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The aim of this work is to present a technique for the optimisation of emergency vehicles

travel times on assigned paths when critical situations, such as car accidents, occur. Using

a fluid-dynamic model for the description of car density evolution, the attention is focused

on a decentralised approach reducing to simple junctions with two incoming roads and two

outgoing ones (junctions of 2 × 2 type). We assume the redirection of cars at junctions

is possible and choose a cost functional that describes the asymptotic average velocity of

emergency vehicles. Fixing an incoming road and an outgoing road for the emergency vehicle,

we determine the local distribution coefficients that maximise such functional at a single

junction. Then we use the local optimal coefficients at each node of the network. The overall

traffic evolution is studied via simulations, both for simple junctions or cascade networks,

evaluating global performances when optimal parameters on the network are used.

Key words: Conservation laws; traffic problems; optimal redistribution of flows.

1 Introduction

The exponentially increasing number of circulating cars in modern cities renders the

problem of traffic control of paramount importance. Incidents (such as accidents or even

a single car braking heavily in a previously smooth flow) may cause ripple effects (a

cascading failure), which then spread out and create a sustained traffic jam. In particular,

sudden decisions have to be taken in the case of an emergency. Fire, police, ambulance,

repair crews, emergency and life-saving equipment, services and supplies must move

quickly to places of emergency where there is the greatest need.

The problem can be solved with the identification of a network of dedicated municipal

and provincial roads. Otherwise, one may choose a route for emergency vehicles (not

dedicated, i.e. not limited only to emergency needs) and redistributing traffic flows at

junctions on the basis of the current traffic load in such a way that emergency vehicles

can travel at the maximum allowed speed along the assigned roads (and without blocking

traffic on other roads). In this paper we focus on this second approach. In Figure 1

white arrows indicate the chosen path for the emergency vehicle; congested roads are

marked in black. With this aim in mind, we choose a fluid-dynamic model for road
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Figure 1. (Colour online) Car accident on a road network and flows redistribution.

networks [5, 8, 12] to find the optimal distribution of vehicles at junctions consisting of

two incoming and two outgoing roads in order to maximise the velocity of emergency

vehicles on an assigned path. In reality, such coefficients are determined by drivers’ habits.

However, drivers’ preferences can be changed in presence of critical conditions in order

to maximise the velocity of emergency vehicles on fixed paths.

Following the adopted model, the evolution of car densities is described by a conser-

vation law [1]. In order to uniquely solve dynamics at junctions, the Riemann Problems

(Cauchy problems with constant initial data on each road) are solved respecting the

following rules:

(A) The incoming traffic at a node is distributed to outgoing roads according to some

distribution coefficients.

(B) Drivers behave so as to maximise the flux through the junction.

If the road junction is of 2 × 2 type, namely it has two incoming roads, a and b, and

two outgoing ones, c and d, rule (A) is expressed by two coefficients, α and β, that indicate

the percentage of cars moving from roads a and b, respectively, to road c. Assigning the

initial density for all incoming and outgoing roads of a node, we compute the asymptotic

equilibrium as a function of α and β. Such equilibrium, belonging to the admissible region

for final fluxes, is chosen according to rule (B).

Some optimisation problems for coefficients of fluid dynamic models have been already

treated for car traffic in [3, 4], where three cost functionals, J1, J2 and J3, indicating, re-

spectively, cars average velocities, average travelling times and flux, have been introduced.

For junctions of types 2 × 1 and 1 × 2, the optimisation has been done over right of

way parameters and traffic distribution coefficients with the aim of maximising J1 and J3,

and minimising J2. Moreover, in [6], for junctions of 2 × 1 type, further cost functionals,

measuring kinetic energy and average travelling time, weighted with the number of cars

moving on the roads, have been considered. It was shown that only the velocity cost

functional guarantees optimal global performances on urban networks.
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The goal of this paper is to extend these previous works to the case of 2 × 2 junctions.

Here, assuming that emergency vehicles will cross fixed roads ϕ and ψ (ϕ ∈ {a, b} ,
ψ ∈ {c, d}), a cost functional Wϕ,ψ , measuring the average velocities of such vehicles on

the incoming road Iϕ and the outgoing road Iψ of 2 × 2 junctions, is considered. The

optimisation results give the values of α and β, which maximise the functional, allowing

a fast transit of emergency vehicles to reach car accident’s place and hospital.

The analysis of complete functional Wϕ,ψ on a whole network is a very complex

problem, hence we follow a decentralised approach. More precisely, we look at the

asymptotic behaviour, i.e. for large times, at a single junction. It results possibly to find

an exact solution for a single junction and an asymptotic expression of Wϕ,ψ . Then

we propose a global (sub)optimal solution for the whole network, simply obtained by

applying at each junction the computed local optimal solution.

The correctness of analytical optimisation procedures is tested by simulations. For

numerics, we refer to approximation methods described in [2, 10, 11, 13]. Simulations are

run using two different choices of distribution coefficients: (locally) optimal and random.

The first choice is given by the optimisation algorithm; the second one considers, at the

beginning of the simulation process, a random choice of α and β, kept constant during

all the simulation. Simulation results first refer on simple junctions of 2 × 2 type. Then we

study the effects of the decentralised approach on the global performance of a network

with cascade junctions. It is shown that, for the chosen initial data, either for simple

junctions or networks, optimal parameters give better performances than other ones.

The paper is organised as follows. In Section 2, we describe briefly the basic model

for road networks. In Section 3, we recall the construction of solutions to the Riemann

Problems at junctions. Section 4 is devoted to the introduction of the cost functional Wϕ,ψ

and its optimisation. Simulation results for simple junctions with different initial data

and for a cascade network are reported in Section 5. The paper ends with conclusions in

Section 6.

2 Road networks

A road network is described by a couple (I,J), where I represents the set of roads, and J
is the collection of junctions. The roads are modelled by intervals [ai, bi] ⊂ �, i = 1, . . . , N.

The evolution of car traffic on each road is described by the Lighthill–Whitham–

Richards model (see [14, 15]) given by the following equation:

∂tρ+ ∂xf (ρ) = 0, (2.1)

where ρ = ρ (t, x) ∈ [0, ρmax] is the density of cars, ρmax is the maximal density, f (ρ) =

ρv (ρ) is the flux with v (ρ) being the average velocity.

Setting ρmax = 1, we fix a velocity function,

v (ρ) = 1 − ρ. (2.2)

The corresponding flux function,

f (ρ) = ρ (1 − ρ) , ρ ∈ [0, 1] , (2.3)
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which presents a unique maximum σ = 1
2
, ensures the assumption (F):

(F) f : [0, ρmax] → [0, σ] is a strictly concave C2 function such that f (0) = f (ρmax) = 0.

For a single conservation law (2.1) on a real line, the Riemann Problem (RP) is a

Cauchy problem for a piecewise constant initial data with only one discontinuity. In an

analogous way, we define an RP at a junction as a Cauchy problem with a constant initial

datum for each incoming and outgoing road. We aim to solve RPs at junctions of a road

network. Fix a junction J with n incoming roads Iϕ, ϕ = 1, . . . , n, and m outgoing roads,

Iψ , ψ = n+ 1, . . . , n+ m, and an initial data ρ0 = (ρ1,0, . . . , ρn,0, ρn+1,0, . . . , ρn+m,0).

Definition 1 A Riemann Solver (RS) for the junction J is a map RS : [0, 1]n × [0, 1]m →
[0, 1]n × [0, 1]m that associates to Riemann data ρ0 = (ρϕ,0, ρψ,0) at J a vector ρ̂ = (ρ̂ϕ, ρ̂ψ)

so that the solution on an incoming road Iϕ, ϕ = 1, . . . , n, is given by the wave (ρϕ,0, ρ̂ϕ) and

on an outgoing one Iψ, ψ = n+ 1, . . . , n+ m is given by the wave (ρ̂ψ, ρψ,0). We require the

following conditions to hold true:

(C1) RS (RS (ρ0)) = RS (ρ0) ;

(C2) on each incoming road Iϕ, ϕ = 1, . . . , n, the wave (ρϕ,0, ρ̂ϕ) has negative speed, while

on each outgoing road Iψ, ψ = n+ 1, . . . , n+ m, the wave (ρ̂ψ, ρψ,0) has positive speed.

If m � n, a possible RS at a junction J is defined according to the following rules

(see [5]):

(A) Preferences of drivers at J are represented by some coefficients, collected in a traffic

distribution matrix A = (αψ,ϕ), ϕ ∈ {1, . . . , n} , ψ ∈ {n+ 1, . . . , n+ m}, 0 < αψ,ϕ < 1,∑n+m
ψ=n+1 αψ,ϕ = 1. The ψth column of A indicates the percentages of traffic that,

from the incoming road Iϕ, distribute to the outgoing roads.

(B) Fulfilling (A), drivers maximise the flux through J .

The distribution coefficients αψ,ϕ represent average values of statistical travel preferences.

The latter may well change depending on the hour of the day, thus rendering the matrix

A dependent on time. The case of time-varying coefficients was treated in [9]; however,

here we focus on the simpler case of fixed coefficients.

Rule (B) describes the situation in which drivers, travelling on incoming roads, optimise

the flow through the junction. Such assumption is reasonable but obviously may not be

verified in practice because of the limitation in junction capacity and drivers’ choices. We

notice that the optimisation of velocity gives rise to the same solver for simple junctions.

For a more deep discussion of the model and alternative ones, we refer the reader to [7].

The condition (C2) of Definition 1 imposes restrictions on possible values that ρ̂ =

RS(ρ0) may attain. The following Proposition provides explicit expressions of sets where

ρ̂ may vary depending on the initial datum ρ0 (see [3, 5, 8] for details).

Proposition 2 Assume that the flux function is given by (2.3) and let ρ̂ = RS(ρ0). Then it

holds:

ρ̂ϕ ∈
{

{ρϕ,0} ∪
]
τ
(
ρϕ,0
)
, 1
]
, if 0 � ρϕ,0 � 1

2
,[

1
2
, 1
]
, if 1

2
� ρϕ,0 � 1,

ϕ = 1, . . . , n,
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and

ρ̂ψ ∈
{[

0, 1
2

]
, if 0 � ρψ,0 � 1

2
,

{ρψ,0} ∪
[
0, τ
(
ρψ,0
)[
, if 1

2
� ρψ,0 � 1,

ψ = n+ 1, . . . , n+ m,

where τ : [0, 1] → [0, 1] is the map such that f (τ (ρ)) = f (ρ) for every ρ ∈ [0, 1] , and

τ (ρ)�ρ for every ρ ∈ [0, 1] \ {σ} .

3 Choice of a Riemann Solver

We describe a Riemann Solver that satisfies rules (A) and (B) for a junction of 2 × 2

type, i.e. with two incoming roads, a and b, and two outgoing roads, c and d. For such a

junction, the traffic distribution matrix A assumes the form

A =

(
α β

1 − α 1 − β

)
,

where α is the probability that drivers go from road a to road c and β is the probability

that drivers travel from road b to road c. Let us suppose that α� β in order to fulfill a

technical condition for uniqueness of solutions, see [5] for details.

From Proposition 2, in order to obtain the solution on each road of the junction J , it

is enough to specify the flux values γ̂ϕ = f(ρ̂ϕ), ϕ = a, b, and γ̂ψ = f(ρ̂ψ), ψ = c, d. In

particular, from rule (A), it follows that(
γ̂c

γ̂d

)
= A

(
γ̂a

γ̂b

)
.

From rule (B), we have that γ̂ϕ, ϕ = a, b is found solving the linear programming problem:

max (γa + γb) ,

0 � αγa + βγb � γmax
c ,

0 � (1 − α) γa + (1 − β) γb � γmax
d ,

0 � γϕ � γmax
ϕ ,

(3.1)

where the maximum fluxes on roads are

γmax
ϕ =

{
f
(
ρϕ,0
)
, if ρϕ,0 ∈

[
0, 1

2

]
,

f
(

1
2

)
, if ρϕ,0 ∈

]
1
2
, 1
]
,

ϕ = a, b, (3.2)

γmax
ψ =

{
f
(

1
2

)
, if ρψ,0 ∈

[
0, 1

2

]
,

f
(
ρψ,0
)
, if ρψ,0 ∈

]
1
2
, 1
]
,

ψ = c, d. (3.3)

The solution of (3.1) is found as follows. Introduce the function g (γ1, γ2, x, y) as

g (γ1, γ2, x, y) =
γ1

x
− y

x
γ2.

Define the lines

l1 =
{
(γa, γb) ∈ �2 : αγa + βγb = γmax

c

}
,
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Figure 2. Different solution scenarios (SSs) for the problem (3.1).

l2 =
{
(γa, γb) ∈ �2 : (1 − α) γa + (1 − β) γb = γmax

d

}
,

and set P = l1 ∩ l2 = (γ̃a, γ̃b). The fluxes γ̂a and γ̂b must belong to the region

Ω =
{
(γa, γb) ∈ �2 : 0 � γa � γmax

a , 0 � γb � γmax
b

}
,

thus if P belongs to Ω, we set (γ̂a, γ̂b) = (γ̃a, γ̃b), otherwise (γ̂a, γ̂b) = projΩ (P ), where proj

is the projection on a convex set. Four different solution scenarios (SSs) are possible for

(3.1) (see Figure 2). Various SSs are fully described by the conditions (A1)–(A12). More

precisely, (A1) corresponds to SS1 and (A2) to SS2, while (A3)–(A12) distinguish various

sub-cases for SS3 and SS4.

(A1) γ̃a < γmax
a , γ̃b < γmax

b , g
(
γmax
c , γmax

b , α, β
)
< g

(
γmax
d , γmax

b , 1 − α, 1 − β
)
< γmax

a ,

g
(
γmax
d , γmax

a , 1 − β, 1 − α
)
< g

(
γmax
c , γmax

a , β, α
)
< γmax

b ;

(A2) γ̃a � γmax
a , γ̃b � γmax

b ;

(A3) γ̃a < γmax
a , γ̃b > γmax

b , g
(
γmax
c , γmax

b , α, β
)
< γmax

a < g
(
γmax
d , γmax

b , 1 − α, 1 − β
)
;

(A4) γ̃a > γmax
a , γ̃b < γmax

b , g
(
γmax
c , γmax

a , β, α
)
< γmax

b < g
(
γmax
d , γmax

a , 1 − β, 1 − α
)
;

(A5) γ̃a < γmax
a , γ̃b > γmax

b , g
(
γmax
d , γmax

b , 1 − α, 1 − β
)
< γmax

a < g
(
γmax
c , γmax

b , α, β
)
;

(A6) γ̃a > γmax
a , γ̃b < γmax

b , g
(
γmax
d , γmax

a , 1 − β, 1 − α
)
< γmax

b < g
(
γmax
c , γmax

a , β, α
)
;

(A7) γ̃a < γmax
a , γ̃b > γmax

b , g
(
γmax
c , γmax

b , α, β
)
< g

(
γmax
d , γmax

b , 1 − α, 1 − β
)
< γmax

a ;

(A8) γ̃a > γmax
a , γ̃b < γmax

b , g
(
γmax
c , γmax

a , β, α
)
< g

(
γmax
d , γmax

a , 1 − β, 1 − α
)
< γmax

b ;

(A9) γ̃a < γmax
a , γ̃b > γmax

b , γmax
a > g

(
γmax
c , γmax

b , α, β
)
> g

(
γmax
d , γmax

b , 1 − α, 1 − β
)
;

(A10) γ̃a > γmax
a , γ̃b < γmax

b , γmax
b > g

(
γmax
c , γmax

a , β, α
)
> g

(
γmax
d , γmax

a , 1 − β, 1 − α
)
;
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(A11) γ̃a < γmax
a , γ̃b > γmax

b , g
(
γmax
c , γmax

b , α, β
)
> γmax

a , g
(
γmax
d , γmax

b , 1 − α, 1 − β
)
> γmax

a ;

(A12) γ̃a > γmax
a , γ̃b < γmax

b , g
(
γmax
c , γmax

a , β, α
)
> γmax

b , g
(
γmax
d , γmax

a , 1 − β, 1 − α
)
> γmax

b .

Following are the solutions γ̂a and γ̂b of the RP:

• If A1 holds, then (γ̂a, γ̂b) = (γ̃a, γ̃b).

• If A2 or A11 or A12 hold, then (γ̂a, γ̂b) = (γmax
a , γmax

b ).

• If A3 or A7 are satisfied, then (γ̂a, γ̂b) = (γ̌a, γ̌b), where

(γ̌a, γ̌b) =

⎧⎨⎩
(
g
(
γmax
c , γmax

b , α, β
)
, γmax
b

)
, if g

(
γmax
c , γmax

b , α, β
)

� 0,(
0, γ

max
c

β

)
, otherwise.

• If A4 or A8 hold, then (γ̂a, γ̂b) = (γ̆a, γ̆b), where

(γ̆a, γ̆b) =

⎧⎨⎩
(
γmax
a , g

(
γmax
c , γmax

a , β, α
))
, if g

(
γmax
c , γmax

a , β, α
)

� 0,(
γmax
c

α
, 0
)
, otherwise.

• If A5 or A9 are satisfied, then (γ̂a, γ̂b) = (γ̄a, γ̄b), where

(γ̄a, γ̄b) =

⎧⎨⎩
(
g
(
γmax
d , γmax

b , 1 − α, 1 − β
)
, γmax
b

)
, if g

(
γmax
d , γmax

b , 1 − α, 1 − β
)

� 0,(
0,

γmax
d

1−β

)
, otherwise.

• If A6 or A10 hold, then (γ̂a, γ̂b) = (̊γa, γ̊b), where

(̊γa, γ̊b) =

⎧⎨⎩
(
γmax
a , g

(
γmax
d , γmax

a , 1 − β, 1 − α
))
, if g

(
γmax
d , γmax

a , 1 − β, 1 − α
)

� 0,(
γmax
d

1−α , 0
)
, otherwise.

4 Optimisation of distribution coefficients

Our aim is to find the values of traffic distribution parameters at a junction in order to

manage critical situations, such as car accidents. In this case, beside the ordinary cars

flows, other traffic sources, due to emergency vehicles, are present. More precisely, assume

that a car accident occurs on a road of an urban network and that some emergency

vehicles have to reach the place of the accident, or hospital.

We define the velocity function for such vehicles as

ω (ρ) = 1 − δ + δv (ρ) , (4.1)

with 0 < δ < 1 and v (ρ) as in (2.2). Since ω (ρmax) = 1 − δ > 0, it follows that the

emergency vehicles travel with a higher velocity with respect to cars. Notice that (4.1)

coincides with the velocity of the ordinary traffic for δ = 1.
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Consider a junction J with n incoming roads and m outgoing roads. Fix an incoming

road Iϕ, ϕ = 1, . . . , n, and an outgoing road Iψ , ψ = n+ 1, . . . , n+m. Given an initial data

(ρϕ,0, ρψ,0), we define the cost functional Wϕ,ψ (t), which indicates the average velocity of

emergency vehicles crossing Iϕ and Iψ:

Wϕ,ψ (t) =

∫
Iϕ

ω
(
ρϕ (t, x)

)
dx+

∫
Iψ

ω
(
ρψ (t, x)

)
dx.

As maximising Wϕ,ψ (t) with respect to the traffic distribution parameters αψ,ϕ is a huge

task, we find a solution for the optimisation problem in the asymptotic regime, i.e. after a

long time has elapsed, using ρ̂ = (ρ̂ϕ, ρ̂ψ) as densities. So we fix a time horizon [0, T ] and

formulate the problem in the following way:

(P) Consider a junction J with n incoming roads and m outgoing roads, the traffic

distribution coefficients αψ,ϕ as controls and the functional Wϕ,ψ (t). We want to

maximise Wϕ,ψ (T ) for T sufficiently big.

In what follows, we focus the attention on a junction J of type 2×2, fixing an incoming

road Iϕ, ϕ = a, b, and an outgoing road Iψ , ψ = c, d. For T sufficiently big we have

Wϕ,ψ (T ) = ω
(
ρ̂ϕ
)

+ ω
(
ρ̂ψ
)

= 2 − δ − δ

2

(
sϕ

√
1 − 4γ̂ϕ + sψ

√
1 − 4γ̂ψ

)
, (4.2)

where sϕ and sψ are defined as

sϕ =

{
+1, if ρϕ,0 � 1

2
, or ρϕ,0 <

1
2

and γmax
ϕ > γ̂ϕ,

−1, if ρϕ,0 <
1
2

and γmax
ϕ = γ̂ϕ,

sψ =

{
+1, if ρψ,0 >

1
2

and γmax
ψ = γ̂ψ,

−1, if ρψ,0 � 1
2
, or ρψ,0 >

1
2

and γmax
ψ > γ̂ψ.

Without loss of generality, choosing ϕ = a and ψ = c, we have that (4.2) becomes

Wa,c (T ) = ω (ρ̂a) + ω (ρ̂c) = 2 − δ − δ

2

(
sa
√

1 − 4γ̂a + sc
√

1 − 4γ̂c

)
. (4.3)

Notice that γ̂a and γ̂c in (4.3) depend on traffic coefficients α and β, which have to be

determined in order to maximise the velocity of emergency vehicles on roads a and c.

The cost functionalWa,c (T ) is optimised choosing the distribution coefficients according

to the following theorem.

Theorem 3 Consider a junction J with two incoming roads, a and b, and two outgoing roads,

c and d. For T sufficiently big, the values of α and β, which optimise the cost functional

Wa,c (T ), are αopt = 1 − γmax
d

γmax
a

, 0 � βopt < 1 − γmax
d

γmax
a

, with the exception of the following cases,

where the optimal controls do not exist but the optimal values are approximated by

• αopt = ε1, βopt = ε2, if γmax
a � γmax

d ;

• αopt = γmax
c

γmax
c +γmax

d
−ε1, βopt = γmax

c

γmax
c +γmax

d
−ε2, if γmax

a > γmax
c +γmax

d , for ε1 and ε2 small, positive

and such that ε1 � ε2.
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Proof For simplicity, from now on we drop the dependence on T from Wa,c. Fix a junction

J and an initial datum ρ0 = (ρa,0, ρb,0, ρc,0, ρd,0).

The proof is organised in the following several steps:

(1) Divide the rectangular region Λ = {(α, β) ∈ �2 : 0 � α � 1, 0 � β � 1} into subregions

Λk ⊂ Λ, k = 1, . . . , N, for which the solution to the RP obeys the same SS.

(2) Compute the explicit expression of Wa,c (α, β) for every Λk, k = 1, . . . , N.

(3) Compute (αk, βk) ∈ Λk ∀ Λk , k = 1, . . . , N, such that Wa,c (αk, βk) = MΛk = max
(α,β)∈Λk

Wa,c (α, β).

(4) Find
(
αopt, βopt

)
∈ Λ such that MΛ = max

(α,β)∈Λ
Wa,c (α, β) = max {MΛ1

, MΛ2
, . . . , MΛN}.

Notice that,

• N is at most equal to six, depending on the chosen ρ0 at J , namely different initial

conditions ρ0 imply different subdivision of Λ in terms of the number of regions;

• optimal values αopt and βopt are not always well defined due to strict inequalities that

define some subregions Λk .

We proceed now with the details of the proof. Denoted by Γmax
in and Γmax

out , the sum of

maximum fluxes on incoming and outgoing roads, respectively are

Γmax
in = γmax

a + γmax
b , Γmax

out = γmax
c + γmax

d .

In what follows, we make the following assumptions on initial data (for all the other

cases, the proof is similar):

(H1) ρa,0 <
1
2
, ρc,0 >

1
2
;

(H2) γmax
d < γmax

b < γmax
c < γmax

a < Γmax
out < Γmax

in .

Define the lines:

r =

{
(α, β) ∈ �2 : β =

γmax
c − αγmax

a

Γmax
out − γmax

a

}
,

s =

{
(α, β) ∈ �2 : β =

γmax
c − α(Γmax

out − γmax
b )

γmax
b

}
,

t =
{
(α, β) ∈ �2 : β = α

}
,

and the regions into which r, s and t divide the plane (α, β):

r+ =

{
(α, β) ∈ �2 : β �

γmax
c − αγmax

a

Γmax
out − γmax

a

}
,

r− =

{
(α, β) ∈ �2 : β �

γmax
c − αγmax

a

Γmax
out − γmax

a

}
,

s+ =

{
(α, β) ∈ �2 : β �

γmax
c − α(Γmax

out − γmax
b )

γmax
b

}
,

s− =

{
(α, β) ∈ �2 : β �

γmax
c − α(Γmax

out − γmax
b )

γmax
b

}
,
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t+ =
{
(α, β) ∈ �2 : β > α

}
, t− =

{
(α, β) ∈ �2 : β < α

}
.

The open set

Λ =
{
(α, β) ∈ �2 : 0 � α � 1, 0 � β � 1

}
is decomposed as Λ =

5⋃
k=1

Λk, where:

Λ1 = Λ ∩ r+ ∩ t+, Λ2 = Λ ∩ s+ ∩ t−, Λ3 = Λ ∩
[(
r− ∩ s+ ∩ t+

)
∪
(
r+ ∩ s− ∩ t−

)]
,

Λ4 = Λ ∩ s− ∩ t+, Λ5 = Λ ∩ r− ∩ t−.
A unique RS is associated with each region Λm, m = 1, . . . , 5, on the basis of conditions

Aj , j = 1, . . . , 12. Precisely, we have that given a couple (α, β):

• if (α, β) ∈ Λ1, A4 or A8 are satisfied;

• if (α, β) ∈ Λ2, A3 or A7 are satisfied;

• if (α, β) ∈ Λ3, A1 holds;

• if (α, β) ∈ Λ4, A5 or A9 are satisfied;

• if (α, β) ∈ Λ5, A6 or A10 hold.

Hence, the cost functional Wa,c is written as follows:

Wa,c =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 − δ − δ
2

(
sa

√
1 − 4γ̆a + sc

√
1 − 4 (αγ̆a + βγ̆b)

)
, if (α, β) ∈ Λ1,

2 − δ − δ
2

(√
1 − 4

(
γmax
c −βγmax

b

α

)
+
√

1 − 4γmax
c

)
, if (α, β) ∈ Λ2,

2 − δ − δ
2

(√
1 − 4γ̃a +

√
1 − 4γmax

c

)
, if (α, β) ∈ Λ3,

2 − δ − δ
2

(
sa

√
1 − 4γ̄a + sc

√
1 − 4 (αγ̄a + βγ̄b)

)
, if (α, β) ∈ Λ4,

2 − δ − δ
2

(
sa

√
1 − 4̊γa + sc

√
1 − 4 (α̊γa + β̊γb)

)
, if (α, β) ∈ Λ5.

Notice that (H1) establishes the values of sa and sc and the functional Wa,c assumes

different expressions in regions Λ1, Λ4 and Λ5, as the values of (γ̆a, γ̆b), (γ̄a, γ̄b) and

(̊γa, γ̊b) depend, respectively, on the sign of g(γmax
c , γmax

a , β, α), g(γmax
d , γmax

b , 1 − α, 1 − β) and

g(γmax
d , γmax

a , 1 − β, 1 − α). In particular, we have that

g
(
γmax
c , γmax

a , β, α
)

� 0 ⇔ α �
γmax
c

γmax
a

,

g
(
γmax
d , γmax

b , 1 − α, 1 − β
)

� 0 ⇔ β � 1 − γmax
d

γmax
b

,

g
(
γmax
d , γmax

a , 1 − β, 1 − α
)

� 0 ⇔ α � 1 − γmax
d

γmax
a

.

Such inequalities allow further divisions of the regions Λi, i = 1, 4, 5; see Figure 3, where

O = (0, 0) , A =

(
γmax
c

γmax
a

, 0

)
, B = (1, 0) ,
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Figure 3. Division of Λ in regions and subregions.

C =

(
1, 1 − γmax

d

γmax
b

)
, D =

(
1 − γmax

d

γmax
a

, 1

)
, E =

(
γmax
b − γmax

c

γmax
b − Γmax

out

, 1

)
,

F =

(
γmax
c

Γmax
out

,
γmax
c

Γmax
out

)
, G =

(
1 − γmax

d

γmax
a

, 1 − γmax
d

γmax
a

)
, H =

(
1 − γmax

d

γmax
a

, 0

)
.

Consider the region Λ3. According to the RS, the cost functional Wa,c is

J (α, β) = 2 − δ − δ

2

√
1 − 4γmax

c − δ

2

√
α+ β (4Γmax

out − 1) − 4γmax
c

α− β
.

We have that

∂J (α, β)

∂α
=

δ
(
βΓmax

out − γmax
c

)
(α− β)2

√
α+β(4Γmax

out −1)−4γmax
c

α−β

,

∂J (α, β)

∂β
= −

δ
(
αΓmax

out − γmax
c

)
(α− β)2

√
α+β(4Γmax

out −1)−4γmax
c

α−β

,

and we conclude that there are no critical points inside Λ3 such that β� α.

Now we study the behaviour of J (α, β) on boundaries. On segments DF ∪ AF and

EF ∪ CF , J (α, β) is constant and, in particular, its values are, respectively,

J

(
α,
γmax
c − αγmax

a

Γmax
out − γmax

a

)
= 2 − δ − δ

2

(√
1 − 4γmax

a +
√

1 − 4γmax
c

)
,

J

(
α,
γmax
c − α(Γmax

out − γmax
b )

γmax
b

)
= 2 − δ − δ

2

(√
1 − 4γmax

c +
√

1 + 4γmax
b − 4Γmax

out

)
.
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On the segment DE, Wa,c is equal to

J (α, 1) = 2 − δ − δ

2

(√
1 − 4γmax

c +

√
1 − α− 4γmax

d

1 − α

)
,

γmax
b − γmax

c

γmax
b − Γmax

out

� α � 1 − γmax
d

γmax
a

.

Since

J ′ (α, 1) =
δγmax

d

(1 − α)2
√

1−α−4γmax
d

1−α

> 0,

we conclude that Wa,c(E) < Wa,c (D). Hence, the maximum is given by the point D for

which

Wa,c (D) = 2 − δ − δ

2

(√
1 − 4γmax

a +
√

1 − 4γmax
c

)
= J

(
α,
γmax
c − αγmax

a

Γmax
out − γmax

a

)
.

As for the analysis on the segment BC , Wa,c becomes

J (1, β) = 2 − δ − δ

2

(√
1 − 4γmax

c +

√
1 + β (4Γmax

out − 1) − 4γmax
c

1 − β

)
, 0 � β � 1 − γmax

d

γmax
b

,

whose derivative is

J ′ (1, β) = − δγmax
d

(1 − β)2
√

1+β(4Γmax
out −1)−4γmax

c

1−β

< 0.

Hence, Wa,c (C) < Wa,c (B) and the maximum point is attained in B with

Wa,c (E) = 2 − δ
(
1 +
√

1 − 4γmax
c

)
.

Finally, on the segment AB, Wa,c is equal to

J (α, 0) = 2 − δ − δ

2

(√
1 − 4γmax

c +

√
1 − 4

γmax
c

α

)
,

γmax
c

γmax
a

� α � 1,

and

J ′ (α, 0) = − δγmax
c

α2

√
α−4γmax

c

α

< 0.

So Wa,c (B) < Wa,c (A), and the maximum point is A with Wa,c (A) = Wa,c (D). Notice that

Wa,c (D) = Wa,c (A) > J

(
α,
γmax
c − α(Γmax

out − γmax
b )

γmax
b

)
⇔ Γmax

in > Γmax
out ,

J

(
α,
γmax
c − αγmax

a

Γmax
out − γmax

a

)
> Wa,c (B) ⇔ γmax

c < γmax
a ,

J

(
α,
γmax
c − α(Γmax

out − γmax
b )

γmax
b

)
< Wa,c (B) ⇔ γmax

d < γmax
b ,
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which satisfy (H2). Hence, we get

Wa,c (D) = Wa,c (A) > Wa,c (B) > J

(
α,
γmax
c − α(Γmax

out − γmax
b )

γmax
b

)
,

and the absolute maximum in Λ3 is achieved in all points of the set

Λ ∩ r ∩
{
(α, β) ∈ �2 : β� α

}
,

for which the value of the cost functional is

MΛ3
= 2 − δ − δ

2

(√
1 − 4γmax

a +
√

1 − 4γmax
c

)
.

Now focus the attention on Λ5. The line α = 1 − γmax
d

γmax
a

divides Λ5 into two subregions, Λ5,−
and Λ5,+ (see Figure 3). Precisely,

Λ5,− = Λ5 ∩ u−, Λ5,+ = Λ5 ∩ u+,

where

u+ =

{
(α, β) ∈ �2 : α � 1 − γmax

d

γmax
a

}
, u− =

{
(α, β) ∈ �2 : α � 1 − γmax

d

γmax
a

}
.

The cost functional Wa,c is given by

Wa,c =

{
J1 (α) , if (α, β) ∈ Λ5,−,

J2 (α, β) , if (α, β) ∈ Λ5,+,

with:

J1 (α) = 2 − δ +
δ

2

(√
1 − 4αγmax

d

1 − α
−
√

1 − 4γmax
d

1 − α

)
,

J2 (α, β) = 2 − δ +
δ

2

⎛⎝√1 − 4αγmax
a − β

(
1 + 4γmax

d − γmax
a

)
1 − β

+
√

1 − 4γmax
a

⎞⎠ .
We have,

J ′
1 (α) =

δγmax
d

(1 − α)2

⎛⎝ 1√
1 − 4γmax

d

1−α

− 1√
1 − 4αγmax

d

1−α

⎞⎠ ,
which does not vanish for any value of α. Moreover,

∂J2 (α, β)

∂α
= − δγmax

a

(1 − β)

√
1−4αγmax

a −β(1+4γmax
d −γmax

a )
1−β

,

∂J2 (α, β)

∂β
= −

δ
[
γmax
d + γmax

a (1 + α)
]

(1 − β)2
√

1−4αγmax
a −β(1+4γmax

d −γmax
a )

1−β

,

and we get that there are no critical points inside Λ5,+.
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Now we study the behaviour of Wa,c on boundaries. First we consider Λ5,−. Since

J ′
1 (α) � 0 for 0 � α � 1− γmax

d

γmax
a

, the function J1 (α) is increasing with respect to α. It follows

that Wa,c (O) < Wa,c (G), and the maximum on the segment OG is attained at point G

where the functional assumes the value,

Wa,c (G) = 2 − δ +
δ

2

(√
1 − 4γmax

a + 4γmax
d −

√
1 − 4γmax

a

)
.

Then, as Wa,c(O) < Wa,c (H), the velocity functional assumes the maximum value on

the segment OH at point H , and Wa,c(G) = Wa,c(H). Finally, on the segment GH , the

functional is constant and equals to

J1

(
1 − γmax

d

γmax
a

)
= Wa,c(G).

As Wa,c(G) = Wa,c(H) = J1

(
1 − γmax

d

γmax
a

)
, we conclude that in Λ5,−, Wa,c assumes the absolute

maximum at all points of the segment GH , and the value of the cost functional is

MΛ5,− = 2 − δ +
δ

2

(√
1 − 4γmax

a + 4γmax
d −

√
1 − 4γmax

a

)
.

Now consider the subregion Λ5,+. On the segment AH , Wa,c is equal to

J2 (α, 0) = 2 − δ +
δ

2

(√
1 − 4γmax

a +
√

1 − 4αγmax
d

)
, 1 − γmax

d

γmax
a

� α �
γmax
c

γmax
a

,

whose derivative is

J ′
2 (α, 0) = − δγmax

a√
1 − 4αγmax

d

< 0, 1 − γmax
d

γmax
a

� α �
γmax
c

γmax
a

.

Hence, Wa,c (A) < Wa,c (H), and the maximum is achieved at point H , where we have

Wa,c (H) = 2 − δ +
δ

2

(√
1 − 4γmax

a +
√

1 − 4γmax
a + 4γmax

d

)
.

The cost functional is constant on the segment GH , where it is given by

J2

(
1 − γmax

d

γmax
a

, β

)
= Wa,c (H) , 0 � β < 1 − γmax

d

γmax
a

.

As for the analysis of Wa,c on the segment FG, we have to consider the following function:

J̃2 (α) = lim
β→α

J2 (α, β) = 2 − δ +
δ

2

(√
1 − 4γmax

a +

√
1 − α(1 + 4γmax

d )

1 − α

)
,

1 − γmax
d

γmax
a

� α �
γmax
c

Γmax
out

. Since

J̃2
′
(α) = − δγmax

d

(1 − α)2
√

1 − 4αγmax
d

1−α

< 0, 1 − γmax
d

γmax
a

� α �
γmax
c

Γmax
out

,
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it follows that Wa,c (F) < Wa,c (G), and the maximum is attained at point G, where we

have Wa,c (G) = Wa,c (H). Finally, on the segment AF , Wa,c is a constant function:

J2

(
α,
γmax
c − αγmax

a

Γmax
out − γmax

a

)
= 2 − δ +

δ

2

(√
1 − 4γmax

a +
√

1 − 4γmax
c

)
,

γmax
c

Γmax
out

� α �
γmax
c

γmax
a

.

Notice that

Wa,c(G) = Wa,c (H) = J2

(
1 − γmax

d

γmax
a

, β

)
> J2

(
α,
γmax
c − αγmax

a

Γmax
out − γmax

a

)
,

hence the absolute maximum in Λ5,+ is attained at all points of the segment GH , for

which the value of the cost functional is

MΛ5,+
= 2 − δ +

δ

2

(√
1 − 4γmax

a +
√

1 − 4γmax
a + 4γmax

d

)
.

Finally, as MΛ5,+
> MΛ5,− , we get that the maximum in Λ5 is achieved at all points:(

1 − γmax
d

γmax
a

, β

)
, 0 � β < 1 − γmax

d

γmax
a

,

and the value of the cost functional is MΛ5,+
.

In a similar way, we compute the absolute maxima in regions Λ1, Λ2 and Λ4. We obtain

that

• the absolute maximum in Λ1 is represented by all points of the set

Λ1 ∩
{

(α, β) ∈ �2 : α �
γmax
c

γmax
a

}
,

and the corresponding value of the cost functional is

MΛ1
= 2 − δ +

δ

2

√
1 − 4γmax

a − δ

2

√
1 − 4γmax

c ;

• the absolute maximum in Λ2 is given by all points of the set Λ ∩ s ∩ t−, and the value

of Wa,c is

MΛ2
= 2 − δ − δ

2

√
1 − 4γmax

c − δ

2

√
1 + 4γmax

b − 4γmax
c − 4γmax

d ;

• the absolute maximum in Λ4 is attained at point O, and the value of the cost functional

is MΛ4
= 2 − δ.

Since

MΛ5
> MΛ4

> MΛ1
> MΛ3

> MΛ2
,

the values of α and β that optimise Wa,c in Λ are same as those that maximise the cost

functional in Λ5. This concludes the proof. �
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Table 1. Initial conditions for cases A, B and C

ρa,0 ρb,0 ρc,0 ρd,0

Case A 0.15 0.6 0.8 0.9

Case B 0.15 0.6 0.9 0.8

Case C 0.25 0.1 0.85 0.95

5 Simulations

In this section, we present some simulation results in order to test the optimisation

algorithm for the cost functional Wa,c both for single junctions or networks. In particular,

we analyse the effects of different control procedures, applied locally at each junction, on

the global performances of networks.

5.1 Single junctions

We consider single junctions of 2 × 2 type. Again, the incoming roads are labelled

with a and b, and the outgoing ones with c and d. We compare the cost functional

behaviour using random coefficients (random case), i.e. parameters taken randomly when

the simulation starts and then kept constant; optimal distribution coefficients (optimal

case).

We analyse three different situations, denoted by A, B and C , with initial data reported

in Table 1, and chosen in such way as to test all possible optimal solutions reported in

Theorem 3. Boundary data are assumed equal to initial conditions. Initial densities on

outgoing roads c and d are chosen very high (close to ρmax = 1) to test how optimal

choices of distribution parameters can create a decongestion effect in critical condition

for the network.

Indicating by αopt and βopt the values of optimal distribution coefficients α and β, we

have for case A, αopt = 0.294118 and 0 � βopt < αopt (we choose βopt equals to 0.2); for

case B, αopt = ε1, βopt = ε2; for case C , αopt = 0.708571 + ε1, βopt = 0.708571 + ε2 with ε1
and ε2 being small and positive such that ε1 � ε2.

The traffic evolution is simulated using the Godunov scheme with space step ∆x =

0.0125, time step ∆t satisfying the Courant–Friedrichs–Lewy (CFL) condition (see [11])

and the flux function (2.3) in a time interval [0, T ], where T is 30 min for cases A and B

and 100 min for the case C .

Figures 4–6 sketch Wa,c (t) and the 3D behaviour of Wa,c (T ) in cases A, B and C ,

respectively, with δ = 0.5. We notice that the optimal simulations, in accordance with the

theoretical results of Theorem 3, are always highest, indicating that optimal parameters

allow to maximise the velocity of emergency vehicles with respect to random cases. This

is also confirmed by 3D plots of Wa,c (T ) in the plane (α, β): the maximum values are in

accordance with those obtained analytically.

Indeed, some random simulations approach the optimal one. This occurs when values

of α and β are such that the ordinary traffic does not fill the outgoing road c that interests

the paths of emergency vehicles. In particular, for cases A and B, random choices of
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Figure 4. (Colour online) Case A, evolution of Wa,c(t); (left) choice of optimal distribution

coefficients (continuous line) and random parameters (dashed lines); (right) 3D plots of Wa,c (T ).
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Figure 5. (Colour online) Case B, evolution of Wa,c(t); (left) choice of optimal distribution

coefficients (continuous line) and random parameters (dashed lines); (right) 3D plots of Wa,c (T ).
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Figure 6. (Colour online) Case C , evolution of Wa,c(t); (left) choice of optimal distribution

coefficients (continuous line) and random parameters (dashed lines); (right): 3D plots of Wa,c (T ).
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5 10 15 20 25 30
t min

1.2

1.4

1.6

1.8

2

2.2

Wa,c t

5 10 15 20 25 30
t min

1

1.2

1.4

1.6

1.8

2

2.2

Wa,c t

Figure 7. Evolution of the optimal behaviour of Wa,c(t) in cases A (left) and B (right), computed

for different values of δ.
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Figure 8. (Left) Evolution of optimal behaviour of Wa,c(t) in case C , computed for different values

of δ. (Right) Wa,c(T ) vs. δ in cases A (dot dashed line), B (continuous line) and C (dashed line).

parameters α = 0.26, β = 0.85, and α = 0.81, β = 0.58, respectively, assure the lowest

behaviours of Wa,c (T ): The values of β indicate that a high amount of ordinary traffic

crosses the outgoing road c, coming from the incoming road b, with consequent difficulties

for emergency vehicles to reach the final destination. For case C , a similar phenomenon

happens for α = 0.93 and β = 0.28, since the greatest percentage of traffic crossing the

outgoing road c is due to road a, which has a higher initial data with respect to the

incoming road b. Figures 7 and 8 show the behaviour of functional Wa,c(t) with optimal

α and β parameters in cases A, B and C for various values of δ. The continuous line

refers to the case δ = 0.5, used during all simulations. When δ increases, Wa,c(t) decreases.

In particular, notice that when δ = 0, Wa,c(t) assumes the maximal value and is trivially

constant; when δ = 1, Wa,c(t) is only influenced by the ordinary car traffic and achieves

the lowest value. Finally, Figure 11 (right) shows the behaviour of the optimal asymptotic

value Wa,c(T ) versus δ. Unlike cases A and B, the asymptotic value Wa,c(T ) in case C is

strongly influenced by the choice of δ.
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Figure 9. Topology of the cascade junction network.

Table 2. Initial conditions and boundary data for roads of the cascade junction network

Road Initial condition Boundary data

a 0.1 0.1

b 0.65 0.65

c 0.75 /

d 0.95 0.95

e 0.2 0.2

f 0.65 /

g 0.95 0.95

h 0.25 0.25

i 0.55 0.55

l 0.95 0.95

5.2 A network with cascade junctions

This subsection is devoted to a cascade junction network consisting of consecutive junc-

tions. The aim is to understand the effects of the ‘local type’ optimal algorithm on the

whole network.

The topology of the network (see Figure 9) is described by ten roads, divided into two

subsets, R1 = {a, d, e, g, h, l} and R2 = {b, c, f, i}, that are, respectively, the set of inner and

external roads. All junctions are of 2 × 2 type and labelled by numbers 1, 2 and 3.

Assuming that the emergency vehicles have an assigned path, we analyse the behaviour

of the functional

W (t) = Wac(t) +Wef(t) +Whi(t).

The evolution of traffic flows is simulated using the Godunov scheme with ∆x = 0.0125,

and ∆t = ∆x
2

in a time interval [0, T ], where T = 100 min. Initial conditions and boundary

data for densities are given in Table 2.

Also in this case, initial and boundary data are chosen to simulate a network with

critical conditions on some roads, as congestion is due to the presence of accidents.

We consider again two different types of simulation cases: (locally) optimal distribution

coefficients applied at each node (optimal case); a random case, whose characteristics have

already been explained in previous subsection.
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Figure 10. Evolution of W (t) for optimal choices (continuous line) and random parameters

(dashed line); (left) behaviour in [0, T ]; (right) zoom around the asymptotic values.
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Figure 11. (Left) Evolution of optimal behaviour of W (t), computed for different values of δ.

(Right) W (T ) vs. δ.

Figure 10 shows the temporal behaviour of W (t) measured on the whole network.

As we can see, the optimal cost functional is higher than the random ones, hence the

principal aim is achieved for the chosen data set. Notice that in general optimal global

performances on networks could not be achieved, as the traffic state is strictly dependent

on initial and boundary data. In Figure 11, we show the simulation of W (t) for different

values of δ and optimal value parameters at junctions. The behaviour is exactly the same

as for single junctions, hence δ = 0 corresponds to the highest curve and δ = 1 to the

lowest one. Notice that the continuous line corresponds to the case δ = 0.5. Moreover,

there are no meaningful changes in the asymptotic value W (T ) when δ varies.

6 Conclusions

In this paper, an optimisation technique is presented for the maximisation of the velocity

of emergency vehicles on assigned paths when emergency occurs.

The optimisation is made over traffic distribution coefficients at junctions, considered

fixed, using a cost functional that describes the average velocity of emergency vehicles.

An exact analytical solution is found for simple junctions with two incoming roads and

two outgoing ones, in steady state, i.e. after a long time has passed.
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Then a sub-optimal strategy, consisting of using the local optimal coefficients at every

junction, is tested through simulations. In particular, for a cascade network, it is shown

that such strategy is outperforming random choices.

Future investigations may encompass the following extensions:

• The case treated in this paper refers to fixed traffic distribution coefficient. In reality

such coefficients may vary during the day and for this case an existence theory is already

available, see [9].

• Besides redirecting traffic, a stronger measure is the closure of roads. This is modelled

by a problem in which the network topology varies.

• The present approach is focused on optimising a single junction. Even if the optimisation

of a whole network may be out of reach, the selection of a simple path could be

addressed.
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