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Abstract
Interactions between units in political systems often occur across multiple relational contexts. These rela-
tional systems feature interdependencies that result in inferential shortcomings and poorly-fitting models
when ignored. General advancements in inferential network analysis have improved our ability to under-
stand relational systems featuring interdependence, but developments specific to working with inter-
dependence that cross relational contexts remain sparse. In this paper, I introduce a multilayer
network approach to modeling systems comprising multiple relations using the exponential random
graph model. In two substantive applications, the first a policy communication network and the second
a global conflict network, I demonstrate that the multilayer approach affords inferential leverage and pro-
duces models that better fit observed data.

Keywords: Civil/domestic conflict; environmental politics and policy; international conflict; quantitative methods

1. Introduction
Many of the political phenomena we are interested in are outcomes of interactions between
units in political systems. These relational systems are complex, featuring interdependence
among units that cannot be appreciated when the system is reduced to independent compo-
nents. Network approaches to modeling provide useful alternatives (Lazer, 2011; Cranmer
and Desmarais, 2016), and recent advancements in inferential network analysis have improved
our ability to understand these complex systems (Cranmer et al., 2017). Notably, adoption of
the exponential random graph model (ERGM) and its extensions, which allow for statistical
inference explicitly on network generating processes, presents us with a way to test relational
theories in a theoretically and statistically valid manner (Cranmer and Desmarais, 2011;
Lusher et al., 2013). At the present, the ERGM family of models has been used to study a variety
of political phenomenon.1

ERGMs are highly flexible in the features that can be specified as network generating pro-
cesses, and by extension in the types of networks that can be modeled, but contemporary appli-
cations of ERGMs have been largely limited to systems containing relations of a single type.
However, political systems often are not as cleanly self-contained as we imply when we treat
them as monoplex networks, defined as those with only a single type of tie. Across various com-
monly studied political systems, researchers have been calling for recognition that there are

© The European Political Science Association 2019

1Examples include alliance ties (Cranmer et al., 2012a,b), political communication (Song, 2014), international conflict
(Cranmer and Desmarais, 2011), lobby group influence (Heaney, 2014), membership nominations (Leifeld and Fisher,
2017), political contributions (Heaney and Leifeld, 2018), immigration (Windzio, 2018), economic sanctions (Cranmer
et al., 2014), and global governance (Hollway and Koskinen, 2016).
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meaningful interdependencies between them, or to treat these systems as subcomponents of lar-
ger processes (e.g., Nye and Keohane, 1971; Keck and Sikkink, 1998; Keohane, 2009; Alter and
Meunier, 2009). For example, in studies of organized conflict, commonly identified mechanisms
driving conflict initiation such as diversionary incentives (Downs and Rocke, 1994; Tir and
Jasinski, 2008) often imply that different types of belligerent behavior within the global conflict
system can be substitutes or complements of each other (Starr, 1994). Another example can be
found within the broad set of related research agendas on policy-making at different levels of pol-
itical organization. In these policy networks, information transmission between political actors
occurs through a variety of channels (Leifeld and Schneider, 2012; Heaney, 2014; Montgomery
and Nyhan, 2017), and tend to have complementary effects on whether influence is successful
(Böhmelt, 2010).

Complex interdependent systems such as the the global conflict system can be modeled as
multilayer networks, a generalized framework for representing networks that are multimodal,
multiplex, temporally dynamic, or characterized by any combination of these complex features
(Boccaletti et al., 2014; Kivelä et al., 2014). This approach opens important avenues of research,
but at the present, the development of methods for studying multilayer networks is a relatively
nascent endeavor. In particular, ERGM-based inferential network analysis is highly adaptable
to multilayer networks, but aside from methodological illustrations using a specific subtype of
multilayer networks (e.g., Wang et al., 2013, 2016), fully implemented multilayer applications
of ERGMs that model interdependence across subsystems remain limited, especially in the
study of politics (Hollway and Koskinen, 2016).

This paper facilitates better understanding of inferential analysis of multilayer networks as an
approach for studying complex interdependent systems comprising multiple relational contexts.
I draw on developments in network science (Boccaletti et al., 2014; Kivelä et al., 2014), in particular
the multilayer network as a generalized framework for representing networks comprising differ-
entiated nodes and ties, to improve researchers’ ability to better model social and political phe-
nomena as they are intuitively understood. I describe an approach to conducting statistical
inference on multilayer networks using the ERGM. There have been previous work on statistical
inference of multilayer networks (Wang et al., 2013, 2016), but these applications focus on a spe-
cific subtype of multilayer networks. My work builds on these studies by describing the approach
in terms of the generalized multilayer framework so as to encompass a wider range of social and
political phenomena. Finally, this paper has a companion R package, multilayer.ergm,
which facilitates the use of the ERGM with multilayer networks.2

The multilayer network approach to modeling political systems presents researchers with a
tool to more carefully account for the complexity present in political phenomena. In addition
to the applications I present in this paper, this approach is applicable to a wide range of topics
in political science, including international regimes (Alter and Meunier, 2009), legislatures
(Montgomery and Nyhan, 2017), and political campaigns (Heaney and Leifeld, 2018). As a
network-based approach, it facilitates a systems perspective to understanding politics without sac-
rificing the granularity that unit-level analysis affords. In the study of international relations, in
particular, researchers have consistently presented the global system as one that features qualita-
tively distinct actors interacting with one another across a multitude of contexts that vary along
many dimensions (Keck and Sikkink, 1998; Alter and Meunier, 2009). As I demonstrate in this
paper, the multilayer network approach excels at these applications.

The remainder of the paper is organized into two sections. First, using conflict in the
post-Cold War Levant as a running example, I describe the process of modeling systems charac-
terized by interdependence that span multiple relational contexts using the ERGM, including how
to formally represent these systems as multilayer networks and how to specify appropriate model

2A more detailed introduction of the multilayer.ergm package, along with replication code, is included in the online
appendix.
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terms. Second, I describe two types of multilayer networks, the multiplex and the node-colored
networks, that are useful for representing a range of different social and political systems. I illus-
trate each type of multilayer network using a substantive application. For the multiplex network,
I use a policy communication network with two types of communication ties; for the node-colored
network, I use a global conflict network with three types of conflict ties. Using these applications,
I demonstrate that the multilayer network approach produces models that better fit observed
reality, and allows researchers to test more complex relational theories.

2. Statistical Inference for Multilayer Networks
Examples of the complex systems introduced above are all characterized by the existence of more
than one type of relation existing between one or more groups of actors. These systems can be
represented as networks, and as such, modeled using the ERGM. However, as these networks
are marked by complexities not present in monoplex networks (i.e., those with a single type of
tie), certain extensions are required. In this section, I discuss how multilayer network representa-
tions of complex systems afford inferential leverage over monoplex network representations, and
show how this can be done through extensions to the monoplex application of ERGMs.

To more clearly illustrate the concepts I am presenting, throughout this section I use a small
data set as my running example. Specifically, I use the conflict network between states and non-
state actors in the Levant during the post-Cold War period (1989–1995). This set of conflicts is a
subset of the global conflict system which I use as one of my two applications later in the paper.
In this system there are three states,12 nonstate actors, and 17 conflict ties of three different types:
militarized interstate disputes (MIDs), civil conflicts, and nonstate conflicts. Figure 1 contains
two visualization of this network, with the traditional network plot on the left, and the multilayer
network representation on the right. The multilayer representation groups nodes by their type
into different layers such that the structure of the multilayer network is more easily discerned.

2.1. Modeling Complex Systems Comprising Multiple Relational Contexts

The standard statistical modeling approach in conflict studies, network-based or otherwise, is to
examine one set of conflict processes as the outcome variable of interest, while potentially speci-
fying other types of conflicts as exogenous model covariates (e.g., Gleditsch et al., 2008). In terms
of the Levantine conflict network, this means studying, for example, what led to Israel’s conflicts
with Lebanon and Syria. However, as is apparent from Figure 1, conflict in the region is not lim-
ited to these two incidents. Contemporaneous with these MIDs, all three states are engaged in
conflicts with nonstate actors, some of whom are also in conflict with other nonstate actors.
Isolated examination of these conflicts alone, even controlling for the presence of contemporan-
eous civil conflicts, misses interdependence that can exist across these processes.

To illustrate the advantage of simultaneously modeling different types of conflict processes,
I discuss a set of models for explaining conflict in the Levant that differ in how they model inter-
dependence in the network. To provide context, I first outline the events that led to the Israeli
attack on Lebanon in July of 1993 (i.e., the reason for the tie between the two states on the
Levantine conflict network). The direct precursor to the 1993 Israeli invasion into Lebanon
can be traced to Israel’s establishment of a security buffer zone in South Lebanon in 1982
(Luft, 2000). The security zone was successful in driving Palestinian Liberation Organization
(PLO) member groups out of the region, but the hostile occupation resulted in the birth of
the Hezbollah, which began as a movement to expel Israeli occupiers (Jaber, 1997). Conflict per-
sisted between Israel and Hezbollah through the early 1990s. In 1993, after a particularly intense
period of Hezbollah aggression, Israel responded by launching a week-long attack into Lebanon.

The highly interdependent nature of the Levantine conflict network should be apparent from
this account. To follow convention in the conflict studies literature and specify a model where
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MIDs are outcomes on interstate dyads and civil and nonstate conflicts are exogenous predictors
requires the researcher to be satisfied with claiming that Hezbollah’s decision to attack Israel was
motivated by some reason completely unrelated to Israel’s actions in Lebanon. This is an
indefensible position given the wide recognition that the Hezbollah as a militant organization
arose primarily in response to the Israeli occupation (Jaber, 1997). This is but one example
from the region, with similar types of cross-type interdependence manifesting throughout this
conflict network.

It is possible to account for interdependence within the entire conflict system by moving to a
joint examination of the three different conflict processes without differentiating between them.
In the network analysis context, this is to model the system as a monoplex network. This
approach can yield certain insights, as different types of conflicts share similar properties
(Cunningham and Lemke, 2013). From the traditional network plot in Figure 1, it is apparent
the joint-but-monoplex network possesses features that are generally characteristic of conflict net-
works, such as high asymmetry in the extent to which conflicts cluster around certain actors, and
the apparent lack of triadic closure, both of which are features of the global MID network
(Cranmer and Desmarais, 2011).

However, this is a suboptimal approach. While different types of conflicts reasonably share
certain characteristics, there is heterogeneity between strategic considerations of states and
nonstate actors facing conflict. This results in nuanced mechanisms across different relational
contexts that cannot be captured by models that do not differentiate between different types of
actors and conflict processes. Consider for example the most localized form of a conflict cluster,
where one actor is simultaneously in conflict with two other actors. In such a scenario, strategic
considerations for a state facing two other states (e.g., Israel versus Lebanon and Syria) is likely
different than when it faces two nonstate actors (e.g., Israel versus PLO member groups), even
after accounting for the usual set of model covariates. For one, despite weakening Westphalian
norms, the international community still treats conflict between states differently from state-
sanctioned violence within national borders. Because nonstate actors are not embedded in the
interstate system, they are both less protected and less constrained. These differences are likely
to result in conflict clustering to be driven by different mechanisms. For example, interstate con-
flict clustering is likely to result from multiparty sanctioning efforts while civil conflict clustering
is likely driven by the lack of international pressure on a state’s internal behavior.

Figure 1. Levantine conflict network, post-Cold War period.
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2.1.1. Presenting Complex Relational Systems as Multilayer Networks
In order to jointly examine these conflict subsystems while differentiating between them so as to
be able to identify different cross-type conflict processes, we can utilize the multilayer network, a
generalized framework that accounts for networks characterized by differentiated nodes and dif-
ferentiated ties (Boccaletti et al., 2014; Kivelä et al., 2014). The basic organizing principle of
multilayer networks are network layers, which group nodes into disjoint subsets, with each
layer containing one type of node. These layers and their associated node types are defined by
the combination of one or more nodal attributes up to any number d. As presented in
Figure 1, the Levantine conflict network has layers defined by one nodal attribute, statehood,
which partitions the node set into state and nonstate actor subsets. Generally, layers can be
defined as a d-tuple, with each element in the tuple varying along its corresponding attribute,
meaning that the set of layers comprises every combination of possible values across all relevant
nodal attributes. A multilayer network with d relevant attributes each with k levels has the follow-
ing layer set where the superscript indexes the attribute and the subscript indexes the attribute
level, {(attr11, attr21, . . . , attrd1 ), (attr11, attr21, . . . , attrd2 ), , (attr1k, attr2k, . . . , attrdk )}.

These network layers are used to define different types of ties in the multilayer network.
Specifically, tie types are identified by the combination of types of nodes they are incident to,
which can be alternatively referred to by their incident layers. The two layers in the Levantine
conflict network yield three types of ties, the militarized interstate dispute incident to two
state layers; the nonstate conflict incident to two nonstate layers; and the civil conflict incident
to one of each layer. By convention, ties incident to the same layer are referred to as intralayer
ties and those incident to different layers are referred to as interlayer ties (Kivelä et al., 2014).

Represented as a multilayer network, complex interdependent systems such as conflict in
post-Cold War Levant can be approached using the variety of methods developed for network
analysis. However, as most of these methods were initially developed for monoplex networks,
extensions are required so they can account for the complex features of multilayer networks.
As my purpose is to examine the generative process that underlies these systems, I focus on exten-
sions to the ERGM.

2.2. Multilayer Extensions to the Exponential Random Graph Model

ERGMs are a class of statistical models that allows for inference on factors contributing to the
generative process underlying an observed network, including exogenous node and dyad attri-
butes, and network dependence effects at the dyadic-level and beyond. For example, a “pile-on”
effect, whereby ties beget more ties, is a network effect that can manifest in observed conflict clus-
ters (Cranmer and Desmarais, 2011). Similar to a standard regression model, an ERGM is spe-
cified with a set of factors hypothesized to have contributed to the observed outcomes, in this case
the set of ties on the network, and results from a fitted ERGM are the estimated sizes of these
effects.

In an ERGM, the probability of observing a network Y = {Yij}, where Yij = 1 indicates a tie
between nodes i and j, is specified as

Pr(Y,u) = k−1 exp{u ′x(Y)}, (1)

where θ is a vector of parameters and x is a vector function that yields a vector of observed net-
work statistics computed on Y. k = ∑

Y∗[Y exp{u ′x(Y∗)}, where Y is the set of all networks
defined on the node set of Y, is the normalizing constant that makes the equation a proper prob-
ability distribution.

Through the ERGM, researchers can determine whether hypothesized behavioral tendencies
beyond node and dyad characteristics systematically contribute to observed relational patterns
within a network. This is important because ties in political networks are rarely the result of

384 Ted Hsuan Yun Chen

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

sr
m

.2
01

9.
49

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/psrm.2019.49


only node activity and dyadic interaction. Instead, processes operating at the hyperdyadic level
such as clustering or transitivity likely play important roles in tie formation among nodes
(Cranmer and Desmarais, 2016). These network effects, along with exogenous node and dyad
covariates, which together form the generative model for the observed network, are specified
as terms in the vector x(Y), usually in the form of counts of local network structures.

ERGMs are highly flexible in what is a permissible specification, limited only by the require-
ment that x is finite when evaluated over any binary network (Desmarais and Cranmer, 2012).
Multilayer networks and appropriately specified statistics satisfy this criterion, but despite this
flexibility, Y is usually treated as a monoplex network, in turn constraining the statistics specified
in x. The key to extending the ERGM to multilayer networks lies in adapting Y and x in ways that
account for properties of the multilayer network outlined above. This requires extensions to the
matrix representation of Y as a block matrix, which provides a reasonably straightforward way of
incorporating layers into local network structures used as network model terms. I discuss these in
turn below.

2.2.1. Data Structure
Networks are commonly represented using an adjacency matrix Y = {Yij} where Yij indicates the
presence of a tie between nodes i and j. For example, the MID network with three nodes {Syria,
Lebanon, Israel} indexed from 1 to 3, and two undirected ties {{Syria, Israel}, {Lebanon, Israel}}
can be represented as

Y =
Y1,1 = 0 Y1,2 = 0 Y1,3 = 1
Y2,1 = 0 Y2,2 = 0 Y2,3 = 1
Y3,1 = 1 Y3,2 = 1 Y3,3 = 0

⎡
⎣

⎤
⎦. (2)

For the purposes of statistical inference of multilayer networks via the ERGM, the set of ties on a
multilayer network with ℓ layers can be grouped by type by partitioning the matrix into ℓ × ℓ
blocks:

Y =
Y1,1 Y1,2 · · · Y1,ℓ

Y2,1 Y2,2 · · · Y2,ℓ

..

. ..
. . .

. ..
.

Yℓ,1 Yℓ,2 · · · Yℓ,ℓ

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦. (3)

This procedure places each network layer, with its intralayer ties, into one of the ℓ main diagonal
blocks, with the off-diagonal blocks in turn containing interlayer ties. As noted, depending on the
specific multilayer network structure, these off-diagonal blocks may be constrained in different
ways, discussed in more detail later. The matrix from Equation (2) would therefore occupy the
(1, 1) block of the full adjacency matrix of the Levantine conflict network, which is graphically
illustrated in Figure 1. In addition to the MID ties on the (1, 1) block, the (2, 2) block represents
the nonstate conflict ties, and the off-diagonal blocks (1, 2) and (2, 1), which contain the same
information because this network is undirected, represent the interlayer, civil conflict ties.

An additional step in constructing the multilayer adjacency matrix is to specify the constraints
appropriate for the overall structure of the network. Applying sampling constraints to the adja-
cency matrix, usually in the form of disallowing ties to be formed between certain nodes, is a
relevant consideration to all ERGM examinations of networks. In any network, contextual char-
acteristics of the system can require that ties never be formed between certain nodes. For example,
in a temporally-pooled examination of interstate relations, state entry and exit from the interstate
system mean that there are states whose existence do not overlap, such as for Czechoslovakia (exit
in 1993) and Palau (entry in 1994). Aside from these contextually idiosyncratic requirements,
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certain types of multilayer networks require systematic constraints on their off-diagonal blocks.
I discuss these in more detail in the application section.

2.2.2. Local Network Structures in Multilayer Networks
The main contribution of the multilayer extension to ERGMs is in the network dependence struc-
tures that can be used to account for phenomenon across different types of ties. These cross-layer
dependence structures should be specified by the researcher based on appropriate theoretical
expectations. In the application section I demonstrate the use of various cross-layer dependence
structures, but a full discussion of possible multilayer terms is beyond the scope of this paper. For
a detailed description of a broad set of these structures, readers are referred to Wang et al. (2013,
2016). Here, to illustrate the basic construction of a cross-layer network structure, I discuss how
clustering structures on a monoplex version of the Levantine conflict network differ from that on
multilayer version of the same network.

On a monoplex network, the lowest form of tie-clustering is represented by a two-star, defined
as two ties that share a node (Robins et al., 2007). The corresponding network statistic is a count
of two-stars on the network. On the multilayer network with three types of conflict ties, there are
six different types of two-star clusters, as shown in Figure 3. In order to obtain the size of the
desired subset, ties are only counted when they belong to the appropriate blocks. For example,
to obtain a count of two-star comprised of a MID and a civil war, instead of computing the stat-
istic over the entire network, only the Y1,1 and Y1,2 blocks from Figure 2 are used. This logic of
identifying and limiting counted ties by matrix block remains the same for all cross-layer network
structures regardless of their complexity.

After a complex system has been modeled as a multilayer network and the network repre-
sented as an adjacency matrix, statistical inference on the generative process of the system is
an exercise in specifying the theoretically appropriate model terms and sampling constraints
for the ERGM.

3. Applications
In this section, I outline two substantive applications that are aimed at demonstrating the use of
ERGMs with multilayer networks. These applications are selected to show how the general multi-
layer framework can be structured to encompass different types of multilayer networks to
represent a wide range of commonly observed relational systems. Specifically, I describe themulti-
plex network, which captures systems with multiple types of relations among a single type of
actor; and the node-colored network, which captures systems with different types of actors,
where ties differ by the combination of interacting actors.

For each application, I discuss the characteristics of the system and introduce the type of multi-
layer network it fits. I describe characteristics of these multilayer networks including whether
actors exist on multiple layers and how the interlayer ties are structured. To make these examples
more tractable, I limit the networks discussed to those with only two layers. However, the frame-
work introduced here readily allows multilayer networks with greater than two layers.

3.1. Multiplex Networks: The 1980 ChemG Policy Communication Network

To demonstrate the use of multilayer networks to model multiple relations among a set of actors
of a single type, I draw upon a study conducted by Leifeld and Schneider (2012) on information
exchange in policy networks. In this study, Leifeld and Schneider examined the patterns of two
types of information exchange, political and scientific, among 30 actors who were relevant to the
1980 German legislation on toxic chemicals regulation (ChemG). This set of observed actors and
their interactions can be represented as a directed multiplex network with two layers, where ties
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Figure 2. Adjacency matrix for post-Cold War levantine conflict network.

Figure 3. Six different types of two-star conflict clustering.
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indicate flow of one of the two kinds of information. Figure 4 contains the graphical and matrix
representations of this network.

3.1.1. Multiplex Networks
Multiplex networks are those where different types of ties exist between the same set of real-world
actors. Each of these tie types exists on a different network layer. This is a commonly observed
network structure, as actors within a system are rarely restricted to only a single type of relation.
A policy network where actors share different types of information using different communication
channels, or an interstate network of both conflict and trade ties are both examples of multiplex
networks. The multiplex network requires constraints placed on the off-diagonal blocks of the
adjacency matrix. By definition there is only one set of real-world actors represented by multiple
nodes on the network, and interlayer ties are used to couple nodes representing the same actors
across layers. These self-coupling interlayer ties are almost always treated as fixed. Specifically,
when the relational data is represented as an adjacency matrix, the off-diagonal blocks of the
matrix are identity matrices. This data structure is presented in Figure 4 using the German
ChemG policy network data from Leifeld and Schneider (2012). The identity matrices are con-
sidered when calculating network statistics but are not modeled as outcomes. Existing approaches
to statistical inference on multiplex networks (e.g., Leifeld and Schneider, 2012; Heaney, 2014;
Song, 2014) often treat one layer of the network as the “outcome” network that is allowed to
vary, while fixing the other layers as exogenous predictors. Under certain conditions this
approach can be reasonable, but elsewhere the underlying assumptions are violated. In these
cases, where the two networks are mutually reinforcing, the inferential result will be subject to
simultaneity bias on the estimated parameters.

3.1.2. Extensions to Leifeld and Schneider (2012)
The question Leifeld and Schneider posed is what drives tie formation on these two policy com-
munication networks. They base their argument on a transaction costs approach. As they argue,
policy actors send information to each other as attempts at influencing their policy positions.

Figure 4. Multiplex representation of ChemG policy network.
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Since establishing contact is costly, actors are more likely to utilize existing channels of commu-
nication as opportunity structures to attempt influence at a relatively low cost. Based on this logic,
they derive a number of expectations. Here, I limit my multiplex extension to two of these
hypotheses, as this is intended as an illustrative exercise.

First, Leifeld and Schneider argue that information exchange is likely to be reciprocated. To
test this, they include a term for reciprocal tie formation in both of their political and scientific
communication models. For both models, the term was statistically significant with a positive
sign, indicating that reciprocal tie formation is as hypothesized a part of the underlying generative
process for the observed networks. These monoplex, within-layer examinations, however, cannot
account for the potential for more complex forms of reciprocity to occur across network layers.
Consider that within a given actor-dyad, where two types of ties are possible for both directions,
there are ten different observable combinations of information flow. Figure 5 outlines these com-
binations with the exception of no information exchange. Of these ten possible information-
sharing scenarios between two actors, four include some form of reciprocal tie formation that
cannot be modeled without considering cross-layer dependence. For example, when structure
F is included as a model term, it captures the tendency for one kind of information exchange
to be reciprocated through other means, which is expected in policy networks with actor special-
ization. The other three structures (G, H, and I ) capture complex forms of conditional reci-
procity. In the multiplex model I include these cross-layer dependence terms.

Second, the authors argue that actors who exchange political information are more likely to
exchange scientific information and vice versa. For this kind of mutual reinforcement between
political and scientific communication, the authors modeled the two networks separately while
including the other network as an exogenous predictor. However, specifying edge or node cov-
ariates that are simultaneous with the outcome variable in an ERGM as exogenous will result
in the same type of simultaneity bias as when endogenous covariates are specified as exogenous
in classical regression models. The multiplex approach allows for the inclusion of a dependence
term that directly measures cross-layer reinforced tie formation. This term is visualized as struc-
ture E in Figure 5, which I include in my multiplex extension.

In this extension, I fit two models of the ChemG multiplex network. The first is a layer inde-
pendence model that includes both network layers but no cross-layer dependence terms. The
model specification here follows exactly those found in Leifeld and Schneider (2012). The second
is a cross-layer dependence model that, in addition to the within-layer terms from the layer inde-
pendence model, adds cross-layer dependence terms described above. The full reciprocity term
captured by structure I is omitted to avoid multicollinearity.

3.1.3. Results
Results from this application are presented in Table 1. The first column contains the two com-
munication networks jointly modeled but without cross-layer dependence terms. To examine this
model’s ability to capture characteristics of the multilayer network, I conducted a goodness-of-fit
test. This is done by simulating 1000 networks using the layer independence model, and compar-
ing the distribution of relevant network statistics to the observed statistics. The results summar-
ized in Table 2 indicate that the layer independence model does not generate the observed
cross-layer structures well. Evidently, cross-layer dependence is a feature of the overall multiplex
communication network. Table 2 also shows goodness-of-fit results from the cross-layer depend-
ence model, which are a near-perfect match as is expected from a converged model that directly
models these structures.

The second column of Table 1 contains the cross-layer dependence model. Of the four mod-
eled cross-level dependence terms, two are statistically significant at the 0.05 level. First, the cross-
layer reinforcement term is positive and significant, with an estimated log-odds of 3.48. This
means that, conditional on all other modeled effects, an actor already sending one type of infor-
mation to a partner is 32 times as likely to send the other kind of information to the same partner
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than to someone else. This result supports Leifeld and Schneider’s costly influence argument in
that if an actor is going to use its resources to attempt influence, it will do so where opportunity
structures already exist.

The other statistically significant term is the effect captured by the the presence of reciprocated
scientific communication and unreciprocated political communication between a pair of actors
(structure H in Figure 5). The negative sign (log-odds of − 3.45) on this term indicates that des-
pite the tendency for reinforcement and reciprocity to facilitate information exchange in this net-
work, these effects are attenuated when the pair of policy actors are reciprocally sharing
information that is at least in part scientific. For example, the conditional effect of cross-layer
reinforcement on sharing political information is reduced to just 5.4 times as likely (down
from 32 times) when the pair of actors are already reciprocating scientific information. One inter-
pretation of this finding is that there are actors who use policy communication for meaningful
cooperation as opposed to for attempted influence. In these cases, cross-layer alignment becomes
less likely because policy actors specialize, and without the incentive to attempt influence, sending
information outside of one’s specialization becomes superfluous and not done. These results indi-
cate that while the general transaction cost framework of understanding policy communication
still holds, there are additional dynamics governing information exchange that are undetectable
using layer independence approaches.

In addition to expanding the types of substantive relational theories that can be examined,
inclusion of cross-layer dependence structures can improve model fit to the observed data. To
demonstrate this, I simulate 1000 networks from each model and examine the resulting distribu-
tion of the cross-layer dyad census presented in Figure 5. The results from these simulations are
visualized in Figure 6. In each subfigure, the simulated distribution of counts of the given cross-
layer dyad structure for the layer independence and the cross-layer dependence models are
respectively shown with darker (dashed outline) and lighter (solid outline) ink. The vertical
black line marks the observed value of the given structure. These results indicate that the cross-
layer dependence model outperforms the layer independence model in terms of fitting the distri-
bution of types of interactions between pairs of actors.

3.2. Node-colored Networks: The Global Conflict Network

For my second application, I model the global conflict system in the post-Cold War period as an
undirected multilayer network. In this application, I focus on the tendency for conflicts to cluster

Figure 5. Census of dyad configurations in a directed duplex network.
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within and across different conflict types, which I discussed above using the Levantine conflict
network. As previously noted, researchers are increasingly recognizing that the collective body
of organized political conflict, which includes interstate conflict, intrastate conflict, nonstate con-
flict, and one-sided violence against civilians, are interdependent events within the same system
(Starr, 1994; Gleditsch et al., 2008; Allansson et al., 2017). In systems such as these, where we
expect strategic interdependence to manifest across subsystems (Tir and Jasinski, 2008;
Martinez Machain and Rosenberg, 2018), a monoplex approach requires assumptions about
interlayer dependence often not supported by theory, potentially resulting in an incomplete
understanding of the set of mechanisms underlying tie generation and in poorly fitting models.

Table 1. Multiplex extension of Leifeld and Schneider (2012).

Layer independence Cross-layer dependence

Term Estimate s.e. Estimate s.e.

Political communication
Arcs − 5.06* 1.00 − 5.21* 1.01
Reciprocity 0.81* 0.25 0.50 0.27
GWESP(0.1) 2.43* 0.85 2.53* 0.86
GWDSP(0.1) − 0.13* 0.05 − 0.12* 0.04
Government receiver 0.60* 0.19 0.65* 0.19
Scientific sender 0.07 0.22 0.12 0.22
Interest group interaction 1.05* 0.29 1.03* 0.30
Committees arc 0.30* 0.05 0.31* 0.05
Influence arc 0.93* 0.18 0.93* 0.18
Preferences arc 0.11 0.07 0.12 0.07
Scientific arc 2.88* 0.62
Scientific communication
Arcs − 5.98* 0.79 − 7.52* 1.24
Reciprocity 1.76* 0.52 7.68* 2.28
GWESP(0.1) 0.49* 0.23 0.57* 0.22
GWDSP(0.1) − 0.17 0.10 − 0.19 0.09
Government receiver 0.37 0.32 0.37 0.31
Scientific sender 1.54* 0.37 1.74* 0.36
Interest group interaction 1.22* 0.60 1.05 0.60
Committees arc 0.14* 0.06 0.09 0.05
Influence arc 0.32 0.31 0.22 0.30
Preferences arc − 0.02 0.12 − 0.09 0.11
Political arc 2.87* 0.61
Cross-layer dependence
Reinforcement 3.48* 1.14
Reciprocity 1.71 0.99
Scientific arc political reciprocity 0.20 0.94
Political arc scientific reciprocity − 3.45* 1.18

*p < 0.05.
Both models were fit in R using the multilayer.ergm package.

Table 2. Goodness-of-fit for cross-layer structures.

Layer Indep. Cross-layer Dep.

Cross-layer term Observed Sim. Mean s.d. Sim. Mean s.d.

Reinforcement 60 44.9 7.3 61.5 9.3
Reciprocity 55 40.2 7.2 56.5 9.1
Scientific arc political reciprocity 53 33.3 6.8 54.5 9.0
Political arc scientific reciprocity 20 17.8 6.1 21.0 7.2

Results based on 1000 simulations for each model. All simulations were conducted in R.
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My present application is intended to illustrate the advantages of the multilayer approach to mod-
eling these types of systems as node-colored networks.

3.2.1. Node-colored Networks
A node-colored network comprises different types of actors, represented by “colors” that function
as categorical labels for actor type (Kivelä et al., 2014). Nodes are grouped by their colors into
different layers, which means that intralayer ties are those that exist between nodes of the
same color, and interlayer ties between nodes with different colors. Because actors in node-
colored networks never exist on more than one layer, interlayer ties are not used for coupling
nodes across layers as they are in multiplex networks. Instead, they represent ties between two
different real-world actors and are therefore substantively-meaningful relational outcomes that
can be modeled. As such, whereas a multiplex network has as many types of ties as it does layers,
a node-colored network with k colors has up to ((k2)) types of ties. By this definition, bipartite
networks are a specific case of node-colored networks where intralayer ties are assumed away.
For example, political contributions modeled as a bipartite network assumes independence
between different receivers and between different donors aside from shared cross-type partners
(e.g., Heaney and Leifeld, 2018). Unless a node-colored network is truly bipartite, it is desirable
to model it as a multilayer network by treating intralayer ties as outcomes.

Because the interlayer ties of node-colored networks are usually relational outcomes, system-
atic constraints are generally not placed on the off-diagonal blocks of node-colored networks. The
exception to this is when the interlayer ties represent hierarchical affiliation ties (e.g., employ-
ment, citizenship) between nodes in different layers (Wang et al., 2013). For example, a congres-
sional member network and a congressional staffer network (Montgomery and Nyhan, 2017) can
be represented as a node-colored network with congressional members on one layer and their
staffers on another. In these networks, if affiliations are generally stable and not of theoretical
interest, the off-diagonal blocks may reasonably be fixed at their observed values.

3.2.2. Modeling Conflict Clustering across conflict Types
In this application I focus on the tendency for conflicts to cluster. I base my model on a study by
Gleditsch et al. (2008), which examines the relationship between interstate conflict and the

Figure 6. Comparison of model fit for dyad census.
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presence of civil wars in a country. More specifically, the authors examine MID onset for all
politically-relevant dyads during the period of 1948–2000 and find that the presence of civil con-
flict in at least one state in the dyad predicts MID onset. This relationship should manifest as
clustering of interstate and civil conflicts in the system. In their model specification, Gleditsch,
Salehyan, and Schultz include the presence of civil conflict in the dyad as an exogenous predictor
to MID onset. Specifying one type of conflict as the outcome and the others as exogenous pre-
dictors is the current standard in modeling the relationship between different types of conflicts,
using the ERGM or otherwise. As illustrated using the Levantine conflict network earlier, what
this approach misses is that the presence of different types of intrastate conflict is highly likely
to be endogenous to interstate conflict through both simultaneity and confounding.

My multilayer extension departs from Gleditsch et al.’s (2008) study in a number of ways.
First, using the multilayer approach, I model all potential conflicts in the global system (i.e., inter-
state, civil, and nonstate conflicts) as outcomes instead of focusing on politically-relevant inter-
state dyads. Second, to limit the methodological scope of my examination to something that is
tractable for this paper, I focus on a single temporal cross-section of the global conflict system
instead of a time-series. Specifically, I examine the period immediately following the end of
the Cold War, from 1989 to 1995. This period was marked by a drastic change in the balance
of power between states and nonstate actors in the periphery in favor of the latter (Kalyvas
and Balcells, 2010). The overall strategic environment at the time, ripe for potential conflict clus-
tering across types, presents an apt opportunity for illustrating the importance of modeling inter-
dependence across different conflict processes.3

Similar to the ChemG application, I fit a layer independence and a cross-layer dependence
model. The two model specifications are identical except for how dependence across different
types of conflicts is modeled. Specifically, both models include within-layer star terms to capture
the tendency for within-type conflict clustering, but where the layer independence model
approaches cross-type clustering by specifying one type of conflict as an exogenous predictor
of another, the cross-layer dependence model uses cross-layer dependence star terms. Further,
the cross-layer dependence model also includes a three-way clustering term that captures the ten-
dency for all three types of conflict to cluster at the same time, which is illustrated in Figure 7.
This term cannot be modeled in a straightforward manner using conventional approaches. A dis-
cussion of the data used, network creation procedure, and modeling steps is included in the
online appendix.

Figure 7. Local network structure for three-way clustering: cross-layer three path.

3While I focus on a single time period, the multilayer network framework is not limited to temporally static networks. To
model temporal dynamics in a relational system, time series of networks can be represented as multiplex networks, where
each network in the series is a network layer. The network in the time series can be a multilayer network, meaning that a
time series of the global conflict network can be represented as a multiplex, node-colored network. In this case, a tie’s
type is defined not just by conflict, but conflict-time (e.g., MID in 1992).
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3.2.3. Results
Table 3 contains results from this application. As noted, the models have identical specifications
for within-layer terms. The substantive interpretation of these terms do not differ between mod-
els, and generally corroborate expectations from the conflict studies literature. Notably, all dyadic
terms that are included in Gleditsch et al. (2008, Table 2) have the same estimated signs as the
original study. The alternating k-star terms for all three types of conflicts are positively signed in
both models, indicating tendency for within-type ties to cluster.4

Moving to the cross-conflict clustering terms from the cross-layer dependence model, note
that the alternating k-star term for MID-civil conflict clustering is positive, indicating that con-
ditional on involvement in a MID, the state is likely to engage in civil conflict, and vice versa. This
result is in line with results from Gleditsch et al. (2008). On the other hand, the alternating k-star
term for civil-nonstate conflict clustering is negative, meaning that nonstate actors tend to avoid
entering into conflicts simultaneously with mixed opponent types. This finding is within

Table 3. Models of the post-Cold War global conflict network.

Layer independence Cross-layer dependence

Term Estimate s.e. Estimate s.e.

Militarized interstate dispute (MID)
Edges − 11.19* 0.93 − 13.43* 1.23
Isolates − 2.20* 0.53 − 3.16* 0.63
Alternating k-star(2) 1.45* 0.29 1.59* 0.27
Democratic state 0.33 0.20 0.28 0.18
CINC 6.66* 2.65 4.79* 2.34
Democratic dyad − 1.23* 0.45 − 1.39* 0.43
Contiguity 2.93* 0.29 2.95* 0.28
Politically relevant dyad 2.00* 0.36 1.94* 0.35
CINC ratio − 0.23* 0.07 − 0.24* 0.06
State in civil conflict 0.61* 0.14
Civil conflict
Edges − 8.21* 0.26 − 8.38* 0.40
State-centered alternating k-star(2) 1.25* 0.13 1.26* 0.13
Democratic state − 0.22 0.14 − 0.18 0.13
Transitional state 0.29* 0.11 0.34* 0.11
State in MID 0.93* 0.26
Nonstate in conflict − 0.45* 0.17
Nonstate conflict
Edges − 15.94* 2.33 − 13.84* 2.48
Isolates − 4.51* 1.18 − 3.60* 1.25
2-star − 0.48 0.37 − 0.49 0.40
Alternating k-star(2) 4.27* 1.35 4.29* 1.43
Nonstate actor in civil conflict − 0.10 0.12
Cross-layer dependence
MID-civil conflict alternating k-star(1) 1.27* 0.43
Civil-nonstate conflict alternating k-star(1) − 1.12* 0.25
Three-way clustering 0.19* 0.07

*p < 0.05.
Both models were fit in R using the multilayer.ergm package.

4The alternating k-star is an extension to the two-star count that captures the tendency for ties to cluster, but attenuates
this tendency as clustering increases (Snijders et al., 2006; Robins et al., 2007). In addition to its theoretical appeal, the alter-
nating k-star terms improve model fit and reduce their tendency for degeneracy in the estimation procedure (Snijders et al.,
2006). Both models include an additional two-star term for nonstate conflict ties. The inclusion of multiple k- or alternating
k-star terms is sometimes required to obtain models with sufficiently good fit (Wang et al., 2013). In this case, both models
have large, positive coefficients for their alternating k-star terms, with a negative but much smaller two-star coefficient. Jointly
considered, the coefficient estimates on these two terms indicate strong tendency for clustering of nonstate conflict ties.
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theoretical expectations (Fjelde and Nilsson, 2012), but previously has been shown only with
indirect evidence.

The key theoretical contribution from the cross-layer dependence model comes from its three-
way clustering term. The estimated coefficient for this term is positively signed, meaning that the
odds of a conflict tie forming when it attaches to an existing cluster of the other two types of con-
flicts is higher than when it is concurrent with only one conflict. Evidence of this kind of inter-
dependence spanning all three types of conflict ties indicates that when states make decisions
about their conflict engagements with other states, the neighborhood they consider extends
beyond the interstate dyad and its concurrent civil conflict ties, to whether their civil conflict part-
ners are also engaged in conflicts of their own. This finding is intuitive, but prior to the multilayer
network approach had not been demonstrated in a straightforward manner.

4. Conclusion
We understand political phenomena as systems of units interacting across multiple relational
contexts. The increasing application of ERGMs to modeling these phenomena has yielded theor-
etical advancements across various areas in the study of politics, but contemporary network
approaches still require assumptions about independence of ties across different relational con-
texts in a manner that does not comport with our understanding of politics. Despite these limita-
tions, relatively little work has been done in adapting network-based modeling approaches for
capturing these interdependencies.

In this paper, I illustrated a multilayer network approach that extends the ERGM to account
for interdependence in complex systems comprising multiple relations. Through two substantive
applications, I demonstrated that the multilayer approach to ERGMs affords us the opportunity
to model interdependence across multiple relational contexts using cross-layer dependence terms
and to examine these interdependencies as generative features of the system. In the ChemG policy
communication application, I showed that reciprocity between actors is more complex than what
can be inferred when focusing on only one type of information exchange. Instead, jointly mod-
eling multiple communication networks can yield insights into the conditions under which pairs
of actors reciprocate information. In my examination of the global conflict system, I showed that
cross-layer dependence terms can be used to model the tendency for different combinations of
conflict types to cluster. Results here suggest that when making strategic choices regarding con-
flict, states assess not only their and their opponent’s immediate conflict engagements, but are
attentive to the local conflict environment the dyad is situated in, including the extent to
which their civil conflict partners are engaged in other conflicts. Just as importantly, I showed
using simulation exercises that by accounting for existing cross-layer dependence, the cross-layer
dependence models fit observed data better than models constrained be independent across
layers.

My present argument for treating multiple systems previously examined independently of one
another as components in a larger system comprising multiple relational contexts is an argument
for more carefully considering the complexity present in political phenomenon. In addition to the
applications presented in my paper, this is a consideration salient to many other commonly stud-
ied political systems, such as international regimes (Alter and Meunier, 2009), legislatures
(Montgomery and Nyhan, 2017), and political campaigns (Heaney and Leifeld, 2018). This argu-
ment is not new, but despite the ostensibly wide recognition for these complexities, methods for
working with them were lacking. The multilayer extension to the ERGM presented here should
afford researchers a useful tool in this endeavor.

Supplementary material. The supplementary material for this article can be found at https://doi:10.1017/psrm.2019.49
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