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Abstract  Let k be a field and let Q be a minimal Hopf quiver, i.e. a cyclic quiver or the infinite linear
quiver, and let repl“(Q) denote the category of locally nilpotent finite-dimensional k-representations
of Q. The category rep™(Q) has natural tensor structures induced from graded Hopf structures on the
path coalgebra kQ. Tensor categories of the form rep!®(Q) are an interesting class of tame hereditary
pointed tensor categories that are not finite. The aim of this paper is to compute the Clebsch—Gordan
formulae and Green rings of such tensor categories.
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1. Introduction

Throughout the paper we work over an algebraically closed field k of characteristic 0.
Vector spaces, (co)algebras, (co)modules, Hopf algebras, categories, morphisms and
unadorned ® are over k. By a tensor category, we mean a locally finite abelian rigid
monoidal category in which the neutral object is simple; see [4] for unexplained notions
of tensor categories. Recall that the Green ring of a tensor category C, denoted by GR(C),
is the free abelian group generated by the isomorphism classes [X] of objects in C, with
multiplication given by tensor product [X] - [Y] = [X ® Y] modulo all split short exact
sequences. It is well known that Green rings are a convenient way of organizing informa-
tion about direct sums and tensor products of tensor categories.

Given a tensor category C, it is certainly interesting to determine its Green ring GR(C).
However, this mission is generally too complicated to be accomplished. Recently, the
Green rings were computed for some relatively less complicated tensor categories, for
example the module categories of Taft algebras in [2], the module categories of generalized
Taft algebras in [11], and pointed tensor categories of finite type [8]. A key feature
of the tensor categories investigated in [2,8,11] is that there are only finitely many
indecomposable objects, up to isomorphism, in them. In retrospect, this is the main
reason that their Green rings are computable.

The aim of this paper is to compute the Green rings of some tame hereditary pointed
tensor categories. From the viewpoint of the representation theory of algebras (see, for
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example, [1]), this is a further natural question that we may ask ourselves immediately
after [8]. A tensor category C is said to be pointed if every simple object of C is invert-
ible. By reconstruction theorem [4], a pointed tensor category with a fibre functor can
be presented as the category of finite-dimensional right comodules over a pointed Hopf
algebra. On the other hand, the tame hereditary condition is equivalent to saying that
such a category is equivalent to the category of locally nilpotent finite-dimensional rep-
resentations of a cyclic quiver or the infinite linear quiver (see [7,12]). Cyclic and infinite
linear quivers are called minimal Hopf quivers as they are basic building blocks of general
Hopf quivers [3,7]. Note that finite-dimensional indecomposable representations of cyclic
and infinite linear quivers are explicitly classified in quiver representation theory [1] and
the Hopf structures over such quivers are given in [7]. Now we are in a good position to
compute the associated Green rings via a similar idea to that in [8]. We remark that the
Green rings of the categories of quiver representations with the vertex-wise and arrow-
wise tensor product were studied in [5,6,9,10]. Note that such tensor structures are
generally not induced from a bialgebra, and hence are quite different from ours.

The paper is organized as follows. In §2 we review some necessary facts. In §§3 and 4
we compute the Clebsch—Gordan formulae and Green rings of the tensor categories asso-
ciated with cyclic and infinite linear quivers, respectively.

2. Preliminaries

In this section we recall some preliminary notions and facts about quivers, representa-
tions, path coalgebras, Hopf quivers and tensor categories.

2.1. Quivers and path coalgebras

A quiver is a quadruple @ = (Qo, @1, s,t), where Q) is the set of vertices, @1 is the
set of arrows and s,t: Q1 — @y are two maps assigning, respectively, the source and the
target for each arrow. For a € @1, we write a: s(a) — t(a). A vertex is, by convention,
said to be a trivial path of length 0. We also write s(g) = g = t(g) for each g € Q.
The length of an arrow is set to be 1. In general, a non-trivial path of length n (> 1)
is a sequence of concatenated arrows of the form p = a,, --- a1 with s(a;+1) = t(a;) for
i=1,...,n—1. By Q, we denote the set of the paths of length n.

Let @ be a quiver and let k@ be the associated path space that is the k-span of its
paths. There is a natural coalgebra structure on k@ with comultiplication as the split of
paths. Namely, for a trivial path g, set A(g) = g ® g and £(g) = 1; for a non-trivial path
P =ay---ay, set

n—1

A(p) = t(an) ©p+ Y an a1 @ a;--a1+p @ s(a)
=1

and e(p) = 0. This is the so-called path coalgebra of the quiver Q.
There exists on k@ an intuitive length gradation kQ = E&@oka which is compatible
with the comultiplication A just defined. It is clear that the path coalgebra k@ is pointed
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and the set of group-like elements G(kQ) is Q. Moreover, the coradical filtration of kQ
is
kQo CkQo ®kQ1 CkQo & kQ1 &kQ2 C -+,

and therefore it is coradically graded.

2.2. Hopf quivers

A quiver @ is said to be a Hopf quiver if the corresponding path coalgebra £Q admits a
graded Hopf algebra structure (see [3]). Hopf quivers can be determined by ramification
data of groups. Let G be a group and let C be the set of conjugacy classes. A ramification
datum R of the group G is a formal sum } .. RcC of conjugacy classes with coefficients
in N={0,1,2,...}. The corresponding Hopf quiver @ = Q(G, R) is defined as follows:
the set of vertices Qg is G and, for each x € G and ¢ € C, there are R¢c arrows going
from x to cx. For a given Hopf quiver @, the set of graded Hopf structures on kQ is in
one-to-one correspondence with the set of kQy-Hopf bimodule structures on kQ;.

A Hopf quiver Q@ = Q(G, R) is connected if and only if the union of the conjugacy
classes with non-zero coefficients in R generates G. We denote the unit element of G
by e. If Ry # 0, then there are R.-loops attached to each vertex; if the order of
elements in a conjugacy class C' # e is n and R¢ # 0, then corresponding to these data
in @ there is a sub-quiver (n, R¢)-cycle (called an n-cyclic quiver if Rc = 1), i.e. the
quiver having n vertices, indexed by the set Z,, of integers modulo n, and R¢ arrows
going from i to i+ 1 for each ¢ € Z,; if the order of elements in a conjugacy class C' is oo,
then in @ there is a sub-quiver Ro-chain (called an infinite linear quiver if R = 1), i.e. a
quiver having a set of vertices indexed by the set Z of integral numbers, and R¢c arrows
going from j to j + 1 for each j € Z. Therefore, cyclic quivers and the infinite linear
quiver are basic building blocks of general Hopf quivers and they are called minimal
Hopf quivers.

2.3. Quiver representations

Let @ be a quiver. A representation of () is a collection

V= (V97 Va)gEQU,a€Q1

consisting of a vector space V; for each vertex g and a linear map Vg : Vi) — Vi, for
each arrow a. A morphism of representations ¢: V. — W is a collection ¢ = (¢g)gec0,
of linear maps ¢,: V, — W, for each vertex g such that W,¢s) = ¢¢a)Va for each
arrow a. Given a representation V' of @) and a path p, we define V, as follows. If p is
trivial, say p = g € Qo, then put Vj, = Idy,. For a non-trivial path p = a, ---asaz,
put V, = Vg, -+ Vg, Va,. A representation V' of @ is said to be locally nilpotent if, for
all g € Qo and all z € V, V,(x) = 0 for all but finitely many paths p with source g.
A representation V' is said to be finite dimensional if > o dimV, < co. Let rep™(Q)
denote the category of locally nilpotent finite-dimensional representations of Q. It is
well known that the category of finite-dimensional right k@-comodules is equivalent to

rep" (Q) (see [12]).
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2.4. Tensor categories

A monoidal category is a sextuple (C, ®, 1, A, p), where C is a category, ®: CxC — C
is a bifunctor, 1 an object (to be called neutral), a: ® o(® x Id) = ® o (Id x ®),
A:1® — = Id, p: —®1 — Id are natural isomorphisms such that the associativity
and unitarity constraints hold, or equivalently the pentagon and the triangle diagrams
are commutative. A tensor category is a locally finite abelian rigid monoidal category
in which the neutral object is simple. Natural examples of tensor categories are the
categories of finite-dimensional H-modules and H-comodules, where H is a Hopf algebra
equipped with an invertible antipode. Recall that if U and V are right H-comodules and
we let U ® V be the usual tensor product of k-spaces, then the comodule structure is
given by u ® v — ug ® vg ® uyvi, where we use the Sweedler notation u — ug ® uy for
comodule structure maps. The neutral object is the trivial comodule k with comodule
structure map k — k£ ® 1. On the other hand, by the reconstruction formalism, a tensor
category with a fibre functor is tensor equivalent to the category of H-modules for some
Hopf algebra H. For more details on tensor categories, see [4].

3. The Green ring of a cyclic quiver

3.1. Hopf structures over a cyclic quiver

Let G = {g|¢g"™ = 1) be a cyclic group of order n and let Z denote the Hopf quiver
Q(G, g). The quiver Z is a cyclic quiver of form

/\

1l ...« g
If n =1, then Z is the one-loop quiver, that is, it consists of one vertex and one loop. It
is easy to see that such a quiver provides only the familiar divided power Hopf algebra
in one variable, which is isomorphic to the polynomial algebra in one variable [7].

From now on we assume that n > 1. For each integer ¢ € Z,, let a; denote the arrow
g — g1, Let pl denote the path a;1;_1---a;41a; of length I. Then {p! | i € Z,, | >0}
is a basis of kZ. We also need the notation of Gaussian binomials. For any ¢ € k and
integers I, m > 0, let

l l !
ly=1+4q+-+q ", Ny=1g-1g, (+m>:(+m)q

l I1yml,

When 1 # ¢ € k is an nth root of unity of multiplicative order d,

(l —:m>q =0 if and only if [Hdm] - [ZL] - [(IJ >0, (3.1)

where [z] means the integer part of x.
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We now recall the graded Hopf structures on kZ. By [3], they are in one-to-one corre-
spondence with the kG-module structures on kag, and in turn with the set of nth roots of
unity. For each ¢ € k with ¢" =1, let g.ap = qag define a kG-module. The corresponding
kG-Hopf bimodule is kG Qg kag @ kG = kag @ kG. We identify a; = ag ® g*; this is how
we view kZ; as a kG-Hopf bimodule. The path multiplication formula

pip] =q ( z )Pﬁj (3.2)
q
was given in [3] by induction. In particular,
9-0i=dPiers P9 =rip,  ah=lg'pp. (3.3)
For each ¢, the corresponding graded Hopf algebra is denoted by kZ(g). The following

lemma gives the algebra structure by generators and relations.

Lemma 3.1 (Huang et al. [7, Lemma 3.2]). As an algebra, kZ(q) can be presented
by generators and relations as follows.

(1) If ¢ = 1, then the generators are g and ag, and the relations are g" = 1 and
gao = aog-

(2) If ord(q) = d > 1, then the generators are g, ap and pd, and the relations are
9" =1, gao = qang, af =0, aop§ = pfao and gp§ = pig.

3.2. The tensor category associated with kZ(q)

The aim of this section is to compute the Green ring of the tensor category of finite-
dimensional right kZ(q)-comodules. As mentioned in § 2.3, as a category it is equivalent
to the category of locally nilpotent finite-dimensional representations of the quiver Z.
For each i € Z,, and integer [ > 0, let V'(i,1) be a vector space of dimension [ + 1 with
a basis {v, fo<m<i- V(i,1) is made into a representation of Z by setting V (i,1); as the
k-span of {v}, | i +m = jin Z,} and letting V'(¢,1),, map v}, to v}, if i +m = j
in Z,,. Here, by convention v}, is understood as 0 if k > [. Note that V'(i,[) is viewed as
a kZ(q)-comodule by

§: V(1) = V(E,1) kZ(q)
l
Uy Y U@ Pl (3.4)
Jj=m
Using (3.1), the comodule structure map of V' (i,1) ® V(j,m) is given by

l m
i ; i u—p) [TTY—8s—1\ , ; Thy—5—
5(’05@”?):5 E gt t)< )vm®v§®piij+s+tt. (3.5)
q

r—S
r=s y=t

It is well known that {V(i,l) | ¢ € Z,, I > 0} is a complete set of indecompos-
able objects of rep'™(Z), and hence a complete set of finite-dimensional indecomposable
kZ(q)-comodules.
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For application in later computations, we also view V(i,l) ® V(j,m) as a rational
module of gr(kZ(q))*, the graded dual algebra of kZ(g). The module structure map is
given by

l—s m—t
(PD) (i @v]) = beitspstt Z Z Z gl =) (i) Vly e @V, (3.6)
rz4y=f =0 y=0 q
Note that gr(kZ(q))* is actually the path algebra associated with Z(q), so we have
(pl)"(v; @ v]) = (L) (pe)" (v @ v7]) (3.7)

forall 0 <k < f.
From now on we denote by C, the tensor category of kZ(g)-comodules for brevity and
by GR(C,) its Green ring.

3.3. The case in which ¢ =1

As g = 1, the Gaussian binomial coefficients shrink to the usual ones, i.e. (:{)1 = (i)

We start with some useful lemmas.

Lemma 3.2.
VL,0O)e V(i) =V(i+1,)=V(El) e V(1,0), V(, 0)®" =V(0,0) in C;.

Proof. Define F': V(1,0) ® V(i,1) — V(i + 1,1) by F(v} ® v}) = vi*!. It is easy to
verify that the map F' is an isomorphism in C;. Similarly, one can prove the remaining
equalities. O

Lemma 3.3.
V(0,)eV(0,)=V(0,l+1)eV(1,l-1)=V(0,l) @ V(0,1). (3.8)
Proof. Define maps
¢1: V(0,1+1) = V(0,1) @ V(0,1)
U(o) — vg K v8
v? — v8 ®vi0 + iv(f ®v?71
U?H — (I + 1)1}? ® vlo,

where 1 =1,2,...,] and

¢a: V(1,1—1) = V(0,1) @ V(0,1)

Ujl- |—>08®v?+1 — (=Y ®?

VR
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where 0 < j < [ — 1. We now verify that the two maps are comodule monomorphisms.
Obviously, the two maps are injective. Using (3.4) and the definition of ¢, we have

3(¢1(vg)) = d(vg @ vp)
! !

=> weuap)+> (y+1)0f @) epyt
y=0 y=0

= (¢1 ® 1d)6(v),

§(p1(v)) = 8(vg @ v + jof @Y _)

+1 +1
=Y evlep 7 + (@ -l @ @pi 1+ vl @v)_ @p!
T=] y=J
I+1 )
=Y @) +av) @v)_) @p;
z=j

= (¢1 ®1d)5(v?)
for 1 <j <l and
§(p1(v)h 1)) = 6(v) @ v)) =) @) @ Py = (¢1 @ 1d)d(v]y ).

So, we have verified that ¢ is indeed a comodule monomorphism. Similarly, one proves
that ¢o is also a comodule monomorphism. Considering the indices of the basis of
$1(V(0,1+1)) and ¢o(V (1,1—1)), we can see that ¢1(V(0,1+1))Ne2(V(1,1—1)) = {0}.
We then obtain that

V(O0,l4+1)@V(1,l-1) =2 ¢ (V(0,l+1)) @ ga(V(1,1— 1)) C V(0,1) ® V(0,1).

By comparing the dimensions we obtain the equality.
Define maps

P1: V(0,l+1) = V(0,]) @ V(0,1)
U8 = vg ® vg
’U? — U? & vg —|—jv§»)_1 ®o?
UZOH — (14 1)1}10 ® v(f
for 0 <j <l and
Pa: V(1,1 —1) = V(0,1) ® V(0,1)
vj = 0 @)+ (1= ) @ o}
for 0 < j <1 — 1. One can prove the second equality in a similar manner. O

For the convenience of later computations, we now make a convention. We will under-
stand the identity in Lemma 3.3 as

V(0,l+1)=V(0,1)®V(0,1) — V(1,1 — 1)
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thanks to the Krull-Schmidt theorem. Similar identities that interpret the direct sum
decomposition of indecomposable objects by suitable subtraction will be used freely in
the rest of the paper.

Now we are ready to decompose V(0,1) ® V (0, m).

Theorem 3.4.

l
Pvii+m—2i), 1<m,
V(0,0) @ V(0,m) = { =0

m

PBvii+m-—2i), 1>m
=0

Proof. We only prove the case in which [ < m as the other case is similar. Induct
on [. For [ = 1, the claim is Lemma 3.3. Now assume that [ > 2 and V(0, j) ® V(0,m) =
7_oV(i,j+m—2i)if j <. Then, by Lemma 3.3, we have

V(0,1) ® V(0,m) = [V(0,1) ® V(0,1 — 1) — V(1,1 — 2)] ® V(0,m)

-1 -2
=V(0,1)® [@V(i,l—i—m—l—%)} ~@PVva+il+m—2-2i)
=0 =0

l
=P vi,i+m—2i).
=0

The proof is complete. O

In order to present the ring GR(Cy), we need the generalized Fibonacci polynomials
used in [2].

Definition 3.5. For integer k > 0, define the polynomial fi(x,y) € Z[x,y] inductively
by

(1) fo(z,y) =1 and fi(z,y) =y, and
(2) felz,y) =yfe-1(z,y) — xfroa(z,y) if k> 2.
The general formula for fi(z,y) is given by [2, Lemma 3.11] as
fula,y) = [kf(lv(’“ - ) a2 (3.9)
i=0 !
We need the following fact about fx(x,y), the proof of which is easy and hence omitted.
Lemma 3.6. {z'fi(z,y) | k,i > 0} is a Z-basis of Z[x,y].
We are now in a position to present the Green ring GR(Cy).

Theorem 3.7. GR(Cy) = Z[z,y]/{z™ — 1).
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Proof. Define

®: Z[z,y] = GR(C)
z = [V(1,0)],
y = [V(0,1)].

Obviously, @ is surjective as [V'(1,0)] and [V'(0,1)] generate GR(C) by Lemmas 3.2 and 3.3
and Theorem 3.4. By the definition of fi(z,y) and Lemmas 3.2 and 3.3, we have

P2’ fu(z,y) = V(L0 fu([V(L, 0] [V(0, D)) = [V (i, k)]. (%)

Note that @(2™ —1) = 0 as V(1,0)®™ = V(0,0) = 1. It follows that J = (x™ —1) C ker &,
so @ induces an epimorphism

b: Zx,yl/J — GR(C)
z— [V(1,0)],
y = [V(0,1)].

Now, using Lemma 3.6 it is not hard to see that

makes a Z-basis of Z[z,y]/J, and hence & is an isomorphism by (). O

3.4. The case of g being a non-trivial root of unity

In this section, ¢ is set to be a root of unity with multiplicative order d = ord(q) > 2.
Similarly to Lemma 3.2, we have the following lemma.

Lemma 3.8.
V(L,0)@V(i,l) = V(i+1,0)=V(i,)®V(1,0), V(1,0 =V(0,0) inC,.

Proof. Define Fy: V(1,0) ® V(i,l) — V(i + 1,1) by Fi(¢vg @ ) :v§+1 and
Fy: V(i,1) @ V(1,0) = V(i + 1,1) by Fa(vg @ v}) = v;fH. It is easy to verify that Fj
and Fy provide the desired equalities. O

The Clebsch-Gordan problem for C; is much more complicated than that for C;. We
split the problem into several cases.

Lemma 3.9.

V(O,md+1+1)@V(1,md+1-1), 0<
!

V(0,1) @ V(0,md+1) = {V(O, (m+1)d—-1)®V(1,(m+1)d—1),

=V (0,md +1) ® V(0,1).
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Proof. We only prove the first equality as the second one is similar. For the case in
which 0 < I < d — 2, the proof is essentially the same as that of Lemma 3.3 and so is
omitted. Now consider [ = d — 1. In this case we define

¢1: V(O,md+d—1) = V(0,1) @ V(0,md +d—1)
vy v @ vp + kgv) @ v,
and
d2: V(,md+d—1) = V(0,1) @ V(0,md+d—1)
U]i — qu? ®1}2

for 0 < k < md + d — 1. The verification of ¢; and ¢ being comodule monomorphisms
is similar to Lemma 3.3. It is also easy to see that

¢1(V(0, (m +1)d = 1)) N g2o(V(1, (m + 1)d — 1)) = {0},
so we have
VO,(m+1)d-1)@V(1,(m+1)d-1)CV(0,1) ® V(0,md + 1)
and the claimed equality is obtained by comparing the dimensions. (I

Lemma 3.10. Assume that V =D,V (s,t) and V (i, j) C V in Cy. There then exists
an inclusion map ¢: V(i,j) — V(s,t) for some indecomposable direct summand V (s, t)
of V. witht > jandi+j=s+t in Z,.

Proof. Suppose that ¢: V(i,j) — V is the comodule inclusion and that ¥ (v) =
Doet Si_oay vy, By (3.3) and the fact that 4 is a comodule map, we have

t J
0=>.> a" Zv Rplyt =Y v) ®pf = (¥ @1d) o 5(v}).
s,t =0 m=l k=0

Comparing the third tensor factors of the two terms in the middle, it follows that there
must be some s, ¢ such that p' +l = pZ This obviously leads tot > jand i+ j = s+t
in Z,. For the s, t we chose, it is not hard to verify that ¢: V(i,5) — V(s,t) with
(b(v,i) = Uf_j+k for 0 < k < j is a comodule inclusion. We are done. O

Lemma 3.11. For all0 <l < d—1, we have
l
V(0,0) @ V(0,md) = V(0,md +1) & @ V(i,md — 1) = V(0,md) @ V(0,1).
=1

Proof. As before we only prove the first identity. By (3.6) we have

l—i md—j
CEONCETIRID VD 90 S il (R E T

z+y=md x=0 y=0
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According to (3.1), (™ ) 75 0 if and only if = kd for some k. Note that z <1 —14 <1 <
d —1, which implies that ( ) # 0 if and only if z = 0. So we have (pZ_H) (v ® v?) #0
if and only if j = 0. As

(""" (v @ v0) = 1) ® Vg and (D) (00 © Vg) = v} @ Vg,

it follows that {(p&)* (v§®v]) }o<k<mad+i spans a subcomodule isomorphic to V (0, md+1).

If we assume that ¢ > 0, j > 0 and i+ j <[, then (pﬁ”é-)*(v? ®wv}) = 0, while by (3.7)
PR (0 @ 0f) = () V[T (W) @ )]

i+ g J i+j+(m—1)d 47 g J

d—1 * (.0 0
(pi+j+(m 1)d> (U' ®’Uj—i-(m—l)d)

l—i d—
YD D MLl Gt NI
q

z+y=d—1 =0 y=0

£0.

It follows that {(pf, ;)*(v? ® v9) | 0 < k < md — 1} spans a subcomodule isomorphic to
V(i+j, md—1). We have hence proved that V(0,md+1) and V(k,md—1) for 0 < k <
are subcomodules of V(0,1) ® V(0, md). Assume that V/(0,1) ® V(0,md) = @D, , V(s,?).
Then, by the previous lemma, V (0, md + 1) or V(k,md — 1) must be included in some
V(s,t) withmd+1l=s+tork+md—1=s+tin Z,. It is clear that V' (0, md +1) and
V(k,md —1) for 0 < k < are in different V(s,t), and therefore

1
V(0,14 md) & @ V(i,md — 1) € V(0,1) ® V(0, md).
i=1
Now the identity is obtained by comparing the dimensions. O

Lemma 3.12. For all m > 1 we have

V(0,d) ® V(0,md)
d—1

=V(0,(m+1)d) & V(1,(m+1)d—2) & P V(i,md — 1) & V(d, (m — 1)d)
— V(0,md) ® V(0,d). -

Proof. We only prove the first identity. First we verify that each indecomposable
summand of the second formula is included in the first term.
It is obvious that V(0, (m + 1)d) C V(0,d) ® V (0, md) since

m d % m d *
P W @ vd) = mud @00, (T ) @ 0d) = 0.

https://doi.org/10.1017/50013091515000085 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091515000085

118 H.-L. Huang and Y. Yang

Furthermore, by (3.7) we have

m —Lyx 1 * * 1
Gy (e o - 2wt ) = i) |0 (e o - Zigw )|
= (pgn;llJrl)*<v? ® Vg — VG @ ’U?mfl)d+1)
= V] @ Vg — Vg ® Vg
=0
and
m+1)d—2y % 1 * md * 1
G (e o - et ) = )00 (e o - Zige )]
= (Prde)” (01 ® Vg — 13 ® Vi 1ya11)
= Vg1 @ Vg — Vg ® Upg_y
#0,
and hence V(1,(m + 1)d —2) C V(0,d) ® V (0, md).
Now, for all ¢+ > 0, j > 0 with ¢ + j < d, one may verify that {(pfﬂ) (v? ® v; 910<

k < md — 1} spans a subcomodule isomorphic to V(i + j,md — 1) as in the precedmg

lemma.
Next we prove that V(d,(m — 1)d) is a subcomodule of V(0,d) ® V(0,md). Set
a; = (—1)'q~1+D¥/2 for 0 < i < d, then one has

pmd <ZOéU ®vmd )ZO

by direct computation. Since we have

m—1)d\ x

PV (W) @ 08) = (m = Dl ® 0,1y + 08 ® VY4
m—1)d\ x

P VY Wl @) = v @, )

and
(pgm_l)d)*(yg X 1}271-) = UZQ & U?nd,m { 7é Ou da

it follows that

d
(o) (zav 9= = Do o) =3 aued @180 0
=0

and

d
( d+1 <ZO¢ZU ®v)_; — (m — 1)) ®08) = pind(Zaw? ® v?nd_i> = 0.

=0
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This implies that

d
{ohr (L antoud i~ m-bod) | o<k< on-1a
=0

spans a subcomodule isomorphic to V(d, (m — 1)d), and hence V (d, (m — 1)d) is a sub-
comodule of V(0,d) ® V(0,md).
Again, using Lemma 3.10 one can show that

d—1

V(0, (m+1)d) @V (1, (m+1)d—2)o@D V (i, md—1)@V (d, (m—1)d) € V(0,d)®V (0, md)
i=2

and the identity is obtained by comparing the dimensions. O

Corollary 3.13. The Green ring GR(C,) is commutative and is generated by [V (1,0)],
[V(0,1)] and [V(0,d)].

Proof. This is a direct consequence of Lemmas 3.8, 3.9, 3.11 and 3.12. O
Remark 3.14. Thanks to Lemmas 3.8, 3.9, 3.11 and 3.12, we have
Vi, )@V (Qj,m)=V(,m)@V(i,l)=V(i+750) eV(0,])® V(0,m)
=V(i+350) @V(0,m)®V(0,l).
Hence, it is enough to compute the decomposition of V' (0,1) @ V(0,m) with I < m.
Lemma 3.15. For0<I<m<d—1,sety=14+m—d+ 1 and we have

l

Pvi.i+m-—2i), l+m<d—1,
V(0,)®V(0,m) =4 "’ .

Pvid-1e P Vii+m—2j), I+m>d—1

i=0 Jj=v+1

Proof. For the case in which [+m < d—1, the proof is similar to that of Theorem 3.4
and so is omitted. Now, let [ +m > d and we will prove the lemma by induction on [.
If I = 1, then by assumption m = d — 1, and in this case the claim has been proved in
Lemma 3.8. If [ > 1 and [ + m = d, then we have

V(0,1) ® V(0,m)
= [V(0,1)®@ V(0,1 —1) — V(1,1 — 2)] ® V(0,m)
-1 -
—PWVi,l+m-2)@V(i+1,1—2+m—2)] - V(@i+1,0—2+m—2j)
i=0 j
l
=V(0,d-1)a@V(,d-1)e@Vy.l+m-2),

Jj=2

[

Il
=)
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where in the second equality the case with [ +m < d — 1 is applied. Similarly, one can
prove the case in which ! > 1 and l+m = d+ 1. Now let | +m > d + 1 and by the
induction hypothesis we have

V(0,)® V(0,m) =[V(0,1)® V(0,1 —1) — V(1,1 - 2)] ® V(0,m)
l

=V(0,1)® {é—}V(i,dl)@@V(j,ller%)}
1=0

J=v

v—2 l

—{ Vi+Ld-1)a P V(j+1,l—2+m—2j)]
i=0 j=y—1

¥ 1

=@Pvid-1ne @ Vii+m-2)).
i=0 J=y+1
The proof is finished. |

Lemma 3.16.

V(0,0) @ V(0,md + h)

l

Pvimd+h+1-2i), 0<Ii<h<d-1,1+h<d-1,
1=0

h l
Pvimd+h+i-20e @ V(jmd-1),

i=0 j=h+1
O<h<l<d—1,1+h<d-1,
= Y !
V(ii,(m+)d-1)® @ V(imd+h+1-2j),
i=0 J=vy+1
0<I<h<d—1,1+h>d,
o h l
V(ii,m+)d-1)® @ V@imd+h+i-2)e @ V(kmd-1),
=0 j=~+1 k=h+1

0<h<l<d-1,1+h>d

Proof. The case in which 0 <l < h<d—1,l4+h <d—1 can be proved in the same
manner as Theorem 3.4. The proofs for the remaining three cases are similar, so we only
provide the proof for the case in which 0 < h<l<d—-1,l+h<d—1.

If il —h =1, we have

V(0,1) ® V(0,md +h) = [V(0,1) @ V(0,1 — 1) — V(1,1 - 2)] ® V(0,md + h)
-1

[V(i,md+h+1—2)@V(i+1,md+h+1—2—2)

s
I
=)
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-2
—~PVii+1,md+h+1-2-2i)
1=0

h
=PV, md+h+1-2i)@V(,md-1).
i=0
Similarly, one can prove the formula for the case in which [ = h + 2. Next assume that
I —h > 2. In this situation we have

V(0,1) ® V(0,md + h)
= [V(0,1)® V(0,1 —1) - V(1,1 - 2)] ® V(0,md + h)

[V(i,md+h+1—2)@V(i+1,md+h+1—2—2)

-1
® @ ViE,md-1)eV(i+1,md-1)

h -2
— [@V(i—l—l,md—l—h—i—l—Z—%)@ P vi+1,md-1)
i=0 j=h+1
l

h
=@Pvimd+h+i-2)e @ V(md-1).
i=0 j=h+1

We are done. O

Lemma 3.17. For all h > 0 we have

V(0,d) ® V(0,md + h)

h
V(0,(m+Dd+h) & @V, (m+1)d—1) & V(h+1,(m+1)d—h—2)
i=1
d—1
- o @ Vi,md-1)@V(d (m-1)d+h), h<d-2,
Jj=h+2
d—1
VO,(m+1)d+d-1)e@PV(i,(m+1)d-1)@V(dmd—1), h=d-1
=1

Proof. Only the proof for the case in which h < d — 2 is provided as the proofs for
other cases are similar and much easier. We prove by induction on m. When m = 1 we
have

V(0,d) @ V(0,d + h)
h
=V(0,d)® |V(0,h) @ V(0,d) - P V(i.d- 1)]

i=1
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U

=V(0,h)® [V(O, 2d) & V(1,2d — 2) & T V(i,d—1) & V(d,0)

%

||
N

h
—V(0,d) ® [@V(i,d - 1)]

h h—1
=V(0,2d+h) o PV(i,2d-1) o @PV(A+i,2d— 1)@ V(h+1,2d—2—h)
3 =0

=1
d—1 h h d—1
oPPVii+id-1)oV(dh) EB{ i,2d — 1) EDV(Z‘Jrj,dl)}
i=2 j=0 i=1 j=1
h
=V(0,2d+h) &P V(i,2d-1)@V(h+1,2d—h—2)
=1
d—1
& P Vi.d—1)@V(d,h).
j=h+2

Note that for the first equality Lemma 3.11 is applied, for the second Lemma 3.12 and for
the third Lemma 3.11. Similarly, one can verify the formula for m = 2. In the following
computation we assume that m > 3:

V(0,d) ® V(0,md + h)

h
=V(0,d) ® [V(a h) @ V(0,md) — PV (i,md — 1)]
i=1

=V(0,h)® [V(o, (m+1)d) @ V1, (m+1)d—2)

d—1
@@ V(i,md—1)eV(d,(m— 1)d)}

i=2

~V(0,d)® {éV(i,md— 1)]

i=0
:V(O,(m+1)d+h)@éV(i,(m—kl)d—1)@%§V(1+i,(m+1)d—1)
i=1 i=0
EBV(h+1,(m+1)d—2—h)@de§é1/(i+j,md—1)€9V(d,(m—1)d+h)
i=2 =0
@é‘/wd —1)d—1)

i=1

h d—1
@[ J(m+1)d—1)o@V(i+jmd—1)@V(i+d (m-1)d-1)

i=1 =1
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h
=V(0,(m+1)d+h) e @ V(i,(m+1)d—1)&V(h+1,(c+1)d—h—2)
d—1 B
& @ Vi,ed—1)@V(d, (m—1)d+h).
j=h+2

We note that in the third equality the inductive assumption is applied. The proof is
complete. O

Now we are ready to give the Clebsch-Gordan formulae for the tensor category C,. The
aim is to decompose V(0,ed + f) ® V(0,md 4+ h) into a direct sum of indecomposable
summands for all e, m and 0 < f, h < d— 1. According to Remark 3.14, in the following
we may assume that ed+ f < md+ h. In this situation, e < m and if f > h, then e < m.
Set y=f+h—-d+1.

Theorem 3.18.
(H)Ifo< f<hand f+h<d-—1, then

e—1 f
V(0,ed+ f) @ V(0,md + h) = [@V(kd+i,(e+m—2k)d—|—f+h—2i)

k=0 * =0
h
& @ Vkd+j (e +m—2k)d—1)
Jj=f+1
fH+h+1
& P Vikd+r,(e+m—2k)d+h+ f—2r)
r=h+1
d—1
& P Vikd+s, (e+m—1—2k)d—1)
s=f+h+2
f
&P V(ed+i,(m—e)d+h+ f— 2i);
=0

(2) if0 < f<h<dand f+h>d, then
V(0,ed + f) ® V(0,md + h)

e—1 ¥
—@[ V(kd+1i,(e4+m—2k)d+d—1)

k=0 “-i¢=0
f
& @ V(kd+j, (e +m—2k)d+ f + h — 2i)
Jj=v+1
h
& P Vkd+r,(e+m—2k)d—1)
r=f+1
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d—1
& @ V(kd+s,(e+m—2k)d+h+ f—2s)
s=h+1

@

P-

Vied+i,(m—e)d+d—1)

<.

D- 1

S

%

V(ed+i,(m —e)d+ [+ h — 2i);
1

+

Y
3)if0<h< f<dand f+h<d—1, then

e—1 h

V(O,ed+f)®V(0,md+h):@[@V(kd+z‘,(e+m—2k)d+h+f—2z')
k=0 - 1:=0
f
® @ V(kd+j, (e +m—2k)d—1)
j=h+1
h+f+1
® P Vikd+r,(e+m—2k)d+h+ f—2r)
r=f+1
d—1
& P Vkd+s,(e+m—1—2k)d—1)
s=f+h+2
h
@@V(ed—&-i,(m—e)d—i—h—l—f—%)
=0
f
® @ V(ed+i,(m —e)d — 1);
i=h+1

(4)if0<h< f<dand f+h>d, then

e—1 ¥
V(0,ed+ f) @ V(0,md+ h) = [@V(kd+i,(e—|—m—2k)d+d—1)

& @ V(kd+j,(e+m—2k)d+ f + h—2j)
Jj=v+1
f
& P V(kd+r,(e+m—2k)d—1)
r=h-+1
d—1
& P V(kd+s,(e+m—2k)d+h+ f—2s)
s=f+1

.
@@V(ed+i,(m76)d+d71)
i=0
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h
® P Vied+i,(m—e)d+ f+h—2i)
1=y+1

f
& P Vied+i, (m—e)d—1).
i=h+1

Proof. The rules of the decomposition of V (0, «) ® V (0, 3) are divided into four cases.
We prove the theorem by induction on «. The claim has been proved for the situation in
which 1 < a < d, thanks to Lemmas 3.11, 3.12, 3.16 and 3.17. Now assume that the claim
holds when 1 < a < (e—1)d and we will prove that it still does when (e—1)d+1 < a < ed.

Because the proofs of the four cases are similar, we only focus on case (1) and the
proofs of other cases are omitted.

If f =1, then

V(0, (e=1)d+1)®V(0,md+h) = [V (0,1)®V (0, (e—1)d)—V (1, (e—1)d—1)|@V (0, md+h).
By the inductive assumption of case (1), we have

V(0,(e —1)d) @ V(0,md + h)

e—2
= [V(k‘d7 (e—14m—2k)d+h)
0

=~
Il

h
&P V(kd+i,(e—1+m—2k)d—1)
=1
GV(kd+h+1,(e—1+m—2k)d—h—2)
d—1
& P Vikd+j (e+m—2—2k)d—1)
j=h+2
®V((e—=1)d,(m—e+1)d+h).

It follows that

v (0,

—_

Y@ V(0,(e —1)d) @ V(0,md + h)

2

— {V(k:d,(e—1+m—2k)d+h+1)@V(kd+1,(e—1+m—2k)d+h—1)
k=0

s

h
& @PIV(kd+1i, (e —1+m—2k)d — 1)
i=1
BV(kd+i+1,(e—1+m—2k)d—1)]

SV(kd+h+1,(e—1+m—2k)d—h—1)
SV(kd+h+2,(ec—1+m—2k)d—h—3)
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d—1
® @ V(kd+j, (e +m—2—2k)d—1)

j=h+2

@V(kd+j+1,(e+m—2—2k)d—1)}}

oV({(e-1)d,(m—e+1)d+h+1)dV({(e—1)d+1,(m—e+1)d+h—1).
By the inductive assumption of case (4), we have
V(1,(e—1)d—1)®V(0,md+ h)

e—2 h
= [@V(kd+z‘+1,(e—1+m—2k)d—1)

d—1
& P Vikd+j+1,(e—2+m—2k)d—1)|.
j=h+1

Subtracting the preceding two identities, we obtain (1) with o = (e — 1)d + 1.
Next, assume that 2 < f < d — 1. First note that

V(0,(e = 1)d+ f) @ V(0,md +h) = V(0,1) @ V(0,(e = 1)d + f — 1) @ V(0,md + h)
-V, (e=1)d+ f—-2)®@V(0,md+ h).

Then, by the inductive hypothesis of case (1), we have
V(0,1)@V(0,(e—1)d+ f — 1) @ V(0,md + h)
e—2 , f—1
@{@[V(deri,(e1+m2k)d+f+h2i)
eVkd+i+1l,(e—14+m—2k)d+ f—2+4+h— 2i)]
h
& @BV (kd +j, (e = 1 +m —2k)d - 1)
i=f

dV(kd+j+1,(e—1+m—2k)d—1)]

f+h
& @ V(kd+r (e —1+m—2k)d+h+ f—2r)
r=h+1
SV(kd+7r+1,(e—1+m—2k)d+h+ f—2r —2)]
(d—1)
& P [Vkd+s (e+m—2—2k)d—1)
s=f+h+1

@V(kd+s+17(e+m—2—2k)d—1)]}
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-1
e@PIV(e—1)d+i,(m—e+1)d+h+ f—2i)
i=0
oV(e—1)d+i+1,(m—e+1)d+h+ f—2—2i)].
Again applying the inductive hypothesis of case (1), we obtain

V(1,(e—1)d+ f—2)@V(0,md+h)
e—2 rf—2

_@[@V(kd+i+1,(e—1+m—2k)d+f—2+h—2z‘)
k=0 - 1i=0
h
& P Vkd+j+1,(e—1+m—2k)d—1)
Jj=f-1
f+h—1
® P Vkd+r+1,(e—1+m—2k)d+h+f—2-2r)
r=h+1
d—1
& P Vkd+s+1,(e+m—2-2k)d—1)
s=f+h

f—2
@@PVi+1,(m—e+)d+h+ f—2-2i).
=0

Now subtracting the foregoing two identities, we obtain (1) for & = (e — 1)d + f with
1<f<d—1.

Finally, we prove (1) for f = d, i.e. for @ = ed. In the following we assume that
2 < h < d— 2. The proof for the situation with h = 1 or h = d — 1 can be given in a
similar and much easier way, and we thus omit it.

By Lemma 3.12; we have

V(0,ed) ® V(0,md + h)

- {V(o, d) @V (0, (e —1)d)

— [V(l, ed—2)® déV(i, (e—1)d—-1)®V(d,(e— 2)d)] }

=2

®V(0,md+ h).
We then apply the inductive assumption to obtain

V(0,(e —1)d) ® V(0,md + h)
e—2
= {V(kd, (e—1+m—2k)d+h)
k=0
h
@ Vkd+i,(e—1+m—2k)d—1)
i=1
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SV(kd+h+1,(e—1+m—2k)d—h—2)
d—1
& P Vikd+j. (e+m—2—2k)d—1)
j=h+2
®V({(e—1)d,(m—e+1)d+h)

and apply Lemma 3.17 to obtain

V(0,d) @ V(0, (e — 1)d) ® V(0, md + h)
:Z Z{[V(kd,(e+m—2k)d+h)@éV(deri,(e—km—%)d—l)
O V(kd+h+1,(e+m—2k)d—h—2)
@ d@l V(kd+ 4, (e +m —1—2k)d — 1)
j=h+2

e V((k+1)d, (e+m22k)d+h)}

ey {V(deri,(eerQk)d 1)
i=1
d—

EB (kd+i+j,(e—14+m—2k)d—1)

@V((k+1)d+i,(e—2+m—2k)d—1)}
® [V(kd+h+1,(e+m—2k)d—h—2)

d—h—2
& @ Vkd+h+1+i,(e+m—1-2k)d—1)
i=1

e V((k+1)d,(e+m—2—2k)d+ h)

d—1
® @ V(kd+h+1+j,(e+m—2—2k)d—1)
j=d—h

V((k+1)d+h+1,(e+m—2—2k)d—h—2)

P {V(kd—m}(e—km—l—%)d—l)
i=h-+2
d—1
SEPV(kd+i+j,(e+m—2—2k)d—1)
j=1

@V((k+1)d+i,(e+m—3—2k)d—1)”

https://doi.org/10.1017/50013091515000085 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091515000085

The Green rings of minimal Hopf quivers 129

& {V((e —1)d,(m—e+2)d+h)

h
o@PV(e—1d+i,(m—e+2)d—1)

=1
eV((e-1)d+h+1,(m—e+2)d—h—2)
d—1
& @ Ve-Dd+j,(m—e+1)d—1)
j=h+2

®V(ed,(m—e)d+h)|.

Next we apply the inductive assumptions of formulae in (1) and (4) to obtain
{V(l, ed—2)@e P V(,(e—1d—-1)@V(d, (e —2)d)| ®V(0,md + h)

e—2 rh—1
:{ { V(kd+i+1,(e+m—2k)d—1)
k=0 -1

1=0
& V(kd+h+1,(e+m—2k)d—2—h)
d—2
& P Vkd+r+1,(e—1+m—2k)d—1)
r=h-+1

®V((k+1)d, (e +m—2— 2k)d+h)]

h—1
o@PVve-Dd+i+1,(m—e+2)d—1)
1=0
dV({(e-1)d+h+1,(m—e+2)d—h—2)
d—2
o P V((el)d+i+1,(me+1)d1)}
i=h+1

d—1
e P V(kd+r+i,(e—2+m—2k)d—1)}
r=h-+1
h
EPVe—-2)d+1+i,(m—e+3)d—1)
=0

d—1
o P V((e—2)d+l+i,(m—e+2)d—1)}
l=h+1
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[V((k +1)d, (e — 2 +m — 2k)d + h)

2]
—N
Eod ¢
Il |
w

0
h

@ V((k+1)d+i, (e —2+m—2k)d - 1)

SV((k+1)d+h+1,(e—2+m—2k)d—h—2)
d—1
o P V((kz+1)d+j,(e+m—3—2k)d_1)}
j=h+2
@ V((e—1)d, (me+2)d+h)}.

Now, by subtracting the foregoing two identities we get the formula in (1) for o = ed.
We are done. 0

Next we determine the ring structure of GR(C,). We will need to prepare some poly-
nomials.

Definition 3.19. The series { fx(x,y, 2) }k>0 in Z[z,y, 2] is defined inductively as:
(1) fO(xvyaZ) = 13 fl(xayaz) =Y and fd(xayvz) =z

(2) fmari(z,9,2) = Yfmari-1(2,y,2) = T frnari—2(,y,2) if m>0and 0 <1 < d - 1;

d—1

(3) f(m+1)d(x7 Y, Z) = med(l', Y, Z) - 'rf(m+1)d72(m7 Y, Z) Z'rifmd—l(xa Y, Z)
=2
*xdf(m—l)d(xayaz)'

Remark 3.20. If K < d — 1, then fx(x,y, 2) is independent of z and is essentially the
generalized Fibonacci polynomials defined in Definition 3.5.

In order to use fi(z,vy,2) to construct a basis of Z[z,y, z|, we need to define an order
of the polynomials as follows.

Definition 3.21. For monomials, define
ord(z'y'z™) = (m, 1)

and we say (m,l) > (m/,l') if and only if either m > m/, or m = m/ and | > I'. Say
(m,l) = (m/,l') if and only if m = m’ and [ =!’. Define the order of a polynomial to be
the order of the highest-order term.

Lemma 3.22. The highest-order term of fpqii(x,y, 2) is y'z™.

Proof. It is easy to see that the highest-order term of fi(x,y, z) is ¥ if | < d — 1 and
that of fq(z,y, 2) is z. By induction on m one can easily prove the lemma. O
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Lemma 3.23. We have that
, L/l
{mlfk(xayv )|Z k O}U{ (yl_z<s>xs>fmdl(x7yvz) ‘]20, l7m>1}
s=0

is a basis of Z[z,y, z].

Proof. Let g(v,y,2) € Z[x,y, 2] and the highest-order term of g(x,y, 2) is h(x)y'z™,
where h(z) € Z[z]. If | > d — 1, set

l—d+1 I—d
gl(xaya Z) - g(fﬂ) - h(’l}) (yld+1 B Z ( 8+ 1> x5>f(7ﬂ+1)d—1(x7ya Z)
s=0

and if | < d—1, set
gl(xu Y, Z) = g(il?) - h(‘r)fmd+l(x7y7 Z)

Then the order of gi(x,y, z) is less than that of g(x,y, z). Repeat the process enough
times and we eventually arrive at some gi(z,y, 2z) € Z[z]. This implies that g(z,y, z) is
a Z-combination of

l
{‘rifk(x7yﬂz) |ka>0} and {a:j<yl—z<i)xsfmd_1(a;,y,z)> ‘j>07 l7m> 1}

s=0

By considering the order of the highest-order term of each polynomial we obtain the
linear independence. O

Lemma 3.24. fy_1(z,y,2) is a factor of fnq—1(z,y,z) for all m > 1.

Proof. Note first that for any 1 <7< d—1,

fil®,y, 2) fma(@, ¥, 2) = fna+i(®,y, 2 +Z$med 1(z,y, 2). (3.10)
Jj=1

Indeed, for i =1,

fl(x,y,z)fmd(x,y,z) = yfmd(xayvz)
= fmd+l(xay7z) +xfmdfl(x?yvz)'

Assume that

fi(xvyaz)fmd(xvya ) fmd+z z, Y,z +Zx]fmd 1T, Y,z )

Jj=1
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for 1 <i<l—1<d-—1, then we have
filz,y, 2) fma(2,y, 2) = [yfio1(z,y, )—Jffz—z(l" Y, 2)| fma (T, y, 2)
—y|:fmd+l 1(z,y, 2 +Zl'jfmd 1(z,y, 2 )}

-2

—x[fmd+l 2(,y, 2 Zl’]fmd 1(7,y, 2 )}

l

- fmd+l(x; Y, Z) + ijfmd—l(x7y7 Z)

j=1

So by induction we have proved that

fi(xay?z)fmd(xay7 ) fderz x,Y,z Zl']fmd 1\&, Yy, 2 )

j=1
In particular, we have
f(m+1)d—1(xayaz) = fd—l(x,yv )fmd z,yY,z ijfmd 1\, Y, 2 )
j=1

This equation leads easily to fa—1(x, ¥y, 2)| fmt1)d—1(7, ¥, 2) with induction on m. O

Theorem 3.25. GR(C,) is isomorphic to Z[z,y, z|/J, where J is the ideal of Z]x,y, 2]
generated by

Proof. Define

D Zz,y, 2] = GR(Cy)

By Corollary 3.13, the ring GR(C,) is generated by [V(1,0)], [V(0,1)] and [V (0,d)].
Hence, @ is surjective. From the definition of fi(z,y,2) and Theorem 3.18 we can see
that

D(" fi(x,y,2)) = [V(L,0)]" fiu([V(1,0)], [V(0, 1)], [V(0,d)]) = [V (i, k)].
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Because
l
l
V(O0,)® @ V(0,md—1)=>" ( _)V(j, md —1)
i=o M
l ! _
- < ,)V(LO)@J @ V(0,md — 1),
=0 M
we have

(-0 prtens) -

We also have @(z™ — 1) = 0 since V(1,0)®™ = V/(0,0). This implies that

J = <az” -1, { <yl - zi:o (i)zj)fmd—l(xayaz)

J

l,m > 1}> C ker @,

and so @ induces an epimorphism
@: Zlx,y,2]/J — GR(Cy)
z— [V(1,0)],
g [V(0, 1],
— [V (0,d)].

Next we prove that @ is in fact a ring isomorphism. Write g(x) = g(z)+J' € Z[z,y, 2]/J’
and by Lemma 3.20 we have

l
g(2) = 3 cind fula,y,2) + 3 ¢juma? (;/ -y <’) xj) Fra1 (2,9, 2),

=0 M
where ¢, ¢j1.m € Z. So
9(@) =Y it fr(2,y, 2).

It follows that {x¢fy(z,y,2) | i,k > 0} spans Z[x,y, z]/J". Note that @(z' fi.(z,y,2)) =
[V (i,k)] and {[V (i,k)] | i,k > 0} is a basis of GR(C,). We can see that {z?fy(z,y, 2) |
i,k > 0} is linearly independent, and hence a basis of Z[z,y, z]/J’. Thus, @ is an isomor-
phism.

Finally, we prove that J' = (z" —1,(y —x — 1) fq—1(z,y, 2)) = J. It is enough to show
that (y —x — 1) f4—1(x,y, ) is a factor of

- E ()t

§j=0
This follows from Lemma 3.22 and the fact that
l

~ @=n/2 ,
yl—Z(j)xJ:yl—(Hw)l and  foi(z,y,2)= (—W( : )wlyd‘l_z’-

i
=0 i=0

The proof is complete. U
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4. The Green ring of the infinite linear quiver

4.1. Hopf structures over the infinite linear quiver

Let G = (g) be the infinite cyclic group and let A denote the Hopf quiver Q(G,g).
Then A is the infinite linear quiver. Let e; denote the arrow ¢g° — ¢g‘*! and p! the path
€iri1—1--e; of length [ > 1 for each i € Z. The notation p? is understood as g°.

We collect in this section some useful results on graded Hopf structures on kA. The
graded Hopf structures are in one-to-one correspondence with the left kG-module struc-
tures on keg, and thus in one-to-one correspondence with non-zero elements of k. Assume
that g.eqg = geg for some 0 # ¢ € k. The corresponding kG-Hopf bimodule is keg @ kG.
We identify e; and eg ® ¢, and in this way we have a kG-Hopf bimodule structure on
kA;. We denote the corresponding graded Hopf algebra by k.A(g). Recall that the path
multiplication formula of kA(q) is as follows:

o (l+m
;o = q””( 1 )pﬁ-i’ﬁ (4.1)
q
In particular, we have
9-0i=dPisr, g =rip, ag=lgpp.
The following lemma presents k.A(q) via generators with relations.

Lemma 4.1 (Huang et al. [7, Lemma 4.2]). The algebra kA(q) can be presented
via generators with relations as follows.

1

(1) When q = 1: generators, g, g~', eq; relations, gg~! =1 = g~1g, geop = eng.

1

(2) When q # 1 is not a root of unity: generators, g, g, eg; relations, gg~! = 1 = g~ 'g,

geo = q€og-
(3) When q # 1 is a root of unity of order d: generators, g, g~1, eg, pd; relations,
997" =1=yg7"g, ef =0, geo = qeog, gp§ = pilg, eopl = pileo.
4.2. The tensor category associated with k.A(q)

For each i € Z and | > 0, let V(4,1) be a linear space with k-basis {v; togj<i- We endow
on V (i,1) an A-representation structure by letting

V(il) kvj_;, i<j<i+l,
i,1); =
! 0 otherwise,

and letting V'(4,1).; map vé_i to U§—1‘+1 for all i < j < i+ (. Here, by convention, v,i is
understood as 0 if k£ > I. Note also that V(i,1) can be viewed as a right k.A(q)-comodule
via

§: V(i) = V(1) @ kA(q)

l
i i J—m
Uy, E Vi QD -
j=m
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By (4.1), the comodule structure of V(i,1) ® V(j,m) is given by

+ —t Z‘-i—y ! y r+y—s—t
R 9 Sl G FEF L 7o
q

r=s y=t

It is well known that {V(¢,1) | i € Z, | > 0} is a complete set of finite-dimensional inde-
composable representations of the quiver A, and thus a complete set of finite-dimensional
indecomposable comodules of k.A(g). Similarly to § 3.2, we will also view V' (i,)) @ V (4, m)
as a rational module of (k.A(q))*, the dual algebra of kA(q). The module structure map
is given by

it+s f i j
(p])* (v} @) Zq i ( Vere ®Vlys_y
q

In this section we let D, denote the tensor category of finite-dimensional k.A(q)-comodules
and let GR(D,) denote the Green ring of Dy.

Recall that Lemma 3.10 plays an important role in the computation of the Clebsch—
Gordan formulae of C,. Here, for Dy, we have a similar lemma. As the proof is similar,
we do not repeat it.

Lemma 4.2. Assume that V =P, ,V(s,t) and V(i,j) C V in D,. There then exists
an inclusion map ¢: V(i,j) — V(s,t) for some indecomposable direct summand V (s,t)
of Vwitht>jandi+j=s+t.

4.3. The case in which ¢ = 1 or q is not a root of unity

In this section we compute the Clebsch—Gordan formulae and Green ring of D, if g =1
or ¢ is not a root of unity.
Similarly to § 3, we have the following lemmas.

Lemma 4.3.

V(0,0)® V(i,1) = V(i,]) ® V(0,0) = V(4,1),
V(1,00 @ V(i,l) = V(i,)) @ V(1,0) = V(i + 1,1),
V(=1,0)®@ V(i,l) = V(i,]) ® V(=1,0) = V(i — 1,1),

V(1,00%™ = V( )

m,O), V(717O om = V(*m,O),
V(m,0) @ V(-m,0) =V(—m,0)® V(m,0) =V(0,0).
Lemma 4.4.
V(0,)@V(0,))=V(0,l+1)dV(1,l-1)=V(0,]) @ V(0,1). (4.2)
Proof. As before, we only prove the first equality. Consider the maps
¢1: V(0,1 +1) = V(0,1) @ V(0,1)
vg — 128 & 08,
v) ) @) + (D @), i=1,2,...,1,
Vi = (L4 Dgoh @ o)
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and

do: V(1,1 —1) = V(0,1) @ V(0,1)

vf =) @ vl + g (=)l @), i=1,2,...

It is not difficult to verify that ¢; and ¢ are comodule monomorphisms. Then, by

Lemma 4.2, we have
VO, l+1)aeV(1,l-1) CcV(0,1) ® V(0,1).

The claimed equality now follows by comparing the dimensions.

O

With the help of Lemma 4.4, one may prove the following identity easily by induction

on [.
l

Proposition 4.5. V(0,1) @ V(0,m) = @ V(i,l +m — 2i) = V(0,m) @ V(0,1).

=0

Combining Lemma 4.2 and Proposition 4.4, we get the Clebsch-Gordan formulae for D,

as follows.
l

Corollary 4.6. V(s,l)®@ V(t,m) = EB Vis+t+i,l+m—2i)=V(t,m)®V(s,l).

i=0

Now we are ready to give the Green ring structure of D, when ¢ = 1 or ¢ is not a root
of unity. As before, we need some facts about polynomials. Let f(z,y) be the generalized

Fibonacci polynomial as defined in Definition 3.5. We then have the following lemma.

Lemma 4.7. {2 fr(x,y)}icz.k>0 is a basis of Z[z,z71, y].

Proof. The proof is similar to that of Lemma 3.6.

O

Theorem 4.8. GR(D,) is isomorphic to Z|z,z*,y] when ¢ = 1 or ¢ is not a root of

unity.
Proof. Define a ring morphism

®: Zlz,z 'yl = GR(Dy)
z = [V(1,0)],
a7t [V(=1,0)],
y = [V(0,1)].
By the definition of fx(x,y) and (4.2), it is not hard to verify that

D2 fu(w,y)) = [V, k).

This expression says that @ maps the basis {2’ fxx, y}icz x>0 of Zz, 271, y] to the basis

{lV(i, k)] }iez k>0 of GR(D,), and thus it is an isomorphism.
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4.4. The case in which ¢ is a root of unity

In this section ¢ is assumed to be a root of unity with multiplicative order d > 2. First
we list some facts without proofs, as they can be obtained in a similar way as before.

Lemma 4.9.

V(0,0) ® V(i,1) =V (i,1) @ V(0,0) = V(i,1),
V(1,00 @V(3E,)=V(3E,) V(1,0 =V(i+1,1),
V( @V(E)=V(E1)eV(-1,0)=V(i-1,1)

Lemma 4.10.
V(0,1) @ V(0,md+1) =V (0,md+1) @ V(0,1)
_{V(O,md+l+1)@V(1,md+l—1), 0<i<d—2,
VO,(m+1d-1)eV(Il,(m+1)d-1), l=d-1.
Lemma 4.11. For all m > 1, one has
V(0,d) ® V(0, md)
=V (0,md) ® V(0,d)

d—1
=V(0,(m+1)d) @ V(1,(m+1)d - 2) ® PV (i,md — 1) ® V(d, (m — 1)d).

Obviously, Lemmas 4.9-4.11 imply that the Green ring GR(D,) is a commutative ring
and is generated by [V(—1,0)], [V(1,0)], [V(0,1)] and [V(0,d)]. The preceding three
lemmas also help to compute the decomposition of V(0,ed + f) ® V(0,md + h) for all
e,;m =2 0and 0< f, h <d—1. In the following, let y = f+h —d+ 1.

Theorem 4.12.

(H)Ifo< f<hand f+h<d-—1, then

e—1
V(0,ed+ f) @ V(0,md+h) = P {@V (kd+ i, (e +m — 2k)d + f + h — 2i)
k=0 =
h
& P V(kd+j. (e +m —2k)d — 1)
Jj=f+1
f+h+1
® P Vikd+r (e+m—2k)d+h+ f—2r)
r=h+1
d—1
& P Vikd+s (e+m—1-2k)d—1)
s=f+h+2

f
&P V(ed+i,(m—e)d+h+ f— 2i);
1=0
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(2) if0< f<h<dand f+h>d, then

e—1 ¥
V(0,ed+ f) @ V(0,md + h) = [@V(kd+i,(e+m2k)d+d1)
k=0 *-1:=0
f
& @ V(kd+j,(c+m—2k)d+ f+ h — 2i)
J=y+1
h
& P Vkd+r, (e+m—2k)d—1)
r=f+1
d—1
® @ Vikd+s,(e+m—2k)d+h+ f—2s)
s=h+1

@éV(ed—l—i,(m—e)d—i—d—l)

<.

Ip- L

S

7

(3)if0<h< f<dand f+h<d- Lhm

V(ed+i,(m—e)d+ f+ h— 2i);
1

\ I
T

e—1 h
V(0,ed + f) @ V(0,md + h) = @[@V (kd +1i, (e +m — 2k)d + h + f — 23)

k=0 " i=

@ QB (kd + j, (e +m — 2k)d — 1)

j=h+1
h+f+1
® P Vikd+r,(e+m—2k)d+h+ f—2r)
r=f+1
d—1
& P Vikd+s, (e+m—1-2k)d—1)
s=f+h+2

h
@@V(ed—i—z}(m—e)d—i—h—l—f—%)
i=0
f
® @ V(ed+i,(m —e)d — 1);
i=h+1
d, then

WV

4 ifo<h< f<dand f+h

®
|

1 v
V(0,ed+ f) @ V(0,md + h) = [ V(kd+i,(e4+m—2k)d+d—1)
o Li=o

=~
Il

h
® @ V(kd+j,(e+m—2k)d+ f+h—2j)
j=v+1
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f
& P Vikd+r,(e+m—2k)d—1)
r=h+1
d—1
® @ V(kd+s,(e+m—2k)d+h+ f—2s)
s=f+1

=0
h
& @ Vied+i,(m—e)d+ f+ h— 2i)

!
& P Vied+i, (m—e)d—1).
i=h+1

Proof. The proof is similar to that of Theorem 3.18. g

Let {fr(x,vy,2)}k>0 be polynomials defined as in Definition 3.19 and we have the
following easy fact.

Lemma 4.13. We have that

l
{2 fr(x,y,2) | i €2,k > O}U {mj (yl - Z (i)xsfmdl(x,y,z)> ’j ez, l,m> 1}
0

S=
is a basis of Z[x,z7 1, y, 2].
Now we are in a position to determine the Green ring GR(D,).

Theorem 4.14. GR(D,) is isomorphic to Z[z,x~',y, z|/J, where J is the ideal of
Zlw, 2~ ', y, 2] generated by

(y—a—1) ( [(d_zl)/2]( 1)’ (d —1- z) xiydl%‘)
i=0 !
Proof. The proof is similar to that of Theorem 3.25. Define a ring map
W: Zx,x by, 2] = GR(D,)
x— [V(1,0)],

Obviously, ¥ is surjective as z, !, y and z map to a set of generators of GR(D,).
According to the definition of fi(x,y,2) and Lemmas 4.10 and 4.11, we have

W (2" fi(w,y,2) = [V(L,0)] fu(V(L,0)], [V(0, D], [V(0,d)]) = [V (i, k)],
g’(x_ifk($7 Y, Z)) = [V<_17 0)]ifk([v(17 O)L [V<07 1)]7 [V(O’ d)]) = [V(_i’ k)]
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for all 4 > 0. Because

L1
VO,)®@V(0,md—1)=>" (,)V(j, md — 1)

I

= |l
<=}
VRS
(R,

)V(1,0)®W(o,md —1),

we have

This implies that
[ )
J’:<{<yl—z<,>x7>fmd_1(x,y,z)} >gker!l7.
j=1 ¢ l,m>1
Thus, ¥ induces an epimorphism

W Zx,x by, 2]/ — GR

Next we prove that ¥ is a ring isomorphism. Let
g(x’ '1:_17 y’ Z) = g('r7 x_17 y7 Z) + J/ e Z['x’ 'r_17 y’ Z]/Jl'
By Lemma 4.11 we have
. _ A
g(l’) = ' Z Ci,kxlfk(x7yﬁz)+ - Z Cj,hmxj (yl 72 <Z->xj>fmd—l(z7yvz)7
i€Z,k>0 JELM>0,1>1 j=1

where ¢; k, ¢j1.m € Z. So

g(m,xilayaz) = Z Ci,kxifk(xayaz)‘

i€Z,k>0

In other words, {xifx(x,y,2) | i € Z, k > 0} spans Z[z,z~',y,2]/J'. Note that
U(xify(z,y,2)) = [V(i,k)], and {[V(i,k)] | i € Z, k > 0} is a basis of GR(D,).
It follows that {z’fy(z,y,2) | ¢ € Z, k > 0} is linearly independent, and hence
a basis of Z[z,x71,y,2]/J". So ¥ is an isomorphism. Now, by Lemma 3.24 we have
J' = <(y - 1)fd,1(!L‘7y,Z)> =J.

We are done. d
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