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The Stokes wave is a finite-amplitude periodic gravity wave propagating with constant
velocity in an inviscid fluid. The complex analytical structure of the Stokes wave
is analysed using a conformal mapping of a free fluid surface of the Stokes wave
onto the real axis with the fluid domain mapped onto the lower complex half-plane.
There is one square root branch point per spatial period of the Stokes wave located
in the upper complex half-plane at a distance vc from the real axis. The increase
of Stokes wave height results in vc approaching zero with the limiting Stokes wave
formation at vc=0. The limiting Stokes wave has a 2/3 power-law singularity forming
a 2π/3 radians angle on the crest which is qualitatively different from the square
root singularity valid for arbitrary small but non-zero vc, making the limit of zero
vc highly non-trivial. That limit is addressed by crossing a branch cut of a square
root into the second and subsequently higher sheets of the Riemann surface to find
coupled square root singularities at distances ±vc from the real axis at each sheet. The
number of sheets is infinite and the analytical continuation of the Stokes wave into
all of these sheets is found together with the series expansion in half-integer powers
at singular points within each sheet. It is conjectured that a non-limiting Stokes wave
at the leading order consists of an infinite number of nested square root singularities
which also implies the existence in the third and higher sheets of additional square
root singularities away from the real and imaginary axes. These nested square roots
form a 2/3 power-law singularity of the limiting Stokes wave as vc vanishes.

Key words: surface gravity waves, waves/free-surface flows

1. Introduction
In Part I (Dyachenko, Lushnikov & Korotkevich 2016), we obtained a Stokes wave

solution numerically with high precision and analysed that solution using the Padé
approximation. We showed a convergence of the Padé approximation of a Stokes
wave to a single branch cut per spatial period in the upper complex half-plane C+
of the axillary complex variable w. In this paper, we formulate the nonlinear integral
equation for the jump of the Stokes wave at the branch cut in the physical (first)
sheet of the Riemann surface. We show that the Riemann surface of the Stokes wave
has an infinite number of sheets, as sketched in figure 1, and study the structure of
the singularities in these sheets.

† Email address for correspondence: plushnik@math.unm.edu
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First (physical) sheet Second sheet Third sheet

0 0 0

(a) (b) (c)

FIGURE 1. A schematic of Riemann surface sheets for a non-limiting Stokes wave in the
complex variable ζ (1.6) near the origin. The first (physical) sheet (a) has a single square
root singularity at ζ = iχc in the upper complex half-plane C+ with the lower complex
half-plane C− corresponding to the domain occupied by the fluid. Other (non-physical)
sheets have square root singularities at ζ = ±iχc. Dashed lines show branch cuts. In
addition there are the singularities at ζ =±i in all sheets which corresponds to w =∞.
Starting from the third sheet (c) there are square root singularities away from both the real
and imaginary axes at distances more that several times χc, i.e. well beyond the disks of
convergence |ζ ± iχc|< 2χc.

A Stokes wave is a fully nonlinear periodic gravity wave propagating with constant
velocity c (Stokes 1847, 1880a). It corresponds to two-dimensional potential flow of
an ideal incompressible fluid with a free surface. Following Part I (Dyachenko et al.
2016), we use scaled units at which c= 1 for the linear gravity waves and the spatial
period is λ= 2π. Nonlinearity of the Stokes wave increases with an increase of H/λ,
where H is the Stokes wave height which is defined as the vertical distance from the
crest to the trough of the Stokes wave. A Stokes wave has c> 1 and the limit H→
0, c→ 1 corresponds to a linear gravity wave. The Stokes wave of greatest height H=
Hmax (also called by the limiting Stokes wave) has a singularity in the form of a sharp
angle of 2π/3 radians on the crest (Stokes 1880b). We assume that the singularity of
the limiting Stokes wave touches the fluid surface at w = 0 and corresponds to the
following expansion

z(w)= i
c2

2
− i
(

3c
2

)2/3

(iw)2/3 + h.o.t., (1.1)

which ensures the sharp angle of 2π/3 radians on the crest. Equation (1.1) recovers
the result of Stokes (1880b). Here h.o.t. means higher-order terms which approach 0
faster than w2/3 as w→ 0. Also

z(w)= x(w)+ iy(w) (1.2)

is the conformal transformation which maps a half-strip −π6 u6π, −∞<v6 0 of
the conformal variable

w= u+ iv (1.3)

onto a fluid domain of infinite depth −∞< y6η(x),−π6 x6π of the complex plane
z (see Figure 1 of Part I (Dyachenko et al. 2016)). Here x and y are the horizontal
and vertical physical coordinates, respectively. y= η(x) is the surface elevation in the
reference frame moving with the speed c. As discussed in detail in Part I, choosing

z(w)=w+ z̃(w), (1.4)
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Branch point singularities for Stokes waves 559

with x(w)= u+ x̃(w) and ỹ(w)= v+ y(w), ensures that z̃(w) is 2π-periodic function

z̃(w+ 2π)= z̃(w), x̃(±π)= 0. (1.5a,b)

It was found by Grant (1973) that the corner singularity (1.1) might not be a simple
algebraic branch point because the next-order term in the expansion (1.1) might be
a power of the transcendental number. Rigorous results on the asymptotics near the
crest of the limiting wave were found in Amick & Fraenkel (1987), McLeod (1987).
These results were used in Fraenkel (2007), Fraenkel & Harwin (2010), Fraenkel
(2010) to construct the exact bounds on the limiting Stokes wave and prove the
local uniqueness using Banach’s contraction mapping principle. More exact bounds
were provided in Tanveer (2013). However, the question of whether log terms in the
asymptotic expansion are possible in addition to the transcendental power asked in
Amick & Fraenkel (1987) remains open. The existence of a limiting Stokes wave
with the jump of the slope at the crest in 2π/3 radians was independently proven by
Amick, Fraenkel & Toland (1982) and Plotnikov (1982).

In this paper we focus on analysing singularities of near-limiting Stokes waves.
Grant (1973) showed that, assuming that the singularity is a power-law branch point,
then that singularity has to have a square root form to the leading order. Tanveer
(1991) provided a much stronger result proving that the only possible singularity in
the finite complex upper half-plane is of a square root type. Plotnikov & Toland
(2002) discusses the existence of a unique square root singularity above crests. The
existence of only one square root singularity per period in a finite physical complex
plane was also confirmed in Dyachenko, Lushnikov & Korotkevich (2013a) and Part
I (Dyachenko et al. 2016) by analysing the numerical solution for a Stokes wave.

We now consider an additional conformal transformation between the complex plane
w= u+ iv and the complex plane for the new variable

ζ = tan
(w

2

)
, (1.6)

which maps the strip −π<Re(w)<π onto the complex ζ plane. In particular, the line
segment −π<w<π of the real line w= u maps onto the entire real line (−∞,∞) in
the complex ζ -plane, as shown in Figure 5 of Part I (Dyachenko et al. 2016). Vertical
half-lines w = ±π + iv, 0 < v <∞ are mapped onto a branch cut i < ζ < i∞. In a
similar way, vertical half-lines w=±π+ iv,−∞<v<0 are mapped onto a branch cut
−i∞< ζ <−i. However, the 2π−periodicity of z̃(w) (1.5) allows us to ignore these
two branch cuts because z̃(w) is continuous across them. Complex infinities w=±i∞
are mapped onto ζ =±i. An unbounded interval [ivc, i∞), vc > 0 is mapped onto a
finite interval [iχc, i) with

χc = tanh
vc

2
. (1.7)

The transformation (1.6) takes care of the 2π−periodicity of the Stokes wave so that
the function z(ζ ) defined in the complex plane ζ ∈C corresponds to the function z(w)
defined in the strip −π<Re(w)= u<π. Here and below we abuse notation and use
the same symbol z for both functions of ζ and w (and similar for other symbols). The
additional advantage of using the mapping (1.6) is the compactness of the interval
(iχc, i) as mapped from the infinite interval (ivc, i∞). Note that the mapping (1.6) is
different from the commonly used (see e.g. Schwartz 1974; Williams 1981; Tanveer
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560 P. M. Lushnikov

1991) mapping ζ = exp (−iw) (which maps the strip −π 6 Re(w) < π onto the unit
circle). That exponential map leaves the interval (ivc, i∞) infinite in the ζ plane.

The main result of this paper is that there are an infinite number of sheets of a
Riemann surface with square root branch points located at ζ =±iχc, starting from the
second sheet (the first sheet has a singularity only at ζ = iχc). At each sheet (except
the first one) these singularities are coupled through complex conjugated terms which
appear in the equation for the Stokes wave. In contrast, the only singularity at ζ = iχc
of the first sheet (besides the singularity at ζ = i) does not have a complex conjugated
counterpart at ζ =−iχc which makes that (physical) sheet distinct from all others. It is
conjectured that the leading order form of a non-limiting Stokes wave has the form of
an infinite number of nested square root singularities. These nested square roots form
a 2/3 power-law singularity of the limiting Stokes wave as χc→ 0.

The paper is organized as follows. In § 2 a closed nonlinear integral equation for
a Stokes wave in terms of the density (jump) at the branch cut is derived and the
numerical method to solve that integral equation is given. Section 3 provides an
alternative form for the equation of a Stokes wave. Section 4 uses that alternative
form to find an asymptotic of both a Stokes wave at Im(w)→ +∞ and the jump
at the branch cut. Section 5 discusses a numerical procedure to analyse the structure
of the sheets of a Riemann surface for a Stokes wave by the integration of the
corresponding nonlinear ordinary differential equation (ODE) in the complex plane.
Section 6 derives the analytical expressions for coupled series expansions at ζ =±iχc
to reveal the structure of the Riemann surface for a Stokes wave. Section 7 analyses
possible singularities of a Stokes wave in all sheets of a Riemann surface and
concludes that the only possible singularity for finite values of w is the square root
branch point. Section 8 provides a conjecture on recovering of the 2/3 power law of
a limiting Stokes wave from an infinite number of nested square root singularities of
a non-limiting Stokes wave in the limit χc→ 0. In § 9 the main results of the paper
are discussed. Appendix A shows the equivalence of the two forms of the equation
for a Stokes wave used in the main text. Appendix B relates different forms of the
equation for Stokes wave in the rest frame and in the moving frame. Appendix C
provides tables of the numerical parameters of a Stokes wave.

2. Closed integral equation for a Stokes wave through the density at the branch
cut
The equation for a Stokes wave was derived in Zakharov & Dyachenkov (1996)

and Part I (Dyachenko et al. 2016) from Euler’s equations for the potential flow of
an ideal fluid with a free surface (see also appendices A and B). That equation is
defined at the real line w= u and takes the following form

−c2yu + yyu + Ĥ[y(1+ x̃u)] = 0, (2.1)

where

Ĥf (u)= 1
π

p.v.
∫ +∞
−∞

f (u′)
u′ − u

du′ (2.2)

is the Hilbert transform with p.v. meaning a Cauchy principal value of an integral and
the subscripts in t and u mean partial derivatives here and below. The Hilbert operator
Ĥ transforms into the multiplication operator

(Ĥf )k = i sign(k)fk, (2.3)
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Branch point singularities for Stokes waves 561

for the Fourier coefficients (harmonics) fk,

fk = 1
2π

∫ π

−π

f (u) exp(−iku) du, (2.4)

of the periodic function f (u)= f (u+ 2π) represented through the Fourier series

f (u)=
∞∑

k=−∞
fk exp(iku). (2.5)

Here sign(k)=−1, 0, 1 for k< 0, k= 0 and k> 0, respectively. Equation (2.5) implies
that

Ĥ2f =−( f − f0), (2.6)

where f0 is the zeroth Fourier harmonic of f .
It is convenient to decompose the Fourier series (2.5) as follows

f (u)= f+(u)+ f−(u)+ f0, (2.7)

where

f+(w)=
∞∑

k=1

fk exp(ikw) (2.8)

is the analytical function in C+ and

f−(w)=
−1∑

k=−∞
fk exp(ikw) (2.9)

is the analytical function in the lower complex half-plane C−. Then (2.3) implies that

Ĥf = i( f+ − f−). (2.10)

Also using (2.3) we define the operator,

P̂= 1
2(1+ iĤ), (2.11)

projecting any 2π-periodic function f into a function which has analytical continuation
from the real line w= u into C− as follows

P̂f = f− + f0

2
. (2.12)

One can apply Ĥ to (2.1) to obtain the following closed expression for y,

(c2k̂− 1)y−
(

k̂y2

2
+ yk̂y

)
= 0, (2.13)

where k̂≡−∂uĤ =√−∇2 and we have used the following relations

yu = Ĥx̃u and x̃u =−Ĥyu, (2.14a,b)

which are valid for the analytic function z̃u(w) satisfying the decaying condition
z̃u(w)→ 0 as v→−∞. We also assume in deriving (2.13) from (2.1) that∫ π

−π

η(x) dx=
∫ π

−π

y(u)xu(u) du= 0, (2.15)
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562 P. M. Lushnikov

meaning that the mean elevation of the free surface is set to zero. Equation (2.15)
reflects the conservation of the total mass of fluid. Equation (2.13) was derived in
Babenko (1987) and later was independently obtained from the results of Dyachenko
et al. (1996) in Dyachenko et al. (2013a). See also Zakharov & Dyachenkov (1996)
for a somewhat similar equation. Babenko (1987) and subsequent developments
in Plotnikov (1991), Buffoni, Dancer & Toland (2000), Buffoni & Toland (2001),
Shargorodsky & Toland (2008) used an equation of the type (2.13) for the analysis
of bifurcations.

Equation (2.13) is convenient for numerical simulation of a Stokes wave because it
depends on y only, as detailed in Part I (Dyachenko et al. 2016). The operator k̂ is
the multiplication operator in the Fourier domain which is straightforward to evaluate
numerically using fast Fourier transform.

In this paper it is however more convenient for our analytical study to rewrite the
equation for a Stokes wave in terms of the complex variable z̃. For that, we apply the
projector operator P̂ (2.11) to (2.1) which results in

c2z̃u =−iP̂[(z̃− ¯̃z)(1+ z̃u)], (2.16)

where f̄ (u)≡ f̄ means complex conjugation of the function f (u). Note that the complex
conjugation f̄ (w) of f (w) in this paper is understood to be applied with the assumption
that f (w) is the complex-valued function of the real argument w even if w takes
complex values so that

f̄ (w)≡ f (w̄). (2.17)

This definition ensures the analytical continuation of f (w) from the real axis w = u
into the complex plane of w ∈ C and similar for functions of ζ ∈ C. If the function
f (w) is analytic in C− then f̄ (w) is analytic in C+, as also follows from (2.7)–(2.9).

A numerical convergence of the Padé approximation to the continuous density ρ(χ)
of the branch cut was shown in Part I (Dyachenko et al. 2016) together with the
parametrization of the branch cut of a Stokes wave, as follows

z̃(ζ )= iyb +
∫ 1

χc

ρ(χ ′) dχ ′

ζ − iχ ′
, (2.18)

where yb≡ y(u)|u=±π ∈R is the minimum height of a Stokes wave as a function of x
(or in the similar way as the function of u). The density ρ(χ) is related to the jump
∆jump of z̃(ζ ) for crossing the branch cut at ζ = iχ in a counterclockwise direction as
follows

∆̃jump ≡ z(ζ )|ζ=iχ−0 − z̃(ζ )|ζ=iχ+0 =−2πρ(χ), (2.19)

see also Part I (Dyachenko et al. 2016) for more details. We now use the parametri-
zation (2.18) to study the Stokes wave equation (2.16). We eliminate the constant iyb
at ζ =∞ in (2.18) by introducing a new function

f (u)= z̃(u)− iyb =
∫ 1

χc

ρ(χ ′) dχ ′

ζ − iχ ′
, (2.20)

together with the complex conjugate

f̄ (u)=
∫ 1

χc

ρ(χ ′) dχ ′

ζ + iχ ′
, (2.21)

which was evaluated using the definition (2.17).
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Equation (2.16) in the new variable (2.20) takes the following form

−ic2fu + iyb + 2iybfu + f fu + P̂f − P̂f̄ − P̂[f̄ fu] = 0, (2.22)

with f and f̄ given by (2.20) and (2.21), respectively.

2.1. Projection in the ζ plane

The projector P̂ (2.11) is defined in terms of the independent variable u. Using (2.22),
together with the definition (2.20), suggests a switch from u into the independent
variable ζ . To identify how to compute P̂ in the complex ζ -plane, we start from the
Fourier series (2.4), (2.7) in variable u and make a change of variable (1.6) (assuming
that −π6 u 6π and ζ ∈R) as follows

f (u)= f (ζ )=
∞∑

k=−∞
fneiku =

∞∑
k=−∞

fn exp[2ik arctan ζ ] =
∞∑

n=−∞
fk

(
ζ − i
ζ + i

)k

(−1)k, (2.23)

where we abuse notation by assuming that f̃ (ζ )≡ f (u) and removing ˜ sign. Equations
(2.11), (2.12) and (2.23) imply that P̂ removes all Fourier harmonics with positive n
and replaces the zeroth harmonic f0 by f0/2 as follows

P̂f (u)=
∞∑

n=−∞
fkP̂eiku = f0

2
+

−1∑
k=−∞

fk exp[ik2 arctan ζ ]

= f0

2
+

−1∑
n=−∞

fk

(
ζ − i
ζ + i

)k

(−1)k. (2.24)

Consider a particular case f (u)= 1/(ζ − iχ), χ ∈R and χ 6= 0. We calculate fk by
(2.4) and (2.23) through the change of variable (1.6) implying du= 2/(ζ 2 + 1) dζ as
follows

f−k = 1
2π

∫ π

−π

f (u)eiku du= 1
2π

∫ ∞
−∞

1
ζ − iχ

(
ζ − i
ζ + i

)k

(−1)k
2

ζ 2 + 1
dζ . (2.25)

Assuming k > 0 and closing the complex integration contour in the upper half-plane
of ζ we obtain that

f−k = i
(
χ − 1
χ + 1

)k

(−1)k
2

−χ 2 + 1
θ(χ)+ δk,0

1
i− iχ

. (2.26)

For the zeroth harmonic f0, (2.26) results in

f0 = i sign(χ)
1+ χ sign(χ)

, (2.27)

where sign(χ)= 1 for χ > 0 and sign(χ)=−1 for χ < 0.
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564 P. M. Lushnikov

Using now (2.24), (2.26) and (2.27) we find that

P̂
1

ζ − iχ
= −i sign(χ)

2[1+ χ sign(χ)] +
∞∑

k=0

[
i
(
χ − 1
χ + 1

)k

(−1)k
2

−χ 2 + 1
θ(χ)+ δk,0

1
i− iχ

]

×
(
ζ + i
ζ − i

)k

(−1)k = 1
ζ − iχ

θ(χ)+ 1
i− iχ

θ(−χ)− i sign(χ)
2[1+ χ sign(χ)] ,

(2.28)

where θ(χ)= 1 for χ > 0 and θ(χ)= 0 for χ < 0.

In a similar way, for f (ζ )= 1
(ζ − iχ)2

we find from the series (2.23) that

f−k = 1
2π

∫ ∞
−∞

1
(ζ − iχ)2

(
ζ − i
ζ + i

)k

(−1)k
2

ζ 2 + 1
dζ , k > 0. (2.29)

Closing the complex integration contour in the upper half-plane of ζ one obtains from
(2.29) that

f−k = i
d

dζ

(
ζ − i
ζ + i

)k

(−1)k
2

ζ 2 + 1
θ(χ)

∣∣∣∣∣
ζ=iχ

+ δk,0
1

(i− iχ)2
, k > 0 (2.30)

and

f0 =− 1
[1+ χ sign(χ)]2 . (2.31)

Taking a sum over k in (2.24) using (2.30) and (2.31) we find that

P̂
1

(ζ − iχ)2
= 1
(ζ − iχ)2

θ(χ)+ 1
(i− iχ)2

θ(−χ)+ 1
2[1+ χ sign(χ)]2 . (2.32)

2.2. Integral representation of the equation for a Stokes wave
Using (2.20), (2.28) and (2.32) we obtain the following projections in terms of ρ(χ):

P̂f =
∫ 1

χc

ρ(χ) dχ
ζ − iχ

−
∫ 1

χc

iρ(χ) dχ
2(1+ χ) , P̂f̄ =−

∫ 1

χc

iρ(χ) dχ
2(1+ χ) . (2.33a,b)

We now find P̂[f̄ fu] used in (2.22). Equation (1.6) results in the following
expression

f̄ fu = ζ
2 + 1
2

f̄ fζ =−ζ
2 + 1
2

∫ 1

χc

∫ 1

χc

ρ(χ ′)ρ(χ ′′) dχ ′ dχ ′′

(ζ + iχ ′)(ζ − iχ ′′)2
. (2.34)

We perform the partial fraction decomposition of the integrand of (2.34) as follows
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Branch point singularities for Stokes waves 565

− ζ 2 + 1
2(ζ + iχ ′)(ζ − iχ ′′)2

= 1
ζ + iχ ′

1− χ ′2
2(χ ′ + χ ′′)2 +

1
ζ − iχ ′′

−1− 2χ ′χ ′′ − χ ′′2
2(χ ′ + χ ′′)2

+ 1
(ζ − iχ ′′)2

i(1− χ ′′2)
2(χ ′ + χ ′′) . (2.35)

and apply the projector P̂ to (2.35) which gives, with the use of (2.28) and (2.32),
the following expression:

P̂[f̄ fu] =
∫ 1

χc

∫ 1

χc

[
1

i+ iχ ′
1− χ ′2

4(χ ′ + χ ′′)2 +
(

1
ζ − iχ ′′

− i
2(1+ χ ′′)

) −1− 2χ ′χ ′′ − χ ′′2
2(χ ′ + χ ′′)2

+
(

1
(ζ − iχ ′′)2

+ 1
2(1+ χ ′′)2

)
i(1− χ ′′2)
2(χ ′ + χ ′′)

]
ρ(χ ′)ρ(χ ′′) dχ ′ dχ ′′. (2.36)

The other nonlinear term in (2.22) has the following integral form

ffu = 1
2
(1+ ζ 2)ffζ =−1

2
(1+ ζ 2)

∫ 1

χc

ρ(χ ′) dχ ′

(ζ − iχ ′)

∫ 1

χc

ρ(χ ′′) dχ ′′

(ζ − iχ ′′)2
. (2.37)

The constant yb is determined from (2.15) as follows

∫ π

−π

y(1+ x̃u) du=
∫ ∞
−∞

[
yb + ( f − f̄ )

2i

] [
1+ (1+ ζ

2)

4
( fζ + f̄ζ )

]
2dζ

1+ ζ 2
= 0, (2.38)

which results in, using (2.20), the following equation,

yb =−
∫ 1

χc

∫ 1

χc

ρ(χ ′)ρ(χ ′′) dχ ′ dχ ′′

2(χ ′ + χ ′′)2 −
∫ 1

χc

ρ(χ ′) dχ ′

1+ χ ′ . (2.39)

Equation (2.39) allows us to find yb from a given ρ(χ). This equation also
provides a convenient tool to estimate the accuracy of recovering ρ(χ) by the
Padé approximation. For that, one compares the numerical value of yb obtained from
the Stokes solution in Part I (Dyachenko et al. 2016) with the result of the direct
numerical calculation of right-hand side of (2.39) with ρ(χ) obtained from the Padé
approximation in Part I (all of these numerical values are given in tables of Part I
(Dyachenko et al. 2016), through the electronic attachment to Dyachenko, Lushnikov
& Korotkevich (2015a) and at the web link Dyachenko, Lushnikov & Korotkevich
(2015b)).

Integrating (2.20) in u over the 2π-period one obtains the zero Fourier harmonic y0

of y(u) as follows

y0 = yb +
∫ 1

χc

ρ(χ ′) dχ ′

1+ χ ′ . (2.40)
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566 P. M. Lushnikov

Requiring that (2.20)–(2.22), (2.33), (2.36), (2.37) and (2.39) are satisfied for −∞<
ζ <∞, we obtain a system of equations to find the density ρ(χ) along the branch
cut for each c. That system has a form of nonlinear integral equation for the unknown
function ρ(χ). Taking the limit ζ→∞ in that system results in the following compact
expression

c2

2

∫ 1

χc

ρ(χ ′) dχ ′ + 2
[
−
∫ 1

χc

∫ 1

χc

ρ(χ ′)ρ(χ ′′) dχ ′ dχ ′′

2(χ ′ + χ ′′)2 −
∫ 1

χc

ρ(χ ′) dχ ′

1+ χ ′
]

×
[

1− 1
2

∫ 1

χc

ρ(χ ′′′) dχ ′′′
]
+
∫ 1

χc

ρ(χ ′) dχ ′

1+ χ ′

+
∫ 1

χc

∫ 1

χc

(1− χ ′)ρ(χ ′)ρ(χ ′′) dχ ′ dχ ′′

2(χ ′ + χ ′′)2 = 0, (2.41)

which can be used to find c from a given ρ(χ).

2.3. Numerical solution for Stokes wave based on the integral representation
To solve the system (2.20)–(2.22), (2.33), (2.36), (2.37) and (2.39) numerically we use
the approximation of the integral in (2.18) by the following numerical quadrature

f (u)= z̃(ζ )− iyb =
∫ 1

χc

ρ(χ ′) dχ ′

ζ − iχ ′
'

N∑
j=1

γj

ζ − iχj
, (2.42)

which has a form of the Padé approximation at the discrete set of points χc < χ1 <
χ2 < · · · < χN < 1 with weights γj, j = 1, 2, . . . , N. Then, the analysis of §§ 2.1
and 2.2 with (2.18) replaced by the approximation (2.42) is carried out in exactly the
same way as in (2.20)–(2.39) with each time ρ(χ) dχ and χ replaced by γj and χj,
respectively. Also the integrals are replaced by summations. It results in the discrete
versions of these equations including

P̂f =
N∑

j=1

γj

ζ − iχ
−

N∑
j=1

iγj

2(1+ χ), P̂f̄ =−
N∑

j=1

iγj

2(1+ χ), (2.43a,b)

ffu =−1
2
(1+ ζ 2)

N∑
j′=1

γj′

(ζ − iχj′)

N∑
j′′=1

γj′′

(ζ − iχj′′)2
(2.44)

and

P̂[f̄ fu] =
N∑

j′=1

N∑
j′′=1

[
1

i+ iχj′

1− χ 2
j′

4(χj′ + χj′′)2
+
(

1
ζ − iχj′′

− i
2(1+ χj′′)

)

× −1− 2χj′χj′′ − χ 2
j′′

2(χj′ + χj′′)2
+
(

1
(ζ − iχj′′)2

+ 1
2(1+ χj′′)2

)
i(1− χ 2

j′′)

2(χj′ + χj′′)

]
γj′γj′′ .

(2.45)

Also (2.39) is replaced in the same discrete approximation by the following equation

yb =−
N∑

j′=1

N∑
j′′=1

γj′γj′′

2(χj′ + χj′′)2
−

N∑
j′=1

γj′

1+ χj′
. (2.46)
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Branch point singularities for Stokes waves 567

Choosing numerical values γj, χj, j = 1, 2, . . . , N from the Padé approximants of
Part I (Dyachenko et al. 2016) (these approximants are also available through the
electronic attachment to Dyachenko et al. (2015a) and at the web link Dyachenko
et al. (2015b)) we checked that (2.22) (together with (2.43)–(2.46)) is valid for each
value of H/λ with the same numerical precision as the precision (at least 10−26)
of the Stokes solutions of Part I (Dyachenko et al. 2016). Values of N in Part I
range between tenths for moderates values of H/λ up to N = 92 for the highest
Stokes wave considered (given by table 4 in Part I (Dyachenko et al. 2016)). These
moderate numbers are in sharp contrast with the large number M of Fourier modes
required for constructing these solutions with the same precision (M' 1.3 · 108 for the
highest Stokes wave considered in table 4 of Part I). An explanation for this dramatic
difference between required numerical values of M and N follows from Part I. It was
found in Part I that the error of the Fourier method scales as ∝ exp (−2χcM) while
the error for the Padé approximation of Part I scales as ∝ exp (−c1χ

1/6
c M), c1∼ 1. This

suggests that solving (2.22), (2.43)–(2.46) for numerical values of γj, χj, j=1,2, . . . ,N
is an attractive alternative to the numerical methods of Part I.

To solve (2.22), (2.43)–(2.46) numerically, we aim to approximately satisfy (2.22)
at the discrete set of points −∞ < ζ = ζi < ∞, i = 1, 2, . . . , M1. This results
in a nonlinear algebraic system of equations to find γj, χj, j = 1, 2, . . . , N. This
system is overdetermined (see e.g. Wilkening & Yu (2012) for an example of
using of overdetermined systems for simulating water waves) provided we choose
M1 > 2N but it can be solved in the least square sense (by minimizing the sum of
squares of the left-hand side of (2.22) taken over points ζ = ζi, i = 1, 2, . . . , M1).
However, the difficulty in such a straightforward approach is in the extreme ill
conditioning of the resulting algebraic system, mainly because of the denominators
containing large powers of χj which are clearly seen if we try to bring (2.22) to
the common denominator. We bypass this difficulty here by providing the explicit
procedure to find the appropriate values of χj, j = 1, 2, . . . , N for each χc (see
the description of that procedure below in this section) and only after that do we
solve (2.22), (2.43)–(2.46) for the unknowns γj, j = 1, 2, . . . , N at the discrete
set of points −∞ < ζ = ζi < ∞, i = 1, 2, . . . , M1. Then, the resulting system is
the cubic polynomial in γj, j = 1, 2, . . . , N. That system is still moderately ill
conditioned but this difficulty is easily overcome by choosing M1 large enough, with
Newton’s iterations used to find numerical values of γj, j= 1, 2, . . . ,N, thus forming
a least square Newton (LSN) algorithm. For example, for H/λ = 0.1387112446 . . .
(corresponding to χc = 3.0056373876 . . .× 10−3, see also table 1 of appendix C for
details on numerical Stokes waves) we found that it is sufficient to use M1= 800 and
N = 51 to achieve 10−19 accuracy for a Stokes wave. For steeper Stokes waves with
H/λ= 0.1401109676 . . . (χc= 6.99513864872 . . .× 10−4) and H/λ= 0.1408682599 . . .
(χc = 5.6590609636 . . . × 10−5) we found that using M1 = 1600, N = 61 and
M1 = 104, N = 78 allows us to achieve 10−18 and 10−19 accuracy, respectively. Here
values of N were chosen to be the same as for the respective Stokes wave in Part
I while M1 is smaller by a factor ∼80 than M = 65536 in the first case and by a
factor ∼ 200 smaller than M = 2 097 152 in the third case (values of M are given in
Part I, through the electronic attachment to Dyachenko et al. (2015a) and at the web
link Dyachenko et al. (2015b)). In these examples, using the symmetry of the Stokes
wave, the points ζj were chosen to have non-negative values, with the first 300 points
uniformly spaced as ζi = (i − 1)2π/M, i = 1, . . . , 300 and the remaining M1 − 300
points uniformly (in u) spanning the remaining interval of positive values of ζ . After
values of γj, j = 1, 2, . . . , N are found from the LSN algorithm, (2.42) provides
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568 P. M. Lushnikov

the Padé approximation for the Stokes wave at the entire real line of ζ . Then, one
can use the results of § 6.1 to find the high precision numerical approximation of
χc, which completes the current step in H/λ (or equivalently the current step in χc).
These steps are repeated to gradually increase H/λ (or equivalently decrease χc) by
changing the velocity parameter c to span the desired range of Stokes waves.

The procedure to find the grid χj, j = 1, 2, . . . , N at each step is the following.
Assume that χc < χ1 < χ2 < · · · χN−1 < χN < 1 and χc� 1. We use the property of
the Stokes wave that ρ(χ) changes a little with a change of H/λ for χ�χc provided
χc�1. This implies that χj can be chosen independently of χc for all j such that χj�
χc. In the numerical examples above, we chose numerical values in the range χj�χc
from the Padé data for the Stokes wave with H/λ= 0.1409700957 . . . obtained in Part
I (Dyachenko et al. 2016). Also, the grid χj can be chosen from the grid obtained at
the previous step (with a previous smaller value of χc).

We now consider the construction of the grid for smaller values of χj. If
we assume a power-law singularity ρ(χ) ∝ (χ − χc)

α, α > 0 and consider the
limit ζ → iχc in (2.18), then the transformation to a new integration variable
t = (χ − χc)

α removes the singularity from the integrand in (2.18). The uniform
grid tj = j1t, j = 1, 2, . . . , 1t = const. in t is the natural choice to use for the
integration in the variable t. The corresponding grid in χ is given by

χj − χc = t1/α
j = j1/α1t1/α. (2.47)

The Stokes wave has the square root singularity at ζ = iχc with the expansion

z̃(ζ )− iyb = f (ζ )=
∞∑

j=0

ieijπ/4aj(ζ − iχc)
j/2, (2.48)

where aj are real constants (see Part I (Dyachenko et al. 2016) as well as §§ 6 and 7
below for the justification of that expansion). This implies (see Part I) the square root
singularity for the density ρ(χ)∝ (χ − χc)

1/2 in the integrand of (2.18). Using (2.47)
with α = 1/2 one then obtains that

χj − χc =1t2j2, j∼ 1, (2.49)

which is in excellent agreement with the numerical values of χj obtained in Part I
provided 1t2 ∼ 0.01χc.

In the range χc � χ � 1, the density ρ(χ) ∝ χ 2/3 is well approximated by the
density ρ(χ)∝χ 2/3 of the limiting Stokes wave (1.1), as shown in Figure 8 of Part I.
Using (2.47) with α = 2/3, one obtains that

χj = cj3/2, (2.50)

where c is the positive constant and j� 1 such that χj � 1. We additionally have
to approximate the transition between two scalings (2.49) and (2.50) at intermediate
values of j. Exploring fits of χj versus j for multiple sets of numerical data from Part I,
we found that a satisfactory fit (including the required transition) is given by the
linear combination of the scaling (2.49) and (2.50) superimposed with the exponential
growth in j as follows

χj = χc[c1j2 + c2j3/2ec3j], (2.51)
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where the positive fitting constants c1, c2 and c3 change slowly with χc (a change of
χc of 5 orders of magnitude results in a change of these constants of less than 50 %).

Based on these observations, we implemented the following procedure to find
numerical values of c1, c2 and c3 for each value of χc. We choose N from the
previous step (with the previous value of χc). (If performing the current step we are
not able to reach the desired precision with the increase of M1, i.e. the LSN algorithm
would not converge to the prescribed tolerance of 10−16, then N has to be increased
by 1 and the current step restarted from the beginning.) Next we choose jmatch from
the values χj of table 4 of Part I (or from the grid obtained at the previous step in
χc) such that χjmatch/χc∼ 100 which ensures the required condition χj�χc. (For larger
values of χc one can use a smaller value of χjmatch/χc to make sure that χjmatch � 1.
For example, for the case H/λ = 0.1387112446 . . . (first numerical case mentioned
above in this section) we choose χjmatch/χc ∼ 34.) After choosing the value of jmatch,
we perform a fourth-order interpolation of χj as a function of j and find values of the
first and second derivatives, χ ′j and χ ′′j , of that interpolant at j= jmatch. We use these
3 numerical values χjmatch , χ

′
jmatch

and χ ′′jmatch
to find the numerical values of c1, c2 and

c3 by matching the corresponding values of (2.51) and its two derivatives at j= jmatch.
Then, (2.51) provides the numerical values of χj, j = 1, 2, . . . , jmatch, completing the
construction of the numerical grid χj, j = 1, 2, . . . , N for the current step in χc. (If
any of the constants c1, c2 or c3 turns negative then one has to decrease χjmatch/χc to
avoid this although in our numerical examples, we experienced such problems only
if χjmatch/χc was chosen & 103.) Then the LSN algorithm is used as described above.

The efficiency of the grid χj, j= 1, 2, . . . , N thus obtained requires a good initial
estimate of χc with a relative accuracy of ∼ 10−3. This is achieved by a gradual
increase of H/λ (decrease of χc) at multiple previous steps of the LSN algorithm.
Values of χc are found at each previous step with high precision by the procedure of
§ 6.1. The polynomial extrapolation of χc to the current step is performed to reach the
required relative accuracy ∼10−3. Note that the numerical detection of an incorrect
value of the χc prediction is straightforward because it would cause oscillations of
γj (with a changing of its sign) around several of the smallest values of the index
j= 1, 2, 3, . . . .

We would like to stress the difference between the LSN algorithm of this section
compared with the method of Part I (Dyachenko et al. 2016). A Stokes wave
was obtained in Part I by using the Fourier series representation of the solution
combined with a Newton-conjugate-gradient iterations method. After that, the
resulting solution was approximated at the real line of ζ by a numerically stable
version of the Padé algorithm. Thus the Padé approximants of Part I were only the
auxiliary tool to compactly represent the result of the calculation of Stokes waves. In
contrast, in this section we completely bypass the Fourier series representation and
numerically solve the integrals (2.22), (2.43)–(2.46) directly by Padé approximants.
The cost of the approach of this section is that instead of 2N free parameters
χj, γj,N = 1, 2, . . . ,N of the Padé approximates of Part I, we now have only N free
parameters γj, N = 1, 2, . . . , N, while the values of χj, N = 1, 2, . . . , N are fixed by
the grid algorithm described previously in this section. This means that to achieve
the same precision, we need to approximately double the value of N compared with
Part I. This is however a very moderate cost compared with the Fourier method of
Part I.

In conclusion, in this section we demonstrated the performance of the LSN
algorithm for several values of χc which were previously explored in Part I by the
Fourier method. We expect that the much smaller values of N, required for the LSN
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570 P. M. Lushnikov

algorithm compared with Fourier method will allow us to find Stokes waves for much
smaller values of χc than achievable by the Fourier method of Part I. In addition,
(2.41) can be used to exclude c from the system, allowing us to gradually increase
H/λ (or equivalently decrease χc) thus avoiding the problem of the non-monotonic
dependence of c on H/λ encountered in Part I. The detailed practical realization of
that limit of smaller χc is beyond the scope of this paper.

3. Alternative form for the equation of a Stokes wave
The equation for a Stokes wave can be written in a form which is alternative to

(2.1) as follows

y=− i
2
(z̃− ¯̃z)=− i

2
(z− z̄)= c2

2

(
1− 1
|zu|2

)
. (3.1)

Appendix A shows the equivalence of both forms of (2.1) and (3.1) for a Stokes wave.
Also, appendix B discusses differences in the derivations of (2.1) and (3.1) from the
basic equations of the potential flow of an ideal fluid with a free surface. Different
versions of (3.1) (up to a trivial scaling of parameters and shifts of y by different
constants) were used by Grant (1973), Williams (1981), Plotnikov (1982) and Tanveer
(1991).

Transforming (3.1) into the variable ζ (1.6) results in

z̃− ¯̃z= ic2

(
1− 4

(1+ ζ 2)2|zζ |2
)
. (3.2)

Solving (3.1) for zu, one obtains that

zu = c2

z̄u[i(z− z̄)+ c2] , (3.3)

which is the nonlinear ODE provided z̄u is known. In a similar way, (3.2) results in

zζ = 4
(1+ ζ 2)2

c2

z̄ζ [i(z− z̄)+ c2] . (3.4)

Equations (3.3) and (3.4) can be considered as ODEs for z(u) and z(ζ ), respectively,
if z̄ is the known function. Then solving the ODE provides a convenient tool to
study the analytical properties of a Stokes wave in different sheets of a Riemann
surface of z.

4. Asymptotic of Stokes wave at Im(w)→+∞ and jump at branch cut
An asymptotical solution of a Stokes wave in the limit Im(w)→+∞ is obtained

from (3.3) as follows. Equation (2.9) implies the exponential convergence ∝ e−iw

of z̃(w) to its zeroth Fourier harmonic, z̃(w)→ iy0 for Im(w)→ −∞. Here y0 is
determined by the zero-mean elevation condition (2.15) and is given by (2.39) and
(2.40). ¯̃z(w) converges exponentially to −iy0 for Im(w)→∞. Then z̄u and z̄ in (3.3)
can be replaced by 1 and −iy0, respectively in that limit resulting in

1+ z̃u = c2

i(z̃+ iy0)+ c2
, Im(w)→∞. (4.1a,b)
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Integrating (4.1) in the upper right quadrant w ∈ C+, Re(w) > 0 for v � 1, one
obtains that

z̃(w)− ic2 ln [z̃(w)+ iy0] =−w+ c+, (4.2)

where c+ is the constant. A similar integration in the upper left quadrant w ∈
C+,Re(w) < 0, for v� 1 results in

z̃(w)− ic2 ln [z̃(w)+ iy0] =−w+ c−, (4.3)

where c− is the constant.
Taking w= π+ iv in (4.2) and w=−π+ iv in (4.3) together with the periodicity

condition z̃(π+ iv)= z̃(−π+ iv) results in the condition for constants c+ and c− as
follows

c− − c+ =−2π. (4.4)

Exponents of (4.2) and (4.3) are similar to the Lambert W-function. Solving these
equations in the limit v→∞ (see e.g. Lushnikov, Dyachenko & Vladimirova (2013),
Dyachenko, Lushnikov & Vladimirova (2013b) for details on a similar technique) one
obtains that

z̃(w) = −w+ c± + ic2 ln [−w+ c± + iy0] − c4 ln [−w+ c± + iy0]
−w+ c± + iy0

+O
(

ln [−w+ c± + iy0]
−w+ c± + iy0

)2

, (4.5)

where the use of c+ and c− assumes that Re(w) > 0 and Re(w) < 0, respectively. If
(3.3) is used instead of the reduced (4.1) in derivation of (4.5), then an additional
exponentially small error term O(e−v/v) appears in right-hand side of equation (4.5).
The two leading-order terms −w + c± and ic2 ln [−w+ c± + iy0] on the right-hand
side of equation (4.5) are similar to (2.22) of Tanveer (1991), where these terms were
derived with a somewhat similar procedure to the derivation of (4.5).

One concludes from (4.5) that z(w) has a complex singularity at z = ∞ which
involves logarithms with an infinite number of sheets of Riemann surface. Full
analysis of that singularity requires us to study next-order terms in (4.5), which is
beyond the scope of this paper.

Taking an additional limit w = iv ± ε, ε > 0, ε→ 0 in (4.1), using the condition
(4.4) and expanding in v� 1, one obtains the jump at the branch cut

z(iv − 0)− z(iv + 0)=−2π+ 2πc2

v
+O(v−2), (4.6)

where the branch cut v ∈ [ivc, i∞] is crossed in counterclockwise direction.
According to (2.19), the jump (4.6) is related to the density ρ(χ) (2.18) as follows

ρ(χ)|χ=tanh (v/2) = 1− c2

v
+O(v−2), v� 1. (4.7)

For v � 1, one obtains from (1.6) that 1 − χ � 1 and v = − ln((1− χ)/2) + O
(1− χ). Then the density (4.7) takes the following form

ρ(χ)= 1+ c2

ln
(

1− χ
2

) +O
(

1
ln2(1− χ)

)
. (4.8)
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Equation (4.8) implies a unit value

ρ(1)= 1 (4.9)

and the divergence of the derivative

dρ(χ)
dχ
' c2

(1− χ) ln2

(
1− χ

2

)→∞ for χ→ 1. (4.10)

5. Numerical procedure to analyse the structure of sheets of Riemann surface for
a Stokes wave by ODE integration
We use Padé approximants of the Stokes wave found in Part I (Dyachenko et al.

2016) and provided both in tables of Part I, through the electronic attachment to
Dyachenko et al. (2015a) and at the web link Dyachenko et al. (2015b) in the
following form

zpade(u)≡ u+ iyb +
N∑

n=1

γn

tan(u/2)− iχn
, (5.1)

with the numerical values of yb, the pole positions χn and the complex residues γn
(n= 1, . . . ,N) given there. These data of the Padé approximation allow us to recover
the Stokes wave at the real axis w = u (and similar at ζ = Re(ζ ) in the complex
ζ -plane) with a relative accuracy of at least 10−26 (for the vast majority of numerical
cases the actual accuracy is even higher by several orders of magnitude).

Analytical continuation of the Padé approximant (5.1) from u to w ∈ C is given
by the straightforward replacing of u by w. This analytical continuation is accurate
for w ∈ C− but loses precision for w ∈ C+ in the neighbourhood of the branch cut
w ∈ [ivc, i∞) where the discrete sum (5.1) fails to approximate the continuous
parameterization (2.18) of the branch cut. Thus a significant loss of precision
compared to 10−26 occurs only if the distance from the given value of ζ to the
branch cut is smaller than, or comparable to, the distance between neighbouring
values of χn in (5.1).

Numerical integration of the ODE (3.4) (and occasionally the ODE (3.3)) in this
section were performed using 9(8)th order method explicit Runge–Kutta algorithm
with adaptive stepping embedded into the Mathematica 10.2 software. This algorithm
is the implementation of Verner (2010) and is based on the embedded pair of ninth-
and eighth-order methods with a higher-order method used for the adaptive step size
control. We used a numerical precision of 55 digits and reached an accuracy of 10−30

to make sure that no significant accumulation of the ODE integration error occurs
in comparison with the 10−26 precision of the Padé approximants of Stokes waves.
We also independently verified the accuracy of the numerical ODE integration by
comparing with the analytical results of § 6 in the neighborhood of ζ = ±iχc in
multiple sheets of a Riemann surface.

In the first step of our investigation, the ODE (3.4) was solved numerically to find
the approximation zODE(ζ ) for z(ζ ) with ζ ∈ C+ in the first and the second sheet
of the Riemann surface using the approximants (5.1) for z̄ and z̄ζ . Here the first
(physical) sheet of the Riemann surface corresponds to z(ζ ), with fluid occupying
ζ ∈C−. The second (non-physical) sheet is reached when the branch cut ζ ∈ [iχc, i] (or

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

40
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.405


Branch point singularities for Stokes waves 573

F

A

D

E

B

C

F

A

D

E

B

C

F

A

D

E

B

C

F

A

D

E

B

C

First (physical) sheet Second sheet(a) (b) Third sheet(c) nth sheet(d)

0 0 0 0

FIGURE 2. (Colour online) A schematic of integrating contours in different sheets of the
Riemann surface in the complex variable ζ (1.6) near the origin. The first (physical) sheet
(a) has a square root singularity only at ζ = iχc in C+. Then integrating the ODE (3.4)
over the closed contour ABCDA provides the analytical continuation into the second sheet
(b) of the surface as the branch cut (dashed line) is crossed. As a result, z(ζ ) does not
return to its initial value at the origin 0. In contrast, integrating the ODE (3.4) over the
closed contour ABEFA (or over ABCDA provided its height falls below ζ = iχc), one
does not cross the branch cut so z(ζ ) returns to the same value at the origin with z(ζ )
remaining in the first sheet. The second sheet has the second square root branch point
singularity at ζ = −iχc at the lower complex half-plane C−. Integrating over contour
ABEFA in the second sheet results in the analytical continuation of z(ζ ) into the third
sheet (b) of the Riemann surface. Starting from the third sheet, extra square root branch
points appear away from the imaginary axis. Branch cuts for these off-axis singularities
are chosen to be extended horizontally as shown by dashed lines in (c,d). The number of
these branch points grows with the growth of the sheet number, as schematically shown in
(d). We avoid crossing these branch by modifying contours ABCDA and ABEFA, as shown
in (c,d). Note that these two contours must by symmetric with respect to the real line even
if the chosen pair of off-axis singularities (symmetric with respect to the imaginary axis)
are located only in one of the complex half-planes C+ and C− in the given sheet. This
is because z̄(ζ ) is needed for the integration of the ODE (3.4).

equivalently w∈ [ivc, i∞)) is crossed from the first sheet. This ODE was solved with
initial conditions at the real line ζ = Re(ζ ) by integrating along different contours
in ζ ∈ C+. A high precision of at least 10−30 was achieved with the ODE solver to
avoid any significant additional loss of precision compared with the 10−26 precision of
(5.1). That ODE solution used z̄pade and (z̄pade)ζ which through complex conjugation
corresponds to the approximants (5.1) in ζ ∈C−, thus avoiding any loss of precision
compared with 10−26. We stress here that the use of the Padé approximation is
the auxiliary tool which does not make any difference in the final result because
it matches the precision of the Fourier series. The Fourier series of Part I can be
used directly instead of Padé approximant, which however would require a significant
increase of computational resources to reach the same precision.

Figure 2(a) shows a typical 0BCDA0 rectangular contour for the ODE integration
which was used for the analytical continuation of the Stokes wave into the second
sheet of Riemann surface. The ODE solution in the second sheet is obtained when
the integrating contour crosses the branch cut [iχc, i]. The second subsequent crossing
of that branch cut returns zODE(ζ ) to the first sheet, confirming the square root branch
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FIGURE 3. (Colour online) The amplitude |z̃(ζ )| (a) and the argument Arg(z̃(ζ )) (b)
versus arclength in the variable ζ (scaled by χc) along the closed contour 0BCDA0
shown in figure 2(a) (the contour is passed twice in the counterclockwise direction) for
ODE integration (which provides the analytical continuation of the Stokes wave in the
complex plane) of the Stokes wave solution with H/λ= 0.1387112446 . . . (corresponding
to χc = 3.0056373876 . . . · 10−3, see table 1 of appendix C for details on the numerical
Stokes wave). The contour width is |AB| = 2|0B| = 2χc. Solid lines are for the contour
height |BC| = 4χc (the contour 0BCDA0 twice crosses the branch cut [iχc, i] in the
counterclockwise direction) and dotted lines are for the contour height |BC| = χc/2 (for
this height, the contour 0BCDA0 does not cross the branch cut [iχc, i] and the total
arclength is smaller). It is seen that the solid lines are periodic over the total arclength
(two round trips around the contour 0BCDA0 are needed to return to the initial value z(0)
in the first sheet of the Riemann surface) compared with the half-arclength periodicity of
the dotted lines (the contour 0BCDA0 is located in the first sheet only with one roundtrip
sufficient to return to the initial value z(0)).

point at ζ = iχc. Figure 3 provides a numerical example of such double crossing.
In other words, it was found that the ODE integration along any closed contour in
ζ ∈ C+ with double crossing of the branch cut (twice integrating along 0BCDA0)
always returns the solution to the original one. If the height of the 0BCDA0 contour
is made smaller than χc, then there is no crossing of the branch cut and the 0BCDA0
integration returns to the initial value after a single round trip, as shown by dashed
curves of figure 3. In a similar way, if the height of 0BCDA0 exceeds 1, then there
is no crossing and zODE(ζ ) stays in the first sheet (crossing of the branch cut (i, i∞)
corresponds to the jump on 2π in the u direction in the w plane while there is no
jump in z̃ because of 2π-periodicity).

We also verified that there are no singularities in the limit |Re(ζ )| → ∞ by
switching to the ODE integration (3.3) of the w variable. In that limit Re(w)→±π

which allows us to extend the contour in w over the entire 2π period in the u
direction (in the ζ variable it would require us to integrate over the infinite interval
−∞ < Re(ζ ) <∞). For all subsequent cases in this section it is assumed that such
integration in w was performed to check the limit Re(w)→±π.

The second step of our investigation was to find z(ζ ) by integrating the ODE (3.4)
in the second sheet with ζ ∈C− using the complex conjugate of zODE(ζ ), ζ ∈C+ found
at previous step to approximate z̄ and z̄ζ . The initial condition at that step was at the
real line ζ =Re(ζ ) with z(ζ ) obtained at the step one for the second sheet.

The second step reveals a new square root singularity at ζ = −iχc in the second
sheet. Similar to step one, double integration over the contour ABEFA shows that
z(ζ ) returns to its original value, confirming that ζ =−iχc is the square root branch
point. Crossing of the branch cut [−iχc,−i] (corresponding to the new branch point
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ζ =−iχc) allows us to go into the third sheet of the Riemann surface. At that crossing,
one has to simultaneously cross from the first to the second sheet for z̄ and z̄ζ which
again are the complex conjugate of zODE(ζ ), ζ ∈ C+ found at previous step. It was
found that the third sheet has branch points both at ζ = iχc and ζ =−iχc. In a similar
way to previous steps, at step three one crosses the branch cut [iχc, i] to go into the
fourth sheet of the Riemann surface which is found to have branch points both at
ζ = iχc and ζ =−iχc. At step four, one crosses the branch cut [−iχc,−i] to go into
the firth sheet of the Riemann surface which again has branch points both at ζ = iχc

and ζ =−iχc etc. At each sheet, z̄, z̄ζ used in integration of the ODE (3.4) is behind
by one in sheet number compared to the current sheet, i.e. values of z̄, z̄ζ from the first,
second, third etc. sheets are used for the ODE integration in the second, third, fourth
etc. sheets, respectively. After exploring several hundreds of sheets for different values
of χc, one concludes that the number of sheets is infinite. The double integration over
the contours ABCDA and ABEFA shows that ζ = iχc and ζ = −iχc are square root
branch points in all sheets. In the next section, this conjecture is strengthened by the
analysis of expansions at ζ =±iχc of these multiple sheets.

Starting from the third sheet, extra square root branch points appear away from the
imaginary axis. The existence of these off-axis singularities are closely related to the
analysis of § 8. They are located significantly further away from the origin than the
on-axis ζ =±iχc singularities. These singularities appear at each sheet, starting from
the third one, in pairs located symmetrically with respect to the imaginary axis, as
schematically shown in figure 2. The symmetric location of the pairs of singularities
is required from the symmetry condition

z̄(−ζ )=−z(ζ ). (5.2)

That symmetry condition results from the symmetry y(x)= y(−x) of the Stokes wave
in physical variables. The location of the first pair of off-axis square root singularities
at ζ = ζ̄c1 and ζ =−ζc1 is schematically shown in figure 2(c). By adaptively increasing
the horizontal and vertical sizes of the contour ABEFA of figure 2, we found that for
χc� 1 the first pair of off-axis square root singularities are located in the third sheet
at ζ = ζ̄c1 and ζ =−ζc1 with

ζ̄c1 ' (17.1719− i10.7734)χc. (5.3)

Other off-axis pairs are located even further away both from the real and imaginary
axes as schematically shown in figure 2. Branch cuts for all off-axis singularities are
chosen to be extended horizontally, as shown by the dashed lines in figure 2(c,d). For
|A0|, |0B|. 17.1719χc, one can use the same contour as in (a) for all sheets. However,
for larger values of |A0|, |0B| one has to bypass off-diagonal singularities, as shown
in figure 2(c,d), to keep the enumeration of the sheets as described above (based on
the on-axis ζ =±iχc singularities). The number of off-axis branch points grows with
an increase of the sheet number. We also performed double integration over closed
contours around multiple off-axis singularities and found that each of them is a square
root branch point.

A by-product of the ODE integration of this section is that one can also calculate
the jump −2πρ(χ) (see (2.18)) at the branch cut of the first sheet with high
precision. For example, one can start the ODE integration at ζ = 0 in the first sheet
and integrate until reaching a small neighbourhood of ζ = iχc without crossing the
branch cut ζ ∈ [iχc, i]. After this, one can integrate the ODE independently along
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two line segments ζ = [±ε + iχc,±ε + i], ε→ 0 and calculate the difference between
these two integrations recovering ρ(χ) with the precision of our simulations, ∼ 10−26.
A comparison of this high precision ρ(χ) with the numerical approximation of
ρ(χ) obtained in Part I from the continuous limit of the Padé approximation (see
figures 6b, 7 and 8 in Part I) confirmed the numerical error order estimates of § 6.2
of Part I. Also we found that (4.6)–(4.10) are also in the excellent agreement with
the numerical values of ρ(χ), confirming the asymptotical analysis of § 4.

An ODE of the type (3.4) was numerically integrated in Tanveer (1991) based on
the Taylor series representation of a Stokes wave in the physical sheet (the additional
conformal mapping from the unit disk used in Tanveer (1991) onto the half-plane C−
of ζ (1.6) makes that Taylor series similar to the Fourier series representation of Part
I (Dyachenko et al. 2016)). This representation allowed Tanveer (1991) for the first
time to extend the numerical integration into the upper half C+ of the second Riemann
sheet and demonstrate the existence of the square root branch point there. Thus the
numerical ODE integration of Tanveer (1991) is similar to our first step of this section
restricted to C+ only.

Note that it was assumed throughout this section that any crossing by the ODE
integration contour of both [i, i∞] and [−i∞,−i] is avoided. Such a crossing would
be harmless in the first sheet because of 2π-periodicity of z̃(w). However, starting
from the second sheet, z̃(w) is generally non-periodic in w. Thus the branch cuts
[i, i∞] and [−i∞, −i] can no longer be ignored, contrary to the case of the first
sheet discussed in the Introduction. This implies that a crossing of these branch cut
provides the additional sheets of the Riemann surface. We however do not explore
these sheets here because they have a distance 1 from the real axis in the ζ plane for
any value of χc, thus not contributing to the formation of the limiting Stokes wave.

6. Series expansions at ζ = ±iχc and structure of the Riemann surface for a
Stokes wave
Equation (3.1), together with the definition (2.17), show that singularities at

ζ =±iχc are coupled through complex conjugation. We found in Part I (Dyachenko
et al. 2016) that there is only one singularity (a square root branch point) in the
first (physical) sheet of the Riemann surface which corresponds to the finite complex
w plane. In addition, there is a singularity at ζ = i which is the complex infinity
w= i∞ and is discussed in § 4. Following Part I, we chose the line segment [iχc, i]
as the branch cut connecting these two singularities in the first sheet of the Riemann
surface, as sketched on figure 1(a). The singularity at ζ =−iχc is not allowed in the
first sheet because z is analytic in the fluid domain w ∈C−.

Consider the expansions in the lth sheet of the Riemann surface

zl,+(ζ )=
∞∑

j=0

ieijπ/4a+,l,j(ζ − iχc)
j/2, l= 1, 2, . . . , (6.1)

and

zl,−(ζ )=
∞∑

j=0

ie−ijπ/4a−,l,j(ζ + iχc)
j/2, l= 1, 2, . . . , (6.2)

where subscripts ‘+’ and ‘−’ mean expansions at ζ = iχc and ζ =−iχc, respectively.
Here, the branch cuts of (ζ − iχc)

1/2 and (ζ + iχc)
1/2 are assumed to extend from
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ζ = iχc upwards and from ζ = −iχc downwards, respectively, as shown in figure 1.
Often, the location of the branch cut of square root is taken on the negative real axis
of the argument. To use this standard agreement about the location of the branch cut,
one can replace (ζ − iχc)

j/2 and (ζ + iχc)
j/2 in (6.1) and (6.2) by (−i)j/2(iζ + χc)

j/2

and ij/2(−iζ + χc)
j/2, respectively.

Following § 5, we enumerate sheets of the Riemann surface according to the
branch points ζ = ±iχc as follows. A crossing of the branch cut [iχc, i] in the
counterclockwise direction means going from the l= 2n− 1th sheet of the Riemann
surface to the l= 2nth sheet with n= 1, 2, . . . . Case l= 1 corresponds to the physical
sheet of the Riemann surface. Similarly, crossing of a branch cut [−iχc, −i] in the
counterclockwise direction means going from the l = 2nth sheet of the Riemann
surface to the l = 2n + 1 sheet with n = 1, 2, . . .. Plugging expansions (6.1) and
(6.2) into (3.1) and collecting terms of the same order of (ζ ± iχc)

j/2 results in the
following relations

a−,2n,1 = 0,

a−,2n,2 = −2
1− χ 2

c

,

a−,2n,3 = 16c2

3(1− χ 2
c )

2a+,2n−1,1(c2 − a+,2n−1,0 − a−,2n,0)
,

a−,2n,4 = 2χc

(1− χ 2
c )

2
+ 4c2

(1− χ 2
c )

2(c2 − a+,2n−1,0 − a−,2n,0)2

− 8c2[2+ (−1+ χ 2
c )a+,2n−1,2]

(1− χ 2
c )

3a2
+,2n−1,1(c2 − a+,2n−1,0 − a−,2n,0)

,

. . .



(6.3)

for n > 1 and

a+,2n+1,1 =− 16c2

3(1− χc
2)2a−,2n,3(c2−a−,2n,0 + a+,2n+1,0)

,

a+,2n+1,2 = 2
1− χc

2 +
128c4

9(1− χ 2
c )

4a2
−,2n,3(c2 − a−,2n,0 − a+,2n+1,0)3

+ 32c2[−2χc + (1− χ 2
c )

2a−,2n,4]
9(1− χ 2

c )
4a2
−,2n,3(c2 − a−,2n,0 − a+,2n+1,0)

,

a+,2n+1,3 = . . . ,
. . .


(6.4)

for n > 1.
One cannot take n= 0 in (6.4), which corresponds to l= 1 (the physical sheet of

the Riemann surface). This special case has to be considered separately because in
the physical sheet, there is no singularity at ζ =−iχc (no singularity inside the fluid
domain). This implies that

a−,1,2j+1 = 0 for j= 0, 1, 2, . . . (6.5)
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Solving (6.1), (6.2) and (3.1) for l= 1 with the series expansion at ζ =−iχc subject
to the condition (6.5) results in the following expressions

a+,1,0 = c2 − a−,1,0,

a+,1,1 = −23/2c
(1− χ 2

c )
1/2[2+ (1− χ 2

c )a−,1,2]1/2
,

a+,1,2 = 4
3(1− χ 2

c )
− a−,1,2

3
,

a+,1,3 =−[(2+ (1− χ
2
c )a−,1,2)]5/2

21/218c(1− χ 2
c )

3/2

+ 21/2c[2χc − 2χc(−1+ χ 2
c )a−,1,2 + (−1+ χ 2

c )
2a−,1,4]

(1− χ 2
c )

3/2[2+ (1− χ 2
c )a−,1,2]3/2

,

a+,1,4 = . . . ,
. . .



(6.6)

Expressions (6.6) are uniquely determined by values of c, χc and a−,1,2j, j =
0, 1, 2, . . ., where all expressions under square roots are positive and the principle
branch of all square roots is assumed. In contrast, the expressions (6.3) and (6.4)
are not the unique solutions of (6.1), (6.2) and (3.1). In addition to the solution
(6.3), one can obtain two more spurious solutions for a−,2n,j. However, these spurious
solutions do not correspond to a Stokes wave. One spurious solution has a−,2n,2j+1= 0
for j= 1, 2, . . ., i.e. it does not have a singularity at ζ =−iχc. The second spurious
solution has either a radius of convergence well below χc or even a zero radius of
convergence. Both solutions are spurious because they cannot have the same value in
the region of overlap of the disks of convergence of both expansions (6.1) and (6.2).
After spurious solutions for a−,2n,j are discarded, one obtains the unique solution (6.3)
as well as the solution (6.4) a+,2n+1,j which also turn out to be uniquely defined.
Another peculiar property of the solution (6.3) is that a−,2n,1 = 0 while a+,2n+1,1 6= 0
as given by the solution (6.4).

The right-hand side of (6.4) provides the explicit expressions for the coefficients
a+,2n+1,j, j = 1, 2, . . ., for the 2n + 1th sheet of the Riemann surface through the
coefficients a−,2n,j1 , 06 j1 6 j+ 2 at the 2nth sheet. The only coefficient which remains
unknown is the zeroth coefficient a+,2n+1,0 for each n> 1. In a similar way, the right-
hand side of (6.3) provides the explicit expressions for the coefficients a−,2n,j j =
1, 2, . . ., for the 2nth sheet of the Riemann surface through the coefficients a+,2n−1,j1 ,
0 6 j1 6 j− 2, j= 1, 2, . . ., at the 2n− 1th sheet. The only coefficient which remains
unknown is the zeroth coefficient a−,2n,0 for each n > 1.

The explicit expressions for a+,2n+1,j and a−,2n,j become cumbersome with an
increase of j beyond the values shown explicitly in (6.3) and (6.4). The explicit
expressions a+,2n+1,j and a−,2n,j were obtained with the help of symbolic computations
in the Mathematica 10.2 software. These expressions were used to calculate values
of all coefficients a+,2n+1,j and a−,2n,j for j> 1 numerically, with any desired precision
(typically we used quadruple (quad) precision with 32 digits accuracy and took into
account all j in the range 16 j6 200). The remaining coefficients a−,2n,0 and a+,2n+1,0

for each n> 1, as well as the numerical value of χc, were determined by a numerical
procedure which is described below in §§ 6.1 and 6.2.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

40
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.405


Branch point singularities for Stokes waves 579

Values of a+,2n+2,j and a−,2n+1,j are obtained from a+,2n+1,j and a−,2n,j by the
following relations

a+,2n+2,j = (−1)ja+,2n+1,j, n= 0, 1, 2, . . . ,
a−,2n+1,j = (−1)ja−,2n,j, n= 1, 2, . . . ,

}
(6.7)

which immediately follows from the condition at the crossing of branch cuts.

6.1. Finding of χc, from matching the series expansions at ζ =±iχc in the first sheet
Equations (6.6) determine the values of a+,1,j, j=0,1,2, . . . from a−,1,2j, j=0,1,2, . . .,
thus relating the series expansions at ζ =−iχc and ζ = iχc at the first sheet. The series
at ζ =−iχc is given by (6.2) with l= 1 together with the condition (6.5). That series
contains only integer powers of ζ + iχc. The disk of convergence |ζ + iχc|< r of that
series is determined by the branch point at ζ = iχc, which implies that the radius of
convergence is r= 2χc. The series at ζ = iχc at the first sheet is given by (6.1), (6.6)
and contains both integer and half-integer powers of ζ − iχc. The disk of convergence
|ζ − iχc|< r is determined by the branch point at ζ =−iχc of the second sheet. Thus
the radius of convergence is also r = 2χc. In other words, the radius of convergence
of the series (6.1), (6.6) in the physical sheet is determined by the singularity in the
second (non-physical) sheet.

Numerical values of the coefficients a−,1,2j, j= 0, 1, 2, . . . are immediately obtained
by the differentiation of the Padé approximants of Part I for each numerical value
of H/λ. The accuracy of that approximation for the coefficients a−,1,2j is checked by
plugging these numerical values into the series (6.2) with l= 1 and using (6.5). For
numerical evaluation this series is truncated into a finite sum

z1,−,sum(ζ )=
jmax∑
j=0

ie−ijπ/4a−,1,j(ζ + iχc)
j/2 =

jmax/2∑
j=0

ie−ijπ/2a−,1,2j(ζ + iχc)
j, (6.8)

where jmax is chosen sufficiently large to match the numerical precision of the Padé
approximants. It is convenient to evaluate this sum at ζ = 0, which is well inside the
disk of convergence |ζ + iχc|< 2χc. It was found that jmax= 200 at ζ = 0 is sufficient
to reach a numerical quad precision of ∼10−32 for the simulations of Part I. This
numerical value of jmax (sufficient to reach quad precision) is only weakly dependent
on H/λ. To understand this weak dependence, one can note that |ζ + iχc|ζ=0 = χc,
which is one-half of the radius of convergence of the series (6.2). The asymptotics of
the terms of the series (6.2) for large j are determined by the radius of convergence as
follows |a−,1,2j/a−,1,2j+2|'2χc. Then the truncation of the series (6.2) by the finite sum
(6.8) with jmax = 200 gives an error ∼a−,1,jmaxχ

jmax/2
c ∼ 2−jmax/2 ∼ 10−30 in comparison

with the Padé approximation of a Stokes wave at ζ = 0.
It worth noting here that the number of derivatives jmax/2= 100 which were reliably

recovered above from the Padé approximation was very large, which demonstrates
the superior efficiency of the Padé approximation compared with the Fourier series.
For example, if instead of the Padé approximation of the Stokes wave one uses
the Fourier series representation of the Stokes wave, then the number of derivatives
calculated from that series with a high numerical precision would be limited to just
a few (approximately 10–20 derivatives if a relative error of ∼ 1 in the derivatives is
allowed).

To obtain numerical values of a+,1,j, j = 0, 1, 2, . . . from (6.6) one also has to
know the numerical value of χc. Part I described a numerical procedure to recover χc
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580 P. M. Lushnikov

with an accuracy of ∼10−10, which is significantly below the accuracy .10−26 of the
numerical Stokes solution itself and its Padé approximation. In this paper, to greatly
improve the precision of χc, one sets a condition that χc is chosen in such a way
as to allow the series (6.1) to recover the value of z(0) with an accuracy better than
∼10−26.

Similar to (6.8), the series (6.1) is truncated to a finite sum

z1,+,sum(ζ )=
jmax∑
j=0

ieijπ/4a+,1,j(ζ − iχc)
j/2, (6.9)

where we again choose that jmax = 200, which is enough to match the quad precision
of ∼10−32. Contrary to (6.8), the sum (6.9) includes also half-integer powers of
ζ − iχc because ζ = iχc is the square root branch point. Using (6.6) and (6.9) with
the numerical values of a−,1,2j, j= 0, 1, 2, . . ., obtained as described in the beginning
of this section, one finds in the first sheet a numerical value of z1,+,sum(0) for each
numerical value of χc. Then, numerical Newton (secant) iterations are performed
over χc aiming to ensure that z1,+,sum(0) converges to ' zpade(0), i.e. χc is chosen
such that z1,+,sum(0) recovers the value of zpade(0). This provides χc with a precision
of at least 10−26, which is limited by the precision of the Padé approximation. Part
I also demonstrated the calculation of a Stokes wave well beyond quad precision
by using variable precision arithmetics with an achieved accuracy ∼200 digits, thus
increasing the accuracy for χc is also possible if needed. Table 1 of appendix C
provides numerical values of χc which correspond to the Padé approximations of the
Stokes wave found in Part I.

6.2. Finding a+,2n+1,0 and a−,2n,0 from matching the series expansions at ζ =±iχc in
the second, third etc. sheets

The procedure for finding numerical values of χc and a+,1,j, j= 0, 1, 2, . . . described
in § 6.1, together with (6.3) and (6.7), allows us to immediately find a−,2,j, j= 1, 2, . . .
for each given value of a−,2,0. Similar to (6.8) and (6.9), a notation is used such that
zl,+,sum(ζ ) and zl,−,sum(ζ ) are the finite sums corresponding to the truncation of the
series zl,+(ζ ) (6.1) and zl,−(ζ ) (6.2), respectively. We assume that jmax' 200 for these
finite sums in the sheets l= 1, 2, . . .. The numerical Newton iterations at the first step
are performed over a−,2,0, aiming to ensure that z2,−,sum(0) converges to z2,+,sum(0). At
the second step, the Newton iterations allow us to find a+,3,0 by matching z3,−,sum(0)
and z3,−,sum(0). In a similar way, the third, fourth etc. steps allow to find a−,4,0, a+,5,0,
a−,6,0, a+,7,0, . . . Then, using (6.7), one obtains values of a+,n,0 and a−,n,0 for all
positive integers n, completing the analytical continuation of the Stokes wave into the
disks |ζ ± iχc|< 2χc in the infinite number of sheets of the Riemann surface.

The result of this analytical continuation was compared with the analytical
continuation by ODE integration of § 5, giving excellent agreement, which is only
limited by the standard numerical accuracy ∼10−26 of the Stokes wave in the physical
sheet. Increasing the accuracy of the analytical continuation is straightforward by
increasing jmax for the finite sums zl,+,sum(ζ ) and zl,−,sum(ζ ) (and similarly by increasing
the accuracy for the ODE integration) provided the Stokes wave precision is increased.
Table 3 of appendix C provides a sample of the numerical values of a−,2n,0, a+,2n+1,0,
for n= 1, 2, 3 obtained by the numerical method outlined in this section.
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Branch point singularities for Stokes waves 581

7. Singularities of the Stokes wave for finite values of w

Grant (1973) and Tanveer (1991) showed that the only possible singularity in
the finite complex upper half-plane of the physical sheet of the Riemann surface is
of a square root type. This result is consistent both with the simulations of Part I
(Dyachenko et al. 2016) and the numerical integration of ODE (3.4) in § 5.

The analysis of Tanveer (1991) is based on a version of (3.2) together with the
assumption of the analyticity of z̄(w) in C+ for the first sheet of the Riemann surface.
Assume that one performs the ODE integration in the second, third etc. sheets of the
Riemann surface as described in §§ 5 and 6, with z(w) at the nth sheet coupled to
z̄(w) in the n− 1th sheet. Here, the counting of sheets follows § 5 and assumes that
−π < Re(w) < π, |Im(w)| <∞ for all sheets. Then the analysis of Tanveer (1991)
can be immediately generalized to the nth sheet at values of w= w1 such that z(w)
has no singularity at w= w̄1 in the n− 1th sheet (see (7.16) below). Coupling of the
square root singularities at ζ = ±iχc, which is studied in § 6, however goes beyond
the analysis of Tanveer (1991).

The series expansions of § 6 shows that square root singularities can occur at any
finite values of w=w1 away from the real axis. It was found in § 6 that each square
root singularity can either have a counterpart square root singularity at the complex
conjugated point w = w̄1 in the same sheet or can exists without a counterpart
singularity at w = w̄1, thus going beyond the case analysed by Tanveer (1991). A
question still remains regarding whether any other type (beyond square root) of
coupled singularities at w=w1 and w= w̄1 in the same sheet is possible.

Going from the first sheet to the second one, then from the second one to the third
one etc., one concludes that the only way for a singularity other than a square root
one to appear is if it were coupled with the square root singularity in the previous
sheet. Otherwise, it would violate the above mentioned generalization of the result of
Tanveer (1991) to the arbitrary sheet. Consider a general power-law singularity of z(w)
at w= w1 coupled with the square root singularity of z̄(w) at w= w̄1. We write that
general singularity in terms of double series as follows

z(w)=
∑
n,m

cn,m(w−w1)
n/2+mα, (7.1)

where α is a real constant, cn,m are complex constants and n, m are integers. By
shifting n and m one concludes that without loss of generality one can assume that

0<α < 1/2. (7.2)

After the complex conjugation, the square root singularity of z(w) at w= w̄1 is given
by the following series

z̄(w)=
∞∑

n=0

dn(w−w1)
n/2, (7.3)

where dn are complex constants. Coupling of z(w) and z̄(w) in (3.3) explains why
the half-integer powers n/2 must be taken into account in (7.1). It is convenient to
transform from w into a new complex variable

q≡ (w−w1)
1/2. (7.4)
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582 P. M. Lushnikov

Equation (3.3) for the new variable q takes the following form

zq = 4q2c2

z̄q[i(z− z̄)+ c2] . (7.5)

The series (7.1) is then transformed into

z(q)=
∑
n,m

cn,mqn+2mα, (7.6)

while the series (7.3) runs over integer powers,

z̄(q)=
∞∑

n=0

dnqn. (7.7)

The series (7.6) can be also called the ψ-series, see e.g. Hille (1997). If α is a rational
number, then in (7.1) one can gather together all terms with the same power of q thus
reducing (7.1) to a Puiseux series

z(q)=
∞∑

n=−∞
c̃nq2n/k, (7.8)

where k is a positive integer.
If one places the additional restriction that there is no essential singularity at q= 0,

then one has to replace (7.6) with the truncated series

z(q)=
∑

n>n0,m>m0

cn,mqn+2mα, (7.9)

for the integer constants n0 and m0. Plugging (7.7) and (7.9) into the Stokes wave
(7.5), moving the denominator to the left-hand side in (7.5) and collecting terms with
the same power of q, starting from the lowest power, one obtains that 2α must be an
integer for any values of n0 and m0 and all values of dn. Thus no new solutions in
the form (7.9) exist beyond those was found in § 6.

One can also study the singularities using the classification of movable and
fixed singularities in nonlinear ODEs of first order in the general form zq = f (q, z)
Golubev (1950), Ince (1956), Hille (1997). The positions of fixed singularities for the
independent complex variable q are determined by the properties of the ODE, i.e. by
singularities of the function f (q, z). In contrast, the position of a movable singularity
is not fixed but typically is determined by an arbitrary complex constant. To analyse
the singularities, it is convenient to introduce a new unknown

ξ(q)≡ 1
i(z− z̄)+ c2

. (7.10)

Then (7.5) takes the following form

ξq = iz̄qξ
2 − 4iq2c2ξ 3

z̄q
, (7.11)
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where z̄(q) is assumed to be known and is determined by z(q̄) from the previous sheet
of the Riemann surface. Equation (7.11) has a cubic polynomial right-hand side in ξ
which ensures that it has a movable square root singularity

ξ =
∞∑

n=−1

cn(q−C)n/2, (7.12)

provided C 6= 0, z̄q(C) 6= 0 (see e.g. Golubev 1950; Ince 1956; Hille 1997), where cn
and C are complex constants. Using (7.4), (7.10) and the condition C 6=0, one recovers
the expansion (7.3) with w1 replaced by w1 +C2, thus the movable singularity (7.12)
is reduced to the square root singularity in w.

Equation (7.11) has a fixed singularity at q = 0 provided z̄q(0) 6= 0. To show that
one uses a new unknown ψ ≡ 1/ξ to transform (7.11) into

ψq =
−iz̄2

qψ + 4iq2c2

z̄qψ
, (7.13)

which has 0/0 singularity in right-hand side for q=ψ = 0, satisfying the criteria for
the existence of a fixed singularity (see Golubev 1950; Hille 1997).

Consider now a particular case z̄q(0)= 0 and z̄qq(0) 6= 0 which corresponds to the
expansion (6.3). One can define a new function

g(q)≡ z̃q

q
, g(0) 6= 0 (7.14a,b)

and rewrite (7.13) as follows

ψq = −iqg(q)2ψ + 4iqc2

g(q)ψ
. (7.15)

Generally, this equation still has a fixed singularity because of the 0/0 singularity in
right-hand side. However, in the particular case when g(q) is an even function of q,
one can define the function g̃(q2)≡ g(q), which is analytic in the variable q̃≡ q2 at
q= 0 . This case means that z(w) is analytic at w= w1. Then one transforms (7.15)
into the equation

ψq̃ = −ig̃(q̃)2ψ + 4ic2

2g̃(q̃)ψ
, (7.16)

which does not have a fixed singularity. Equation (7.16) together with (7.12) reproduce
the result of Tanveer (1991) applied to all sheets of the Riemann surface.

Thus the approaches reviewed in Golubev (1950), Ince (1956), Hille (1997) applied
to (7.5) are consistent with square root singularities and the series expansions of § 6
for all sheets of the Riemann surface. However, these approaches cannot exclude the
possibility of the existence of other types of singularity. Note that examples given in
Golubev (1950), Ince (1956), Hille (1997) also show that the existence of the fixed
singularity in the ODE at the point q= 0 does not necessary mean that the singularity
occurs in the general ODE solution z(q) at that point.

One concludes that a coupling of the essential singularity at w=w1 with the square
root singularity at w= w̄1 cannot be excluded neither by the series analysis used in
(7.4)–(7.9) nor by looking at the fixed ODE singularities through (7.10)–(7.15).
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However, the simulations of § 5 and series expansions of § 6 clearly indicate the
absence of any singularities beyond the square roots ones in all sheets of the
Riemann surface for the non-limiting Stokes wave in ζ ∈C�((−i∞,−i] ∪ ([i, i∞)))
(i.e. everywhere in the complex plane C except the branch cuts (−i∞, −i] and
[i, i∞)). In the first sheet the branch cuts (−i∞,−i] and [i, i∞) are not significant,
as explained in the Introduction, and the only a non-square root singularity exists at
ζ = i, see § 4. It is conjectured here that non-square root singularities do not appear
in all sheets of the Riemann surface for ζ ∈C�((−i∞,−i] ∪ [i, i∞)).

As discussed at the end of § 5, singularities are possible at the boundary of the strip
Re(w) = ±π which corresponds to the branch cuts [i, i∞) and [−i∞, −i) in the ζ
plane. However, these branch cuts are separated by the distance π from the origin in
the w plane (or by the distance 1 in the ζ plane) and they cannot explain the formation
of the limiting Stokes wave as vc→ 0. The same is true for the singularity at w→ i∞
(ζ→ i) analysed in § 4.

8. Conjecture on recovering of the 2/3 power law of the limiting Stokes wave from
an infinite number of nested square root singularities of a non-limiting Stokes
wave as χc→ 0

One concludes from §§ 6 and 7 that the only possibility for the formation of a 2/3
power-law singularity (1.1) of the limiting Stokes wave is through the merging of
an infinite number of square root singularities from different sheets of the Riemann
surface in the limit vc→ 0 . The total number of square root singularities could be
either finite or infinite for vc> 0, both cases are compatible with the expansions of § 6
(although an infinite number of singularities appears to hold for the generic values of
the expansion coefficients of § 6). Both numerical ODE integration of § 5 and series
expansions of § 6 reveal that the number of sheets of the Riemann surface related to
the singularities at ζ =±iχc exceeds several hundred for a wide range of numerical
values 10−7 .χc .0.2. This suggests that the number of sheets is infinite for all values
of vc. In any case, the number of singularities must be infinite as vc→ 0.

Here, a conjecture is made that the limiting Stokes wave occurs at the limit vc→ 0
of the following leading-order solution

z= i
c2

2
+ c1χ

1/6
c

√
ζ − iχc

+ (3c)2/3

2
e−iπ/6[(ζ − iχc)

1/2 + (−2iχc)
1/2]
√
α1χ

1/4
c +

√
(ζ − iχc)1/2 + (−2iχc)1/2

×
√
α3χ

1/16
c +

√
α2χ

1/8
c +

√
α1χ

1/4
c +

√
(ζ − iχc)1/2 + (−2iχc)1/2

×

√√√√
α2n+1χ

1/22n+2

c +
√
α2nχ

1/22n+1

c +
√
· · · +

√
α1χ

1/4
c +

√
(ζ − iχc)1/2+(−2iχc)1/2

× · · · + (3c)2/3

2
e−iπ/6[(ζ − iχc)

1/2 + (−2iχc)
1/2]

×
√
α̃1χ

1/4
c +

√
(ζ − iχc)1/2 + (−2iχc)1/2

×
√
α̃3χ

1/16
c +

√
α̃2χ

1/8
c +

√
α̃1χ

1/4
c +

√
(ζ − iχc)1/2+(−2iχc)1/2
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×

√√√√
α̃2n+1χ

1/22n+2

c +
√
α̃2nχ

1/22n+1

c +
√
· · · +

√
α̃1χ

1/4
c +

√
(ζ − iχc)1/2 + (−2iχc)1/2

× · · · + h.o.t., (8.1)

which is the infinite product of increasingly nested square roots. This conjecture was
first presented in Lushnikov, Dyachenko & Korotkevich (2015). Equation (8.1) has two
terms with nested roots, one with non-zero complex constants α1, α2, α3, α4, . . . and
another with non-zero complex constants α̃1, α̃2, α̃3, α̃4, . . . which are related through
complex conjugation as follows

α̃1 = ᾱ1e−iπ/4, α̃2 = ᾱ1e−iπ/8, . . . , α̃n = ᾱne−iπ/2n+1
, . . . (8.2)

All these constants, including another complex constant c1, are of the order of O(1)
independent of χc. The relations (8.2) ensure that the symmetry condition (5.2) is
satisfied.

At ζ � χc one obtains from (8.1), using the asymptotic of products of all square
roots, that

z∝ ζ 1/2+1/8+1/32+1/128+··· = ζ 2/3 (8.3)

exactly reproducing the Stokes solution (1.1) while the term c1χ
1/6
c

√
ζ − iχc vanishes

as χc→ 0. For small but finite χc, the limiting Stokes solution (1.1) is valid for χc�
ζ � 1, as seen from (8.1). For ζ ∼ 1, the higher-order terms denoted by h.o.t. both in
(1.1) and (8.1), become important such as the term with the irrational power

∝ ζµ, µ= 1.4693457 . . . (8.4)

(Grant 1973; Williams 1981).
Different branches of all nested square roots in (8.1) choose different sheets of the

Riemann surface following the numeration of sheets used in § 5. In particular, the
principal branch of (ζ − iχc)

1/2 in the expression g(ζ ) ≡ (ζ − iχc)
1/2 + (−2iχc)

1/2

corresponds to the first sheet. To understand this, one expands g(ζ ) at ζ =−iχc, which
results in

g+(ζ )= 2(−2iχc)
1/2 + ζ + iχc

2(−2iχc)1/2
+O(ζ + iχc)

2, (8.5)

where the subscript ‘+’ means taking the principle branch of (ζ − iχc)
1/2. For the

second (negative) branch of (ζ − iχc)
1/2 one obtains that

g−(ζ )=− ζ + iχc

2(−2iχc)1/2
+O(ζ + iχc)

2, (8.6)

with the subscript ‘−’ meaning that second branch.
The expression g(ζ ) enters under the most inner square root into each term of

the product in (8.1). Then, using the expansion (8.5), one obtains that the series
expansion of (8.1) at ζ =−iχc contains only non-negative integer powers of ζ + iχc,
thus confirming that z(ζ ) is analytic at ζ =−iχc. This means that the condition (6.5) is
satisfied. In contrast, taking the expansion (8.6) one obtains that the series expansion
of (8.1) at ζ =−iχc is of the type (6.2) containing non-negative half-integer powers
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of ζ + iχc, as expected for all sheets starting from the second sheet. In addition, the
term g(ζ ) in the square brackets in (8.1) ensures that a−,2n,1= 0, as required by (6.3).
The expansion of (8.1) at ζ = iχc has half-integer powers of ζ − iχc for both branches
of g(ζ ), thus being consistent with the square root singularity at ζ = iχc in all sheets
of the Riemann surface, including the first sheet, in agreement with (6.1), (6.4) and
(6.6).

Choosing two possible branches of all other nested square roots (besides the most
inner square root) in (8.1) one obtains the expansions (6.1) and (6.2), at ζ =±iχc with
different coefficients a+,l,j and a−,l,j at each lth sheet. The values of these coefficients
are determined by the values of χc, c1, α1, α2, α3, α4, . . . together with the contribution
from the h.o.t. terms in (8.1). One concludes that the ansatz (8.1) is consistent with
the properties of a non-limiting Stokes wave studied in this paper, which motivates
conjecture (8.1). Also, the coefficients α1, α2, α3, . . . determine additional square
root branch points which are located away from the imaginary axis at a distance
larger than χc from the origin in the third and higher sheets of the Riemann surface.
Values of these coefficients can be determined from the locations of the branch points
independently recovered from the integration, similar to what is described in § 5 (see
also § 8.1 for an example of recovering α1).

8.1. Numerical verification of the conjecture
Now we provide a numerical demonstration of the efficiency of the conjecture (8.1)
by using the simplest non-trivial approximation of (8.1) which takes into account only
the threefold nested roots as follows

z '
(

i
c2

2
+ c0χ

2/3
c

)
+ c1χ

1/6
c

√
ζ − iχc + c2ζ

+ c3χ
1/24
c [(ζ − iχc)

1/2 + (−2iχc)
1/2]
√
α1χ

1/4
c +

√
(ζ − iχc)1/2 + (−2iχc)1/2

+ c̄3e(−3iπ)/8χ 1/24
c [(ζ − iχc)

1/2 + (−2iχc)
1/2]

×
√
ᾱ1e(−iπ)/4χ

1/4
c +

√
(ζ − iχc)1/2 + (−2iχc)1/2, (8.7)

where we have added the term c2ζ , as well the constants c0, c2 and c3, to approximate
the neglecting of the other nested roots (which include α2, α3, . . .) in comparison
with (8.1). In other words, we approximate all the more than threefold nested roots
in (8.1) by Taylor series expansion, keeping only the constant and linear terms in ζ
in that expansion. The constant terms result in adding the constants c3 and c̄3 in front
of the nested roots as well as in the addition of the small correction c0χ

2/3
c to the

constant term ic2/2 of (8.1). The linear terms result in the appearance of the constant
c2 replacing higher-order nested roots of (8.1). Also, the factor c̄3e(−3iπ)/8 ensures the
symmetry (5.2) and the additional scaling χ 1/24

c provides for ζ ∼ χc the same total
scaling ∝χ 2/3

c of the nested square roots of (8.7) as in (8.1). The approximation (8.1)
can be valid only up to moderately large values of Re(ζ )= ζ (a comparison with (8.1)
suggests that it could be valid up to values of ζ in several tens of χc after which
higher-order nested roots must come into play).

To find the numerical values of α1, c0, c1, c2 and c3 without any fit we use the
following procedure. At the first step, we determine from the contour integration of § 5
the location (5.3) of the first pair of off-axis square root singularities (located at ζ = ζ̄c1

and ζ = −ζc1). Then we solve equation α1χ
1/4
c +

√
(ζ̄c1 − iχc)1/2 + (−2iχc)1/2 = 0.
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x
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y
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FIGURE 4. (Colour online) A comparison of the limiting Stokes wave (dotted line) with
(8.7) and the numerical solution for the Stokes wave (the last two of these are shown by
the single solid line because they are visually indistinguishable with maximum difference
between them ' 4 × 10−6) for χc = 2.9691220994 . . . × 10−7. Solid line corresponds to
−50χc 6 ζ 6 50χc.

(It corresponds to the zero under the threefold square root in (8.1)) in the third sheet
of the Riemann surface. Then, together with (5.3) it gives that

α1 '−0.0955383− i1.8351. (8.8)

Note that the second square root ζ =−ζc1 (symmetric with respect to the imaginary
axis) is ensured by the similar term with ᾱ1e(−iπ)/4 in (8.7). At the second step, we
expand (8.1) in the first sheet of the Riemann surface in powers of (ζ − iχc)

1/2. After
that, we match the first five coefficients of that expansion to the analytical expressions
of the coefficients a+,1,j, j = 1, . . . , 5, of the expansion (6.6) obtained in § 6. This
matching results in explicit expressions for c0, c1, c2 and c3. For example, for a Stokes
wave with χc = 2.9691220994 . . . × 10−7 (corresponding to the last line of table 1
of appendix C, see that Appendix for more details on the numerical Stokes wave)
we obtain that c0 = i17.1920 . . ., c1 = e−iπ/43.81499 . . . , c2 = −1.8779 . . . and c3 =
1.42696 . . . − i1.8849 . . .. Changing of χc by several orders of magnitude results in
changing these coefficients only within the range 5 %–10 %.

We demonstrated the efficiency of the obtained numerical values of c0, c1, c2 and c3
in two independent ways. In the first way, it was checked that the coefficients a+,1,j
of (6.6) for j = 6, . . . are well reproduced (within 4 % and 7 % accuracy for j 6 10
and j 6 100, respectively) by the expansion of (8.7) with the same numerical values
of c0, c1, c2 and c3. This implies that the approximate expression (8.7) captures the
significant property of the convergence of the series (6.6) rather than being just the
match of the few first terms of that series. The second way of efficiency demonstration
is provided in figure 4, where excellent agreement is shown between the numerical
solution of the Stokes wave from Part I (Dyachenko et al. 2016) and the expression
(8.7) for −50χc 6 ζ 6 50χc. This range of ζ is far beyond the disk of convergence
|ζ − iχc|< 2χc of the series (6.6).

9. Concluding remarks

In summary, it was found that the Riemann surface corresponding to a non-limiting
Stokes wave consists of an infinite number of sheets corresponding to an infinite
number of square root branch points located at ζ = ±iχc in all sheets except the
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first sheet. The first (physical) sheet has only one singularity at ζ = iχc while
avoiding a singularity at ζ =−iχc which ensures that the Stokes wave represents the
analytical solution inside the fluid domain. Two means of analytical continuation into
all these sheets were used, the first based on ODE integration of § 5 and the second
based on the coupled series expansions (6.1)–(6.6) in half-integer powers at ζ =±iχc.

To go beyond the disks of convergence |ζ ± iχc| < 2χc of the series expansions
(6.1)–(6.6), it is conjectured in § 8 that the leading-order form of a non-limiting Stokes
wave consists of an infinite number of nested square roots (8.1). These nested square
roots can recover the series expansions (6.1)–(6.6) within their disks of convergence
|ζ ± iχc| < 2χc. For |ζ ± iχc| � χc, well beyond these disks of convergence, the
asymptotic (8.3) is valid, thus ensuring the nested square roots have the form of the
2/3 power-law singularity of the limiting Stokes wave in the limit χc→ 0.

There are two other infinite sequences of Riemann sheets resulting from (i) off-axis
square root singularities in the third and higher sheets of Riemann surface, as analysed
in §§ 5 and 8 and (ii) the singularity at ζ = i (corresponding to w = i∞) which
involves logarithms, as analysed in § 4. However, these extra sheets do not contribute
to the qualitative change of the power-law singularity from 1/2 (non-limiting Stokes
wave) to 2/3 (limiting Stokes wave) near the origin, as given by the asymptotic
(8.3). However, these extra sheets are expected to be important for the analysis of
a Stokes wave for ζ ∼ 1, where the higher-order terms become important, such as
the term (8.4) with irrational power (Grant 1973; Williams 1981). The analysis of
these terms is beyond the scope of this paper. These terms might be also essential
to answer the question left open by Longuet-Higgins & Fox (1977), McLeod (1997)
regarding whether the number of oscillations in the slope of a non-limiting Stokes
wave increases to infinity as a non-limiting Stokes wave approaches its limiting form.
Note that these oscillations vanish for the limiting Stokes wave, as was proven in
Plotnikov & Toland (2004).

Appendix A. Equivalence of two forms of the equation for a Stokes wave

In this Appendix we show that both forms (2.1) and (3.1) of the equation for a
Stokes wave are equivalent to each other. Then § 2 implies that (2.13) and (2.22)
are also equivalent to (2.1) and (3.1). Equation (2.1) was obtained by Dyachenko
et al. (1996) while (3.1) in slightly different forms was used by numerous authors
including Grant (1973), Schwartz (1974), Longuet-Higgins & Fox (1977), Stokes
(1880b), Williams (1981) and Tanveer (1991). Appendix B explains the derivation of
(3.1) starting from the basic equations of potential flow of an ideal fluid with a free
surface.

Applying the Hilbert operator Ĥ (2.2) to (2.1) and using the relations (2.14) and
(2.15) one obtains that

c2x̃u − yxu + Ĥ[yyu] = 0, (A 1)

which is equivalent to (2.13). We define a new variable

f ≡−Ĥ[yyu] (A 2)

and split it into two functions

f = f+ + f−, (A 3)
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using (2.4), (2.7), (2.8) and (2.9) such that f+ and f− are the functions which are
analytic in upper half-plane C+ and lower complex half-plane C− of w, respectively.
Note that the zeroth harmonic f0 = 0 as follows from the definition (A 2). Taking the
linear combination of f and Ĥf , using (2.1), (A 1) and (A 2), one finds that

xuĤf + yuf = c2x̃uyu. (A 4)

Expressing real and imaginary parts as

xu = 1
2
(zu + z̄u), yu = 1

2i
(zu − z̄u) (A 5a,b)

together with (A 3), (2.10) one obtains from (A 4) that

z̄uf+ − zuf− = c2

4
(¯̃z2

u − z̃2
u). (A 6)

Recalling that zu is analytic in C− and, respectively, z̄u is analytic and in C+, we apply
the projector (2.11) to (A 6) to find that

f+ = c2

4

¯̃z2
u

z̄u
, (A 7a)

f− = c2

4
z̃2

u

zu
, (A 7b)

where zu 6= 0 in C− and z̄u 6= 0 in C+ because z(w) is the conformal transformation
in C−.

Then using (A 1), (A 2), (A 3), (A 5) and (A 7) with some algebra we recover
(3.1), thus completing the proof of its equivalence to (2.1). Note that the mean-zero
elevation condition (2.15) is essential in that proof making (A 1) valid. Shifting of
the origin in y-direction would result in a non-zero value of the mean elevation
ymean ≡ (1/2π)

∫ π

−π
η(x, t) dx. Then one would have to replace y by y− ymean in (3.1).

For example, Tanveer (1991) took ymean = −c2/2. A similar choice of ymean = −c2/2
was used by Grant (1973), Williams (1981) and Plotnikov (1982) up to a trivial
scaling of parameters.

Appendix B. Stokes wave in the rest frame and in the moving frame
Starting from Stokes (1880b), it has been common to write the Stokes wave

equation in a moving reference frame in transformed form with a velocity potential
and a streamfunction used as independent variables, see e.g. Grant (1973), Williams
(1981) and Tanveer (1991). The purpose of this appendix is to relate this traditional
form of the Stokes wave equation the form used by Dyachenko et al. (1996),
Zakharov, Dyachenko & Vasiliev (2002).

In physical coordinates (x, y), the velocity v of a two-dimensional potential flow of
an inviscid incompressible fluid is determined by the velocity potential Φ(x, y, t) as
v = ∇Φ. Here, x is the horizontal axis and y is the vertical axis pointing upwards.
The incompressibility condition ∇ · v = 0 results in the Laplace equation

∇2Φ = 0 (B 1)
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inside the fluid −∞ < y < η(x, t). The Laplace equation is supplemented by the
dynamic boundary condition (the Bernoulli equation at the free surface y= η(x, t))(

∂Φ

∂t
+ 1

2
(∇Φ)2

)∣∣∣∣
y=η(x,t)

+ η= 0 (B 2)

and the kinematic boundary condition

∂η

∂t
=
(
−∂η
∂x
∂Φ

∂x
+ ∂Φ

∂y

)∣∣∣∣
y=η(x,t)

(B 3)

at the free surface. In our scaled units, the acceleration due to gravity is g= 1. We
define the boundary value of the velocity potential as Φ(x, y, t)|y=η(x,t) ≡ ψ(x, t).
Equations (B 1), (B 2) and (B 3), together with the decaying boundary condition at
large depth

Φ(x, y, t)|y→−∞ = 0 (B 4)

form the closed set of equations. Equation (B 4) implies that the rest frame is
used such that there is no average fluid flow deep inside the fluid. See also
Part I (Dyachenko et al. 2016) for details on the basic equations of free surface
hydrodynamics.

Consider the stationary waves moving in the positive x direction (to the right) with
constant velocity c so that

Φ =Φ(x− ct, y),
η= η(x− ct).

}
(B 5)

It was obtained in Dyachenko et al. (1996) (see also Part I (Dyachenko et al. 2016))
that Ψ =−cĤy= cx̃, where Ĥ is the Hilbert transform (2.2). Respectively, ĤΨ = cy.
The complex velocity potential Π at the free surface is given by

Π =Ψ + iĤΨ = c(x+ iy− u). (B 6)

The analytical continuation of (B 6) into the lower complex half-plane w∈C− is given
by

Π = c(z−w)= cz̃. (B 7)

We perform a Galilean transformation to a frame moving with velocity c in the
positive x direction with the new horizontal coordinate x′≡ x− ct so that the velocity
potential and the surface elevation become time independent as Φ(x′) and η(x′),
respectively. Alternatively, one can also define a velocity potential in the moving
frame as Φ̃(x′, y)= Φ̃(x− ct, y) such that

Φ = (x− ct)c+ Φ̃(x− ct, y). (B 8)

Then (B 2) results in

1
2
(∇Φ̃)2

∣∣∣∣
y=η(x−ct)

+
(
η− c2

2

)
= 0 (B 9)
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and (B 3) gives (
−∂η
∂x
∂Φ̃

∂x
+ ∂Φ̃

∂y

)∣∣∣∣∣
y=η(x−ct)

= 0. (B 10)

The decaying boundary condition (B 4) is replaced by

Φ̃(x′, y)|y→−∞ =−c. (B 11)

Equations (B 9), (B 10) and (B 11) are the standard equations for a Stokes wave in
the moving frame, see e.g. Grant (1973), Williams (1981). Often small variations of
(B 9), (B 10) and (B 11) are used such as a trivial shift of the origin in the vertical
direction η− c2/2→η, assuming that the Stokes wave moves in the negative direction
(to the left) and rescaling c to one (then the spatial period 2π is also rescaled) as was
done in Grant (1973).

Similar to (B 8), we define the streamfunction in two forms, Θ(x′) and Θ̃(x′) (in
the rest frame and in the moving frame, respectively) as follows

Θ = cy+ Θ̃(x− ct, y). (B 12)

Using (B 8) and (B 12) one obtains correspondingly that two forms of the complex
velocity potential, Π(x′) and Π̃(x′), are given by

Π =Φ + iΘ = cz− c2t+ Φ̃ + iΘ̃. (B 13)

A comparison of (B 7) and (B 13) reveals that

Π̃ = Φ̃ + iΘ̃ =−c(w− ct)=−cw′, (B 14)

where w′≡w− ct. Thus Π̃ is the same as w′ (up to the multiplication on −c) which
explains why using the velocity potential Φ̃ and the streamfunction Θ̃ as independent
variables in Stokes (1880b), Grant (1973), Williams (1981) is equivalent to using w′ as
the independent variable in Dyachenko et al. (1996). The difference between Π and
Π̃ is reflected in the boundary conditions (B 4) and (B 11) such that for Π , the fluid
at infinite depth has a zero velocity while for Π̃ , the velocity is −c in the x-direction.
A technical advantage of working with Π instead of Π̃ in Dyachenko et al. (1996) is
that the decaying boundary condition (B 4) allows us to relate the real and imaginary
parts of Π through the Hilbert transform for real values of w′ as Θ = ĤΦ and Φ =
−ĤΘ . Equations (B 9) and (B 14) result in a Stokes wave equation of the form of
(3.1), noting that (∇Φ̃)2|y=η = |Π̃u|2/|zu|2 = c2/|zu|2.

Appendix C. Tables for numerical values of χc for a Stokes wave

Table 1 provides a sample of the dependence of the singularity position χc on the
scaled wave height H/λ = H/(2π) for a Stokes wave. Numerical values of χc are
obtained by the numerical procedure described in § 6.1. The Padé approximants from
Part I (Dyachenko et al. 2016) (these approximants are also available through the
electronic attachment to Dyachenko et al. (2015a) and at the web link Dyachenko
et al. (2015b)) are used for each values of H/λ. More values of χc for different values
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Wave height H/λ Singularity position χc

0.077390566513510100664367446945009 0.22959283981280615879703284574991
0.10042675172528485854673515635249 0.12126855832745608069685459720991
0.11396866940628458279840665192065 0.071654598419719678169515049620847
0.12063157457100181211171486096916 0.050466513002046555340085106251597
0.13046836752896146189584028585057 0.022711769117183995733113183176661
0.13871124459012593791450261565795 0.0030056373876010407473234354599642
0.14011096764402710691403135029555 0.00069951386487208337732279647662665
0.14056584420653835444977911685203 0.00024252541408812956956630147113284
0.14075662532618050016439516401203 0.0001131402886276901411780810604808
0.14086825990337854565346642922133 0.000056590609636696915098098733019878
0.14091839307555128402812965695553 0.000036214071851881467799287017287358
0.14094119430696937198416665739014 0.000028063945797678144251500481216356
0.14094867821783188240349944668053 0.000025549865907771481807832323273915
0.14095778935504595764411825281530 0.000022600407539173053002286018858435
0.14097009565718766875950104063752 0.000018816656490602043348418618380363
0.14098407663748727496462567878823 0.00001480968355336403686583695738714
0.14100153154854889551064171690484 0.000010273655389226364040855903301072
0.14103365111671204571809985597404 3.5012288974834512273437793255939e-6
0.14105431648358048728514606849313 6.0520035443913536064479745209207e-7
0.14105777885488320816492860225696 2.9691220994639291094028846634237e-7

TABLE 1. A sample of numerical values of χc versus the scaled Stokes wave height H/λ.

H/λ c χc

0.07739055 1.0300 0.22958
0.1139758 1.0660 0.071667
0.13055 1.0860 0.022769

TABLE 2. Parameters of the three highest Stokes waves of table 1 from Tanveer (1991).
Units are converted to the notation of this paper with the same number of digits kept as
in Tanveer (1991).

of H/λ are also available at Lushnikov (2015) and at the web link Dyachenko et al.
(2015b). The accuracy of the numerical values of χc is at least 10−26, which is limited
by the precision of the Padé approximation.

We chose parameters at the first, third and fifth lines of table 1 to correspond to
Stokes waves with c= 1.03, 1.066 and 1.086, respectively (here the exact values of
c are used). These three particular values of the parameters correspond to the three
highest Stokes waves provided in table 1 of Tanveer (1991). Table 2 reproduces these
three highest waves from table 1 of Tanveer (1991), where the position of the square
root branch point ζ = iχc is recovered from the parameter ζ0 of Tanveer (1991) as
χc = −(1 + ζ0)/(1 − ζ0). Also H in Tanveer (1991) is the half-height of the Stokes
wave so it is divided by π in table 2. The comparison of tables 1 and 2 reveals that
while all digits except the last one or two agree for two smaller values of H/λ, the
agreement loses one more digit with an increase of H/λ. It is possible that Tanveer
(1991) expected this loss of numerical precision because the number of digits provided
in table 1 of Tanveer (1991) decreases with an increase of H/λ.

Table 3 provides a sample of the numerical values of a−,2n,0 and a+,2n+1,0 for four
different values of χc corresponding to table 1. These numerical values of χc are
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χc = 0.12126 . . . χc = 0.05046 . . . χc = 0.000242 . . . χc = 2.969 . . .× 10−7

a−,2,0 1.947517181530394 1.332875450393561 0.616114648091185 0.5967616372529635
a+,3,0 1.933089192507101 1.395722669719572 0.6227276830074182 0.5968472222666076
a−,4,0 2.823744469669705 1.830765178354924 0.630550992725188 0.5969268580437934
a+,5,0 2.715883020102187 1.841263995239744 0.6356646908933044 0.5969952862738779
a−,6,0 3.541346294820654 2.238582675537623 0.642377214720984 0.5970622067844041

TABLE 3. A sample of the numerical values of a−,2n,0 and a+,2n+1,0, n=1,2,3, for different
χc. More accurate numerical values of χc can be recovered from table 1.

obtained by the numerical procedure described in § 6.2. For brevity, only 16 digits
of the numerical precision are shown.
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