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We analyse how the turbulent transport of E x B type in magnetically confined plasmas
is affected by the intermittent features of turbulence. The latter are modelled via
the non-Gaussian distribution P(¢) of the turbulent electric potential ¢. Our analysis
is performed at an analytical level and confirmed numerically using two statistical
approaches. We have found that the diffusion is inhibited linearly by intermittency, mainly
via the kurtosis of the distribution P(¢). The associated susceptibility for this linear
process is shown to be dependent on the poloidal velocity V, and on the correlation time
7. (or the Kubo number K,, the ratio between 7, and the specific time of flight t3) with a
maximum at 7. & 1y (K, ~ 1). Intermittency does not affect the scaling of diffusion with
the Kubo number.

Keywords: fusion plasma, plasma nonlinear phenomena

1. Introduction

Turbulence plays a major role in the dynamics and confinement of fusion plasmas, both
in current and future experimental devices (i.e. ITER Claessens 2020). Low-frequency
instabilities evolve and saturate into a turbulent electric field E which, mainly via the
E x B drift (B, the magnetic field), tends to transport plasma across magnetic surfaces,
toward the walls. Such radial fluxes are particularly dangerous in the scrape-off layer
(SOL) region (Krasheninnikov 2001; Lipschultz et al. 2007) which absorbs most of the
plasma exhaust and transfers it to the divertor. Understanding and controlling this type of
transport in tokamak devices has been one of the major challenges for fusion science in
the past decades (Bourdelle et al. 2007; Angioni et al. 2009; Fiilop & Nordman 2009).

Both the edge and the SOL plasma (Zweben et al. 2007) are characterized by
the presence of intermittent phenomena comparable in magnitude to the amplitude
of turbulence. Intermittency (Antar et al. 2001b) is represented by transient, coherent
structures with high density gradients such as blobs (Antar et al. 2001a; Pereira et al.
2019; Cheng et al. 2010), Alfvén modes or edge-localized modes (Leonard 2014; Zohm
1996). The emergence of such rare, high-amplitude, fluctuations is captured at a statistical
level, through the distribution P(¢) of electric field values ¢ (x, t), which is non-Gaussian.
Implicitly, the departure from Gaussianity is characteristic also for field derivatives
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0;¢, 0;¢ (Gongalves et al. 2018). The latter are directly related to particle drift and
vorticity, and thus to transport.

In the present work we are concerned with understanding and describing how the
non-Gaussian features of a turbulent stochastic potential ¢(x, ) affect the transport
in the case of a biased, incompressible, two-dimensional velocity field v(x, ) = e, x
V¢ (x, 1)+ V,. We work in the cartesian coordinate system x = (x,y, z) and e, is the
unit vector along the Oz direction. This type of dynamics is relevant not only for
the E x B drift in tokamak plasmas (with B along the Oz direction) in the presence
of a poloidal velocity V', but also for other systems: incompressible fluids, astrophysical
plasmas (Zank et al. 2011), magnetic field lines wandering (Ghilea et al. 2011; Negrea,
Petrisor & Shalchi 2017), etc.

Despite the amount of work done within this topic (Corrsin 1951; Kraichnan 1968;
Kraichnan & Montgomery 1980; Isichenko 1992; Ottaviani 1992; Reuss & Misguich 1996;
Pommois, Veltri & Zimbardo 2001; Vlad et al. 1998a, 2001), the problem of turbulent
transport is, in general, poorly understood due to its complex features. The essence of the
problem can be stated as follows: we do not have simple ways to evaluate the diffusion
coefficients from the Eulerian properties of the velocity field. Moreover, non-Gaussianity
is rarely taken into account, by accident, when simulating realistic flows, thus little it is
known about its effects. A solid understanding of such processes might enable possibilities
of controlling the turbulent transport in fusion devices and its damaging consequences.

The present theoretical analysis requires a priori knowledge of the statistical properties
of the potential ¢: the turbulence spectrum S(k, w) and the distribution P(¢). To acquire
such information, one needs to use high-quality gyro-kinetic simulations (Jenko & Dorland
2001; Wang et al. 2006) complemented by diagnostic techniques (Casati et al. 2009;
Gao et al. 2015; Gongalves et al. 2018). In tokamak devices, the spectrum shows a fast
decay in frequency and along the radial direction with a peaked profile (at some specific
wavenumber ki) along the poloidal direction (Fonck et al. 1993; Jenko & Dorland 2002;
Casati et al. 2009; Holland et al. 2009; Shafer et al. 2012; Qi et al. 2019). One can use the
spectrum S(k, w) = (|¢(k, w)|*) with k the wavevector and w the frequency, to derive, as
a Fourier transform, under the assumption of homogeneity, the auto-correlation function
EG,x;1,0) = {px, DX, 1)) =Ex—X;t—171).

Regarding the probability distribution function (PDF) P(¢), the experimental evidence
(van Milligen et al. 2005; Gongalves et al. 2018; Riva et al. 2019; Wang et al. 2019; Beadle
& Ricci 2020) indicates that, in the edge and SOL regions, the potential is approximately
Gaussian P(¢) ~ exp (—¢?) at negative values ¢ < 0 and has an exponential-like
distribution P(¢p) ~ exp (—A|¢|) in the positive range ¢ > 0. This is equivalent with a
change both of the skewness and kurtosis of the distribution. Note that the departure from
Gaussianity is rather the rule than the exception: all turbulence models (Navier—Stokes,
Hasegawa—Mima, Vlasov—Maxwell, etc.) include convective nonlinearities which lead,
implicitly, to non-Gaussian solutions (Anderson & Botha 2015; Anderson & Hnat 2017).

The paper is structured as follows. Section 2 is dedicated to a description of the
model used to simulate non-Gaussian plasma turbulence. Two methods, the decorrelation
trajectory method (DTM), 2.2, and direct numerical simulation (DNS), 2.3, used to
investigate the diffusive transport are also briefly presented. Section 3 is devoted to a three
step analysis: semi-analytical estimations of the diffusive transport are provided in 3.1,
which are further confirmed and refined by a two-level numerical analysis in 3.2, which
is finally explained from a microscopic point of view in 3.3. Finally, § 4 is dedicated to
conclusions and perspectives.
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2. Theory

We describe the motion of ions in a magnetically confined plasma using a simple
geometric set-up: the strong magnetic field is considered constant B = Bye, while the ions
are subject to a drift-type motion in the perpendicular plane x = (x, y) in the presence of
an effective poloidal velocity (originating from magnetic drifts or plasma rotation) V, =
Ve,

ax()
dr

The statistical description of transport in this context is as follows (Palade 2021; Vlad,
Palade & Spineanu 2021): an ensemble of stochastic fields {¢ (x, 7)} with known Eulerian
properties is considered to drive an associated ensemble of trajectories via equation (2.1).
The diffusion coefficient is computed as the Lagrangian correlation D(f) = 1/2d,(x*()) =
(v(0)x(#)) with the initial conditions x(0) = 0. Using the characteristic correlation length
A, correlation time t, and velocity amplitude V = & /1., @ = /(¢$*(0, 0)), one can define
the Kubo number (Vlad et al. 1998a) K,

= 2. X Vo(x(D), 1) + V,2,. @2.1)

-, (2.2)

as a measure of the correlation time relative to the specific time of flight g = A./V.
Another interpretation of K, is that of turbulence strength. Consequently, one can
distinguish two regimes of transport: the quasilinear (weak/high-frequency turbulence,
K. <« 1) and the strong/low-frequency (K, > 1) regimes. The quasilinear asymptotic
diffusion coefficient can be exactly evaluated as D*® ~ K?A? /7. while in the strong limit
the transport is anomalous D> ~ K!=7 with y € (0, 1). Although still under debate, it
has been proposed (Isichenko 1992) and confirmed within some degree of numerical
error (Ottaviani 1992; Reuss & Misguich 1996; Hauff & Jenko 2006) that the anomalous
exponent is roughly y =~ 3/10.

2.1. Turbulence description

The statistical approach to turbulent transport requires the modelling of the potential
¢ as a non-Gaussian, zero-averaged, homogeneous random field. In order to do that,
we assume (as a technical commodity Vio, Andreani & Wamsteker 2001; Liu et al.
2019; Palade & Vlad 2021) that the non-Gaussian field ¢ (x, ¢) can be related to another,
fictitious, Gaussian field ¢(x,r) with known correlation function £(x —x',r—1) =
(p(x, He(x', 1)) via a nonlinear transformation ¢ (x, 1) = f(¢(x, t)). The function f must
be chosen such that both fields are zero averaged (¢ (x, 1)) = (¢(x, t)) = 0 and have the
same amplitude of fluctuations (¢*(x, 1)) = (¢p(x, 1)) = £(0,0) = V.

It can be easily proven that a local nonlinear transformation preserves the homogeneity
property. This means that the field ¢ (x, 7) is also homogeneous, i.e. its correlation function
is only distance dependent (¢ (x, )¢ (X', 1)) = {f(p(x, ))f (X', 1)) =E'(x — X', t — 1).

Straightforwardly, we can generically compute the correlation of the derivatives as well
as the skewness s and the excess kurtosis é« of the non-Gaussian field ¢

(0 (e, D (X', 1)) = (f [9(x, D] ' [, )] Bip(x, Dy (X', 1)), (2.3)

3 3
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Experimental measurements in the SOL of various tokamak devices (Filippas et al.
1995; Antar et al. 2001a,b; van Milligen et al. 2005; Casati et al. 2009; Riva et al.
2019) have shown PDFs of electrostatic fluctuations which exhibit longer tails as well
as skewness, especially in the positive part of the distribution. For these reasons, we
choose a particularly simple nonlinear transformation to construct the non-Gaussian fields:
f@) ~¢+ap® + pp’ —aVy

(2.5)

@+ ap® + Be* —aV,

¢ = ; (2.6)
V14202V +38Ve(2 + 58V0)
142 2
B = *2ag 3¢ 39, @.7)
V14202V +38Vo(2 + 58V0)
s~ 6aVy? (1+3Voh), (2.8)
Sk & 248V, + 144V B + 48Va?, (2.9)
E (2026 + 6B2E> + (3BVy + 1)2
o (202E + 68 +(,30+))' 2.10)

1+ 262V, + 38Vo(58Vo + 2)

Note that, up to first order, the skewness is controlled by the o parameter and the kurtosis
by B. Also, the correlation is virtually unchanged due to its second-order parametric
dependence &' ~ £ + 2a*E(E — V) + 6B2E(E? — V7). This enables us to approximate
&' ~ & since a, B~ 107>"! for a good agreement with experimental distributions
(Filippas et al. 1995; Riva et al. 2019).

We note that the presence of a poloidal velocity field V, implies that the turbulent field ¢
moves with this velocity, which should modify the turbulence statistics. However, since we
consider a homogeneous turbulence and the experimental measurements of field statistics
are usually performed in the laboratory system, such modifications are not present.

Our model of intermittency (2.6) captures the stochastic features of turbulence (¢ being
a random field) and also the departure from a Gaussian distribution (through the f(-)
transformation). Yet, we acknowledge that true intermittency exhibits other features such
as scale symmetry breaking and deviation from homogeneity. Such elements are beyond
the scope of the present work.

2.2. Decorrelation trajectory method

The DTM has been used in the past decades to investigate various types of turbulent
transport in tokamak plasmas (Vlad et al. 1998a, 2004; Vlad & Spineanu 2016; Croitoru
et al. 2017) as well as in some astrophysical systems (Negrea 2019). The method is
semi-analytical, since it describes the transport via a set of deterministic objects called
decorrelation trajectories (DTs) (Vlad ef al. 1998a) which are used to compute the
diffusion (2.12)

dx* ()
dt

=V¥X50,n =6, x VOSX°(t), D) + V,, (2.11)

D..(t) = (v,(0)x(2)) ~ / dS P(S)V3(0, 0)X5(1). (2.12)
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The main assumption of DTM is that trajectories with similar initial conditions should
remain similar at all times. If this is true, one can replace the ensemble of real stochastic
potentials {¢ (x, 1)} with a set of deterministic conditional potentials {®5(x, #)} which are
defined as conditional averages over real potentials in sub-ensembles (S), i.e. @5(x, 1) =
(¢(x, 1))S. The DTs X>(¢) are solutions for the equation (2.11).

For our non-Gaussian case, we define the sub-ensembles via the initial values (at x = 0
and ¢t = 0) of the auxiliary field ¢ as

S={p(x,0) =1 (9 D) 19:9(0,0) = ¢}; i € {0, x, y}} (2.13)

where each S has a probabilistic weight P(S) = [, eXp(—(¢})*/Vii/2) with V;; =
([3;0(0)]*) = —3;E(0, 0). From a straightforward calculus of @5 = (¢)5 = (f(¢))5 we

complete the DTM model
l]/s 1 -1 lI/S 2 II/S 3
s = PUF3P0) Fal-l+o + W)+ FWS o1
V14202 + 68+ 1582
E(x, 1) 0, Ec(x, 1) 0,E,(x, 1)
WS= S S Nt , 2.15
%o Vo @ V. t ¢ v, (2.15)
&? 0,E)? 0,€)?
o=V o By B8 (216)

VO chx Vyy

The function o is, in fact, a measure of field fluctuations within a sub-ensemble S
which turns out to be independent of S: o (x, 1) = (§¢*(x, 1))°. Note that, in the Gaussian
limit o« = B = 0, the model simplifies to @5 — W5, as has been used in previous studies
(Vlad et al. 1998a; Vlad & Spineanu 2016; Croitoru et al. 2017; Negrea 2019). The DTM
method is equivalent to neglecting trajectory fluctuations (Vlad et al. 1998b) within a
sub-ensemble. For more details on the method see Vlad et al. (1998a, 2001, 2004) and
Croitoru et al. (2017).

2.3. DNS method

The purpose of DNS is to investigate turbulent transport as it is, without resorting to any
approximations, closures or supplementary models.

In our case, this is achieved by constructing a statistical ensemble of Gaussian random
fields (GRFs) ¢(x, t) with the correct correlation function which will be used to derive the
ensemble of non-Gaussian fields ¢ via the prescribed transformation ¢ = f(¢). For each
realization, (2.1) is solved and a trajectory is obtained. The transport coefficients, diffusion
and average velocity, are computed as simple statistical averages over the ensemble. DNS
tries to mimic the whole (real) statistical problem resorting to numerical tools (Palade
2021; Palade & Vlad 2021; Vlad et al. 2021).

We underline that the turbulent character of the potential is captured both by the chaotic
nature of the random fields and by the statistical approach, which considers an ensemble
of such stochastic objects.

The main source of errors in DNS is an insufficient numerical representation of the
ensemble. In practice, we use a spectral representation of GRFs as discussed in Palade &
Vlad (2021) with improved Eulerian and Lagrangian convergences

N
p(x) = ZS‘/ 2(k;) sin (ij + ggj) , 2.17)
J
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where k; are randomly distributed within the compact support of the spectrum S(k) and
¢ = =1 is randomly chosen. In practice, we use N. ~ 107 as this was found to ensure
both the Gaussianity of the field as well as the details of the correlation function. Good
statistical convergence is found, both at the Eulerian and Lagrangian levels, to be satisfied
by ensembles with dimension M ~ 10°.

This is the standard approach of DNS to transport. It is suitable for GRFs since the field
@ is naturally Gaussian via the central limit theorem. In order to tackle the problem of
non-Gaussian ¢, we compute as such (2.17) the fields ¢ and solve the following equation
of motion:

dx(1)

4 = fl(px(), 1))e, x Vox(1),1) + V. (2.18)

Note that the above equation (2.18) is equivalent to (2.1) given the fact that ¢ = f(¢).
The rest of the method remains unchanged. For more details see Palade, Vlad & Spineanu
(2021), Hauff & Jenko (2006), Palade & Vlad (2021), Vlad et al. (2021) and Palade (2021).

3. Results

In order to capture the basic physical processes related to non-Gaussianity, we use two
simple model correlation functions &£ and &, for the ¢ field

£1(x.y. 1) ¥y ot G.1)
Xy, ) =exp| -5 — 2> — — .
15y P\T2e 22 %,
2y ! e
E(x,y, 1) = 1+ﬁ+ﬁ e !/, (3.2)
X y

with 4, =4, =1 and 7, = 10. Thus, V;, = 1. These choices are in agreement with the
gross features of turbulence spectra from incompressible plasmas and fluids (Levinson
et al. 1984; Boldyrev 2005; Casati et al. 2009; Gao et al. 2015).

In figure 1(a,b) we show how the proposed transformation f(¢) ~ ¢ + ag? + B> —
o distorts the Gaussian distribution both for the potential and its derivatives. Note how,
through appropriate combinations of & and 8 (the brown line), the resulting PDF is closer
to Gaussianity in the negative domain ¢ < 0 and similar to an exponential distribution in
the positive part ¢ > 0 (as observed in measurements). Also, due to the relation between
0;¢ and o, the distribution of derivatives P(9;¢) is free of any skewness.

In figure 2(a,b) we plot the change in correlation € = £ — £ under the effects of
non-Gaussianity for the first model, £,. The results are in agreement with the analytical
estimation (2.6) in that the departure is §€ ~ O(a?, %) ~ 1 %E and virtually negligible,
especially in the strongly correlated area |x| ~ 0. For &, the profiles are extremely similar.

3.1. Analytical estimations

Our first level of analysis is the analytical one. We intend to estimate the change of
the diffusion coefficient induced by non-Gaussian features of turbulence. In order to do
that, we start by considering a simplified case of frozen turbulence, when the potential
is time independent ¢(x, f) = @(x). This case can be obtained setting 7. — oo. Due to
the Hamiltonian structure of the equations (2.1), the trajectories are closed and both the
fictitious and the real potentials are conserved ¢(x(t)) = ¢(x(0)) = ¢(0) = ¢ (x(2)) =
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https://doi.org/10.1017/S0022377822000022

Effects of intermittency on turbulent transport 7

(@) ()
! —a=0 B=0 — a=0 B=0
— a=0 =041 =01
0.100} — @=0.02 B=0 B=0
— a=01 B=005 B=0.05

0.010¢

In P(¢)
In P(8x¢)

0.001¢

1074

¢ ox¢p

FIGURE 1. PDF of potential values (a) and potential derivatives (b) generated randomly in
accordance with the nonlinear transformation from (2.6).
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FIGURE 2. Relative changes §&; = £ — &1 of the correlation function in the spatial domain at
different small «, S values.
¢ (x(0)) = ¢(0). For further purposes, let us denote the following function:

_ 1 + 20 + 38>
V1422 +3B2+58)

Alg] (3.3)

With this notation, it turns out that the equations of motion in the Gaussian and
non-Gaussian (0 index) cases become

dxgt(t) = 2. x Vg (xo(1). (3.4)
dx
% — Alp(0)e. x Ve (x(1)). (3.5)

It can be easily shown, via a variable transformation, that x(f) = x¢(A[¢(0)]¢). This
exact relation allows us to relate the running diffusion coefficients between these two
cases, non-Gaussian D(¢) and the Gaussian limit Dy (¢). In order to do that, let us denote
the ‘conditional diffusion’ for trajectories starting at equal potential values as

1d
do(t; 9(0)) = 5&(%(0)@0) (3.6)
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for which it holds true that d(¢; ¢(0)) = Al¢(0)]dy(Al¢(0)]t; ¢(0)). Finally, we write

Dy(1) = / de(0)Ple(0)1do(t; ¢(0)), (3.7

D(r) = / de(0)Plp(0)]do(Al@(0)]t; (0)A[@(0)]. (3.8)

Without any proof, we assume that some sort of generalized mean value theorem is valid
and these two integrals can be related through an effective potential

D(t) = Alget (1) 1Do (Al gess (0)]1). (3.9)

On the other hand, the anomalous feature of transport is reflected in the asymptotic
behaviour of running Lagrangian averages L(f) which algebraically decay Lo(f) ~ 77
(Isichenko 1992; Ottaviani 1992; Reuss & Misguich 1996; Reuss, Vlad & Misguich 1998;
Vlad et al. 1998a, 2004). At small times t << 7y the dependence of L(¢) can usually be
analytically computed. The presence of a decorrelation mechanism (finite 7. in our case)
tends to saturate asymptotically all Lagrangian quantities at values which can be estimated
(Vlad et al. 1998a, 2004) as lim, ., L(t) = L> ~ L(t.). We assume this to be true both
for diffusion D(#) and @eg(2).

Combining all these behaviours, the algebraic decay D(r) ~ 77, @u:(f) ~ 7%, the
approximate saturation at the decorrelation time D> ~ D(t.), 953 ~ ¢eir(T.) and the
assumed relation between Gaussian and non-Gaussian diffusion (3.9), one can show that

% 1 poo - (3.10)
D¥/DF = Algesi(te; o, I 2 14+ 3B(=14y), K>

{Dw/Dz? = Algpen(ti o, HP ~ 1 +202 + 1267, K<l

These estimations suggest that « has only a quadratic effect on the diffusion coefficient.

This aspect can be understood from another perspective, analysing how the Lagrangian

correlation of velocities L, (f) = (v,(0)v,(?)) (the time derivative of D(¢)) varies with o up
to the first order

a 0
%Lv(l‘) = ﬁ(vx(O, 0)v:(x(1), D)) o< (@(0)8,9(0)d,0 (1)) + (@ (1), (0)dy (1)) ~ 0.
(3.11)

Note that ¢(0) and 9;¢(0) are uncorrelated Gaussian quantities. Moreover, Lumley’s
theorem (Monin & Yaglom 1973) assures us that the space derivatives 0;¢(#) remain
Gaussian quantities at all times. Only the distribution of Lagrangian potentials ¢(#) might
depart from Gaussianity in the case of finite t., but only slightly. Thus, the derivative
d.L,(t) is roughly made up of averages of products of three Gaussian quantities and,
therefore, is zero. This means that L,(#) is roughly independent of « up to first order.
The same goes for the diffusion.

Following the above reasoning and estimations (3.10), we expect that the non-Gaussian
diffusion will vary roughly as O(B), O(«?). For this reason, we define a response function
(susceptibility yx) to quantify the possible linear dependency between diffusion variation
and turbulence excess kurtosis (as a measurable quantity)

1 DGk
x = Jim — <1 o0 ) . (3.12)
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FIGURE 3. Running diffusion coefficient D(¢) obtained for the correlation £, V), = 0 in the
case 7. — oo (blue) and 7. = 10 (red) with the use of DNS (full line) and DTM (dashed line).

3.2. Numerical results

We intend to test further if the analytical estimations found above bear any meaning in real
situations. For that, we use the statistical methods described previously: DNS and DTM.
We underline that DNS is an exact-in-principle method which is hindered in practice only
by the numerical resolution, thus, it requires a large amount of CPU resources. DTM
is an approximation which provides only qualitative results and it is easy to implement
numerically. The purpose of DTM in this work is to serve as a supplementary test for the
results of DNS which might be plagued with a small, but uncertain, degree of numerical
inaccuracy.

We perform numerical simulations of the running diffusion coefficients D(f) for the
incompressible motion (2.1) where the potential ¢ (x, ¢) is described via a fictitious field
@(x, t) (2.6) with known Eulerian correlation (3.1). The numerical method for trajectory
propagation both in (2.18) (DNS) and (2.11) (DTM) is a fourth-order Runge—Kutta method
with a fixed time step Az ~ 10! min(z,, A?). The simulation time is fy. ~ 57.. The
number of trajectories simulated with DNS is routinely N, ~ 10° while the number
of sub-ensembles used in DTM N, ~ 10°. These resolutions are chosen for numerical
accuracy and statistical precision. Using dedicated programming procedures, typical

simulations on personal computers require in terms of CPU time fop ~ 1 min and

185 ~ 10 min.

Beyond diving into the matter of non-Gaussianity, let us have a look at a typical running
diffusion coefficient D(¢) obtained in the case « = 8 = 0. The results of both methods are
shown in figure 3 at 7, = 10 and t. — o0. In the case of frozen turbulence one can see the
algebraic decay of diffusion D(¢) ~ ¢7. The effect of finite 7, is the saturation of diffusion
to a constant value D*° = D(t — o0). Note that DTM reproduces the qualitative behaviour
of trapping and decorrelation at all times. Yet, the results are quantitatively different in
the asymptotic region ¢ > tg3. This is a due to the overestimation of trapping in the DTM
approximation. Consequently, DTM overestimates the y exponent too and we expect it will
overestimate the effect of intermittency in the strong/low-frequency turbulence regime.

We investigate further the dependence of the diffusion on « and find that both methods,
DTM and DNS, predict a negligible variation (figure 4). The results are in line with our
analytical estimation that « affects the transport only at second order. A very weak linear
dependence supplemented by a weak quadratic one can be observed.
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FIGURE 4. Asymptotic values of diffusion at 8 = 0, 7. = 10, V, = 0 vs the skewness s
obtained with the use of DTM (blue line) and DNS (red line).

D(t)

0.0F. ... — e R —
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FIGURE 5. Running diffusion profiles D(#) obtained with DNS for the correlation £; with
7. = 10 and V), = 0 at different 8 values and o = 0.

Given this fact, let us set « = 0 and look further at how g affects the diffusion. The
mechanism can be seen at work in figure 5, where several running diffusion profiles D(r)
are shown for different 8 values. As expected, the effect is visible only at larger times,
at least at the order of 74, and it results in a decrease of the diffusion coefficient. This
behaviour can be quantified further by inspecting the variation of the asymptotic diffusion
D> with B.

We plot in figure 6 asymptotic diffusion coefficients computed for different values
of B with DNS (blue) for the correlation function £ and with DTM (red) for &,. Our
expectation that the 8 parameter drives a linear change in the diffusion is confirmed. Also,
it must be emphasized how close the results of DTM to those of DNS are, given the fact
that they use two distinct correlations.

Going further into understanding the effects of intermittency, we plot in figure 7 profiles
of asymptotic diffusion coefficients vs the Kubo number at different values of the g
parameter. As expected from the results of figure 6 the effect of $ is to inhibit the overall
values of diffusion. However, something supplementary must be underlined: in the high
K, region, that of trajectory trapping, the profiles are approximately parallel to each other
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FIGURE 6. The relative asymptotic diffusion dependence on the excess kurtosis obtained with
DTM for &, (blue line) and with DNS for £; (red line).
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FIGURE 7. Asymptotic diffusion coefficient vs the Kubo number at different 8 values. The
results are obtained with DNS for £ and V, = 0.

and to the ~ K %3 line. This tells us that the Kubo number scaling is universal y = 0.3
and it is unaffected by non-Gaussianity.

After confirming the linear behaviour in B, we look into the dependence of the
susceptibility y on the Kubo number K,. We have performed extensive numerical
simulations both with DTM and DNS varying both the Kubo number (through t.) and
the B parameter. Final results are shown in figure 8, where we plot x (K,) obtained with
DNS at several distinct V,, values. As one can see, at small correlation times, this quantity
is null. It increases only quadratically with K,, until around 7, of the order of the time
of flight and saturates for V,;, = 0. An interesting effect of the average velocity can be
seen in figure 8, which consists in the strong attenuation of the effect of the kurtosis. The
susceptibility has a strong algebraic decay in these conditions.

In figure 9 we show the profile of x obtained with DTM in the case of V,, = 0. The
method is able to confirm what was found with DNS: the susceptibility grows to a
maximum around the time of flight and decays at larger values of K,. As expected, since
DTM overestimates the trapping, it also overestimates the decay of x.
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FIGURE 8. Susceptibility x as a function of Kubo number K, obtained with DNS for & at
distinct V), values.
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FIGURE 9. Susceptibility x as a function of Kubo number K, obtained with DTM for &, at
V, =0.

We underline that high Kubo number regimes K, >> 1 are less relevant for a realistic
tokamak plasma. Yet, we have considered in our simulations a wide parametric region
K, € (0, 100) in order to offer a complete, quantitative, representation of the effects found.

3.3. Microscopic analysis

The effect of non-Gaussianity on transport can be understood from a microscopic
perspective, following how individual trajectories change, or how their statistics is
modified.

One can start the analysis from the limiting case of frozen turbulence 7. — oo. While
the trajectories remain unchanged (see § 3.1) the velocity is changed by a factor A[¢(0)].
The consequence is that the diffusion across that particular equipotential line becomes
d(t; (0)) = Alp(0)]do(Ale(0)]1t; ¢(0)). This is equivalent to a change of the trajectory’s
period by a factor A~![¢(0)]. The statistical effects can be seen in figure 10 where the PDF
of the periods P(T) is plotted at different 8 values with o = 0.
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FIGURE 10. PDF P(T) of the trajectory periods at different 8 values in frozen turbulence
7. — 00 and no poloidal velocity V,, = 0.

One can notice that the intermittency lowers the general values of the periods. This is a
natural consequence of the fact that A[¢(0)] > 1. The effect is more pronounced at small
and intermediate values 7' ~ t; since the low-frequency trajectories, i.e. T >> 1y, are those
with low values of the potential ¢(0) ~ 0. For the latter, the factor A[p(0)] ~ 1.

Although at small times ¢t << g all trajectories contribute to the diffusion, their average
is only slightly dependent on S. The effect becomes more pronounced at times of the order
of the time of flight. The fact that the distributions of slow trajectories 7' >> 1 are almost
unchanged explains why the asymptotic behaviour of diffusion in the nonlinear regime
K, > 1is universal: the scaling law D ~ K'~7 is invariant to non-Gaussianity at K, > 1.

On the other hand, the distribution of potentials is changed. Thus, the effect
of non-Gaussianity on diffusion results both from a change in the weight of each
equipotential line and from the distortion of time periods.

Furthermore, we underline that, if the turbulence is frozen, both the distribution of
Lagrangian potentials and that of Lagrangian velocities (Lumley’s theorem, due to the
divergenceless property of the Eulerian velocity field) are invariant in time. Under these
two strong constrains, it is clear that the only microscopic effect of non-Gaussianity is the
redistribution of trajectory frequencies. Other dynamical phenomena which might affect
the transport are not present.

Finally, we note how the distribution of small-valued potentials ¢ < @ 1is virtually
unchanged due to the shape of f (the nonlinear mapping between ¢ and ¢). These small
values are linked to long low-frequency trajectories, thus, to the behaviour of diffusion
in the nonlinear regime K, > 1, t. > 1. This explains why the scaling behaviour (y) is
unchanged by intermittency.

4. Conclusions

In the present work we have analysed the effects of non-Gaussian turbulent electric fields
on the turbulent transport in magnetized fusion plasmas. The non-Gaussianity of ¢ (x, t) is
considered a sign of intermittency and it is designed to be in agreement with experimental
data on field statistics. We consider the simple case of E x B drift-type dynamics in a
constant magnetic field in a slab geometry. The transport is characterized by the resulting
diffusion coefficient.
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In order to mimic the experimental data, the non-Gaussian field ¢ is modelled using
a nonlinear transformation f from a fictitious Gaussian turbulent field ¢. The transport
and the turbulence model are analysed on three distinct levels: analytical, numerical and
physical.

The analytical analysis suggests that, for small values of skewness and kurtosis, the
diffusion decreases linearly with the excess kurtosis 6« while the dependency on skewness
can be neglected. The numerical analysis, which is performed using two distinct statistical
methods (DTM and DNS), confirms the analytical estimations: indeed, only the kurtosis
of the non-Gaussian field affects the diffusion in a linear manner. Moreover, exploring
numerically the main dependence of the response coefficient x (K,) on correlation time,
an interesting behaviour was found. In the quasilinear regime, the effects of intermittency
are small x — 0. At the other end of the spectrum, K, > 1, x saturates to a maximum,
which is reached after the time of flight g, i.e. K, = 1 — 2. The presence of a poloidal
velocity induces an algebraic decay of the susceptibility x ~ K, ¢ — 0 in the nonlinear
regime. To summarize our findings:

D>®(8x, 5) ~ D*(0, 0) (1 + x (K.,)8k)

x(K,) o« KZ, K. <1y
x(K) ~ K%, K.>1
max[x (K,)] ~ x(tq = ©.)

4.1)

Our results suggest that the specific correlation time of turbulence . as well as the
departure from Gaussianity might serve as control parameters for the anomalous transport
of plasma.
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