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Two transfer functions for the unsteady lift response of an airfoil under attached
flow conditions are experimentally investigated: the Theodorsen function for an airfoil
oscillating in a constant free stream and the Sears function for a steady airfoil
encountering a sinusoidal vertical gust. A two-dimensional airfoil with a Clark Y
profile is submitted to two different unsteady excitations of distinct frequencies:
a pitching oscillation around the leading edge and a sinusoidal vertical gust. The
reduced frequency of the perturbation is in the range of 0.025 < k < 0.3 and the
Reynolds number of the undisturbed flow is in the range of 120 000< Re< 300 000.
While the Theodorsen function is found to be a good estimator for the unsteady lift at
moderate mean angles of attack, the Sears function does not capture the experimental
transfer functions in frequency dependence or in limiting values. A second-order
model provided by Atassi (J. Fluid Mech., vol. 141, 1984, pp. 109–122) agrees well
with the experimental transfer function.

Key words: aerodynamics

1. Introduction

Under attached flow conditions, the classical low-order approach to estimate the
unsteady lift response of an airfoil is unsteady thin-airfoil theory. Unsteady thin-airfoil
theory uses potential flow to represent an airfoil by its camber line only. For an airfoil
of small camber, singularities are distributed on the x-axis in such a way that the
induced velocity fulfils the kinematic boundary condition at the camber line. Every
change in inflow conditions and every movement of the airfoil camber line alter the
singularity distribution and thereby the bound vorticity on the airfoil. According to
Kelvin’s circulation theorem, a change of bound vorticity leads to a shedding of
vorticity in the wake. The shed wake vorticity, in turn, induces a velocity on the
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airfoil surface, such that a new kinematic boundary condition has to be fulfilled.
This causes a change in the bound vorticity and thereby a change of the tangential
velocity on the airfoil surface. The tangential velocity is related to the static pressure
through Bernoulli’s equation, integrally responsible for the airfoil lift. Hence, the wake
vorticity alters the unsteady lift of the airfoil compared with quasisteady conditions.
Depending on the order of approximation of the kinematic boundary condition,
solutions of different complexities can be derived. Expressing the induced velocity
in terms of Fourier series and retaining only linear terms yields first-order transfer
functions. First-order transfer functions for technically relevant flow scenarios were
derived in the 1930s. Theodorsen (1935) derived the first-order transfer function of
an airfoil in pure harmonic oscillation. Sears (1938) derived the first-order transfer
function of an airfoil entering a sinusoidal vertical gust. These first-order transfer
functions, known as the Theodorsen and Sears functions, are commonly used in the
engineering community (see Dowell 2014). Higher-order transfer functions model
additional physical phenomena. In transonic flows, a compression shock causes a
spatially non-constant stationary velocity field. Numerous second-order solutions
accounting for this scenario exist. For subsonic flows, little attention has been
attributed to the influence of a non-constant stationary velocity field on the dynamic
airfoil response. Goldstein & Atassi (1976) and Atassi (1984) modelled the influence
of the acceleration on the suction side of a lift-producing airfoil on an oncoming
vertical gust: the gust is distorted, causing a dependence of the fluctuating lift on the
gust wavenumber in the direction perpendicular to the airfoil.

Relatively few experimental works have been performed on the frequency-dependent
unsteady lift response under attached flow conditions. For the case of an oscillating
airfoil, experimental investigations were performed in the 1940s and 1950s (Silverstein
& Joyner 1939; Reid 1940; Bratt 1945; Halfman 1952; Rainey 1957). Quantitative
and qualitative agreement in amplitude and phase of Theodorsen’s first-order transfer
function and the experimentally derived transfer functions was not found in any of
the experiments. For the case of a stationary airfoil entering a sinusoidal vertical gust,
even less experimental verification has been performed. Larose (1999) and Hatanaka
& Tanaka (2002) compared the admittance of bridge decks submitted to turbulent
inflow with the Sears function. Both authors observed an increase of the dynamic
lift amplitude with increasing frequency, while the Sears function predicts a decrease
of the dynamic lift response due to the damping effect of the wake. A systematic
investigation of an airfoil submitted to a sinusoidal vertical gust of distinct frequencies
and amplitudes, however, is still missing.

In this study, we derive experimental transfer functions for the load response of an
oscillating airfoil in a stationary air stream and a stationary airfoil in a fluctuating
air stream. The magnitudes of the experimental transfer functions are compared with
the magnitudes of the theoretical transfer functions. As the first-order Theodorsen
and Sears functions build on thin-airfoil assumptions, an experimental set-up that
is assumed to fulfil these assumptions is chosen: the airfoil has a Clark Y profile
(11.7 % maximal thickness and 3.5 % maximal camber). It is placed at small angles of
attack and submitted to small perturbations. By increasing the mean angle of attack
and perturbation heights, the limitations of applicability of the first-order transfer
functions are investigated.

2. Experimental set-up

The two transfer functions are examined in two experimental set-ups. The oscillating
airfoil is investigated in the TU Darmstadt open-return wind tunnel, comprising a
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FIGURE 1. Side view of the experimental set-up of the pitching airfoil in a steady
air stream.

pitch–plunge rig. The stationary airfoil encountering a sinusoidal vertical gust is
investigated in the University of Oldenburg active-grid wind tunnel. An overview of
the experimental set-ups is given below; a more detailed description of both set-ups
can be found in Cordes (2016).

2.1. Oscillating airfoil
Figure 1 shows a schematic of the experimental set-up of the TU Darmstadt open-
return wind tunnel: a two-dimensional airfoil is oscillated in a steady flow, using a
pitch–plunge rig. The airfoil has a Clark Y section, a chord length of c= 0.12 m, a
span of s= 0.45 m and is mounted horizontally in a wind tunnel, covering the entire
wind tunnel width. The wind tunnel has a closed test section of 0.45 m × 0.45 m.
A pitch–plunge rig, consisting of two linear actuators, is installed underneath the test
section. The airfoil is mounted on the actuator pistons via aluminium adapters. The
airfoil is oscillated around its leading edge at a mean angle of attack αm in a pure
pitch motion αp = α̂p sin(2πft) of amplitude α̂p and frequency f , while the inflow
velocity U∞ is kept constant. The dynamic pitch angle αp is obtained from the position
of the linear actuators and can be calculated with an uncertainty of uαp =±8× 10−2◦.
The airfoil is equipped with three pressure taps at both the suction and pressure sides,
to measure the pressure difference at three chord wise positions, x/c= 0.06, 0.11 and
0.14. Each pressure tap is connected to an HCL miniature pressure transducer. The
coefficient of the pressure difference C1p between the suction and pressure sides is
obtained from C1p =Cp,SS −Cp,DS, with an uncertainty of uC1p =±4× 10−2.

For each parameter set (U∞, αm, α̂p and f ), a phase averaged C1p from approxi-
mately 15 continuously performed pitch cycles is derived. Damping effects in the
pressure taps, tubes and sensors which cause a phase lag and a reduction of the
pressure signal amplitude are accounted for by an additional dynamic calibration.

2.2. Sinusoidal vertical gust
Figure 2 shows a schematic of the experimental set-up in the University of Oldenburg
wind tunnel: a stationary two-dimensional airfoil is submitted to a fluctuating inflow,
generated by means of an active grid. The active grid allows the generation of
sinusoidal modulated turbulent inflow conditions. The modulation is homogeneous
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FIGURE 2. Top view of the experimental set-up of the fixed airfoil encountering a
sinusoidal vertical gust.

y-direction perpendicular to the profile. The resulting flow, from now on referred to
as sinusoidal vertical gust vg = v̂g sin(2πf ), comprises a variable amplitude v̂g and
variable frequency f . More information about the active grid and its performance
is given by Knebel, Kittel & Peinke (2011). By varying either the inflow velocity
U∞ or the frequency f , velocity perturbations of different wavelengths λ= f /U∞ are
obtained. The velocity perturbations lead to a fluctuating gust angle αg = α̂g sin(2πf )
on the airfoil with a reduced frequency k = πfc/U∞ = πc/λ. A two-dimensional
airfoil with a Clark Y profile, a chord length of c= 0.18 m and a span of s= 0.8 m
is mounted vertically at a mean angle of attack mean αm approximately 1x= 1.1 m
behind the active grid on a wind tunnel balance. The wind tunnel balance allows
measurement of the lift L with an uncertainty due to the accuracy of the force balance
components of uL =±0.12 N. The fluctuating angle of attack αg was measured prior
to the airfoil experiments in the empty wind tunnel at the airfoil leading-edge position
(x= 0, y= 0, z= h/2) by cross wires and a Dantec Streamline anemometer with an
estimated uncertainty of uαg =±0.2◦.

For each parameter combination (αm, U∞, α̂g and f ), a phase averaged lift response
of approximately 200 cycles is derived.

3. Transfer functions

Traditionally, transfer functions relate an input to an output signal. Here, the input
signal is the fluctuating flow and the output signal is the airfoil lift response Ldyn.
Adopting the approach of the theoretically derived first-order transfer functions, the
dynamic airfoil response is not related to the fluctuating flow but to the corresponding
quasisteady lift response Lqs of the airfoil, which corresponds to a normalization of the
transfer function h:

h= Ldyn

Lqs
= L̂dyn

L̂qs

ei(ωt−ϕ)

eiωt
= ĥe−iϕ. (3.1)

The transfer function h is a complex function of the reduced frequency k and
comprises both magnitude and phase information. For purely harmonic excitations
and responses, the magnitude corresponds to the ratio of the dynamic and quasisteady
lift amplitudes,

ĥ= L̂dyn

L̂qs

. (3.2)
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For values of ĥ < 1, the dynamic lift is smaller than its quasisteady value. The
argument of the transfer function represents the phase between the input and output
signals,

arg(h)=−ϕ. (3.3)

For negative values of ϕ, the load response leads the excitation, while for positive
values of ϕ, the load response lags the excitation. First-order transfer functions are
functions of the reduced frequency k only. They are independent of the mean angle
of attack αm and the perturbation amplitude. The perturbation amplitude corresponds
to the pitch amplitude α̂p in the case of the Theodorsen function and to the gust
amplitude α̂g in the case of the Sears function.

3.1. Oscillating airfoil
The lift force is not directly accessible in the present experimental set-up. The
coefficient of the pressure difference on the airfoil leading edge C1p serves as
an estimator for the lift, as proposed by Gaunaa & Andersen (2009). A closed-form
first-order transfer function for the unsteady pressure distribution is given by Mateescu
& Abdo (2003). The unsteady pressure distribution is an intermediate result of the
unsteady lift response, and integration of Mateescus and Abdo’s solution yields the
Theodorsen function. It is assumed that validation of a first-order solution of the
unsteady pressure is equivalent to validation of the Theodorsen function of the total
lift. The transfer function of the coefficient of the pressure difference hC1p is defined
as

hC1p = ĥC1pe
−iϕ. (3.4)

The magnitude ĥC1p relates the amplitude of the coefficient of the dynamic pressure
difference Ĉ1p,dyn to its quasisteady counterpart Ĉ1p,qs,

ĥC1p =
Ĉ1p,dyn

Ĉ1p,qs

. (3.5)

The quasisteady value Ĉ1p,qs is obtained by

Ĉ1p,qs = ∂C1p,qs

∂α
· α̂p, (3.6)

where ∂C1p,qs/∂α is the slope of the coefficient of the pressure difference in the
region of attached flow, derived from quasisteady reference measurements, and α̂p is
the amplitude of the pitching angle of attack. In the dynamic experiments, a purely
sinusoidal excitation is realized. This corresponds to

Re(C1p,dyn) = Re(Ĉ1p,dyne(iωt−ϕ))= Ĉ1p,dyn cos(ωt− ϕ)
= Ĉ1p,dyn sin(90◦ − (ωt− ϕ)). (3.7)

The amplitude Ĉ1p,dyn and phase ϕ with respect to the pitching angle of attack αp are
directly derived from phase averaged dynamic pressure measurements.
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3.2. Sinusoidal vertical gust
In this experimental set-up, the lift force is directly accessible, and the experimental
transfer function hL is

hL = ĥLe−iϕ. (3.8)

Here, hL corresponds to the Sears function. As above, the magnitude ĥL relates the
dynamic lift amplitude to the corresponding quasisteady lift amplitude,

ĥL = L̂dyn

L̂qs

. (3.9)

The quasisteady lift amplitude L̂qs is the product of the quasisteady lift curve slope
and the amplitude of the oncoming gust,

L̂qs = ∂Lqs

∂α
· α̂g. (3.10)

The amplitude of the dynamic lift L̂dyn and phase ϕ are derived from phase averaged
dynamic lift measurements, such that

Re(Ldyn) = Re(L̂dyne(iωt−ϕ))= L̂dyn cos(ωt− ϕ)
= L̂dyn sin(90◦ − (ωt− ϕ)). (3.11)

As the gust travels over the airfoil with U∞, a reference point for the determination
of the phase ϕ between the gust angle αg and the dynamic lift response Ldyn has to be
chosen. In the experiments, this reference point is set at the airfoil leading edge, as
the preliminarily performed hotwire measurements are taken at this position. In the
derivation of first-order transfer functions, the phase reference is traditionally set at
the airfoil mid chord. This is accounted for by an additional phase shift of the Sears
function.

4. Steady results

Figure 3 shows steady reference measurements of the coefficient of the pressure
difference C1p,qs (oscillating airfoil experiment) and the lift Lqs (sinusoidal vertical
gust experiment), from which the quasisteady responses are derived. Both measured
variables have a similar dependence on the mean angle of attack αm. This confirms
the assumption that the coefficient of the pressure difference C1p at the airfoil leading
edge is a good estimator for the total lift L. In the region of attached flow, C1p and L
are proportional to αm. This is the angle of attack range in which first-order transfer
functions are supposed to be valid.

5. Unsteady results: oscillating airfoil

Figure 4 shows the influence of the mean angle of attack αm (figure 4a) and
the pitching amplitude α̂p (figure 4b) on the experimental transfer function of the
pressure difference ĥC1p of the pitching airfoil. Experimental values are compared
with a first-order solution given by Mateescu & Abdo (2003), which integrally yields
the Theodorsen function.
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FIGURE 3. Quasisteady reference measurements of the lift Lqs (sinusoidal vertical gust
experiment) and the coefficient of the pressure difference C1p,qs (oscillating airfoil
experiment), exemplarily shown for U∞ = 15 m s−1. The region of attached flow is
highlighted with a grey background.
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FIGURE 4. The magnitude ĥC1p of the transfer function of the coefficient of the pressure
difference C1p. The airfoil is pitched continuously around its leading edge at the indicated
mean angle of attack αm and pitch amplitude α̂p. An inflow velocity of U∞ = 15 m s−1

and pitching frequencies in the range 1 Hz< f < 12 Hz yield reduced frequencies in the
range 0.025< k< 0.3. Experimental values, represented by marker symbols, are compared
with a first-order solution given by Mateescu and Abdo. (a) Variation of αm; α̂p = 4◦.
(b) Variation of α̂p; αm = 2◦.

A significant dependence of the experimental transfer function on the mean angle
of attack αm is observed. At αm = −4◦, the experimental and theoretical values
agree best. This is the angle of attack that produces zero mean pressure difference
C1p,qs = 0 under quasisteady conditions. With increasing αm, the difference between
the experimental and theoretical values increases. At the highest mean angle of attack
of αm = +8◦, significant differences are observed between the experimental values
and the theoretical predictions. At this mean angle of attack, the total angle of attack
α = αm + αp exceeds the static stall angle during every pitch cycle. The magnitudes
ĥC1p of the experimental and theoretical values show opposite frequency dependence
and approach different values for k→ 0.
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FIGURE 5. The magnitude ĥL of the transfer function of the lift L. The airfoil is submitted
to a fluctuating inflow of gust amplitude α̂g with a gust frequency of f = 5 Hz. The
free stream velocity is varied in the range 10 m s−1 <U∞ < 25 m s−1, yielding different
reduced frequencies k. Experimental values, indicated by marker symbols, are compared
with the Sears function. (a) Variation of αm; α̂g = 2.7◦. (b) Variation of α̂g; αm = 2◦.

From figure 4(b), we find that the pitching amplitude α̂p has no influence on the
transfer function. This is in accordance with linear theory and in good agreement with
the findings of Halfman (1952) for a harmonically pitching NACA 0012 airfoil.

6. Unsteady results: sinusoidal vertical gust

Figure 5 shows the influence of the mean angle of attack αm (figure 5a) and the
gust amplitude α̂g (figure 5b) on the magnitude of the experimental transfer function
of the lift ĥL of an airfoil encountering a sinusoidal vertical gust. Experimental values
are compared with the magnitude of the Sears function.

The experimental ĥL increases with increasing reduced frequency k, while the
Sears function predicts the inverse. This behaviour is observed for all parameter
combinations, regardless of whether the total angle of attack α = αm + αg stays
completely in the attached flow region or exceeds the static stall angle cyclically.
The mean angle of attack αm and the gust amplitude α̂g have no significant influence
on ĥL.

For αm = 2◦ and α̂g = 5◦, additional experiments are carried out: the reduced
frequency of the oncoming gust is varied by changing the gust frequency 2 Hz <
f < 6 Hz in steps of 1f = 1 Hz at five different free stream velocity values U∞.
Figure 6 shows the magnitude ĥL of the experimental transfer function for these
parameter combinations. The experimental values of ĥL fall in line, regardless of
whether U∞ or f is varied to change the reduced frequency k. This indicates that k
is the right parameter to describe the problem. The Sears function fails to capture
the experimental values in terms of frequency dependence and limiting values. A
different approach to model the unsteady lift response of an airfoil encountering a
sinusoidal vertical gust as a function of k is provided by Atassi (1984). Atassi’s
theory is nonlinear in the steady flow and linear in the dynamic perturbation. For
an airfoil with zero thickness, Atassi (1984) separates the effects of mean angle of
attack, camber and transverse gust number, and shows their contribution to the total
response function, which is obtained as a sum of the individual effects. Employing
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FIGURE 6. The magnitude ĥL of the transfer function of the lift L. At αm= 2◦, the airfoil
is submitted to a fluctuating inflow with a gust amplitude of α̂g = 5.5◦. The reduced
frequency k is varied by varying the gust frequency f in the range 2 Hz < f < 6 Hz at
constant free stream velocity 10 m s−1 <U∞ < 20 m s−1. Experimental values, indicated
by marker symbols, are compared with the first-order solution by Sears (1938) and a
second-order solution by Atassi (1984).

Atassi’s model with the parameters corresponding to the experimental set-up (αm= 2◦,
camber η= 3.5 %, transverse wavenumber corresponding to wind tunnel width) yields
the presented plots.

Contrary to Sears’ first-order transfer function, which does not capture the
experimental results, Atassi’s solution captures the experimental data well in terms of
frequency dependence and limiting values.

7. Discussion and conclusions

In the case of the oscillating airfoil (Theodorsen function), experimental results
agree reasonably well with theory if the airfoil is oscillated around small mean
angles of attack. The unsteady load response is independent of the perturbation
amplitude, which is in good agreement with theory. With increasing mean angle of
attack, the frequency dependence is inverted and the limiting value for k→ 0 falls
below 1. It can be concluded, that the Theodorsen function is a good approximation
of the unsteady load response of an oscillating airfoil, if the assumptions leading to
thin-airfoil theory (small mean angle of attack, attached flow) are fulfilled.

In the case of a fixed airfoil encountering a sinusoidal vertical gust (Sears function),
the experimental results are not in agreement with the theoretical predictions. The
experimental values are uninfluenced by the gust amplitude and the mean angle of
attack. It is also irrelevant whether the reduced frequency is changed by changing the
gust frequency or the inflow velocity. For all investigated parameter combinations, the
unsteady lift amplitude increases with increasing reduced frequency, while the Sears
function predicts the inverse. All experimentally derived transfer functions approach
limiting values hL(k→ 0) < 1, while the quasisteady value of the Sears function is
S(k= 0)= 1. The observed discrepancy between experimental and theoretic results is
very similar to the observations for the oscillating airfoil under high mean angles of
attack. The Sears function appears to be more sensitive to the physical reason that
causes experimental values to deviate from the Theodorsen function at high mean
angles of attack. This physical reason might be the distortion of the steady velocity
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field by the presence of an airfoil. Assumptions comprised in first-order theory allow
the superposition of partial solutions to obtain a global solution of the flow field.
This entails that the oncoming velocity perturbation is completely uninfluenced by the
presence of the airfoil. In the experiment, we found this approximation to be violated
when we tried to measure the fluctuating angle of attack at the airfoil leading edge
with the airfoil present in the test section. A theory accounting for the presence of
the airfoil by a distortion of the steady flow field is the second-order closed-form
transfer function by Atassi (1984). Experimental results show good agreement with
this second-order theory.

It can be concluded that for the present experimental set-up the Sears functions is
not a suitable tool to approximate the unsteady lift response, although the experimental
set-up meets the assumptions usually required when applying thin-airfoil theory.
Hence, the Sears function should be applied with caution. The Sears function still
lacks a systematic verification in terms of frequency dependence. In future work,
experiments with flat thin plates should be carried out, further approaching thin-airfoil
assumptions. For flow situations corresponding to the current set-up (airfoil with
thickness and camber), the second-order transfer function by Atassi appears to be a
more appropriate approach.
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