ = 101.5 1.871 1.870 1.870 1.870
τ = 116.4 2.080 2.083 2.083 2.084

Table 1. Forced mixing layer. Statistics at τ = 101.5 and τ = 116.4.

For LES, if we do not model the effect of the subgrid-scale modes on the resolved
modes, the energy accumulates at the cutoff and the computation may diverge. For
CVS, if we do not model the effect of the discarded incoherent modes on the resolved
coherent modes, there is no risk of divergence since energy can be transferred in both
directions throughout the fully resolved inertial range. Discarding the incoherent
modes corresponds to turbulent dissipation, because these modes are structureless,
homogeneous, and uncorrelated.

5. Dynamical analyses of the filtered fields
To better understand the effect of the CVS filtering on the dynamics of the flow,

the CVS-filtered flows have been advanced in time using the DNS code of Rogers
& Moser (1994). These flow evolutions are then compared with those of the original
DNS calculations to ascertain any differences in flow development. Similarly, the
LES-filtered fields are also advanced in time with the same code but using coarser
resolutions, comparable to the number of modes retained by the CVS filtering. This
code has no explicit subgrid-scale model, so these latter simulations are effectively
coarse DNS, which are denoted C–DNS.

5.1. Forced mixing layer

In the forced case we perform time integrations from τ =101.5 to τ = 116.4, using as
an inititial condition either the total flow, or the CVS-filtered flow, or two LES-filtered
flows of different compressions. For the CVS-filtered flow (CVS-f) we integrated
the coherent part, which corresponds to 3.85 % of the total number of modes
(N =512 × 256 × 128). A total of 411 steps was required to reach the final time.
For the LES-filtered flow we performed two coarse DNS, one retaining 8.79 % of N

modes at large scales corresponding to a resolution 192 × 120 × 64 (named C–DNS1-f)
and one retaining 3.71 % of N modes corresponding to a resolution 144 × 90 × 48
(named C–DNS2-f). The statistics of the results obtained for the four integrations are
displayed in table 1.

We then analyse the time evolution of the cross-stream-integrated enstrophy plotted
in figure 10. We observe that for C–DNS1-f and C–DNS2-f the enstrophy level
increases with time. In the CVS-f case enstrophy also increases, although more
gradually, and it smoothly approaches the DNS-f curve. Note that at the initial time,
CVS-f retained more enstrophy than C–DNS1-f and C–DNS2-f. The energy spectra
at τ = 116.4 are shown in figure 11. For C–DNS1-f and C–DNS2-f energy tends to
pile up at the cut-off wavenumbers (cf. the zoom in figure 11) because there is no
subgrid-scale model. For CVS-f we find an almost perfect superposition with the
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Figure 10. Forced mixing layer. Time evolution of the cross-stream-integrated enstrophy.
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Figure 11. Forced mixing layer. Energy spectra in the streamwise direction at τ = 116.4.

DNS simulation. Additionally the PDF of the vertical vorticity (ωy) at time τ = 116.4
shows a better match between the evolved CVS flow and the DNS (figure 12). For
both C–DNS1-f and C–DNS2-f the vorticity extrema are reduced in comparison
to the DNS. On the other hand, the agreement between the evolution of the CVS
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Figure 12. Forced mixing layer. PDF of vertical vorticity (ωy) at τ =116.4.

flow and the two C–DNS flows for large-scale statistics is much better. All three
precisely reproduce the evolution of the momentum thickness (the results differ less
than 0.04 %, cf. table 1) and the shapes of the mean streamwise velocity profiles at
the final time agree perfectly (figure not shown). The evolution of the cross-stream
integrated turbulent kinetic energy, also shown in table 1, is likewise similar for all
the flows, with the final values in the C–DNS flows being slightly higher. Actually,
this discrepancy and the one observed for enstrophy can be largely attributed to the
lower resolution of the C–DNS. Thus the large-scale field evolves accurately for all
of the filters used, even with coarse resolution. This is perhaps in part due to the
forcing, which makes the large-scale two-dimensional motions play an important role
in the evolution.

5.2. Unforced mixing layer

As with the forced case, we perform time integrations over a fixed time interval
from various initial filterings of the unforced flow at t = 150.0. For the reference case
(DNS-u) the total field is used as the initial condition, whereas for the CVS-filtered
case (CVS-u) the coherent part from the CVS wavelet filtering, comprised of 4.17 % of
the total number of modes (N =512 × 256 × 128) is used. This flow was time advanced
388 time steps to τ = 168.1 and the resulting flow evolution was compared to that of
the full simulation and to a coarse DNS (C–DNS-u) begun from an LES-filtered field
with 128 × 90 × 48 modes, or 3.30 % of the modes used to represent the full DNS
field. The statistics obtained for the three integrations are assembled in table 2. Again
we find in all cases excellent agreement for the momentum thickness and the mean
streamwise velocity profile (figures not shown).
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DNS-u CVS-u C–DNS-u

Number of modes N 100% 4.17% 3.30%

Cross-stream-integrated ECSI (τ = 150.0) 2.062 2.013 1.960
energy ECSI (τ = 168.1) 2.194 2.297 2.387

Cross-stream-integrated ZCSI (τ = 150.0) 20.217 16.503 9.952
enstrophy ZCSI (τ = 168.1) 19.612 19.189 18.992

Momentum thickness τ = 150.0 1.984 1.984 1.984
τ = 168.1 2.194 2.192 2.199

Table 2. Unforced mixing layer. Statistics at τ = 150.0 and τ = 168.1.

10

12

14

16

18

20

22

60 62 64 66 68

DNS-u
CVS-u
C–DNS-u

C
ro

ss
-s

tr
ea

m
-i

nt
eg

ra
te

d 
en

st
ro

ph
y

Time

Figure 13. Unforced mixing layer. Time evolution of the cross-stream-integrated enstrophy.

The cross-stream integrated enstrophy (figure 13) rapidly shoots up for C–DNS-u,
while for CVS-u it gradually approaches the DNS evolution. Conclusions drawn from
the energy spectra at τ =168.1 in figure 14 are consistent with those drawn in the
forced case, i.e. for C–DNS-u energy tends to pile up at the cut-off wavenumber owing
to the lack of a subgrid model, while for CVS-u we find a very good agreement up
to the finest scales. The vorticity PDFs at time τ = 168.1 (figure 15) show that CVS-u
preserves the extrema much better than C–DNS-u, with the PDF for C–DNS-u being
much narrower than that for DNS-u.

6. Coherent vortex simulation
6.1. Principle

In this section we check the ability of the CVS approach to track the flow evolution
by computing the time evolution of the coherent flow only, discarding the incoherent
enstrophy at each time step. The resulting evolution is compared with that obtained
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Figure 14. Unforced mixing layer. Energy spectra in the streamwise direction at τ = 168.1.
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Figure 15. Unforced mixing layer. PDF of vertical vorticity (ωy) at τ = 168.1.

from DNS. For both computations we use a pseudo-spectral code kindly provided
by Pierre Comte. The discretization is based on Fourier transforms in the streamwise
and spanwise directions, and sine/cosine transforms in the vertical direction. The time
integration is done with a low-storage Runge–Kutta scheme of third order. For more
details on the numerical code see Comte, Lesieur & Lamballais (1992).
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J
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i

|ω| > ε~

Figure 16. Security zone in wavelet coefficient space (i position and j scale). A coherent
vortex at time tn is represented by only the wavelet coefficients with vorticity modulus |ω̃(tn)|
larger than the threshold εT (tn), which corresponds to the filtered wavelet basis at time tn
(area below the solid curve). To allow the coherent vortex to translate or be distorded by the
Navier–Stokes nonlinear dynamics, a security zone is added (grey area). The adaptive wavelet
basis is the union of the filtered wavelet basis and the security zone. The solution is then
advanced to time tn+1 and is represented by only the wavelet coefficients |ω̃(tn+1)| >εT (tn+1),
which correspond to the filtered wavelet basis at time tn+1 (area below the dashed curve).

In this code we implemented the CVS filtering algorithm described in § 2. Since
it is designed to eliminate the noisy part of the flow, it does not make sense to
start filtering at t =0, because this would filter out the initial random perturbations
needed to trigger the flow instability. Therefore, we begin to apply the CVS filtering at
t = 5δ0

m/�U . At each time step, the vorticity ω is computed from the velocity V and
the CVS decomposition is performed with a threshold εT based on the instantaneous
enstrophy Z(t) using (2.3). We then determine the index set of the filtered wavelet
basis, corresponding to the wavelet coefficients that are larger than this threshold.
In order to account for the translation of coherent vortices and the creation of
finer scales that may not be captured by the filtered wavelet basis, this index set
is expanded by adding neighbour wavelets in space and scale, comprising the so-
called security zone (figure 16). It includes one neighbour in each space direction
and the wavelets at the next smaller scale having the same position. This security
zone width is sufficient because the CFL criterion ensures that information does not
travel faster than �x/�t (�x being the smallest space step and �t the time step).
Also, the addition of the wavelets of the next octave prevents aliasing errors since the
Navier–Stokes equations have a quadratic nonlinearity. The adaptive wavelet basis,
which corresponds to the filtered wavelet basis supplemented with the security zone,
fully retains the nonlinear dynamics of the flow and tracks its evolution in space and
scale. The security zone concept has been introduced by Liandrat & Tchamitchian
(1990) for computing solutions to the one-dimensional Burgers equation and has been
used by Fröhlich & Schneider (1999) to compute solutions to the two-dimensional
Navier–Stokes equations on an adaptive wavelet basis.

Finally, the solution is advanced in time and only the modes belonging to the
adaptive wavelet basis are retained. The coherent vorticity is reconstructed by an
inverse wavelet transform and the corresponding coherent velocity is computed using
Biot–Savart’s relation (2.5). Discarding the incoherent enstrophy at each time step is
equivalent to turbulent dissipation because the incoherent flow is structureless and
decorrelated, corresponding to a kind of thermal background noise.
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6.2. Dynamical comparison between DNS and CVS

Two simulations, one DNS and one CVS, have been performed at a resolution of
N = 1283. The mean streamwise velocity profile employed as an initial condition
is U (y) = �U tanh(2y/δ0

m), where δ0
m has been chosen such that four Kelvin–

Helmholtz vortices develop when the profile is perturbed. To trigger this instability we
superimpose Gaussian noise in the vortical region. At later times, three-dimensional
instabilities appear and streamwise ribs are formed.

The beginning of the simulation corresponds to the initiation of a transition towards
turbulence. Up to t = 7δ0

m/�U , the two-dimensional Kelvin–Helmholtz instability
develops in the streamwise direction, creating four two-dimensional rolls. During this
first phase, there is no vortex stretching and therefore no production of enstrophy,
which is actually slowly dissipated (cf. figure 20b). Then three-dimensional instabilities
begin to deform the rolls in the spanwise direction. As these instabilities are in phase
opposition for each pair of rolls, they are brought together and a first pairing
occurs at time t = 9δ0

m/�U (figure 17). After this point, vortex stretching begins
and gives rise to the formation of vortex ribs in between the rolls, resulting in
the production of enstrophy as observed in (figure 20b). At t = 18δ0

m/�U , a second
pairing occurs, more and more entangled vortices are generated around the two
main rolls, and the mixing layer becomes turbulent. As a result, hairpin vortices are
formed and stretched by velocity gradients, and the production of enstrophy becomes
more pronounced (figure 18). At t = 25δ0

m/�U , the enstrophy production saturates as
observed in (figure 18) and the vorticity field consists of a complex mixture of vortex
tubes (figure 19).

Before performing quantitative analyses of the differences between DNS and CVS,
we study the vorticity fields in physical space. For this we plot the iso-surfaces of the
vorticity modulus in figures 17, 18, and 19 at t =9δ0

m/�U , t =18δ0
m/�U , and t =

25δ0
m/�U , respectively. Until the second pairing occurs at t = 18δ0

m/�U , no differences
are observed between the DNS and the CVS (figure 18). The flow is not yet fully
turbulent, thus the retained wavelet modes describe the flow completely. After the
transition to turbulence, the situation changes and the CVS-filtered computation
exhibits the structure and topology of the vortex tubes more clearly than the DNS
(figure 19) because the random fluctuations of the incoherent vorticity have been
filtered out. Nevertheless, all organized vortex tubes are still present, whatever their
scale and intensity.

6.3. Statistical comparison between DNS and CVS

This correspondence between CVS and DNS flows is quantified by studying the time
evolution of integral quantities, like energy and enstrophy. Figure 20 shows that,
before the flow is fully turbulent, both energy and enstrophy are the same for CVS
and DNS. After the flow has become fully turbulent (after about t =18δ0

m/�U ), the
nonlinear flow dynamics begins to produce incoherent enstrophy. The CVS filtering
removes this incoherent enstrophy and this explains why the CVS flow contains
less enstrophy than the DNS flow. Contrary to standard approaches in turbulence
modelling, with CVS there is no need to adjust a turbulent viscosity parameter because
the threshold is automatically set by the instantaneous enstrophy, as explained in § 2.

On the other hand, the time evolution of large-scale statistics such as turbulent
kinetic energy E is almost the same for CVS and DNS; up to the final time the
discrepancy remains less than 0.4 % of E. This is a result of the noise-like nature of
the incoherent vorticity, which contributes almost nothing to the total energy because
it is cancelled out in the Biot–Savart kernel (equation (2.5)). In contrast, the coherent
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Figure 17. Comparison between DNS (a) and CVS (b). Iso-surfaces of the vorticity modulus
coloured by the spanwise vorticity at t =9δ0

m/�U .
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Figure 18. Comparison between DNS (a) and CVS (b). Iso-surfaces of the vorticity modulus
coloured by the spanwise vorticity at t = 18δ0

m/�U .
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Figure 19. Comparison between DNS (a) and CVS (b). Iso-surfaces of the vorticity modulus
coloured by the spanwise vorticity at t =25δ0

m/�U .
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Figure 20. (a) Time evolution of energy. (b) Time evolution of enstrophy. We compare DNS
(solid line) and CVS (dashed line), and also plot the ratio CVS/DNS (dotted line). (c) Time
evolution of the percentage of retained wavelet coefficients (including the security zone) used
by CVS. Note that the first two peaks correspond to the times when vortex pairing is occurring.
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Figure 21. Comparison between CVS (dashed line) and DNS (solid line). Cross-stream profile
of mean (a) and variance (b) of the streamwise velocity at time t = 18δ0

m/�U and t = 25δ0
m/�U .

vortex tubes are localized and induce a coherent velocity that accounts for virtually
all of the energy.

In figure 20(c) we present the number of wavelet modes retained during CVS,
which varies between 8 % and 15 % of N corresponding to a factor of about 2 in
each Cartesian direction. About 4 % of N are in the filtered wavelet basis and the
rest correspond to the security zone, which has been added to track the nonlinear
dynamics in space and scale. This figure shows that the number of active wavelet
coefficients evolves in time. In particular, when pairings occur the number of wavelets
increases, as reflected in the first two peaks in figure 20(c).

In figure 21 we analyse the cross-stream profile of the mean and variance of the
streamwise velocity at times t =18δ0

m/�U and t =25δ0
m/�U . The agreement between

CVS and DNS at both times is excellent. Similar agreement is observed for the cross-
stream profiles of vorticity fluctuation variances at time t = 18δ0

m/�U (figure 22), but
not at the later time t = 25δ0

m/�U , when the flow has become fully turbulent. At this
time, the CVS method is filtering out part of the vorticity fluctuations and therefore
the profile obtained with CVS is slightly narrower than that obtained with DNS.
In figure 23 we present one-dimensional streamwise energy spectra for each of the
three velocity components. During the simulation, energy is transferred from large
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Figure 22. Comparison between CVS (dashed line) and DNS (solid line). Cross-stream
profile of the vorticity variance averaged in the horizontal plane at time t = 18δ0

m/�U and
t =25δ0

m/�U .

scales to small scales and a self-similar k−5/3 inertial subrange begins to develop.
The comparison between CVS and DNS confirms the result of the CVS filtering
found in § 3, namely, the energy spectra for CVS are the same as for DNS at large
scales, whereas at small scales the filtering discards the incoherent enstrophy which is
equivalent to turbulent dissipation.

We now consider the PDF of the vorticity. At t = 18δ0
m/�U , the PDFs of the

spanwise and streamwise vorticity are highly non-Gaussian and slightly skewed due to
the presence of ribs and rolls. The turbulence intensity increases and by t = 25δ0

m/�U

the PDFs have become more symmetric, although their flatness remains high. We also
observe that the maximum values of vorticity have increased due to the production
of enstrophy by vortex stretching. The PDFs of both CVS and DNS remain very
similar up to the end of the simulations. This, together with the flow visualizations
(figures 17, 18, and 19), demonstrates that CVS preserves the structures present in
the flow and their nonlinear dynamics. The only difference observed is that the
vorticity field computed by CVS is cleaner (figure 19b) than the one computed by
DNS (figure 19a) because the fuzziness in the latter has been removed by filtering the
incoherent vorticity.

7. Conclusions and perspectives
In this paper we have assessed the potential of the CVS method as a simulation tool

for three-dimensional turbulent mixing layers. The CVS filtering extracts the coherent
structures from turbulent flows using an orthogonal wavelet basis. The coherent vorti-
city is reconstructed from the few wavelet coefficients whose modulus is larger than
a threshold, which depends only on the resolution and on the total enstrophy, while
the remaining wavelet coefficients are discarded to model turbulent dissipation. Then
the induced coherent velocity is computed using Biot–Savart’s relation.

We have first applied this method to two three-dimensional time-developing mixing
layers, forced and unforced, at a given time instant. The coherent flow is represented
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Figure 23. Comparison between CVS (dashed line) and DNS (solid line) at time t = 18δ0
m/�U

and t = 25δ0
m/�U . (a, c, e): One-dimensional energy spectra in the streamwise direction for the

streamwise (a), spanwise (c) and vertical (e) components of velocity. (b, d, f ): PDFs of the
streamwise (b), spanwise (d), and vertical (f ) components of vorticity.

by only about 4 % of the wavelet coefficients, and yet retains all the essential char-
acteristics of the total flow. It contains most of the energy and enstrophy, preserves
the non-Gaussianity of the vorticity PDF, and has the same spectral distribution of
energy. We have also checked that the associated incoherent flow is structureless,
decorrelated, and exhibits a much narrower vorticity PDF.
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The advantage of CVS filtering in comparison to LES filtering has also been
demonstrated for turbulent mixing layers. The incoherent vorticity discarded by CVS
is structureless, while the subgrid-scale vorticity associated with LES is not, since
it contains the small scales of the coherent structures. The vorticity PDF is much
narrower for the CVS-filtered than for the LES-filtered flow. Moreover, the incoherent
flow exhibits a flat energy spectrum and this decorrelation suggests that it has reached
a kind of equilibrium.

To check the influence of the CVS filtering on the flow dynamics we performed
several time integrations using the filtered fields as initial conditions. The results
confirmed that the statistics of the CVS-filtered flow remain close to those of the total
flow.

We then performed other simulations in which, at each time step, we applied CVS
filtering and added a security zone to provide room for the coherent structures to move
and distort. For this, we coupled the CVS filtering with a DNS code and performed a
CVS, however saving neither memory nor CPU time, as would be the case if one used
an adaptive discretization. The results demonstrate that CVS preserves the nonlinear
dynamics of the flow, in particular the formation of primary two-dimensional vortices
and secondary three-dimensional ribs, although it eliminates the incoherent enstrophy
which corresponds to turbulent dissipation. We observe that CVS results in similar
statistics, such as mean velocity and velocity variance, energy spectra, and vorticity
PDF, as DNS.

Work in progress deals with the development of a CVS code to solve the three-
dimensional Navier–Stokes equations in an adaptive wavelet basis. This combines
an Eulerian representation of the flow and a Lagrangian adaptation strategy for the
computed modes, which are remapped at each time step using CVS filtering. The
dynamical adaptation of the grid in physical space, which is inherent in CVS, allows
the nonlinearly active coherent flow to be evolved with a reduced number of computed
modes, while the passive incoherent flow is eliminated to model turbulent dissipation.
We have already shown that CVS yields results similar to those obtained with DNS
for different kinds of two-dimensional flows: homogeneous isotropic turbulent flows
(Fröhlich & Schneider 1999), temporally developing mixing layers (Schneider & Farge
2000; Farge & Schneider 2001), and flows past a cylinder (Schneider & Farge 2002).
For three-dimensional reaction–diffusion equations we have shown (Roussel et al.
2003) that adaptive wavelet computation results in significant reduction in memory
requirements and CPU time. The first results for three-dimensional compressible flows
using this adaptive wavelet solver are promising and will be reported elsewhere.

Part of this work was performed during the 2000 Center for Turbulence Research
Summer Program. M.F. and K. S. gratefully acknowledge financial support from the
Center for Turbulence Research, Stanford University, and the NSF-CNRS-DAAD
joint research program (contract 9201). G. P. was supported by the Commission of
the European Communities Contract FMRX-CT98-0184 TMR Project “Wavelets in
Numerical Simulation”. We also thank Pierre Comte for providing his spectral code
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Fröhlich, J. & Schneider, K. 1999 Computation of decaying turbulence in an adaptive wavelet
basis. Physica D 134, 337–361.

Ho, C.-M. & Huerre, P. 1984 Perturbed free shear layers. Annu. Rev. Fluid. Mech. 16, 365–424.
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