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Abstract. An analysis of relativistic electron trajectories in a free-electron laser
with a helical magnetic wiggler and an ion channel is presented. The wiggler field
amplitude and the ion number density are taken to be uniform. Also included are
the self-electric and self-magnetic fields of the electron beam, which is assumed to
be of constant velocity and electron number density. The Hamiltonian, which is a
constant of the motion, is first expressed in cartesian coordinates and momenta. A
second constant of the motion is obtained by canonical transformation. The steady-
state orbits, Poincaré maps, and Liapunov exponents are employed to investigate
the chaotic motion in the presence of the ion channel. Numerical calculations reveal
conditions under which chaotic and non-chaotic orbits exist.

1. Introduction
The motion of a single relativistic electron in a constant-amplitude helical wiggler
magnetic field and uniform axial magnetic field has been analyzed extensively in
the literature. This is a valid approximation for an electron beam in a low-wiggler-
amplitude, low-current, free-electron laser (FEL). In this case, the electrostatic
and magnetic self-fields produced by the beam space charge and current may be
neglected. The motion of a test electron is then integrable and non-chaotic. An
analysis of the effects of the electric and magnetic self-fields has been carried out
by Chen and Davidson [1] and by Michel et al. [2]. It was shown that the motion is
non-integrable. Consequently, part of the phase space becomes chaotic in the sense
that adjacent initial conditions lead to exponentially divergent trajectories. If the
self-fields are sufficiently strong, the group I and group II orbits can become fully
chaotic.
The effects of non-uniformity of the wiggler field amplitude in addition to the

self-fields of the electron beam were analyzed by Spindler and Renz [3]. Both
of these effects were shown to yield chaotic motion. Their study indicated that,
near magnetoresonance, surprisingly low beam currents can induce chaotic motion.
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With high axial guide fields, the wiggler-amplitude non-uniformity had little
effect because the orbits were confined near the central axis. With moderate guide
fields, the non-uniformity became important and the self-fields had very little
effect. Chaotic electron dynamics in planar wiggler magnetic fields have also been
studied [2,4].
It has been suggested that the passage of an electron beam through an ion channel

may provide an alternative to the use of an axial magnetic guide field. Several theor-
etical studies indicate that ion-channel guiding may offer some distinct advantages;
see, e.g., [5,6]. In Sec. 2 of the present paper, the relativistic motion of a test electron
in a FEL with helical wiggler and ion channel is formulated. An idealized wiggler
magnetic field of constant amplitude and an electrostatic field due to positive ions of
constant number density and introduced. The self-electric and self-magnetic fields
of the electron beam of constant number density and velocity are also included. The
time-independent Hamiltonian (total energy) is constructed in terms of cartesian
coordinates and momenta, and comprises a constant of the motion. By a canonical
transformation, it is expressed in new variables and a second constant of the motion
is identified. The steady-state solution of the equation of motion is then derived in
cartesian coordinates and two groups of electron orbits are defined.
In Sec. 3, the steady-state orbits, Poincaré maps and Liapunov exponents are

employed to investigate the chaotic behavior of the motion. A graph of the axial
velocity versus ion-channel plasma frequency is shown in Fig. 1 and the regions in
which each orbit group exists are illustrated. Figures 2–4 are Poincaré surface-of-
section plots for three selected ion-channel plasma frequencies. They show that, for
certain values of the frequency, the motion is chaotic or regular. Figure 5 confirms
by use of Liapunov exponents the chaotic and non-chaotic motion.

2. Theoretical model and assumptions
In a high-current (high-density) beam, the motion of a test electron in a FEL with
helical wiggler and ion-channel guiding can be altered significantly by the self-
electric and self-magnetic fields induced by the beam space charge and current,
respectively. In order to model the self-fields of the electron beam, we make the
assumption of a homogenous electron density profile

nb(r) =

{
nb = constant for r � rb,

0 for r > rb,
(1)

where nb is the number density of the beam electrons and rb is the radius of the
beam. In addition, the electron beam is assumed to have uniformal axial current
density

Jb = −enbcβbêz (2)
over the radial cross section of the electron beam. Here −e is the electron charge,
c is the speed of light in a vacuum, and βb is the normalized average axial velocity
of the electron beam. With these assumptions, the self-electric and self-magnetic
fields of the electron in the interior of the beam (r � rb) are given in [7]

Es = −2πenb(xêx + yêy ) (3)

and
Bs = 2πenbβb(yêx − xêy ), (4)

respectively.
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The magnetic field of an idealized helical wiggler may be described by

Bw = Bw�êx cos(kwz) + êy sin(kwz)�, (5)

where Bw is the wiggler amplitude and kw is the wiggler wave number. The trans-
verse electrostatic field generated by an ion channel can be written as

Ei = 2πeni(xêx + yêy ), (6)

where ni is the density of positive ions having charge +e. Taking into account the
self-fields, the Hamiltonian of a test relativistic electron in the combined wiggler
and ion-channel fields becomes

H = [(cP+ eA)2 + m2c4]1/2 + e(φi − φs) ≡ γmc2 + e(φi − φs), (7)

where P is the canonical momentum,m is the electron rest mass, γ is the relativistic
factor,

A ≡ Bw

kw
[êx cos(kwz) + êy ∼ (kwz)] + βbφsêz (8)

is the vector potential, and

φi ≡ −mω2
i

4e
(x2 + y2) (9)

and

φs ≡ mω2
b

4e
(x2 + y2) (10)

are the electrostatic potentials due to the ion channel and electron beam, respect-
ively. In (9) and (10), ωi ≡ (4πe2ni/m)1/2 and ωb ≡ (4πe2nb/m)1/2 are the non-
relativistic plasma frequencies of the ion channel and electron beam, respectively.
As the Hamiltonian (7) is not an explicit function of time, H is a constant of

motion, i.e.

H = γmc2 + e(φi − φs) = constant, (11)

which corresponds to the conservation of total energy. For numerical calculations,
we introduce the following normalized (dimensionless) parameters and variables:

H̄ ≡ H
mc2

, P̄ ≡ P

mc
, Ā ≡ eA

mc2
,

φ̄i ≡ eφi
mc2

, φ̄s ≡ eφs
mc2

, ω̄i ≡ eωi
kwc

, ω̄b ≡ ωb
kwc

,

x̄ ≡ kwx, ȳ ≡ kwy, z̄ ≡ kwz,

αw ≡ eBw
mkwc2

, τ ≡ kwct,

(12)

where t is time and αw is a measure of the wiggler magnetic field amplitude. Using
(12), the Hamiltonian in the normalized form can be written as

H̄ ≡ [(P̄x + αw cos z̄)2 + (P̄y + αw sin z̄)2 + (P̄z + βbφ̄s)2 + 1]1/2 + φ̄i − φ̄s, (13)

where the normalized ion-channel and electron-beam potentials are defined by

φ̄i ≡ − ω̄2
i

4
(x̄2 + ȳ2) (14)
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and

φ̄s ≡ − ω̄2
b

4
(x̄2 + ȳ2), (15)

respectively. As mentioned before, the Hamiltonian is independent of time. Thus,
the total energy is a constant of the motion. In order to find an additional constant
of the motion, the canonical transformation to the new variables (φ, ψ, z′, Pϕ ,Pψ ,
Pz ′) defined by

x̄ ≡ −
√
Pφ cos(φ − z′) +

√
Pψ sin(ψ + z′), (16)

ȳ ≡
√
Pφ sin(φ − z′) −

√
Pψ cos(ψ + z′), (17)

z̄ ≡ z′, (18)

P̄x ≡
√
Pφ sin(φ − z′) +

√
Pψ cos(ψ + z′), (19)

P̄y ≡
√
Pφ cos(φ − z′) +

√
Pψ sin(ψ + z′), (20)

P̄z ≡ Pz ′ − Pψ + Pφ (21)

is introduced. The normalized Hamiltonian in the new variables can be written as

H̄ = [Pφ + Pψ + 2
√
PφPψ sin(φ + ψ) + 2αw(

√
Pφ sin φ +

√
Pψ cos ψ)

+ α2
w + P2

z + 1]1/2 + φ̄i − φ̄s, (22)

where

Pz ≡ Pz ′ − Pψ + Pφ + βbφ̄s (23)

is the axial mechanical momentum, and

φ̄i ≡ − ω̄2
i

4
[Pφ + Pψ − 2

√
PφPψ sin(φ + ψ)] (24)

and

φ̄s ≡ − ω̄2
b

4
[Pφ + Pψ − 2

√
PφPψ sin(φ + ψ)] (25)

are the normalized ion-channel and electron-beam potentials after transformation.
Since the Hamiltonian in (22) is not an explicit function of z′, it follows that Pz ′ is
another constant of the motion.
Having failed in finding a third constant of the motion, Poincaré maps and

Liapunov exponents have been used to investigate the chaotic behavior of the
motion. Using the Hamiltonian defined by (22), the equations of motion can be
written in the form

φ̇ =
1

2K

{
αw

P1/2
φ

sin φ + 2Pz

[
1 +

1
4
βbω̄

2
b(1 −M)

]
+ 1 +M

}
+

(
ω̄2
i − ω̄2

b

4

)
(1 −M),

(26)

ψ̇ =
1

2K

{
αw

P1/2
φ

cos ψ − 2Pz

[
1 − 1

4
βbω̄

2
b

(
1 −M

Pφ

Pψ

)]
+ 1 +M

Pφ

Pψ

}

+
(

ω̄2
i − ω̄2

b

4

)(
1 −M

Pφ

Pψ

)
, (27)
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Ṗφ =
1
K

[
N

(
1 − 1

4
βbω̄

2
bPz

)
+ αwP

1/2
φ cos φ

]
− 1

2
N(ω̄2

i − ω̄2
b), (28)

Ṗψ =
1
K

[
N

(
1 − 1

4
βbω̄

2
bPz

)
− αwP

1/2
ψ sin ψ

]
− 1

2
N(ω̄2

i − ω̄2
b), (29)

where

K ≡ [(1 + 2M)Pφ + Pψ + 2αw(P1/2
φ sin φ + P1/2

ψ cos ψ) + α2
w + P2

z + 1]1/2 (30)

and

M ≡
(
Pψ

Pφ

)1/2

sin(φ + ψ), (31)

and

N ≡ (PφPψ )1/2 cos(φ + ψ). (32)

Before solving these equations numerically, we study the steady-state orbits in
the presence of the self-fields by the Lorentz force equations

dP

dt
= −e

(
E +

1
c
v× B

)
, (33)

where P ≡ mγv is the relativistic momentum, and

E = Ei + Es (34)

and

B = Bw + Bs (35)

are the total electric and magnetic fields, respectively. Using (3)–(6), the equation
of motion (33) can be written in the scalar form:

dβx

dt
= −ckw

2γ
{kw[ω̄2

i − ω̄2
b(1 − β2

z )]x − 2αwβz sin(kwz)}, (36)

dβy

dt
= −ckw

2γ
{kw[ω̄2

i − ω̄2
b(1 − β2

z )]y + 2αwβz cos(kwz)}, (37)

dβz

dt
=

ckw
2γ

{kwω̄2
b(xβx + yβy ) + 2αw[βy cos(kwz) − βx sin(kwz)]}. (38)

The steady-state solution of (36)–(38) for the normalized velocity components may
be written as

βx =
2αwβ2

‖

ω̄2
i − ω̄2

b(1 − β2
‖ ) − 2γβ2

‖
cos(kwz), (39)

βy =
2αwβ2

‖

ω̄2
i − ω̄2

b(1 − β2
‖ ) − 2γβ2

‖
sin(kwz), (40)

βz ≡ β‖ = constant. (41)

Equations (39) and (40) show a resonant enhancement in the magnitude of the
transverse electron velocity when

ω̄i = [ω̄2
b(1 − β2

‖ ) − 2γβ2
‖ ]1/2, (42)
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Figure 1. A graph of the normalized axial velocity of the steady-state orbits as a function
of the normalized ion-channel plasma frequency. The solid (dashed) lines correspond to the
stable (unstable) orbits.

which separates the electron orbits into two groups. Group I and group II are
defined by

ω̄i < [ω̄2
b(1 − β2

‖ ) − 2γβ2
‖ ]1/2 (43)

and

ω̄i > [ω̄2
b(1 − β2

‖ ) − 2γβ2
‖ ]1/2, (44)

respectively. The normalized axial velocity for steady-state trajectories is obtained
from the conservation of energy. This yields

β2
‖

{
1 +

[
2αwβ‖

ω̄2
i − ω̄2

b(1 − β2
‖ ) − 2γβ2

‖

]2}
+ γ−2 − 1 = 0. (45)

There are in general six solutions for β‖ for any set of parameters; only the three
for which β‖ > 0 will be considered here.

3. Numerical results and discussion
A numerical study of the chaotic behavior of electron motion in combined wiggler
magnetic and ion-channel electric fields has been made. The steady-state orbits
and Poincaré maps have been computed using (45) and (26)–(29), respectively. The
normalized wiggler field amplitude αw was taken to be 0.2, the normalized beam
plasma frequency ω̄b was taken to be 1.2 and the relativistic factor γ was taken to
be 3. The graph of the normalized axial velocity β‖ as a function of the normalized
ion-channel plasma frequency ω̄i is shown in Fig. 1. The dashed line indicates the
unstable branch of the group I orbits. Group I and group II orbits are defined by
(43) and (44), respectively. As this figure shows, for the region 0 � ω̄i < ω̄b (ω̄b = 1.2)
only group I orbits exist and for the region ω̄i > ω̄cr (ω̄cr ∼= 2.01) only group II orbits
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Figure 2. A Poincaré non-integrable surface-of-section plot in the (ψ,Pz ) plane at φ = 0
(mod 2π) for ion-channel plasma frequency ω̄i = 1.4.

exist, whereas for the region ω̄b � ω̄i � ω̄cr both group I and group II orbits exists.
Note that the last region (ω̄b � ω̄i � ω̄cr) is near the ion-channel resonance region.
Poincaré surface-of-section maps have been generated by numerically integrat-

ing the equations of motion (26)–(29). A fourth-order Runge–Kutta method with
adaptive step size has been used to integrate the equations of motion. The Henon
method [8] has also been used to obtain accurately the intersection of a trajectory
with a surface of motion obtained from (26)–(29). This motion occurs in a three-
dimensional space (φ, ψ, P̄ϕ ). Note that P̄ψ is determined from H̄ = constant. The
plane (ψ,Pz ) with φ = 0 (mod 2π) is chosen to be the surface-of-section. The
normalized total energy H̄ was taken to be 3 and the normalized beam average
axial velocity βb was taken to be 0.93. Figure 2 shows a Poincaré surface-of-section
plot for normalized ion-channel group I orbits because ω̄i = 0.9 < ω̄b and all
trajectories shown in Fig. 4 correspond to group II orbits since ω̄i = 2.5 > ω̄cr.
Note that ω̄i = 1.4 (Fig. 2) lies in the ion-channel resonance region, and ω̄i = 0.9
(Fig. 3) and ω̄i = 2.5 (Fig. 4) are far enough from ion-channel resonance. Therefore it
is an interesting result that, in a FEL with helical wiggler and ion-channel guiding,
the electron motion near the ion-channel resonance can be chaotic and, sufficiently
far from the ion-channel resonance, the electron motion is regular and is not chaotic.
At the end of this section we confirm the existence of chaotic motion by determ-

ining non-zero Liapunov exponents. The Liapunov exponents may be obtained by
calculating the distance between two trajectories with very close initial conditions
in the phase space (x, y, z,Px ,Py ,Pz ). For calculating Liapunov exponents, the
following initial conditions have been used:

x = 0, y = 0, z = 1.5708, Px = 1.321 93, Py = 2.25, Pz = 0.5,

x′ = 0, y′ = 0, z′ = 1.5708, Px ′ = 1.322 00, Py ′ = 2.25, Pz ′ = 0.5.
(46)
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Figure 3. A Poincaré integrable surface-of-section plot in the (ψ,Pz ) plane at φ = 0
(mod 2π) for ion-channel plasma frequency ω̄i = 0.9.

Figure 4. A Poincaré integrable surface-of-section plot in the (ψ,Pz ) plane at φ = 0
(mod 2π) for ion-channel plasma frequency ω̄i = 2.5.

https://doi.org/10.1017/S0022377805004058 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377805004058


Chaotic electron trajectories with helical wiggler and ion-channel guiding 349

Figure 5. Liapunov exponents for ion-channel plasma frequencies ω̄i = 1.4, 0.9, and 2.5
corresponding to Figs 2–4.

In Fig. 5, the Liapunov exponents corresponding to Figs 2–4 are shown. As this
figure shows, for ω̄i = 1.4 the Liapunov exponent remains neatly constant by
increasing normalized time τ , whereas for ω̄i = 0.9 and ω̄i = 2.5 the Liapunov
exponents tend to zero. As this figure shows, some trajectories are non-integrable
and the motion can be chaotic. Here two groups (group I and group II) are allowed
because ω̄i = 1.4 lies in the ion-channel resonance region. In this figure, the elliptic
(hyperbolic) fixed points correspond to the stable (unstable) steady-state orbits.
The group I orbits have greater axial momentum than the group II orbits.
In Figs 3 and 4, Poincaré surface-of-section plots for ion-channel plasma fre-

quencies ω̄i = 0.9 and ω̄i = 2.5 are shown, respectively. As these figures show, all
orbits are integrable and the motion is not chaotic. All trajectories shown in Fig. 3
correspond to infinity. Therefore, Liapunov exponents confirm chaotic motion for
ω̄i = 1.4 and regular motion (non-chaotic) for ω̄i = 0.9 and ω̄i = 2.5.
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