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Abstract

The present study used a sheep model of intrauterine growth restriction, combining maternal
undernutrition and twinning, to determine possible markers of early damage to the fetal
kidney. The occurrence of early deviations in fetal hemodynamics which may be indicative of
changes in blood perfusion was assessed by Doppler ultrasonography. A total of 24 sheep
divided in two groups were fed with the same standard grain-based diet but fulfilling either
their daily maintenance requirements for pregnancy (control group; n= 12, six singleton and
six twin pregnancies) or only the 50% of such quantity (food-restricted group; n= 12; four
singleton and eight twin pregnancies). All the fetuses were assessed by both B-mode and
Doppler ultrasonography at Day 115 of pregnancy. Fetal blood supply was affected by
maternal undernutrition, although there were still no evidences of brain-sparing excepting in
fetuses at greatest challenge (twins in underfed pregnancies). However, there were early
changes in the blood supply to the kidneys of underfed fetuses and underfed twins evidenced
decreases in kidney size.

Introduction

Intrauterine growth restriction (IUGR) is the failure of the fetus to reach its genetically
established growth rate. IUGR is mainly due to inadequate supply of nutrients and oxygen,1

either by maternal malnutrition/hypoxia and/or placental insufficiency.2,3 Occurrence of
IUGR at low-altitude in developed countries (i.e. related to placental insufficiency) is
estimated to be around 6%,4,5 but increases up to 15% in less favored areas and even to around
17% in case of maternal hypobaric hypoxia at high altitude.6–9 IUGR is a concerning health
issue because of its implications in perinatal mortality and morbidity and its long-term
consequences on health and disease risk of the individuals; mainly on neurological, metabolic,
immune, cardiovascular and renal features.10

Prenatal programming inherent to IUGR has rapidly emerged as a plausible cause for
postnatal disorders, in spite of little direct evidence in humans.11 Most of the translational
research performed in the area has been traditionally focused on the cardiometabolic con-
sequences of IUGR. However, there is also increasing evidence that prenatal programming
following IUGR may impair nephrogenesis, causing a decrease in the glomerular number but
a compensatory glomerular enlargement. The consequences are reduced nephron endowment,
hypertension and renal diseases in adulthood.10,12–14 Hence, there is a strong necessity of
preclinical and clinical research on improved detection methods and biomarkers as an optimal
antenatal surveillance may be highly beneficial for early detection of IUGR and alleviation
of its postnatal effects.

Currently, ultrasonographic monitoring of fetal anatomy and growth is a routinely clinical
procedure in which IUGR is suspected in case of abnormal fetal size; after that, evaluation of
symmetry, structural and/or chromosomal anomalies, and Doppler hemodynamics are used
to differentiate asymmetric IUGR fetuses secondary to maternal and/or placental disorders
and oxygen from those symmetric IUGR fetuses secondary to chromosomal and genetic
syndromes and intrauterine infections.15,16 However, choosing appropriate monitoring and
intervention tools and intervals still remains as a main clinical challenge as adequate antenatal
diagnosis, treatment and timely delivery may significantly diminish the risks of the disease.17

Preclinical studies in animal models are an important source of information for a sys-
tematic analysis of pregnancy disturbances and IUGR.18 Models have been traditionally based
on laboratory rodents, especially rats and mice.19–21 However, rodents have marked differ-
ences with humans in developmental patterns, metabolic and endocrine routes and physiology
of organs and systems.22,23 The use of large animal species may overcome these limitations
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and offer numerous profitable characteristics for preclinical
research.18 Specifically in sheep, the effects of exposure to under-
nutrition on fetal growth patterns and the occurrence of IUGR were
early described24 and therefore the model has been traditionally
used for studies on IUGR.25,26 Finally, the temperament and size of
sheep facilitate fetal screening by non-invasive techniques like
B-mode and Doppler ultrasonography.27,28

The present study used a sheep model of IUGR, combining
maternal undernutrition and twinning, to determine a possible
marker of early damage to the fetal kidney. Our hypothesis was
based on the ‘brain-sparing’ effect occurring during IUGR pro-
cesses, which consists of a redistribution of the blood circulation
to maximize the supply of oxygen and nutrients to the brain.29 In
consequence, the growth of the brain is increased to the expenses
of the growth of the body and other organs, like the kidney.
Hence, we assessed, by Doppler ultrasonography, the occurrence
of early deviations in fetal hemodynamics which may be indica-
tive of changes in blood perfusion.

Methods

Animals and experimental procedures

The experiment involved a total of 24 multiparous pregnant ewes
(Sarda breed) from the experimental flock of AGRIS Sardegna
(Italy). These females became pregnant after natural breeding
following cycle synchronization with intravaginal pessaries
impregnated with progestagens [20mg of fluorogestone acetate
(FGA), Chronogest© CR; MSD-AH, Madison, NJ, USA) for
12 days plus a single i.m. injection of 200 IU of eCG (Folligon©;
MSD-AH), concurrent with pessary insertion. The day of mating
was considered Day 0 for experimental purposes. At Day 24 after
mating (around 15% of the total length of ovine pregnancy,
estimated in a mean of 150 days), pregnancy diagnosis was per-
formed by transrectal ultrasonography, with a real-time B-mode
scanner (Aloka SSD 500; Aloka Co., Tokyo, Japan) fitted with a
7.5MHz linear-array probe. The ewes were pair matched in two
groups (control and food-restricted) according to age, body
weight and prolificacy (singleton or twins). All the sheep were fed
with the same standard grain-based diet but fulfilling either their
daily maintenance requirements for pregnancy (control group;
n= 12, six singleton pregnancies and six twin pregnancies) or
only the 50% of such quantity (food-restricted group; n= 12; four
singleton pregnancies and eight twin pregnancies). Inappropriate
maternal nutrition during early and mid-pregnancy can
significantly disrupt placental development, which reaches a
maximum growth by approximately Day 75–80 of gestation.30

Ultrasonographic biometry and Doppler evaluation of fetal
hemodynamics

All the fetuses were assessed by ultrasonography at Day 115 of
pregnancy (around 75% of the total length of ovine pregnancy),
just before the overt growth arrest which becomes apparent
between 120 and 130 days of pregnancy.25 Ultrasonographic
scans were performed with a Voluson-i ultrasound machine (GE,
Tiefenbach, Austria) equipped with an automatic 2–5MHz 4D
convex probe. Scans were recorded using the ‘cine-loop’ option
and measurements were obtained in all the fetuses with built-in
electronic calipers. As fetus size was too large for viewing the
entire body-length at this pregnancy stage, measurements inclu-
ded the thoracic diameter (TD), the biparietal diameter (BPD)

and the length and volume of the left kidney (KL and KV; Fig. 1).
The acquisition of kidney volume was performed using the 3D
ultrasound mode. Scans of satisfactory quality and without arti-
facts, after examining the multiplanar display obtained to ensure
that the whole kidney had been captured, were used to calculate
the volume of the organ by the Virtual Organ Computer Aided
anaLysis (VOCAL).

The blood flow parameters from umbilical cord (UA), middle
cerebral (MCA) and renal arteries (RA) were determined in all
the fetuses (Fig. 2). Briefly, after identifying the vessels by using
color Doppler (UAs were found at the free-floating UA proximal
to the placental insertion; MCAs were located after Circle of
Willis identification; RAs were assessed proximal to kidney
insertion), the sample pulsed Doppler gate was placed over the
vessels. Then, the waveforms of three consecutive cardiac cycles in
each vessel were recorded, disregarding views with insonation
angles between 0° and 50°. Measurements were obtained once the
entire examination was recorded and included resistance index
(RI), pulsatility index (PI) and systolic-to-diastolic peak velocity
ratio (SD-ratio). Assessment of brain-sparing was performed by
determining the cerebro-umbilical ratios (i.e. the ratios between
MCA and UA values) for RI, PI and SD-ratio.

Statistical analysis

The effects from independent variables (i.e. maternal diet and
prolificacy) and their interaction on dependent variables related
to offspring phenotype (morphometric and hemodynamic para-
meters) were assessed using two-way analysis of variance
(ANOVA). Maternal diet was categorized in control v. restricted
diets and prolificacy was categorized in singleton v. twin preg-
nancies. Morphometric and hemodynamic parameters included
TD, BPD, length and volume of the left kidney (KL and KV) and
blood flow parameters (RI, PI and SD-ratio) from UA, MCA and
RA. Possible relationships among morphometric and hemo-
dynamic data of the offspring were determined by Pearson
correlation procedures. All data were reported as means± S.E.M.
and probabilities were considered significant at P< 0.05.

Results

There were no significant differences in the mean values of bipar-
ietal and thoracic diameters of the fetuses when comparing control
v. singleton pregnancies and food-restricted v. twin pregnancies at
Day 115 of gestation (Table 1). The same was found for the volume
of the kidneys although the value for kidney length was numerically
higher in restricted pregnancies. Within restricted pregnancies,
kidney length was significantly higher in singleton than in twin
pregnancies (33.1± 0.9 v. 28.2± 0.6mm, respectively; P< 0.01).

Assessment of fetal hemodynamics (Table 2) at the UA
showed that maternal food restriction was related to a higher
SD-ratio (3.37± 0.09 v. 2.86± 0.20 in the control group; P< 0.05),
without effects on RI and PI. There were no effects when evalu-
ating these parameters at the MCA or when evaluating the
cerebro-umbilical (MCA/UA) ratios.

On the other hand, there were no effects from twinning in any
the absolute hemodynamic parameters at UA and MCA of both
control and restricted fetuses. Assessment of the cerebro-
umbilical ratios showed no effects of twinning in the control
pregnancies, but twinning in restricted pregnancies was associated
to significantly higher cerebro-umbilical ratios for SD-ratio and
RI (P< 0.05 for both).
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The assessment of the kidney showed that maternal food
restriction, despite the lack of significant effects on size of the
organ, induced a significant decrease in all the hemodynamic
parameters at the RA (P< 0.05 for all) and, consequently, in the
corresponding reno-umbilical ratios (SD-ratio: P< 0.005; RI:
P< 0.05; PI: P< 0.01). Twinning in control pregnancies was

associated to lower reno-umbilical SD-ratio and IR (P< 0.05 for
both) but, in contrast, there were no significant differences
between singletons and twins in restricted pregnancies.

The assessment of possible relationships between fetal size and
hemodynamic features obtained by the Pearson procedure
showed a lack of effects at the level of both UA and MCA in both

Fig. 2. Identification of the renal artery by using color Doppler (left image) and detection of the waveform in the portion proximal to kidney insertion (right image) in a control
sheep fetus.

Fig. 1. Integration of multiplanar ultrasound scans and measurements (longitudinal, transversal and coronal planes) for three-dimensional assessment of renal volume in a
control sheep fetus.
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control and restricted fetuses. However, comparison of fetal size
and hemodynamics at the RA showed significant differences
between the two nutritional regimes. There were no significant
effects of fetal size in the control group, but restricted fetuses with
larger BPD had higher reno-umbilical ratios for IP and IR
(r= 0.974, P< 0.05 and r= 0.993, P< 0.01, respectively).

Discussion

The results from the present study indicate that maternal
undernutrition is related to a decrease in the materno-fetal blood
flow but an increase in in the blood supply to the offspring
kidneys. These changes are even earlier to the blood flow

Table 1. Mean values (±S.E.M.) for biparietal (DBP) and thoracic diameters (DTC), and volume and length of the kidney (RVOL and RLENGTH,
respectively) in singleton and twin control and food-restricted fetuses at Day 115 of pregnancy

Control Food-restricted

Singleton Twins P Singleton Twins P P

DBP 4.89 ± 0.07 4.84 ± 0.08 0.450

4.59 ± 0.04 4.82 ± 0.09 0.132 4.71 ± 0.13 4.87 ± 0.09 0.425

DTC 6.69 ± 0.19 6.33 ± 0.15 0.151

6.76 ± 0.24 6.66 ± 0.28 0.829 5.80 ± 0.48 6.47 ± 0.13 0.071

RVOL 5.98 ± 0.27 5.59 ± 0.26 0.317

6.16 ± 0.68 5.90 ± 0.26 0.678 5.89 ± 0.42 5.55 ± 0.30 0.682

RLENGTH 2.73 ± 0.16 2.91 ± 0.07 0.141

2.89 ± 0.17 2.65 ± 0.11 0.218 3.31 ± 0.09 2.83 ± 0.06 0.005

Table 2. Mean values (±S.E.M.) for fetal hemodynamics assessment [systolic-to-diastolic peak velocity ratio (SD), resistance index (RI) and
pulsatility index (PI)] performed at the umbilical cord artery (UA), middle cerebral artery (MCA) and renal artery (RA) of singleton and twin
control and food-restricted fetuses at Day 115 of pregnancy

Control Food-restricted

Singleton Twins P Singleton Twins P P

SD_UA 2.87 ± 0.09 3.38 ± 0.20 0.043

2.86 ± 0.27 2.87 ± 0.09 0.935 3.75 ± 0.59 3.29 ± 0.22 0.385

IP_UA 1.05 ± 0.04 1.18 ± 0.06 0.115

1.02 ± 0.12 1.06 ± 0.03 0.622 1.28 ± 0.19 1.16 ± 0.07 0.503

IR_UA 0.65 ± 0.01 0.68 ± 0.02 0.154

0.64 ± 0.03 0.65 ± 0.01 0.703 0.72 ± 0.04 0.67 ± 0.02 0.416

SD_MCA 2.69 ± 0.31 2.34 ± 0.15 0.271

2.39 ± 0.03 2.84 ± 0.47 0.555 2.13 ± 0.08 2.44 ± 0.20 0.342

IP_MCA 1.04 ± 0.11 0.92 ± 0.07 0.334

0.91 ± 0.06 1.11 ± 0.15 0.461 0.84 ± 0.06 0.96 ± 0.09 0.447

IR_MCA 0.61 ± 0.03 0.56 ± 0.02 0.223

0.58 ± 0.01 0.63 ± 0.05 0.618 0.53 ± 0.15 0.58 ± 0.03 0.431

SD_RA 4.11 ± 0.50 2.97 ± 0.14 0.033

5.56 ± 1.49 3.51 ± 0.28 0.061 2.59 ± 0.23 3.08 ± 0.17 0.174

IP_RA 1.30 ± 0.07 1.09 ± 0.05 0.017

1.41 ± 0.11 1.26 ± 0.08 0.305 0.96 ± 0.11 1.13 ± 0.06 0.212

IR_RA 0.72 ± 0.02 0.65 ± 0.02 0.015

0.78 ± 0.05 0.69 ± 0.02 0.092 0.60 ± 0.04 0.66 ± 0.02 0.205

Journal of Developmental Origins of Health and Disease 341

https://doi.org/10.1017/S204017441800003X Published online by Cambridge University Press

https://doi.org/10.1017/S204017441800003X


redistribution occurring during the ‘brain-sparing’ effect and even
previous to changes in size of the fetuses, and the proper kidney,
which are characteristics of IUGR processes. Fetuses at the
greatest challenge (twins in underfed pregnancies) showed, in
addition to hemodynamic changes in the cerebro-umbilical ratios
indicating early stages of brain-sparing, morphological changes
evidenced by a decrease in kidney size, which supports the notion
that fetal renal excretory function is affected in risk pregnancies.31

Currently, ultrasonographic monitoring of fetal growth and
symmetry, followed by Doppler assessment of fetal hemo-
dynamics, is routinely used to determine occurrence and type of
IUGR.15,16 Doppler sonography is used to detect changes in the
uteroplacental and fetal perfusion through assessment of blood
vessels of clinical relevance like the uterine, umbilical and middle
cerebral arteries and the ductus venosus. The most common
assessment is based on umbilical artery (UA) Doppler data which,
however, cannot constitute a useful diagnosis because abnormal
UA indexes are only found when irreversible adverse perinatal
outcomes are established.32 On the contrary, UA values may
be within normal range in IUGR fetuses with early cerebral
vasodilatation and therefore Doppler measurements of MCA and
cerebro-placental ratios (CPR) are most valuable tools.33 CPR is
considered the best predictor as it reflects not only the circulatory
insufficiency of UA but also the adaptive changes resulting in
modifications of the MCA hemodynamics.34 Hence, even with
normal UA Doppler indexes, abnormal CPR values are indicative
of fetal distress, acidemia, neurologic disorders and adverse
perinatal outcomes.33,35,36

In any case, abnormal Doppler indexes at either brain or
umbilical vessels have a poor predictive value,37 as they are only
found when fetuses already have damages and the only option is
programmed delivery after weighing the risks of prematurity
against the risks of adverse intrauterine condition. Hence, there is
a strong need for earlier markers of changes in fetal hemo-
dynamic which will likely lead to targeted monitoring intervals
and to the implementation of new protocols for early diagnosis
and management of IUGR.

In this scenario, the data of the present study, obtained just prior
the overt growth arrest occurring in case of IUGR,31 have a
significant value for both increasing the availability of tools for an
adequate clinical follow-up of pregnancy and the knowledge of the
pathophysiology of renal damage. In our study, maternal mal-
nutrition was related to a higher UA SD-ratio which, even within a
normal range, may indicate an increased risk of compromise to the
fetus.38 There were still no evidences of IUGR or brain-sparing
since, except in the most compromised fetuses (twins in restricted
pregnancies), which showed higher cerebro-umbilical indexes
reflecting modifications of blood flow at the brain.34 Conversely, we
found clear evidences of changes in the blood supply to the kidneys,
supporting that organs with a rich arterial blood supply (i.e. eye,
kidney, heart and brain) are the primary target to blood pressure
changes.39 We found, unexpectedly, a significant decrease in all the
hemodynamic parameters at the RA and, in consequence, in the
corresponding reno-umbilical ratios. Overall, these changes are
indicating an increased blood flow to the kidneys.

The existence and extent of hemodynamics changes at the RA
of IUGR fetuses was the focus of an intense debate from earlier
studies, with authors claiming a diminished blood flow40–42 and
other authors claiming no changes or even a reduction in
downstream resistance.43,44 The common current idea is that
IUGR affects kidney development and, hence, renal blood flow is
decreased due to the brain-sparing effect; however, the differences

among the cited studies may be caused by differences in the
timing of pregnancy and the degree of IUGR at the Doppler
evaluation.

In fact, the increased blood flow to the fetal kidney found in
the present study (performed at the beginning of the third
trimester and just prior the overt growth arrest occurring during
IUGR) reinforces early studies with Doppler ultrasound, which
addressed that the renal flow response to hypoxia depends on the
degree of hypoxia and IUGR.45 First data were obtained by
surgery and the microsphere technique,46 and indicated that the
blood flow to kidneys remains constant or increases during the
transition from high to moderately low levels of arterial oxygen
content and then decreases abruptly after more severe hypoxia. In
turns, these evidences support earlier hypotheses addressing that
the renal blood flow in the fetuses appears to be maintained by
autoregulation independently of the blood flow redistribution to
the brain in IUGR fetuses.47,48 By joining these data and the data
in current study, we can conclude that assessment of renal
hemodynamics can be used as a diagnostic tool for identifying
fetuses at the earlier stages of IUGR.
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