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Instabilities of a wake produced by a circular cylinder in a uniform water flow
are studied experimentally when viscoelastic solutions are injected through holes
pierced in the cylinder. It is shown that the viscoelastic solutions fill the shear regions
and drastically modify the instabilities. The two-dimensional instability giving rise
to the Kármán street is found to be inhibited: the roll-up process appears to be
delayed and the wavelength of the street increases. The wavelength increase obeys
an exponential law and depends on the elasticity number, which provides a ratio
of elastic forces to inertial forces. The three-dimensional instability leading to the
A mode is generally found to be suppressed. In the rare case where the A mode
is observed, its wavelength is shown to be proportional to the wavelength of the
Kármán street and the streamwise stretching appears to be inhibited. Injection of
viscoelastic solutions also decreases the aspect ratio of the two-dimensional wake,
and this is correlated with stabilization of the A mode and with changes in the shape
of the Kármán vortices. The observations of this work are consistent with recent
numerical simulations of viscoelastic mixing layers. The results suggest mechanisms
through which polymers inhibit the formation of high-vorticity coherent structures
and reduce drag in turbulent flows.

1. Introduction
For the last 50 years, it has been well known that the addition of small amounts of

polymer can drastically change the properties of turbulent flows. However, modifica-
tions such as the drag reduction effect (Toms 1948) or the suppression of small-scale
fluctuations (McComb, Allan & Greated 1977; Tong, Goldburg & Huang 1992) are
still not well understood. Indeed, the link between these two phenomena remains
especially unclear (Cadot, Bonn & Douady 1998). While it is clear that there is a
strong polymer–flow interaction (Hinch 1977), the mechanisms through which poly-
mers modify turbulence still remain an open issue, partly due to the uncertainty about
the way in which small-scale turbulence is generated (Sreenivasan & Antonia 1997).
One fruitful approach to studying turbulent flows has been to focus on the behaviour
of prototypical coherent structures, an example of which is vorticity filaments. The

† Present address: Department of Chemical Engineering, University of Michigan, 2300 Hayward,
3074 H.H. Dow Building, Ann Arbor, MI 48105 USA.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

00
00

88
18

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112000008818
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goal of this work is to gain some insight into how the addition of polymer affects the
formation of vorticity filaments. We pursue this by studying experimentally the effect
of polymer injection on the instabilities of a wake produced by uniform water flow
past a circular cylinder.

Experiments (Douady, Couder & Brachet 1991; Villermaux, Sixou & Gagne 1995)
and numerical simulations (e.g. Siggia 1981; Kida & Miura 1998; Jimenez & Wray
1998) during the last 20 years have demonstrated the existence of rare, but intense,
small-scale vorticity structures of tube- and sheet-like shapes in turbulent flows. A
mechanism for the production of such vorticity structures, which we refer to as
vorticity filaments, was conjectured by Douady et al. (1991), and then refined by
Cadot, Douady & Couder (1995) on the basis of pressure fluctuation measurements.
The filaments are thought to form from vorticity layers which are being strained
along the vorticity direction. Further support for this idea comes from numerical
simulations by Passot et al. (1995) showing that instability of a vorticity layer under
strain concentrates the vorticity into a steady tubular structure. In the model proposed
by Cadot et al. (1995), concentration of vorticity into filaments can occur at any
scale of the turbulence, the vorticity layer being produced and stretched by a larger
structure. This mechanism is very similar to what is observed in secondary instabilities
of mixing layers (Bernal & Roshko 1986) and body wakes (Williamson 1996a), or in
the recent experiment of Leweke & Williamson (1998a) studying the interaction of
two counter-rotating vortices. In these flows, small-scale vorticity layers are produced
by a three-dimensional instability of the primary spanwise rolls. The dynamics of
vorticity concentration is then governed by the straining flow between the rolls, as
first discussed by Lin & Corcos (1984) and Neu (1984).

The effect of polymer additives on the formation of vorticity filaments has been a
subject of recent investigations. Bonn et al. (1993) injected a polymer solution into a
fully turbulent flow and found that filament formation was partially inhibited. This
observation was then confirmed by Cadot et al. (1998), but was found to be valid
only during the time that the semi-dilute polymer solution was being mixed into the
turbulent flow. Thus, the effect of filament inhibition is a form of heterogeneous drag
reduction (Vleegaar & Tels 1973; Bewersdorff et al. 1993), where the injected polymer
solution behaves like a coherent viscoelastic thread.

Theoretical work related to filament inhibition by polymers has been carried
out in several different areas. The filament formation process is thought to involve
mechanisms similar to instabilities in mixing layers, flows in which viscoelastic effects
have been addressed. Azaiez & Homsy (1994) studied the two-dimensional roll-up
instability of a mixing layer using the Oldroyd-B constitutive model. Their linear
analysis revealed a shift to lower growth rates and longer wavelengths as the ratio of
elastic forces to inertial forces increased. Recent experiments based on the visualization
of a wake past a circular cylinder appear to be consistent with these predictions (Cadot
& Lebey 1999). Numerical simulations of instability in two- and three-dimensional
mixing layers were performed by Kumar & Homsy (1999), who used the FENE-P
constitutive model. They demonstrated that small changes to the two-dimensional roll-
up process produce only small changes in the stability of the primary spanwise rolls
to three-dimensional perturbations, relative to the Newtonian case. Their work also
suggested that by modifying the two-dimensional roll-up, polymers could stabilize the
flow to three-dimensional perturbations. Turbulent channel flow is relevant to filament
formation as well, and direct numerical simulations using the FENE-P model have
been carried out by Sureshkumar, Beris & Handler (1997). Compared to Newtonian
liquids, they find weaker streamwise vorticity fluctuations and an increase in the
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spacing of streamwise streaks of low-speed fluid. These observations are consistent
with experiments and suggest that the near-wall streamwise vortices (which are
analogous to vorticity filaments) are less intense. Finally, Yarin (1997) has presented
an analysis of a vortex filament being stretched by a shear flow in a dilute polymer
solution. The presence of polymer is found to retard filament stretching, making
it difficult to generate hairpin-like configurations which may then break down and
produce small-scale turbulence.

Since the three-dimensional instability of the primary spanwise rolls in mixing
layers and body wakes is relevant to understanding the mechanism through which
vorticity filaments are formed, we study here the effect of polymer injection on the
wake of a cylinder. In Newtonian fluids, these wakes have been extensively studied
and are known to undergo a sequence of instabilities leading to turbulence (Berger
& Wille 1972; Williamson 1996a). At a Reynolds number (Re) of ∼ 50, the basic
flow is susceptible to a two-dimensional instability which produces the well-known
Kármán vortex street (Re here is based on the free-stream velocity and cylinder
diameter). At higher Re, two distinct types of three-dimensional instabilities can set
in. In the range 170 < Re < 250, the instability takes the form of an undulation
in the Kármán rolls just behind the cylinder and is referred to as mode A. This
undulation leads to the formation of vorticity sheets separated by a typical length
of 3–4 cylinder diameters. The sheets then roll up into longitudinal vortex filaments
which form loops around the primary Kármán rolls. For Re > 250, the three-
dimensional instability has a different character and is known as mode B. Here,
streamwise vortices develop in the shear layer connecting the primary Kármán rolls
to the cylinder and have a typical spacing of about 1 cylinder diameter (Leweke &
Williamson 1998b).

Existing studies of polymeric liquid flow past cylinders can be divided into two main
groups. The first consists of studies at Re < 50, where the Kármán instability does not
set in. The aim of these works is to investigate either purely elastic instabilities (e.g.
Shiang et al. 1997 and references therein) or anomalous transport properties (James
& Acosta 1970; Mizushina & Usui 1975; Konuita, Adler & Piau 1980). The latter
refers to the observation that above a certain value of Re, the Nusselt number and
the drag coefficient become essentially constant. This is due to the formation of a
region of slow-moving fluid behind the cylinder, and is believed to be a consequence
of a ‘change of type’ in the vorticity equation from elliptic to hyperbolic (Delvaux
& Crochet 1990; Joseph 1990). The second group of studies deals with the effects of
polymer additives on vortex shedding. For relatively low Re (∼ 100), additives are
found to reduce the shedding frequency (Kalashnikov & Kudin 1970; Usui, Shibata &
Sano 1980), but at much higher Re (∼ 104), the shedding frequency is not significantly
different from the Newtonian case (Sarpkaya, Rainey & Kell 1973; Kim & Telionis
1989).

While flow visualizations show the strong effect of polymer additives on turbulent
mixing layers (Hibberd, Kwade & Scharf 1982; Riediger 1989), we are not aware
of any experiments which study viscoelastic effects on three-dimensional laminar
instabilities in either mixing layers or body wakes. We address this issue in the
present work. In § 2, we describe our experimental setup, measurements, and analysis.
The results presented in § 3 further quantify the two-dimensional observations of
Cadot & Lebey (1999), and present new information about the two- and three-
dimensional instabilities as well. The results are discussed in § 4, along with their
possible implications for filament inhibition and turbulent drag reduction. Finally, we
conclude in § 5.
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2. Experiment
2.1. Apparatus

The experiment has already been described in detail by Cadot & Lebey (1999); only
minor changes to the injection system and the cylinder geometry are described here.
The main water flow is produced by gravity in a vertical channel with a constant level
system. The test channel has a cross-section of 200 mm × 150 mm and a length of
600 mm. A circular tube (the cylinder) with a 4 mm diameter is placed horizontally.
Two oblique end plates are added on both sides in order to minimize end effects.
The tube is pierced with two parallel rows of 67 holes, each hole having a diameter
of 0.55 ± 0.05 mm. The distance between two consecutive holes is 2 mm. The two
rows form an angle of 90◦ with respect to the centreline of the tube, and they are
oriented upstream and symmetrically with respect to the main flow. This setup is
clearly observable in all the pictures in this article, and especially in figures 5 and 10
where coloured solution exits the holes. The solution is injected using a peristaltic
pump, where the injection rate is simply imposed by the rotation frequency of the
pump. The advantage of such a pump is that the injection rate does not depend on
the solution viscosity. An inconvenience is that the solution is periodically pulsed
due to the pinching of the flexible tubes which deliver the injected solution. To deal
with this, we insert a 250 ml container partially filled with air between the pump and
the cylinder. For a sufficiently large amount of air, the high-frequency pulsations are
removed. Even though there is a risk that the solution may be fractionated by the
pump and then potentially degraded, we did not observe any significant changes from
the case of gravity-driven smooth injection used in the preliminary study of Cadot
& Lebey (1999). We define the Reynolds number of the experiment using the mean
velocity of the uniform main water flow, U, the viscosity of water, ν, and the cylinder
diameter, d: Re = Ud/ν. The precision of the Reynolds number is about 5%. We
also define an injection parameter β = u/U, where u is the mean velocity through
the injection holes. The parameter β is representative of the fraction of fluid in the
vicinity of the cylinder which has been injected. The value of u is simply computed
from the known injection rate of the pump and the total surface area of injection;
its maximum value is 6.8 cm s−1. The maximum Re we can reach is Re ∼ 300 for
U ∼ 7 cm s−1.

2.2. Injected solutions

The viscoelastic solutions are made from water and WSR 303 polyethyleneoxide
(PEO; from Union Carbide). The molecular weight of the WSR 303 (based on
rheological measurements) as reported by the manufacturer is 7 × 106 g mol−1. We
perform experiments with several different solution concentrations, from 100 w.p.p.m.
to 1000 w.p.p.m. Shear viscosity measurements of the solutions (made using a Con-
traves Low-Shear 30 rheometer) are displayed in figure 1. A strong shear-thinning
behaviour is observed as the shear rate increases. In addition, these solutions are
known to exhibit elastic properties which manifest themselves in a non-vanishing first
normal stress difference (Vissman & Bewersdorff 1990). In order to extract a time
constant related to this elasticity, we fit the shear viscosity data with the Carreau
model (Bird, Armstrong & Hassager 1987a):

η = η0(1 + (τγ̇)2)−N. (2.1)

The zero-shear viscosity η0, Carreau time constant τ, and exponent N are reported
in table 1 for each solution concentration. From these data, the intrinsic viscosity
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Figure 1. Measurements of the shear viscosity versus the shear rate for the WSR 303 PEO solutions.
The solid lines are fits of the Carreau model, η = η0(1 + (τγ̇)2)−N , and the resulting parameters are
reported in table 1.

Concentration η0 τ N

(w.p.p.m.) (mPa s) (s)

100 1.32 0.13 0.022
200 1.63 0.15 0.028
300 2.34 0.4 0.033
600 4.28 0.8 0.033

1000 9 0.98 0.049

Table 1. Parameters of the Carreau model, η = η0(1 + (τγ̇)2)−N ,
for the WSR-303 PEO solutions.

[η0] can be computed by a linear extrapolation of the reduced viscosity to zero
concentration (Bird et al. 1987a):

[η0] = lim
c→0

η − ηwater
cηwater

= 0.0024 w.p.p.m.−1. (2.2)

The overlap concentration, c∗, which marks the transition from a dilute to a
semi-dilute solution (Doi & Edwards 1986), is estimated by two methods. The first
is the intersection of the low- and high-concentration asymptotes on a plot of the
zero-shear viscosity versus concentration. The second is Graessley’s formula based
on the intrinsic viscosity, c∗ = 0.77/[η0] (Graessley 1980; Vlassopoulos & Schowalter
1994). In each case, we find an overlap concentration of around 320 w.p.p.m. Hence,
some of our solutions (600 and 1000 w.p.p.m.) have to be considered semi-dilute.
In semi-dilute solutions, individual polymer molecules begin to overlap each other
and can form large supermolecular aggregates like micronetworks (Georgelos &
Torkelson 1988). The viscoelastic properties are then not only directly related to the
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concentration of the solution, but also to the organization of the aggregates. As a
consequence, estimates of relaxation times based on the dilute-solution models of
Rouse and Zimm (Bird et al. 1987b), tend to be much smaller than time constants
(e.g. Carreau) based on shear-thinning curves (see Vlassopoulos & Schowalter 1994
for a detailed comparison). Thus, the latter time constants should not be interpreted
as relaxation times of individual polymer chains.

To perform experiments at different Reynolds numbers and injection rates, 5 l of
solution is needed at each concentration. For a given solution, all measurements are
performed over one day. Six different Reynolds numbers and fifteen different injection
rates are explored for each solution, and we wait 5 min for the flow to stabilize after
modification of the control parameters. The main difficulty in these experiments is
that the viscoelastic properties of such large amounts of solution are sensitive to
the way in which the solutions are prepared, and could be non-homogeneous in a
given solution. This is due to the formation of aggregates, as mentioned above. This
kind of inhomogeneity is a problem because we would like the prepared solution
to have the same viscoelastic properties during an experiment in which Re and
β are varied. In addition, flow-induced degradation of the aggregates could occur
(Hinch & Elata 1979). We had difficulties with some prepared solutions, and the
more coherent quantitative results of wavelength measurements were obtained with
solutions of concentrations 250 w.p.p.m., 600 w.p.p.m., and 1000 w.p.p.m. Results are
also shown for a 500 w.p.p.m. solution, but the reproducibility with Reynolds number
and injection rate is not as good.

2.3. Measurements and analysis

The wake is recorded with a standard digital CCD video camera. The injected
solutions are coloured with crystal violet and the wake is illuminated from behind.
The camera field contains the cylinder and the axes of the Kármán rolls, allowing
us to make measurements of the wavelength of the Kármán street and the three-
dimensional instabilities. In a typical experimental run, the wake is recorded for 1 min
for given values of Re and β. The data are then initially analysed on a monitor in order
to extract some representative pictures for wavelength measurements. These pictures
are transferred to a PC via the acquisition board Imaq 1408 and then processed
using the Labview software. Since the pictures are never completely two-dimensional,
the two-dimensional wavelength λ is simply determined by eye through measurement
of many (locally perpendicular) distances between two consecutive Kármán rolls.
We then extract a mean value along with its typical fluctuation. Another treatment,
completely automatic and in real time, is to take an intensity line perpendicular to
the cylinder in the camera field. Each Kármán roll is then localized by a maximum
of intensity, and a simple analysis of the peak periodicity gives the local wavelength
in time and in space. The disadvantage of this technique is that it requires a nice
bi-dimensional wake. For example, in the case of oblique vortex shedding (Williamson
1989), the wavelength is obviously overestimated (see figure 2). On the other hand,
this treatment allows us to estimate an average wavelength over thousands of local
measurements, which results in converged values. The three-dimensional wavelength,
Λ, is measured directly by eye.

Side views of the wake have also been taken in order to visualize the shape of the
Kármán vortices and the aspect ratio of the wake, k = h/λ, where λ is the distance
between two consecutive co-rotating vortices and h is the vertical separation between
the two rows of counter-rotating vortices. For these experiments, the injected solutions
are coloured with fluorescent dye and the wake is illuminated by a light sheet. In a
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Figure 2. Wavelength measurements versus the Reynolds number in the case of water injection.
The wavelength of the two-dimensional instability is denoted by λ, and the cylinder diameter by
d. Crosses: measurements of λ from distances locally perpendicular to the Kármán rolls. Open
circles: measurements of λ from distances perpendicular to the cylinder. Notice that the second set
of measurements is systematically overestimated due to the oblique vortex shedding. The solid line
is the space-equivalent Williamson (1989) formula for parallel vortex shedding (see equation (3.1)).
Solid triangles: measurements of the three-dimensional wavelength, Λ.

few pictures of the Kármán street, the aspect ratio has been measured at different
locations in the wake to show the evolution of the aspect ratio with the downstream
distance from the cylinder.

3. Results
We first present general observations about the effects of water and PEO injection,

then give details separately about the two- and three-dimensional instabilities.

3.1. Water injection – general effects

Figure 2 shows the wavelength measurements in the case of water injection. We use
the lowest injection rate allowing a sufficient visualization for these measurements; β
never exceeds 0.1. The continuous line is the space-equivalent formula proposed by
Williamson (1989) for parallel shedding:

λ =
αU

f
with S =

fd

U
= −3.22

Re
+ 0.18 + 1.610−4Re. (3.1)

where f is the shedding frequency of the Kármán vortices and S is the Strouhal
number.

The phase velocity αU of the Kármán rolls was estimated from local measure-
ments of frequency shedding and wavelength to be 0.85U. From figure 2, we observe
good agreement between our data and Williamson’s formula. For 150 < Re < 250,
the three-dimensional instability appears as a pure A mode, while for higher Re,
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(a) (b)

(c)

Figure 3. Visualization of the wake for three similar cases at a large injection rate (β ∼ 0.6) of (a)
water; and PEO solution with concentration, (b) 250 w.p.p.m. and (c) 1000 w.p.p.m. The velocity of
the flow is U = 4.8 cm s−1 (Re ∼ 190).

other three-dimensional instabilities manifest themselves. This explains the jump in
the ratio of the spanwise to streamwise wavelengths, Λ/λ, from ∼ 1 to ∼ 0.5 at
Re ∼ 250. In the experiments reported here, we focus our attention on the A
mode of the three-dimensional instability. A discussion of other three-dimensional
instability modes in wakes behind circular cylinders can be found in Zang et al.
(1995), Brede, Eckelmann & Rockwell (1996) and Williamson (1996a). A problem
in the measurement of Λ is that the A mode is not stable in time and in space,
meaning that the periodic patterns like those presented in figure 11 are transient.
Most of the time, the dye sheets are continuously formed and destroyed (see fig-
ures 10a and 10b). To deal with this, we measured the wavelength only when
more than two sheets were present in the wake and separated by equivalent dis-
tances. Our wavelength measurements of the A mode shown in figure 2 are in
agreement with previous measurements by Zang et al. (1995), Brede et al. (1996)
and Williamson (1996b), who found wavelengths of three to five times the cylinder
diameter. The fact that the ratio Λ/λ is almost constant suggests that the wave-
length of the three-dimensional instability is based on the wavelength of the Kármán
street.
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k/d
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Figure 4. Effects of water injection on the two- and three-dimensional wavelengths (λ and Λ,
respectively) at Re ∼ 170. The cylinder diameter is denoted by d. Both wavelengths are independent
of the injection rate, β. This is also observed at other values of the Reynolds number, up to
Re ∼ 300. Note that the wavelength ratio is less dispersed than the wavelength measurements
themselves.

(a) (b)

Figure 5. Visualization of the wake for two similar cases at a low injection rate (β ∼ 0.05) of (a)
water, and (b) 1000 w.p.p.m. PEO solution. The velocity of the flow is U = 4.8 cm s−1 (Re ∼ 190).
We can observe that even for this low injection rate, the three-dimensional disturbance seen in (a)
is drastically suppressed in (b).

3.2. PEO injection – general effects

Figures 3, 5, and 6 are representative of the effects produced on the wake by injection
of the PEO solutions.

In figure 3, only the concentration of the injected solutions is changed; the velocity
of the flow is 4.8 cm s−1 (Re ∼ 190) with the injection parameter β ∼ 0.6. Figure 3(a)
shows the reference Newtonian case, where the parallel vortex shedding and the A
mode are clearly observable. For a PEO concentration of 250 w.p.p.m., neither the
two- nor three-dimensional wavelengths are strongly affected (figure 3b). But when the
PEO concentration is 1000 w.p.p.m., the two-dimensional wavelength is spectacularly
increased (at this value of β) and the A mode disappears (figure 3c). These effects
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(a)

(b)

(c)
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(d )

Figure 6. Visualization of the Kármán street for injection of (a) water at β ∼ 0.5, and PEO
solution with concentration 600 w.p.p.m. at (b) β ∼ 0.5, and (c) β ∼ 0.05. The velocity of the flow is
U = 3.75 cm s−1 (Re ∼ 150). (d) Measurements of the aspect ratio of the wake versus the distance
downstream for injection of water (open circles) at β ∼ 0.5 and a 1000 w.p.p.m. PEO solution at
β ∼ 0.5 (filled circles); β ∼ 0.1 (open triangles); β ∼ 0.05 (filled squares). The cylinder diameter is
denoted by d.
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cannot be related to a perturbation of the boundary layer caused by the injection
jet. As shown in figure 4, with simple water injection the two- and three-dimensional
wavelengths remain relatively constant as the injection parameter increases.

Figure 5 shows the case of a very low injection rate (β ∼ 0.05) for water and the
1000 w.p.p.m. PEO solution. As in figure 3, Re ∼ 190. It is remarkable that while the
two-dimensional wavelength is not significantly affected by the polymer solution, the
three-dimensional perturbation is clearly suppressed.

Figure 6 shows a side view of the wake at low and high injection rates for
Re ∼ 150. We can observe, in addition to the two-dimensional wavelength increase,
a drastic change in the shape of the Kármán street at both injection rates of the
1000 w.p.p.m. PEO solution. Comparison of figures 6(b) and 6(c) (PEO injection)
to figure 6(a)(water injection) suggests that PEO injection causes a decrease in the
aspect ratio of the wake. This result is given more quantitatively in figure 6(d), which
shows local measurements of the aspect ratio (see § 2.3). In the case of water injection,
the aspect ratio assumes a minimum value of 0.3 at the beginning of the wake. This
value increases downstream due to the three-dimensional disturbances of the wake.
The results for water injection are found to be essentially independent of β. As the
injection of rate of the 1000 w.p.p.m. solution increases, the minimal value of the
aspect ratio decreases continuously to a value of 0.1. Once again it is important to
notice that at low injection rates, these effects occur without significant changes to the
wavelength of the two-dimensional instability. Another important observation is that
for large injection rates, some polymer solution remains in the braid region between
the rolls (figure 6b). A final observation is the presence of a large zone of slow fluid
motion just behind the cylinder (figures 6b and 6c) which increases in size as the
injection rate (or the concentration of the solution) increases.

3.3. PEO injection – two-dimensional instability

Measurements of the Kármán street wavelength are shown in figure 7 for injection of
water, and the 600 and 1000 w.p.p.m. PEO solutions. In the case of the 600 w.p.p.m.
solution, we observe that the wavelength increases as the injection parameter increases
and then saturates to a maximum value. The initial values at β = 0 correspond to
the wavelengths measured in the case of water injection. We detected no threshold
value of β which is required for the wavelength increase. Similar behaviour is seen
with the 1000 w.p.p.m. solution, but the saturation wavelengths are larger. Indeed,
we have observed this generic behaviour for all the solutions with concentrations
greater than 250 w.p.p.m. over the range of Re we have explored. For a 250 w.p.p.m.
solution, no measurable effect can be discerned due to the large dispersion in the
wavelength measurements. In order to extract a generic law from the data in figure
7, we computed the dimensionless wavelength increase as (λ− λo)/λo where λo is the
wavelength measured for water injection at a given Re. We then fit all the experimental
data with a simple exponential law having two adjustable parameters, λsat and β∗:

λ− λo
λo

=
λsat − λo
λo

(1− exp[−β/β∗]). (3.2)

The quantity β∗ can be interpreted as the characteristic fraction of viscoelastic
solution in the vicinity of the cylinder needed to reach the saturation value, λsat,
whereas 1/β∗ is the slope of the fitted curve at low values of the injection parameter.
In figure 8, we can see that all the data collapse onto the exponential-law curve. The
values obtained for β∗ and (λsat− λo)/λo are plotted in figures 9(a) and 9(b). In figure
9(a), the data are displayed in terms of the Weissenberg number of the experiment,
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600 w.p.p.m.; U = 5.16 cm s–1

600 w.p.p.m.; U = 7.24 cm s–1
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1000 w.p.p.m.; U = 5.01 cm s–1

Water; U = 3.55 cm s–1

600 w.p.p.m.; U =1.9 cm s–1

600 w.p.p.m.; U = 4.18 cm s–1

600 w.p.p.m.; U = 6.11 cm s–1

1000 w.p.p.m.; U =1.7 cm s–1

1000 w.p.p.m.; U = 7.33 cm s–1

1000 w.p.p.m.; U = 3.8 cm s–1

β

Figure 7. Measurements of the two-dimensional wavelength, λ, versus the injection parameter, β,
for different velocities of the main flow (i.e. Re) and different solution concentrations. The cylinder
diameter is denoted by d. Grey symbols: water injection. Open symbols: injection of the 600 w.p.p.m.
PEO solution. Filled symbols: injection of the 1000 w.p.p.m. PEO solution. The maximum velocity
U corresponds to Re ∼ 300 and the minimum to Re ∼ 70.

defined as

We =
τU

d
, (3.3)

where τ is the Carreau time constant (table 1). The dimensionless wavelength increase
at saturation, (λsat − λo)/λo, appears to depend on both the concentration of the
injected solutions and We. The larger the concentration, the larger the dimensionless
wavelength increase at fixed We. A similar behaviour is found at fixed concentration
with respect to We, but a maximum is displayed followed by a decrease. The value of
We where the dimensionless wavelength increase is maximum is similar for the two
solutions. In contrast, β∗ does not seem to depend on the nature of solution but it
does tend to decrease with U.

3.4. PEO injection – three-dimensional instability

For injections at concentrations lower than 250 w.p.p.m., the A mode is as persistent
as it is in the Newtonian case and no measurable changes in its properties are
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Figure 8. The experimental data of figure 7 in terms of the coordinates suggested by equation (3.2).
The solid line is the curve given by (λ− λo)/(λsat − λo) = 1− exp[−β/β∗]. Values of λsat and β∗ can
be found in figure 9. The wavelength measured for water injection at a given Reynolds number
is λo.
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Figure 9. (a) The dimensionless increase in the saturated two-dimensional wavelength (λsat) versus
the Weissenberg number. The wavelength measured for water injection at a given Reynolds number
is λo. (b) The characteristic injection parameter, β∗, versus the velocity of the main flow, U.

observed over the range of Re and β we examined. For higher concentrations, we
generally find that development of the A mode is damped even at very low injection
rates. An example of this is seen in figures 3(c) and 5(b). In figure 3(c), the injection
rate is large enough so that the two-dimensional wavelength increases. In figure 5(b),
the A mode is also damped but β is too small to cause a measurable change in the
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Figure 10. Visualization of the wake during the observation of the three-dimensional instability (A
mode) for injection of (a) water at Re ∼ 170; and PEO solution with concentration, (b) 250 w.p.p.m.
at Re ∼ 200, (c) 500 w.p.p.m. at Re ∼ 140, and (d) 1000 w.p.p.m. at Re ∼ 140. In each of the cases
of PEO injection, the injection rate is such that the 2D wavelength has almost saturated.

two-dimensional wavelength. Even though the A mode is usually damped in the high-
concentration solutions, we find that it can appear on rare occasions. Figure 10(a–d)
shows the A mode when water and polymer solutions of different concentrations are
injected. (The values of β are such that the two-dimensional wavelength has almost
saturated.) For polymer concentrations greater than 250 w.p.p.m., both the two- and
three-dimensional wavelengths increase. This is more clearly seen in figure 11, where
the pictures of figure 10 have been rescaled by their two-dimensional wavelength (λ)
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Figure 11. Pictures of the A mode from figure 10 non-dimensionalized by the two-dimensional
wavelength, λ, for injection of (a) water, λ = 4.5d; and PEO solutions with concentrations, (b)
500 w.p.p.m., λ = 9d, and (c) 1000 w.p.p.m., λ = 13d. The cylinder diameter is denoted by d. The
aspect ratios of the wakes are reasonably conserved while the two-dimensional wavelengths are very
different.

in both space directions so that they all have the same streamwise wavelength. In
both of the cases of polymer injection, the ratio of the three-dimensional wavelength
to the two-dimensional wavelength remains the same as in the Newtonian case.

Several other observations about the three-dimensional instability deserve mention.
First, even when the A mode is damped, three-dimensional events like dislocations
and single dye sheets are not inhibited by the polymers (e.g. figure 3c). Second,
whenever polymer solutions are injected, we find many small-scale streamwise streaks
like those shown in figure 3(c). This is probably not related to the formation of
secondary streamwise vortices of a type other than those observed in the A mode
since the streaks are absent in the Newtonian case. More likely, the streaks are
due to the fact that the flow field coming out of the injection holes is rather
extensional in nature. The resulting polymeric jets would then tend to be more
coherent than their Newtonian counterparts (Bird et al. 1987a). Third, when the A
mode is present in the viscoelastic case, the streamwise vortices appear to be wider
(figure 11). As these tubes form in a typical time λ/U, their larger thickness in the
viscoelastic cases suggests that the streamwise stretching is also being inhibited by
the polymers.
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4. Discussion

4.1. Two-dimensional instability

The increase in the Kármán wavelength produced by viscoelasticity can be understood
in terms of a mechanism involving inhibition of a Kelvin–Helmholtz instability. This
has already been pointed out by Cadot & Lebey (1999), who used the linear stability
analysis performed by Azaiez & Homsy (1994) for mixing layers which shows that
viscoelasticity shifts the instability to longer wavelengths and reduces its growth rates.
We can also compare our wavelength increase to the results of Usui et al. (1980), who
studied vortex shedding in the flow of polymer solutions past a cylinder. They found
that a 400 w.p.p.m. PEO solution halved the shedding frequency at Re ∼ 70, relative
to water. This implies a doubling in the wavelength of the Kármán street if the phase
velocity remains constant (equation (3.1)). (In our experiments, we found the phase
velocity to be relatively independent of injection rate and solution concentration.)
A reduced instability growth rate may be manifested in the region of slow-moving
fluid near the cylinder (figures 6b and 6c), whose existence appears to imply that the
roll-up has been delayed. However, a second possible explanation for the region of
slow-moving fluid is that it is a consequence of a ‘change of type’ in the vorticity
equation (see § 1) (Konuita et al. 1980; Delvaux & Crochet 1990). It could be that
both of these factors contribute to the size of the region, but we have been unable
to determine their relative importance. Nevertheless, the presence of dyed solution
in the braid region (figure 6b) also suggests that the roll-up is delayed when PEO
is present. An insightful physical interpretation of the Kelvin–Helmholtz instability
inhibition can be found in an Appendix to Azaiez & Homsy (1994) by Hinch, who
shows that the polymers have a stabilizing effect similar to surface tension.

Viscoelastic effects are expected to increase with the elasticity number, E, which
provides a ratio of elastic forces to inertial forces (Azaiez & Homsy 1994). In
our experiments, E can be estimated from the Carreau time constant, τ, the shear
viscosity of the solution, ν, and the thickness of the boundary layer on the cylinder,
δ: E ≈ τν/δ2. However, the boundary layer thickness is given by δ ≈ dRe−1/2, so
we can rewrite E as E ≈ τU/d. This is simply the Weissenberg number (see § 3.3),
meaning that E can be interpreted as a local We in these experiments. Looking at
figure 9(a), we see that the dimensionless wavelength enhancement increases with
We before peaking and then decreasing. The increase with We is consistent with
the anticipated behaviour. The maximum may occur because shear thinning begins
to become important above a certain value of We, thereby increasing the relative
importance of inertial forces. However, we have been unable to confirm this idea using
a modified E which accounts for the shear thinning seen in figure 1. Another possibility
for the occurrence of the maximum is that degradation of the macromolecular
aggregates may take place if We is too large (Hinch & Elata 1979). We note that
the occurrence of the maximum around the value We ∼ 10 is a consequence of our
choice of a time constant. Had we chosen time constants based on the inverse shear
rate where the viscosity is 90% of its zero shear value (Vlassopoulos & Schowalter
1994), the maximum would occur closer to We ∼ 1, the point where shear thinning
becomes important (where inertial forces become comparable to elastic forces).

The behaviour of the characteristic injection parameter, β∗, in figure 9(b) can be
explained by a simple mechanism. For a given velocity of the main flow, more solution
will lie in the vicinity of the cylinder as β increases. Since the solution first fills the
shear regions (Cadot & Lebey 1999), there will be a characteristic injection parameter,
β∗, where those regions will be completely filled. Increasing β beyond β∗ will not lead
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to an additional wavelength increase because the solution will then begin to fill the
regions where there is no shear. We expect that β∗ will scale as the thickness of the
shear regions: β∗ ∼ δ/d ∼ Re−1/2. This is in agreement with what is observed. As
shown in figure 9(b), the scaling β∗ ∼ U−1/2 is consistent with the experimental data.

It is important to emphasize that the wavelength increase is not simply due to the
fact that the polymer solutions have a larger shear viscosity than water. Cadot &
Lebey (1999) used a polymer solution with a lower relaxation time (inferred from the
lower average molecular weight) but with the same shear viscosity (at the shear rate
of interest) as the 1000 w.p.p.m. solution used here. No change from the Newtonian
case was seen for the solution with the lower relaxation time, confirming that the
wavelength increase observed here is a true viscoelastic effect.

4.2. Three-dimensional instability

The most remarkable feature of the visualizations involving polymer injection is
the damping of the A mode. One possible cause for this damping is that the two-
dimensional flow has been modified in such a way that three-dimensional instabilities
are more difficult to excite. The decrease in the aspect ratio of the wake when PEO
is injected (figure 6d) clearly indicates that the polymers are interfering with the
two-dimensional base flow. In particular, the results suggest that the growth rates of
the A mode become smaller as the aspect ratio of the wake decreases. Intuitively,
this is perhaps not surprising since the flow appears more parallel as the aspect ratio
decreases. An argument based on the work of Kármán (1911) suggests that the shape
of the two-dimensional vortices is modified as well. Kármán (1911) showed that in
the inviscid case, two parallel rows of alternating vortices can be stable only for an
aspect ratio of k = 0.28, independent of the velocity of the flow. From figure 6(a), we
find a similar value, k ∼ 0.3, at the beginning of wake in the case of water injection.
It is clear from figures 6(c) and 6(d) that even when β is small (∼ 0.05), the aspect
ratio in the viscoelastic wake is reduced (by about a factor of one-half) relative to the
Newtonian case. As a consequence, the shape of the Kármán vortices would have to
change in order to maintain a stable wake. Further support is found in figures 6(a)
and 6(b), which show close-ups of the Kármán vortices near the cylinder for injection
of water and a 600 w.p.p.m. PEO solution. In the case of PEO injection, the Kármán
vortices do not appear to be as well developed.

The above conjectures are consistent with the mixing-layer simulations of Kumar &
Homsy (1999). As in the simulations, the three-dimensional instability behaviour does
not change much when the two-dimensional instability is unaffected by the polymers
(in the experiments, this could correspond to c < 250 w.p.p.m.). On the other hand,
modification of the two-dimensional flow can inhibit three-dimensional instabilities
as suggested by Kumar & Homsy (1999). In their simulations, polymers modified
the two-dimensional flow by making it more difficult to collect the vorticity into a
single core region, and vortices flatter than those in the Newtonian case resulted. Note
that the three-dimensional instability can be inhibited even when the two-dimensional
wavelength is unchanged (figure 5). This corresponds to a viscoelastic effect in the
nonlinear regime of the instability, which was the case explored in the simulations.

We note several other important issues regarding the three-dimensional instability.
First, another possible cause for damping of the A mode may be the presence of
the sidewalls. If the addition of polymers increases the three-dimensional wavelength,
then increased viscous dissipation at the sidewalls could produce a lower growth rate
for the A mode. However, we note that the wavelength of the three-dimensional
instability is essentially set by the wavelength of the two-dimensional instability
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(figures 10 and 11), and that the three-dimensional instability is damped even if the
two-dimensional wavelength is unchanged. Along with the information in figures 5
and 6, this strongly suggests that changes to the two-dimensional flow rather than
sidewall effects are responsible for the increased damping. Second, a possible reason
for the rare appearance of the A mode may be random disturbances (e.g. flow-rate
fluctuations) which accelerate instability growth. As we noted earlier though, the
streamwise stretching appears to be inhibited even when the A mode does appear.
Third, the fact that the wavelength of the A mode scales as the wavelength of the
Kármán street is consistent with what is known about Newtonian wakes. In the
Newtonian case, the three-dimensional wavelength is found to be proportional to a
length scale characterizing the perturbed two-dimensional flow (Leweke & Williamson
1998b). While this length scale is typically identified with the core diameter of the
Kármán vortices, it could reasonably correspond to the wavelength of the two-
dimensional disturbance. Finally, we again emphasize that the effects we see are not
simply related to a viscosity increase. The viscosity of the 1000 w.p.p.m. viscoelastic
solution is about 10 times the viscosity of water at zero shear rate, and more than 3
times the viscosity of water at the shear rates in the vicinity of the cylinder. Thus, a
simple viscosity increase would actually shift the Reynolds number to values much
lower than the critical value required for vortex shedding!

4.3. Implications for filament inhibition and drag reduction in turbulent flows

The results of this work suggest three mechanisms through which polymers could
inhibit the formation of vorticity filaments in turbulent flows (Bonn et al. 1993; Cadot
et al. 1998). Recall that the process of filament formation is similar to the sequence
of instabilities which occur in mixing layers and body wakes (Cadot et al. 1995).
Specifically, this involves a roll-up instability of an inflectional velocity profile followed
by a three-dimensional instability. In the first mechanism of filament inhibition, the
polymers act by simply slowing the growth rate of the two-dimensional instability,
meaning that fewer filaments form in a given time. In the second mechanism, the
polymers act in the nonlinear regime of the instability. The resulting two-dimensional
vortices then have a shape or arrangement which does not support strong growth
of three-dimensional disturbances. The third mechanism is a stretching inhibition
leading to less-concentrated vorticity filaments (cf. § 3.4 and Sureshkumar et al. 1997).
These mechanisms are not mutually exclusive (e.g. figure 6(b) shows a case where the
polymers both slow the growth rate and change the two-dimensional vortices), and all
probably operate in a turbulent flow. In addition, the study of Yarin (1997) indicates
that once the filaments do form, they should be more difficult to break apart.

It is also possible to construct some tentative arguments about drag reduction
mechanisms by combining our observations of instability inhibition along with the
idea of a turbulent energy cascade. Consider first the case of homogeneous isotropic
turbulence, where the energy is injected at a large scale of typical size L and velocity
U. The energy is then transferred in a very efficient way, through the inertial range
of typical sizes l and velocities u, to the smallest scale where dissipation occurs. In
the case of turbulence which is stationary in time, the power injected into the flow
is equal to the power transferred in the inertial range and also equal to the power
dissipated. From the Kolmogorov scaling (Frish 1995), an eddy of the inertial range
having size l and velocity u transfers to the smaller scales a kinetic energy per unit of
mass u2 during the time l/u. The power per unit of mass that is transferred through
the scale l is then ε = u3/l. Since the turbulence is stationary, the same transferred
power occurs at any scale of the inertial range, meaning that the dissipated power and
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injected power per unit of mass are also given by ε. Assuming that inhibition of the
two-dimensional instabilities of inflectional velocity profiles corresponds to a slower
rate of production of large-scale inertial eddies of energy per unit mass U2, a time
longer than L/U will be required to transfer the same amount of energy if the eddy
size remains the same. (It is possible that the eddies resulting from two-dimensional
roll-ups may decrease in size, as suggested by the experiments of Riediger 1989 and
simulations of Kumar & Homsy 1999.) An immediate consequence is that ε becomes
smaller, which implies a reduction of the dissipated power. A second consequence of
the stabilization mechanism is that the range of the inertial scales becomes smaller: the
large scale remains the same but the dissipation scale lη ∼ ν3/4/ε1/4 becomes larger.
Small-scale truncation of the inertial range is observed by McComb et al. (1977),
but only for concentrations larger than 200 w.p.p.m. of PEO. In the scheme we have
outlined, dissipation reduction would occur if the polymer significantly affects the rate
of production of large-scale inertial structures through which the energy is injected
into the turbulent flow. Even though the polymers may experience strong stretching
at small scales, this does not preclude their action at large scales. These arguments
may also apply to boundary-layer-forced turbulence if there exists some sort of an
energy cascade. Support for this idea comes from the fact that drag reduction is not
observable in the case of forced turbulence with a fixed rate of production of large
scales (Cadot et al. 1998), while there is a drastic reduction observable in boundary-
layer-forced turbulence (Lumley 1969; Berman 1978) where no rate of production of
the large scales is imposed. The intermediate case was investigated by Virk (1970),
who showed that in the case of a rough pipe, the roughness inhibits the drag reduction
effects. Finally, we note that these arguments do not say anything about how polymers
affect velocity fluctuations, an issue that needs to be addressed in a complete drag
reduction theory.

We make several other points about the above discussion. First, the idea that
inhibition of inflectional instabilities is important in the drag reduction process has
also been suggested by Landahl & Bark (1975). They considered the effect of polymers
on the stability of an inflectional velocity profile. By modelling the stretched polymers
using a constitutive model for fibre suspensions, they found that two-dimensional
instabilities could indeed be stabilized. Second, inhibition of filament formation may
not necessarily be connected with drag reduction. In the experiments of Cadot et al.
(1998), no change in the number of filaments was observed during the homogeneous
regime of drag reduction. This indicates that filament formation is a rare event, and
that the observed filament breakdown probably does not make a large contribution
to the average energy dissipation. Third, since the instability inhibition we have
observed occurs with semi-dilute polymer solutions, our ideas are more relevant to
heterogeneous drag reduction, where a semi-dilute polymer solution is injected into the
flow. They may also be relevant to homogeneous drag reduction by dilute solutions if
the solution used actually contains some macromolecular aggregates (Hinch & Elata
1979).

5. Conclusion
Experiments in which polymer solutions are injected into a cylinder wake provide

a way to study viscoelastic effects on two- and three-dimensional shear instabilities.
We find that viscoelasticity appears to delay the development of the two-dimensional
instability and shifts it to longer wavelengths. In addition, the three-dimensional
A mode tends to be damped, and this is correlated with changes in the aspect
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ratio of the two-dimensional wake. In the rare cases that the A mode does appear,
its wavelength is governed by the two-dimensional wavelength and the streamwise
stretching appears to be inhibited. The stabilizing effect of viscoelasticity on these two-
and three-dimensional shear instabilities suggests mechanisms for the way polymers
inhibit formation of vorticity filaments and reduce drag in turbulent flows.
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