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ABSTRACT

While the current pandemic is causing mortality shocks globally, the man-
agement of longevity risk remains a major challenge for both individuals and
institutions. It is high time there be private market solutions designed for effi-
cient longevity risk transfer among various stakeholders such as individuals,
pension funds and annuity providers. From individuals’ point of view, appeal-
ing features of post-retirement solutions include stable and satisfactory benefit
levels, flexibility, meeting bequest preferences and low fees. This paper pro-
poses a dynamic target volatility strategy for group self-annuitization (GSA)
schemes aimed at enhancing living benefits for pool participants. More specif-
ically, we suggest investing GSA funds in a portfolio consisting of equity and
cash, continuously rebalanced to maintain a target volatility level. The perfor-
mance of a dynamic target volatility strategy is assessed against the static case
which does not involve portfolio rebalancing. Benefit profiles are assessed by
analysing quantiles and alternative strategies involving varying equity compo-
sitions. The case of death benefits is included, and the fund dynamics analysed
by assessing resulting investment returns and the mortality credits. Overall,
higher living benefit profiles are obtained under a dynamic target volatility
strategy. From the analysis performed, a trade-off between the equity propor-
tion and the impact on the lower quantile of the living benefit amount emerges,
suggesting an optimal proportion of equity composition.
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1. INTRODUCTION

Net of the effect of mortality shocks induced by COVID-19, significant
improvements have been gained in the mortality of older cohorts in many
areas around the world. Together with structural changes in many popula-
tions, the mortality dynamics affected Pillar I and II pension benefits, which
have been revised downward in many countries. In particular, the shift from
defined benefit to defined contribution pension schemes implies that both indi-
vidual longevity and investment risk have to be self-managed by the individual,
possibly transferring them to a private provider.

It is well documented that, among the private post-retirement solutions,
standard annuity products offer the optimal decumulation strategy (Yaari,
1965), in particular thanks to the longevity and investment guarantees they
embed. However, the annuity market remains low due to a host of factors con-
tributing to the annuity puzzle (Modigliani, 1986). Such factors include, among
the others, not only bequest motives but also loadings that cause annuities to
be perceived as unfairly priced (Brown, 2009). Further, standard annuities are
considered to be an inflexible and illiquid asset by many individuals, as they
imply an irreversible decision (Pitacco, 2016).

There is a growing need for arrangements capable of providing a suitable,
sustainable, stable and flexible post-retirement income. The challenge is mag-
nified by higher rates of baby boomers moving into retirement. Innovation
is required in designing customized post-retirement income products, capable
of mitigating longevity risk whilst preserving a stable income after retire-
ment. A number of pooling structures, where a group of individuals create
a fund which can be invested in the capital markets whilst periodically drawing
down depending on survival, have been proposed in literature. Such products
include group self-annuitization (GSA) schemes (Piggott et al., 2005; Valdez
et al., 2006; Qiao and Sherris, 2013), pooled annuity funds (Stamos, 2008;
Donnelly et al., 2013; Donnelly, 2015), tontines (Milevsky, 2014; Milevsky
and Salisbury, 2015; Chen et al., 2019; Weinert and Gründl, 2020) among oth-
ers. The design of these pooled products has mainly been analysed considering
simple investment strategies.

In reality, the returns achievable with a simple investment strategy may
prove insufficient to maintain the sustainability of the fund due to the ever-
changing economic environment and mortality uncertainty. Ideally, the funds
will have to be invested in the capital markets on various asset classes, such
as equities, fixed income securities and (whenever available) longevity-linked
securities, developing a strategy aimed at enhancing the fund performance.
Unlike in the case of standard annuities, where the annuity provider takes
charge (unless default) of the overall longevity and investment risk, under pool-
ing structures risks are fully retained by the participants. It is thus critical for
there to be innovative approaches for neutralizing the risks impacting the pool.

https://doi.org/10.1017/asb.2022.7 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2022.7


TARGET VOLATILITY STRATEGIES FOR GROUP SELF-ANNUITY PORTFOLIOS 593

One dimension would be enhancement of GSAs, as they have potential for
providing low cost retirement income payouts; however, they may prove to be
lacking stability of the stream of individual payments. In particular, current
GSA designs are vulnerable to potential decrease in survival benefits in the
event of mortality improvements (Qiao and Sherris, 2013), as well as of poor
investment performance. While we do not model longevity risk, we propose a
target volatility investment strategy, aimed at enhancing investment returns of
the fund, capable of overcoming adverse conditions.

Target volatility strategies are premised on the empirical relationship of neg-
ative correlation between asset returns and conditional volatility (Bollerslev
et al., 2006), which asserts that low volatility regimes are characterized by
high equity returns, and vice versa. Targeting a certain volatility level on a
portfolio results in more predictable and attainable returns over a given invest-
ment horizon. Such a volatility level is achieved by dynamically rebalancing
the portfolio composition. Pioneering literature on target volatility strategies
has been empirical studies on portfolios consisting of several equities whose
overall volatilities are calculated by estimating the corresponding variance–
covariance matrices (see Fleming et al., 2001; Kirby and Ostdiek, 2012 among
others). Volatility forecasting has mainly been facilitated with the aid of time
series-based techniques, such as the generalized autoregressive conditional
heteroskedasticity (GARCH) framework (Bollerslev, 1986).

Doan et al. (2018) devise target volatility forecasting strategies and assess
their performance relative to benchmark indices in the Australian, German,
UK and US markets. The authors create portfolios consisting of well-
diversified stock holdings and stock index futures. Volatility forecasts are
generated by implementing a reduced form of the GARCH(1,1) model. The
devised strategies are shown to outperform traditional benchmark indices in
the analysed markets.

While Doan et al. (2018) and majority of prior literature use time series-
based techniques such as the GARCH framework, this work devises a con-
tinuous time framework by simulating the Heston (1993) stochastic volatility
model. In implementing a target volatility strategy for a GSA pool, we com-
pare GSA benefit profiles emerging under a static fund composition and when
the fund is rebalanced dynamically. We consider investment strategies involv-
ing a combination of deterministic cash account and equity which evolves
according to the Heston (1993) dynamics. Benefit profiles are assessed by
analysing various quantiles and alternative strategies involving varying equity
compositions are presented. The case of death benefits is included, and the fund
dynamics analysed by assessing resulting investment returns and the mortality
credits. We find that higher living benefit profiles are obtained under a dynamic
target volatility strategy. From the analysis performed, a trade-off between the
equity proportion and the impact on the lower quantile of the living benefit
amount emerges, which suggests an optimal proportion of equity composition.

The remainder of the paper develops as follows. In Section 2, we set up the
GSA arrangement, in particular describing the benefits provided and how the
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GSA fund builds up in time, also disclosing the main components explaining
its dynamics. Section 3 provides the model framework; we define, in par-
ticular, the (static and dynamic) target volatility strategy. In Section 4, we
analyse the results obtained by implementing a target volatility strategy for
the GSA, exploring in particular the benefit profiles and quantities explain-
ing the fund dynamics. Section 5 concludes, while summarized versions of the
implementation algorithms are presented in Appendices A and B.

2. THE GSA DESIGN

2.1. Benefits and GSA fund dynamics

We consider a homogeneous GSA pool consisting of n individuals aged x join-
ing the fund at time 0, each of them providing an initial capital amount c. The
total pool fund then amounts to F0 = c · n at time 0.

At anytime, the GSA fund value, Ft, evolves according to the return on
investment and the benefits paid out, the latter depending on the mortality
experienced by the pool and realized investment returns. In what follows, we
define the GSA fund dynamics in continuous time.

The number of surviving members at time t is Nt and follows a pure death
process mediated by a stochastic (or deterministic) transition intensity. More
specifically, the transition rate from i to i− 1 policyholders at time t is iμx+t
where μx+t is the force of mortality for a life aged x+ t. Clearly, N0 = n. If
a death occurs at time t, then dNt =−1, otherwise dNt = 0. Since dNt can be
viewed as a Poisson decrement process, the probability of multiple deaths is of
order o(dt) (Ross, 2014) and can be neglected.

The GSA scheme pays living benefits to the surviving participants; we fur-
ther incorporate the possibility of paying out death benefits upon member’s
death in our framework.We assume that living benefits are continuously paid1;
consistently with the GSA rationale, they are not guaranteed, but their amount
is assessed at the time of payment, so as to keep the actuarial balance in respect
of the current GSA fund value Ft. Let ax+t denote the actuarial value at time
t of a unitary annuity. Then, the total living benefit amount paid by the GSA
scheme at time t is

Bt = Ft
ax+t

, (2.1)

and

Lt = Bt
Nt

(2.2)

represents the amount cashed by each survivor at time t.
The actuarial value of the annuity ax+t is computed taking determinis-

tic assumptions about the discount rate and the force of mortality. Then
ax+t = e−

∫∞
t (r+μx+s) ds, where r is the (flat) short rate and μx+s is assumed to be
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deterministic. We point out that this definition of ax+t implies that no future
risk is accounted for in the living benefits assessed at time t; this is a natural
choice within a GSA arrangement, where risks are retained by the surviving
participants.

As suggested in many studies (see, e.g., Modigliani, 1986; Brown, 2009),
individuals have bequest preferences, at least up to some (old) age. We then
incorporate death benefits paid by the GSA scheme as members die. Upon one
member’s death at time t, an amount equal to

Dt = β
Ft
Nt−

(2.3)

is paid to the member’s beneficiaries. Here, β is a proportion of the fund value,
and Nt− =Nt − dNt is the number of survivors an instant before time t; then
Ft
Nt−

can be referred to as the notional individual’s share of the GSA fund at
time t, prior to the deaths reported at that time. We note that, similar to living
benefits, the amount of death benefits is not guaranteed either. It is also impor-
tant to note that while death benefits meet bequest preferences, they reduce
the possibility for the GSA arrangement in achieving a satisfactory pooling
effect. For instance, if β = 1 no mortality credits are left and the GSA scheme
becomes a purely financial arrangement, where individual members fully retain
their respective longevity risk. Conversely, if β = 0 all the money is retained by
the GSA fund upon a member’s death, and the individual longevity risk is
pooled within the fund. While β = 0 is acceptable, β = 1 is not realistic in the
logic of a GSA arrangement. In view of practical applications, we will access
scenarios involving low values of β in our numerical illustrations.

In this paper, we assume that the GSA fund is proportionally invested in
equity and riskless cash. We denote with St the equity price process, r the risk-
free return of a cash account and wt the proportion of the fund invested into
equity (while (1−wt) is the proportion invested in the cash account).

Under this setting, the GSA fund dynamics can be described as follows:

dFt =
[
wt
dSt
St
+ (1−wt)rdt

]
Ft −Btdt+DtdNt, (2.4)

where dSt denotes the instantaneous change of the equity process over a
time increment, dt. For a precise interpretation of Equation (2.4), and related
expressions below, recall that dNt either takes a 0 or a negative value; then,
Dt dNt denotes an outflow for the GSA fund.

2.2. The components of the GSA fund

As is well known, annuity benefits are funded by the initial capital (and this
is trivial), investment returns and mortality credits. In a GSA arrangement,
neither investment returns nor mortality credits are guaranteed. The latter, in
particular, depend on the realized mortality rate and the death benefit paid out
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by the scheme. In order to better understand the dynamics of the living benefits,
it is convenient to split the GSA fund into three components as follows:

1. principal, that is, consumption of the fund (denoted as F1
t );

2. interest (F2
t );

3. mortality credit (F3
t ),

so that we have the fund value at time t as

Ft = F1
t + F2

t + F3
t , (2.5)

apart from time t= 0, when F1
0 = F0 = n · c, while F2

0 = F3
0 = 0.

A decomposition similar to (2.5) can be developed for benefits, living ben-
efits in particular; for example (see Equations (2.1) and (2.2)), Lt =L1

t +L2
t +

L3
t , whereL

i
t = Fit

ax+t Nt
. Understanding the dynamics of components of the GSA

fund thus provides information about the benefit dynamics.
Before describing the dynamics of each of these components, we note that

all three contribute to the funding of the living and death benefits at time t.
We assume, in particular, that they contribute proportionally to both. Then,
from Equation (2.4) we derive that Bt dtFt

· Fit is the living benefit covered by the

fund component i (i= 1, 2, 3), while Dt dNt
Ft
· Fit is the death benefit covered by

the same fund component.
We assume that the principal, F1

t , is simply the part of the fund value
that can be attributed to the initial capital, without taking investment returns
into account. Therefore, as already noted, at t= 0 we have F1

0 = F0. As men-
tioned above, the fund component F1

t contributes to the funding of the living
and death benefits. Further, it must contribute to the mortality credits. The
dynamics of F1

t can be defined as follows:

dF1
t =−

Bt dt
Ft
· F1

t +
Dt dNt

Ft
· F1

t + (1− β) · dNt

Nt
· F1

t

=− F1
t

ax+t
dt+ dNt

Nt
F1
t . (2.6)

In order to interpret (1− β) · dNt
Nt
· F1

t , recall that dNt =−1 if a death occurs,

otherwise dNt = 0. This means that (1− β) · dNt
Nt
· F1

t is either 0 or an outflow

for F1
t . We can interpret it as the contribution of F1

t to the mortality credits.
The interest component, F2

t , is the cumulative amount of investment gains
and losses incurred by the fund. This component changes by (wt

dSt
St
+ (1−

wt)rt)dt) · Ft in each time-interval dt. However, part of the benefits must be
covered with the interest gained up to time t, so that the absolute amount of
accumulated investment returns decreases as living and death benefits are paid
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out. The dynamics of F2
t can be described as follows:

dF2
t =

(
wt
dSt
St
+ (1−wt)rtdt

)
Ft − Bt dt

Ft
· F2

t +
Dt dNt

Ft
· F2

t + (1− β) · dNt

Nt
· F2

t

=
(
wt
dSt
St
+ (1−wt)rtdt

)
Ft − F2

t

ax+t
dt+ dNt

Nt
F2
t . (2.7)

Similarly to the case for F1
t , (1− β) · dNt

Nt
· F2

t can be interpreted as the contri-

bution of F2
t to the mortality credits.

Mortality credits, F3
t , accrue when an annuitant dies and correspond to

the part of the fund (including interest) notionally belonging to the individ-
ual which is not paid back as a death benefit. As discussed above, when an
annuitant dies at time t, an amount is transferred from the principal (F1

t ) and
interest components (F2

t ) into mortality credits (F3
t ). The dynamics of F3

t can
be described as follows:

dF3
t =−

Bt dt
Ft
· F3

t +
Dt dNt

Ft
· F3

t − (1− β) · dNt

Nt
·
(
F1
t + F2

t

)

=− F3
t

ax+t
dt− dNt

Nt
F3
t + (1− β) · dNt

Nt
·
(
F3
t − F1

t − F2
t

)
. (2.8)

It can easily be checked that dF1
t + dF2

t + dF3
t = dFt.

3. MODELLING FRAMEWORK

3.1. The equity model

We assume that the equity process, St, evolves according to Heston (1993)
stochastic volatility model

dSt =μStdt+ ρ
√
vtStdW1

t +
√
1− ρ2√vtStdW2

t , (3.1)

dvt = κ(θ − vt)dt+ σu
√
vtdW1

t , (3.2)

where μ is the instantaneous return of the equity process2, vt is the instan-
taneous variance of St which is a mean reverting process whose long-term
average, speed of mean reversion and standard deviation are θ , κ and σu,
respectively. As presented in Feller (1951), for Equation (3.2) to be a positive
process, the condition 2κθ ≥ σ 2

u has to be satisfied. Here, dW1
t and dW2

t are
correlated Brownian motion increments for the equity and variance processes
whose correlation is denoted as ρ. An Euler scheme is adopted in implement-
ing Equations (3.1) and (3.2). The fund allocates a proportion wt into equity
and (1−wt) into a cash account which evolves deterministically according
to dCt = r Ct. The parameters for the Heston model have been adapted from
Andersen et al. (2002) for all numerical illustrations presented in this paper.3
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3.2. The target volatility strategy

At any instant during the life of the fund and as benefits are paid, the weights
of the equity and cash holdings are dynamically rebalanced so as to maintain
a target volatility level of the fund. The target volatility strategy is a self-
insurance strategy which facilitates more equity holdings during low volatility
periods, and vice versa during high volatility periods. Constraining volatility
of the fund around a given target enhances investment return targets to be
attainable. We rebalance the weights of the equity by setting

wt′ =min
(

TV√
σ̂ 2(t)

, 1
)
,

where TV is the exogenously specified (annualized) target volatility and σ̂ (t)
is an estimated volatility level of equity returns between any two adjacent
rebalancing points, see Morrison and Tadrowski (2013). In all the numerical
illustrations which follow, we will implement an Euler scheme for the fund
dynamics where the time domain is discretized into incremental time steps. We
will jointly assume that the fund is rebalanced weekly and benefits (to surviv-
ing members or as death benefits) paid out immediately before rebalancing.
That is, the proportional investment in equity and cash will be dynamically
adjusted every week in line with changing market conditions, so as to maintain
or achieve a target volatility level of the fund4. Based on historical observa-
tions, the fund manager keeps track of the exponentially weighted moving
average (EWMA) of the volatility such that

σ̂ 2(t+�t)= λ · σ̂ 2(t)+ (1− λ)
�t

(
ln
(
St+�t

St

))2

, (3.3)

where �t= 1
52 which corresponds to weekly rebalancing (Engle, 1982). The

EWMA incorporates all prior observations, but with exponentially declining
weights through time, whose rate of decay is detected by the parameter λ. A
higher value of λ implies that the estimate volatility reacts slower to recent
changes in the equity returns, thus putting more weight on past observations.

For all our numerical illustrations, we adopted the parameter set for the
Heston stochastic volatility model presented in Andersen et al. (2002) fit-
ted using S&P 500 index returns. These parameters have been reproduced in
Table 1 for completeness.

3.3. Illustrative performance of a target volatility strategy

In assessing the performance of the target volatility strategy, we compare the
dynamic strategy with the static case which involves preassigning fixed weights
to the equity-cash holding at initial time where the equity dynamics is governed
by the Heston stochastic volatility process. The weights for the static case are
chosen such that the initial fund volatility equates to the corresponding target
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TABLE 1.

PARAMETERS OF THE HESTON STOCHASTIC VOLATILITY MODEL AND THE DECAY
PARAMETER FOR THE EWMA. THESE PARAMETERS ARE FOR ILLUSTRATIVE PURPOSES AND
ONE CAN FIT EITHER THE HESTON MODEL OR ADAPT ANY EQUITY MODELLING PROCESS TO

DATASET OF INTEREST USING STANDARD TECHNIQUES LIKE THAT PRESENTED IN ANDERSEN
et al. (2002).

r μ κ θ ρ σv λ

0.01 0.0849 2 0.0299 −0.4480 0.2 0.80

TABLE 2.

RELATIONSHIP BETWEEN STATIC EQUITY ALLOCATION AND ‘EQUIVALENT’ DYNAMIC
TARGET VOLATILITY.

wstatic 90% 70% 50% 30% 20% 0%

Target volatility 16% 12% 9% 5% 3% 0%

volatility of the dynamic strategy. The static strategy works as follows: at t= 0,
the fund manager estimates the long run volatility to be θ̂ and elects a constant
proportion strategy in which wt = TV√

θ̂
is allocated to equity and the remainder

to cash. This strategy is static in the sense that the proportion wt is determined
in advance and is not rebalanced. A detailed algorithm for implementing the
static strategy is illustrated in Algorithm 1 of Appendix A.

In contrast, the target volatility strategy continuously updates wt based
on observed returns. To be more precise, when the static weight allocation
is wstatic, we will compare it to a dynamic strategy with target volatility
wstatic ×√θ , where θ is the long run variance of the equity market. This facil-
itates a fair comparison between the ‘rewards’ of two strategies by ensuring
that they have a similar level of ‘risk’. The dynamic target volatility strategy
can be implemented by replicating the pseudo code outlined in Algorithms 1
and 2 of Appendix A. Table 2 shows the relationships between wstatic and the
equivalent volatility based on our selected value of θ .

An illustrative example with sample paths for dynamic target volatility
strategy and static Heston stochastic volatility case is depicted in Figure 1.
The horizontal axis of all subplots of Figure 1 is in years. Sample paths
in Figure 1(a) show that the dynamic rebalancing strategy offers improved
returns relative to the static case in the long run. This is consistent with exist-
ing literature such as Morrison and Tadrowski (2013), Doan et al. (2018) and
Li et al. (2019) who note that target volatility strategies limit losses by disin-
vesting from equities during high volatility periods and vice versa. Figure 1(b)
shows a typical sample on how the weights of the dynamic trading strat-
egy change through time due to changing market conditions. As reflected in
Figure 1(c), dynamic rebalancing of the equity-cash holdings ensures that the
fund volatility is always constrained around a targeted level.
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FIGURE 1. Illustrative simulation: Monthly target volatility rebalancing (‘dynamic’) is supposed to ensure
that the model volatility remains close to the target. Rebalancing decisions are based on EWMA estimates of

the volatility, since the true volatility is not observable in the market. The dynamic strategy offers some
improvements in returns but is limited in actually constraining the volatility of the fund.

Figure 1(d) shows a simulated path of the volatility process in blue depicting
a typical static case. Applying an exponential weighting used here for con-
straining volatility towards the target level yields the red plot. The red plot has
less variability relative to the unconstrained case.

3.4. The mortality model

For all illustrations presented in this paper, we adopt the Gompertz–Makeham
mortality law which expresses the force of mortality as

μx = a+ eb1+b2x, (3.4)

where a, b1 and b2 are constant parameters which are determined through cal-
ibrating to mortality data. In this paper, we calibrate the model to the US
male mortality data for ages 50–110 for the cohort born in 1915 with the data
extracted from the Human Mortality Database.5 By fitting the Gompertz–
Makeham mortality law using the steps presented in Appendix B, the resulting
parameters are presented in Table 3. The corresponding mortality and survival
curves are shown in Figure 2. From the left panel of this figure, we note that
the fitted mortality rates track the realized mortality rate very well. As with
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TABLE 3.

GOMPERTZ–MAKEHAM ESTIMATED PARAMETERS FOR
US MALE MORTALITY, AGES 50–110.

a b1 b2

0.0051 −9.5831 0.0889
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FIGURE 2. Plots for the fitted force of mortality and survival function for the US male data for ages 50–110
for the cohort born in 1915.

the financial model, the Gompertz–Makeham law is adopted here for illustra-
tive purposes. Any mortality model (either deterministic or stochastic) can be
adapted to the approach presented in this paper.

4. IMPLEMENTATION OF THE GSA TARGET VOLATILITY STRATEGY

This section presents numerical experiments analysing the performance of the
two investment strategies presented in Subsection 3.2, applied to a GSA fund,
as described in Section 2. The experiments are aimed at drawing insights on
the interactions of the equity-cash holdings of the underlying fund and impli-
cations on living benefit payouts. We will assess scenarios where a fraction
of mortality credits is paid out as bequest to beneficiaries of those leaving
the pool. Evolution of each GSA fund component will be analysed through
time during the tenure of the pool, quantifying their respective contributions
to living and death benefits. All results in this section have been generated by
implementing relevant routines of Algorithms 1–4 presented in Appendix A
derived from the methodology outlined in Sections 2 and 3 above. For all illus-
trations in this section, we have assumed a homogenous cohort consisting of
n= 1000 participants aged 65 at initial time with each participant contributing
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FIGURE 3. Individual living benefit payment (Lt) quantiles for various death benefit proportions when the
static equity weight= 70% and target volatility= 12%. Quantiles for the static case are in red and those for

the dynamic case are in blue.

$100 as initial capital. The horizontal axis of all figures presented in this section
is expressed in years from inception of the GSA fund.

4.1. Benchmark case with 70% equity allocation at initial time

This subsection presents the benchmark case with equity allocation of 70%
at initial time corresponding to a target volatility of 12% per annum. Figure 3
shows trajectories of living benefits for varying death benefit payments. In each
subplot, summary statistics of living benefits (namely, the median, the 10th and
the 90th percentile) are plotted in the case of a static (red) and a dynamic (blue)
target volatility strategy. All subplots reveal that the dynamic target volatil-
ity strategy consistently pays out higher living benefits compared to the static
volatility strategy, which does not adjust the equity and cash composition due
to changing market conditions. In particular, we point out that while the lower
quantiles of living benefits do not differ that much in respect of the investment
strategy (with the dynamic strategy usually providing higher benefit amounts),
the median and the upper quantiles show much more favourable paths in the
case of a dynamic strategy.

In respect of the death benefit (see Figure 3(a)–(d)), whose size is defined
by the proportion β, clearly higher death benefit payments result in reduced
living benefit payments through time, as the fund value will be proportionally
reduced due to lower mortality credits. This is reflected in Figure 3 where living
benefits are decreasing as the benefit payments increase. When β ≥ 50%, living
benefit payments may fall below initial payments as revealed in Figure 3(c)
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FIGURE 4. Quantiles for the principal component when the static equity weight= 70% and target
volatility= 12%.

and (d). Having adopted a static or a dynamic target volatility strategy does
not seem to be significant in terms of the relative reduction of the living benefit
amount when death benefits are included.

4.2. Analysis of different components of the GSA

The framework adopted in the paper makes it readily possible to analyse
the fund dynamics at anytime in terms of the principal component, invest-
ment returns and mortality credits, as presented in Equations (2.6)–(2.8).
Figures 4–7 present typical trajectories of these respective components through
time. From Figure 4 we note that, on average, the principal repayments are
consistent and exponentially decrease through time in a predictable fashion,
and independent of the investment strategy. This is also apparent in Equation
(2.6), as the stochastic differential equation for the principal component of the
fund depends only on the mortality experience (that we are assuming to be
deterministic; this is why summary statistics coincide in Figure 4). Minor dif-
ferences visible in Figure 4 are due to discretization errors from Monte Carlo
simulation.

The interest component dominates during the initial stages of the pool with
strategies for cases involving lower death benefit payments dominating those
with higher as depicted in Figure 5(a)–(d). From these subplots, it is worth
noting that regardless of how much is paid out as death benefits, interest
accumulates aggressively until the 15th year upon which the pool size starts
to deteriorate and thus impacting more for cases within high death benefit
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FIGURE 5. Interest component quantiles for varying death benefit proportions when the static equity
weight= 70% and target volatility= 12%.
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FIGURE 6. Mortality credit quantiles for varying death benefit proportions when the static equity
weight= 70% and target volatility= 12%.

payouts. Consistent with findings presented in Figure 3, the dynamic strategy
returns dominate those obtained under a static strategy.

Mortality credits increase with increasing number of deaths as reflected in
Figure 6(a)–(d). Again, the dynamic strategy yields higher mortality credits due
to enhanced performance from the dynamic target volatility strategy. We note
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(a) Dynamic strategy when β = 0
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(c) Dynamic strategy when β = 0.2
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FIGURE 7. Proportion of living benefit contributions from the principal, interest and mortality credits
component for varying death benefits and investment strategies.

that as age increases, the variability in mortality credits returned also increases.
This is reflective of a smaller pool size resulting in higher exposure to ran-
dom fluctuations in mortality. As β increases, we observe that the variability
of mortality credits reduces. This is because the payment of death benefits is
negatively correlated with survival benefits. Furthermore, these results provide
comfort that mortality credits offer a useful qualitative measure of the variabil-
ity in annuity payments that is attributable in part to the survival experience
of the pool.

Figure 7 summarizes the contribution of each of these components to living
benefits. During the initial phase of the pool, principal contributions make up
the greater portion of benefit payouts with mortality credits gradually increas-
ing as pool participants die through time. Investment returns exhibit a concave
pattern, increasing to a climax before gradually decreasing as the pool size and
principal depletes.

Figure 7 also reveals that interest accumulates at a faster rate on a target
volatility strategy compared to associated static trading strategy cases.We note
from Figure 7(a) that principal and interest equally contribute to living ben-
efit payments much earlier compared to Figure 7(b) where interest matches
principal components after the 10th anniversary under the current setting.
In addition to this, the interest component proportion attains a higher value
under the dynamic case compared to the static case.We note that higher invest-
ment returns could help mitigating the risk of lower mortality credits arising
in a scenario with unanticipated longevity improvements (which is a situation
not included in our assessments).
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TABLE 4.

INDIVIDUAL LIVING BENEFITS FOR THE BASE CASE WITH 70% EQUITY ALLOCATION AND
β = 0.

Age 75 80 85

Quantile Dynamic Static Dynamic Static Dynamic Static

0.1 6.8725 6.6352 7.4434 7.3153 7.8694 7.3393
0.5 12.1365 11.5346 15.3813 13.8841 17.3999 15.2872
0.9 21.936 18.1925 28.646 23.1723 37.8914 28.2494

4.3. Comparison of living benefits for varying equity compositions

Having presented the benchmark case with an initial strategy consisting of
70% equity and 30% cash investments, we now perform sensitivity analysis
aimed at revealing the impact of various investment strategies on living and
death benefits. In what follows, all analysis will be performed relative to the
70% equity strategy whose corresponding target volatility is 12% per annum.
Table 4 presents living benefit quantiles for the benchmark case across var-
ious ages for the target volatility and static investment strategies. As noted
from Figure 3, the target volatility strategy dominates the static case across all
ages implying that a target volatility strategy enhances living benefits for pool
participants.

Tables 5–7. present comparison results for living benefit quantiles across
various ages and equity compositions relative to the results presented in
Table 4. From these tables, we note that when the initial equity composition is
90% of the fund, the median and 90th percentile are superior to those for the
70% initial equity strategy, while the 10th percentile is lower than in the bench-
mark case. Note that corresponding to the 90% initial equity composition is
an initial volatility of 16% for both the static and target volatility strategy,
compared to the initial volatility of 12% for the benchmark case (see Table 2
for initial volatilities associated with initial equity compositions). When the
strategy is less aggressive with more fund holdings invested in cash and less in
equity, the living benefits decrease as reflected on columns corresponding to
less equity holding in Tables 5–7.

As would be expected, across all ages presented in these tables, lower equity
proportion implies lower expected value of living benefits and lower upper
quantile. For the lower quantile, it turns out to be initially increasing, and
then decreasing with respect to the reduction of the equity weight. The switch
of the path occurs at different ages, depending on the equity weight. There is a
trade-off between equity proportion and impact on the lower quantile, which
suggest an optimal proportion of the equity.

Strategies with less equity holdings have low payout structures due to the
limited performance of the underlying fund. In all cases (i.e., across all wstatic

weights presented in Table 2), the expected value of the living benefits is higher
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TABLE 5.

RELATIVE INDIVIDUAL LIVING BENEFITS AT AGE 75 FOR VARYING INITIAL ALLOCATIONS AND
β = 0. IN THIS TABLE, QUANTILE COMPARISONS ARE PERFORMED RELATIVE TO THE BENCHMARK

CASE PRESENTED IN TABLE 4.

Initial equity 0% 20% 50% 90%

Quantile Dynamic Static Dynamic Static Dynamic Static Dynamic Static

0.1 1.0334 1.0673 1.053 1.0783 1.0214 1.0414 0.98089 0.95122
0.5 0.59768 0.62887 0.71392 0.7285 0.89837 0.89141 1.0858 1.1172
0.9 0.3384 0.40804 0.47322 0.52612 0.78174 0.78109 1.1376 1.2684

TABLE 6.

RELATIVE INDIVIDUAL LIVING BENEFITS AT AGE 80 FOR VARYING INITIAL ALLOCATIONS AND
β = 0. IN THIS TABLE, QUANTILE COMPARISONS ARE PERFORMED RELATIVE TO THE BENCHMARK

CASE PRESENTED IN TABLE 4.

Initial equity 0% 20% 50% 90%

Quantile Dynamic Static Dynamic Static Dynamic Static Dynamic Static

0.1 0.88752 1.0673 0.95677 0.97531 1.0032 1.0074 0.97647 0.98261
0.5 0.44493 0.62887 0.58978 0.61395 0.84934 0.83602 1.1179 1.182
0.9 0.24707 0.40804 0.38745 0.42875 0.73913 0.72292 1.2126 1.3751

TABLE 7.

RELATIVE INDIVIDUAL LIVING BENEFITS AT AGE 85 FOR VARYING INITIAL ALLOCATIONS AND
β = 0. IN THIS TABLE, QUANTILE COMPARISONS ARE PERFORMED RELATIVE TO THE BENCHMARK

CASE PRESENTED IN TABLE 4.

Initial equity 0% 20% 50% 90%

Quantile Dynamic Static Dynamic Static Dynamic Static Dynamic Static

0.1 0.74861 1.0673 0.86961 0.92482 0.97553 0.98871 0.96387 0.99949
0.5 0.35686 0.62887 0.50849 0.54311 0.79279 0.80119 1.1327 1.2269
0.9 0.17379 0.40804 0.30016 0.35292 0.67854 0.67 1.257 1.4726

in the dynamic setting, as well as the higher quantile, whereas the lower quan-
tile is approximately the same in the dynamic and static case. When wstatic = 0,
that is when all the money is invested in cash, the living benefits tend to
decrease, due to longevity cost not being adequately compensated by invest-
ment returns. In general, when there is less equity, there is less volatility in
benefit amounts, but they are lower, even decreasing.

4.4. Conservative strategy from age 85

We now assess the behaviour of living benefits when the investment strat-
egy becomes conservative with the entire fund invested in cash from age 85
and beyond. Figure 8 presents subplots for varying death benefit payments.
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FIGURE 8. Living benefit payment quantiles for varying death benefit proportions when switching to all
cash from age 85 when static strategy equity weight= 70% and target volatility= 12%.

Benefits for both target and static volatility strategies are increasing till age 85
and then flatten out beyond this age.

A switch to cash yields a smooth and more stable living benefit payout
pattern at the expense of potentially enhanced benefits from equity participa-
tion. Comparing Figure 3(a) with Figure 8(a), one notes that pool participants
surviving to advanced ages tend to receive higher living benefits enhanced
by equity investment returns from the unconstrained case. Limiting the fund
to cash only investment strategy compromises its potential as reflected in
Figure 8. This is also revealed in Figure 9 showing the investment return con-
tributions to the fund for varying death benefits. Due to depleting fund value
and low returns associated with cash investments, we note that all investment
return contributions exponentially decrease beyond age 85.

Comparing Figures 6 and 10, one easily notes that the contribution of mor-
tality credits to living benefits under both scenarios is equivalent as the two
cases involve the same pool participants with similar mortality developments.

4.5. Comparison between different payout policies

To have a better perspective of the superiority of the target volatility strategy,
we present Figure 11 showing comparisons of the contribution of invest-
ment returns to living benefits for the case where there are no death benefits.
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FIGURE 9. Interest component quantiles for varying death benefit proportions when switching to all cash
from age 85 when static strategy equity weight= 70% and target volatility= 12%.
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FIGURE 10. Mortality credit quantiles for varying death benefit proportions when switching to all cash
from age 85 when static strategy equity weight= 70% and target volatility= 12%.
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(a) Investment returns when = 0 and all funds

switched to cash post age 85
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(b) Investment returns when = 0 with a target

volatility strategy during the tenure of the GSA

pool (see Figure 5(a)).

FIGURE 11. Comparison of investment returns between different payout policies during the tenure of the
GSA plan when static strategy equity weight= 70% and target volatility= 12%.

We assess trajectories of investment returns for the case where all funds are
switched to cash from age 85 and the target volatility strategy for the whole
duration.6 Figure 11(a) and (b) is the same up to age 85, when in Figure 11(a)
all the equity is disinvested.While returns are less dispersed after the switch, the
investment return contribution significantly drops, due to forgoing the poten-
tial high returns of equities. This is a striking insight, particularly in respect of a
more traditional life cycle investment approach, suggesting to disinvest equity
as individuals age.

4.6. Effects of mortality dynamics on living benefits

In this paper, we have assumed the Gompertz–Makeham mortality law which
is a deterministic mortality model, implying a systematic way in which partici-
pants leave the GSA pool. In reality, mortality rates evolve in an unpredictable
fashion with a great deal of research having been done on stochastic mortality
modelling in both discrete and continuous time settings.7 In as much our focus
is on illustrating the effectiveness of the target volatility strategy in enhancing
living benefit throughout the life of the fund, we can as well assess the impact of
varying mortality rates on living benefit profiles. We accomplish this by shock-
ing fitted parameters for the mortality process in Equation (3.4) so as to realize
mortality rates which are ±10% than those used in the preceding subsections.

Table 8 presents relative individual benefit comparisons between the bench-
mark case of Table 4 and the case where realized mortality is 10% lower across
all ages. As reflected in Table 8, we note that irrespective of the investment
strategy, mortality improvements result in lower living benefit payments across
all ages. When realized mortality is higher than expected, we note higher living
benefits across all ages irrespective of the investment strategy as reflected in
Table 9 with all quantiles dominating the benchmark case.
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TABLE 8.

RELATIVE INDIVIDUAL LIVING BENEFITS FOR 70% INITIAL EQUITY ALLOCATION AND β = 0
WHEN REALIZED MORTALITY IS 10% LOWER ACROSS ALL AGES. IN THIS TABLE, QUANTILE

COMPARISONS ARE PERFORMED RELATIVE TO THE BENCHMARK CASE PRESENTED IN TABLE 4.

Age 75 80 85

Quantile Dynamic Static Dynamic Static Dynamic Static

0.1 0.96689 0.97566 0.94885 0.95058 0.88838 1.0039
0.5 0.96437 0.99339 0.90713 0.97039 0.87426 0.95234
0.9 0.94113 1.0083 0.95306 0.99494 0.90941 0.98354

TABLE 9.

RELATIVE INDIVIDUAL LIVING BENEFITS FOR 70% INITIAL EQUITY ALLOCATION AND β = 0
WHEN REALIZED MORTALITY IS 10% HIGHER ACROSS ALL AGES. IN THIS TABLE, QUANTILE

COMPARISONS ARE PERFORMED RELATIVE TO THE BENCHMARK CASE PRESENTED IN TABLE 4.

Age 75 80 85

Quantile Dynamic Static Dynamic Static Dynamic Static

0.1 1.0113 1.0536 1.0301 1.0705 1.0624 1.1495
0.5 1.0069 1.0548 1.0065 1.0921 1.0806 1.1485
0.9 1.0001 1.0355 1.0538 1.0948 1.0872 1.1841

For completeness, we present Appendix C which illustrates cases involving
non-zero death benefit payouts for the 70% initial equity investment strate-
gies with β = 20% as presented in Tables C.1–C.2. In generating Tables C.2
and C.3, we have assumed corresponding quantiles in Table C.1 as reference
and computed the relative differences to facilitate comparisons. Table C.2
corresponds to the case where realized mortality is 10% lower than expected
with Table C.3 being the case with realized mortality being 10% higher than
expected. As highlighted in Subsection 4.2, death benefit payouts result in
lower living benefits across all ages.8

5. CONCLUDING REMARKS

In this paper, we have presented a target volatility investment strategy for
enhancing the performance of a GSA scheme whose funds are strategically
invested in a combination of equity and cash. For illustrative purposes, we
have adopted the Heston (1993) stochastic volatility process for modelling the
dynamics of the equity process and the Gompertz–Makehammortality law fit-
ted to the USmale mortality profile for the cohort born in 1915. The GSA fund
maintains a certain volatility level by dynamically rebalancing the equity and
cash holding whenever there are significant market movements. During high
volatility periods, funds are switch from equity to cash whereas when volatility
is low, more weights will be assigned to equity. By comparing benefit profiles
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emerging under the dynamic investment strategy with the static case which
does not involve rebalancing, we have demonstrated how the dynamic case
enhances the fund performance and hence improved living benefit payments.

Benefit profiles have been assessed by analysing various quantiles and alter-
native strategies involving varying equity compositions. A trade-off between
the equity proportion and the impact on the lower quantiles of the living
benefit amount emerges, which suggests an optimal proportion of equity com-
position. As potential members of a GSA pool may have bequest motives, we
have assessed cases incorporating death benefits. Death benefits clearly reduce
mortality credits for surviving members leading to lower living benefits. The
presence of death benefits does not affect our conclusions about the better
performance of a dynamic in respect of a static investment strategy.

We finally note that, while the numerical outputs obviously depend on all
the modelling choices that we have introduced, the Heston model for the
equity dynamics and the Gompertz–Makeham model for the force of mor-
tality are not necessary choices in our approach. Alternative models could
be adopted instead. In particular, implementing a stochastic mortality model
could allow to assess how larger profits expected from a dynamic target volatil-
ity strategy could help mitigating a possible longevity risk emerging because of
unanticipated mortality improvements.
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NOTES

1 Note that in later sections when performing numerical illustrations, as is the practice, we
discretize the time domain into discrete time steps and apply the Euler scheme.

2 Although the same letter is used to denote the force of mortality, μx+t, and the instanta-
neous return of the equity process, μ, we prefer to stick to the traditional notation for both,
considering that in what follows any misunderstanding is practically negligible.

3 We adopt the Heston model for equity dynamics to illustrate the flexibility of our approach
and this can easily be adapted to any equity modelling framework.

4 In this study, we assume no transaction costs associated with buying and selling of equities.
In reality, such costs can be significant depending on the volume of transactions and rebalancing
frequency. While we acknowledge that the target volatility strategy will require active manage-
ment with implications on rebalancing costs, we believe that this may also be the case for the fixed
equity strategy for which the fund manager may actively select individual stocks while the overall
asset allocation remained constant. We thus deferred this line of inquiry to future research.

5 https://www.mortality.org/.
6 Note that Figure 11(b) is the same as Figure 5(a). We have reproduced this figure here for

easy of comparison.
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7 See Lee and Carter (1992) for seminal work on stochastic mortality modelling and
Cairns et al. (2008) for a review of extrapolative and time-continuous stochastic mortality mod-
els. Future research may accommodate such realistic mortality frameworks and incorporate
mortality-linked instruments in the investment strategy.

8 This can easily be inferred from comparing Table C.1 with 4.
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A. ALGORITHMS FOR IMPLEMENTING THE GSA STRUCTURE

If a dynamic strategy is used, then the weights are dynamically adjusted. If

a static strategy is used, then the weights are set as wi←
√

vtgt
θ
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B. STANDARD PROCEDURE FOR FITTING THE GOMPERTZ–MAKEHAM
MORTALITY LAW

The procedure for fitting the model is as follows:

1. Define y(a)i = log(μi − a) where μi is the empirical force of mortality for
age group i.

2. Regressing y(a) against x gives the estimates

ŷ(a)i = b̂1(a)xi + b̂0(a).
3. The parameter estimates for a, b1 and b0 are, respectively, represented

as

â= argmina

(∑
i

(ŷ(a)i − y(a)i)2
)
, b̂1(â) and b̂0(â).

C. SENSITIVITY ANALYSIS FOR VARYING MORTALITY

TABLE C.1.

INDIVIDUAL LIVING BENEFITS FOR 70% INITIAL EQUITY ALLOCATION AND β = 20%.

Age 75 80 85

Quantile Dynamic Static Dynamic Static Dynamic Static

0.1 6.5528 6.1921 6.6664 6.4414 6.5935 5.9092
0.5 11.631 10.8352 13.5925 12.1353 14.0938 12.3384
0.9 20.4146 17.0716 25.6844 20.7538 29.6217 23.5658

TABLE C.2.

RELATIVE INDIVIDUAL LIVING BENEFITS FOR 70% INITIAL EQUITY ALLOCATION AND β = 20%
WHEN REALIZED MORTALITY IS 10% LOWER ACROSS ALL AGES. IN THIS TABLE, QUANTILE
COMPARISONS ARE PERFORMED RELATIVE TO THE RESULTS PRESENTED IN TABLE C.1.

Age 75 80 85

Quantile Dynamic Static Dynamic Static Dynamic Static

0.1 0.97064 0.98032 0.95999 0.95756 0.90472 1.0115
0.5 0.97202 1.0003 0.9206 0.98286 0.89284 0.97986
0.9 0.94809 1.0109 0.96192 1.0118 0.93159 0.99777
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TABLE C.3.

RELATIVE INDIVIDUAL LIVING BENEFITS FOR 70% INITIAL EQUITY ALLOCATION AND β = 20%
WHEN REALIZED MORTALITY IS 10% HIGHER ACROSS ALL AGES. IN THIS TABLE, QUANTILE

COMPARISONS ARE PERFORMED RELATIVE TO THE RESULTS PRESENTED IN TABLE C.1.

Age 75 80 85

Quantile Dynamic Static Dynamic Static Dynamic Static

0.1 1.0034 1.0453 1.0145 1.0513 1.0341 1.115
0.5 1.001 1.0496 0.99755 1.0833 1.0567 1.1389
0.9 0.97724 1.0229 1.0345 1.0852 1.0763 1.1531
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