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Abstract – Detrital zircons are often used to constrain the maximum sedimentary age of strata and
sedimentary provenance. This study aimed at reconstructing the Cryogenian palaeogeography of the
Yangtze Domain based on U–Pb ages and Lu–Hf isotopic signatures of detrital zircons from sand-
stones in the southeastern part of the Yangtze Domain. U–Pb ages of the youngest detrital zircon
grains from the Niuguping, Gucheng and Datangpo formations yielded average ages of 712 ± 24 Ma,
679.2 ± 6.2 Ma and 665.1 ± 7.4 Ma, respectively, which are close to the depositional ages of their
respective formations. An integrated study of detrital zircon Lu–Hf isotopes and U–Pb ages from
three samples revealed six main peak ages in the samples from the Anhua section at c. 680 Ma, c.
780 Ma, c. 820 Ma, c. 940 Ma, c. 2000 Ma and c. 2500 Ma. The characteristics of the U–Pb ages and
Hf isotopes indicate a link between the north and southeast margins of the Yangtze Domain as early as
c. 680 Ma, and the provenance of the coeval sedimentary sequences in the SE Yangtze Domain was
the South Qinling Block on the northern margin of the Yangtze Domain. The provenance analysis on
the c. 680 Ma detritus composing upper Neoproterozoic strata in the Yangtze Domain revealed that
the detritus was transported southward from South Qinling to the southeast margin of the Yangtze
Domain through the Exi Strait, but was hindered by the Jiangnan Orogenic Belt.
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1. Introduction

Clastic sediments are natural samples and ideal mater-
ials for studying the formation, evolution and chem-
ical composition of the continental crust (Jahn, Gal-
let & Han, 2001; McLennan, 2001; Rudnick & Gao,
2003). The ideal aim of detrital zircon geochronology
is to trace the transportation of clastic materials from
their source area to the sedimentary basin. In situ U–
Pb and Lu–Hf isotopic data from detrital zircons in
clastic sediments and sedimentary rocks are used to
identify provenance in sedimentary basins and reveal
major magmatic events that occurred in the source re-
gion (Fedo, Sircombe & Rainbird, 2003; Andersen,
2005; Zhang et al. 2006a; Liu, X. M. et al. 2008;
Belousova et al. 2012; Gehrels, 2012; Andersen, Kris-
toffersen & Elburg, 2016; Linol et al. 2016; Chen et al.
2016, 2018; Wang et al. 2017). Integrated analyses of
detrital zircon U–Pb and Hf isotopes have thus become
a powerful tool for deciphering provenance variation in
a sedimentary basin during sedimentation and the de-
nudation history of source regions (e.g. Myrow et al.
2010; Zhang et al. 2012; Wang, W. et al. 2013).

The assembly and break-up of Rodinia is an import-
ant geological event in geological history. The break-
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up of Rodinia (870–560 Ma) had a significant influ-
ence on the evolution history of South China (Li et al.
2008). Nevertheless, magmatic events recording the
break-up of Rodinia in the Yangtze Domain (YGD)
have been observed only up to 750 Ma (Xia et al.
2018 and references therein). Few tuff records from
the Cryogenian period have been observed in the YGD.
Although necessary reports about magmatic rocks are
lacking (Zhao et al. 2011 and references therein; Dong
& Santosh, 2016 and references therein), a large num-
ber of detrital zircons from this period have been recor-
ded in the clastic rocks of the YGD (Yin et al. 2006;
Liu, X. M et al. 2008; Zhang, Jiang & Han, 2008;
Ling et al. 2010; Wang et al. 2010, 2012a,b; Wang, W.
et al. 2013; Lan et al. 2015; Liu et al. 2015; Yu et al.
2016). Nevertheless, the source of the YGD sediments
deposited during late Neoproterozoic time remains un-
certain. Furthermore, the transportation of the upper
Neoproterozoic detritus within the YGD has not been
clearly constrained. Therefore, this study attempted to
identify the source areas and migration processes and
to reconstruct the Cryogenian palaeogeography of the
YGD through detailed investigation of detrital zircons
in the study area.

This study focused on U–Pb ages and Lu–Hf iso-
topic signatures of detrital zircons from sandstones in
the southeastern part of the YGD deposited during the
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Cryogenian period (Fig. 1). Our objective was to study
the provenance and transport of the clastic material
through zircon U–Pb–Lu–Hf isotopic analysis of the
Nanhua strata, and to reconstruct the Cryogenian pa-
laeogeography of the YGD.

2. Geological setting and sampling

2.a. Geological setting

The northern margin of the YGD is separated by the
Mianlue–Bashan–Xiangguang Mesozoic overthrust
fault (MBXF) from the South Qinling Block (SQB),
which consists mainly of Middle to Upper Proterozoic
volcano-sedimentary successions and Neoproterozoic
intrusions overlain by sedimentary rocks (Dong et al.
2011). Precambrian basement rocks are exposed in the
Yudongzi Group, Foping area, Douling Group, Wu-
guan Group, Yaolinghe Group and Wudangshan Group
in the SQB (Zhang et al. 2001; Shi, Yu & Santosh,
2013). Of these, the Wudangshan Group is the most
widely exposed basement strata in the SQB (Wang,
R. R. et al. 2016) and its formation has been dated at
830–726 Ma using U–Pb ages of zircons from volcanic
interlayers and sedimentary rocks (Ling et al. 2008,
2010; Wang, W. et al. 2013), although some studies re-
ported an age of 783–675 Ma (Xia et al. 2008; Zhang
et al. 2013), which is evidenced by the 632–688 Ma
intruding plutons (Cai et al. 2007; Ling et al. 2008;
Wang, W. et al. 2013; Zhu et al. 2015).

Several Neoproterozoic plutons occur in the SQB
including the Fenghuangshan and Douling plutons.
These plutons mainly comprise granitic and dioritic
intrusions (Zhang et al. 2004; Yang et al. 2012; Dong
& Santosh, 2016). They have been dated at c. 802–
685 Ma, and show arc-related geochemical features
(Zhang et al. 2004; Y. Y. Geng, unpub. M.Sc. thesis,
China University of Geosciences, 2010; Liu et al.
2011; Li et al. 2012; Yang et al. 2012). In addition, the
Xiaomoling Complex and some other small intrusions
dated at c. 956–621 Ma also occur along the Shanyang
fault (Niu et al. 2006; Liu et al. 2011, 2014; Wu, F. F.
et al. 2012; Guo et al. 2014; Yan et al. 2014; Zhang
et al. 2015; Hu, F. Y. et al. 2016; Wang, R. R. et al.
2016).

During the period of deposition of the Nanhua
System, the YGD was composed of the Upper Yangtze
Old Land (UYZOL), Ezhong Old Land (EZOL) and
Jiangnan Old Land (JNOL) (Liu & Xu, 1994). The
area on the southeast margin of the YGD is called
the Nanhua rift basin, and the area on north margin
of the YGD is called the South Qinling Sea Trough
(Liu & Xu, 1994). The Nanhua rift basin on the
southeast margin of the YGD was connected to the
South Qinling Sea Trough through a channel called
the Exi Strait (Fig. 2; Liu & Xu, 1994). The study area
is located on the southeast margin of the YGD, where
the western margin of the Jiangnan orogeny (JNO)
lies (Fig. 1a, b). The main sedimentary formations of
the Nanhua System include the Changan, Liangjiehe

(Xieshuihe), Tiesiao (Gucheng), Datangpo and Nantuo
formations. Two glaciation events probably occurred
in the Changan and Gucheng formations in South
China during the Sturtian glaciation (Lan et al. 2015).
The Liangjiehe Formation belongs to an interglacial
period, and the Nantuo Formation coincides with the
Marinoan glaciation (Barfod et al. 2002; Chen et al.
2004). Chronological research has shown that the
Marinoan glaciation ended at 635 Ma (Condon et al.
2005; Chu et al. 2005; Yin et al. 2005a,b; Zhang et al.
2005), and the Sturtian glaciation possibly ended at
670 Ma (Fanning & Link, 2004; Xiao et al. 2004;
Yin et al. 2006; Yu et al. 2016). In the study area,
the Nanhua System sedimentary strata are separated
into the Gucheng, Datangpo and Nantuo formations,
and it lacks the Changan formation. The Gucheng
Formation has a direct unconformable contact with the
Niuguping Formation at the top of the Banxi Group.

2.b. Sample collection

In our study, sedimentary rock samples were collected
from a geological section located in Anhua, Dabu
County, Hunan Province (Fig. 1b, c). These samples
were used for geochronological (AH06, AH09 and
AH14) and Hf isotopic analyses (AH06 and AH14).
Furthermore, data on seven sections were obtained
from previous studies. The lithology of the geological
section is uniform, comprising mainly sandstone,
tillite and sandy slate. AH09 is a slate sample from
the top of the Niuguping Formation, AH06 is a tillite
sample from the upper part of the Gucheng Formation
(Fig. 1c) and AH14 is a sandstone sample from the
middle part of the Datangpo Formation. Details on
the regional stratigraphy and sampling lithology of
the other sections are available in published literature
(Fig. 2).

3. Analytical methods

Zircons were separated from crushed rock using a
combination of conventional heavy liquid and mag-
netic separation techniques. Zircon grains were hand-
picked under a binocular microscope and cast in epoxy
mounts together with zircon U–Pb standards 91500
and Plešovice, followed by polishing to section the
crystals in half. All zircon grains were imaged in trans-
mitted and reflected light as well as by cathodolumin-
escence (CL) to better reveal their internal structures.

The U–Pb isotopic compositions of the zircons were
analysed at the State Key Laboratory of Geological
Processes and Mineral Resources, China University of
Geosciences, Wuhan. Laser sampling was performed
using a GeoLas 2005 ArF excimer laser ablation sys-
tem. An Agilent 7500a inductively coupled plasma
mass spectrometry (ICP-MS) instrument was used to
acquire ion-signal intensities. A ‘wire’ signal smooth-
ing device is included in this laser ablation system, by
which smooth signals are produced even at very low
laser repetition rates down to 1 Hz (Hu et al. 2012b).
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Figure 1. (Colour online) (a) Outcrops of Neoproterozoic igneous and sedimentary rocks and rift basins in the South China Block
(modified from Du et al. 2013). (b) Simplified geological map of the study area showing the measured section. (c) Stratigraphic column
in the Anhua area, with positions of sedimentary sampling marked.
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Figure 2. (Colour online) The 800–680 Ma palaeogeographic map of South China (revised after Liu & Xu, 1994; Wang & Li, 2003;
Shu, 2006, 2012; Dong & Santosh, 2016).

Helium was used as the carrier gas to transport the
ablated material from the laser ablation cell to the
ICP-MS. The diameter of the laser ablation crater was
32 μm. Standard zircon 91500 was used as an external
standard for U–Pb dating, and was analysed twice
every five analyses. NIST610 glass was used as an ex-
ternal standard to normalize the U, Th and Pb concen-
trations of the unknowns. The detailed analytical pro-
cedures followed Liu et al. (2010b). Off-line selection
and integration of background and analysis signals,
and time-drift correction and quantitative calibration
for U–Pb dating, were performed by ICPMSDataCal
(Liu, Y. S. et al. 2008, 2010a). Calculation of concor-
dia diagrams and weighted mean ages was done using
Isoplot, with uncertainties quoted at the 1σ and 90 %
confidence levels (Ludwig, 2003). The analytical data
are presented in online Supplementary Material Table
S1 available at http://journals.cambridge.org/geo.

The Lu–Hf isotope analysis was carried out in
situ using a Neptune Plus multicollector-ICP-MS
(Thermo Fisher Scientific, Germany) in combination
with a Geolas 2005 excimer ArF laser ablation system
(Lambda Physik, Göttingen, Germany) that was hosted
at the State Key Laboratory of Biogeology and Envir-
onmental Geology, China University of Geosciences in
Wuhan. All data were acquired on zircons in single
spot ablation mode at a spot size of 44 μm in this
study. Each measurement consisted of 20 s of ac-
quisition of the background signal followed by 50 s
of ablation signal acquisition. Detailed operating con-
ditions for the laser ablation system and the MC-
ICP-MS instrument and analytical method are the
same as described by Hu et al. (2012a). The ma-
jor limitation to accurate in situ zircon Hf isotope
determination by laser ablation MC-ICP-MS is the
very large isobaric interference from 176Yb and, to a
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much lesser extent 176Lu on 176Hf (Woodhead et al.
2004). The 179Hf/177Hf and 173Yb/171Yb ratios were
used to calculate the mass bias of Hf (βHf) and Yb
(βYb), which were normalized to 179Hf/177Hf = 0.7325
and 173Yb/171Yb = 1.1248 (Blichert-Toft, Chauvel &
Albarède, 1997) using an exponential correction for
mass bias. Interference of 176Yb on 176Hf was cor-
rected by measuring the interference-free 173Yb iso-
tope and using 176Yb/173Yb = 0.7876 (McCulloch,
Rosman & De Laeter, 1977) to calculate 176Yb/177Hf.
Similarly, the relatively minor interference of 176Lu
on 176Hf was corrected by measuring the intensity
of the interference-free 175Lu isotope and using the
recommended 176Lu/175Lu = 0.02656 (Blichert-Toft,
Chauvel & Albarède, 1997) to calculate 176Lu/177Hf.
Off-line selection and integration of analysis sig-
nals and mass bias calibrations were performed using
ICPMSDataCal (Liu et al. 2010a). The analytical data
are presented in online Supplementary Material Table
S2 available at http://journals.cambridge.org/geo.

4. Results

4.a. CL images and Th/U ratios

Zircon grains from the three sedimentary rock samples
collected in this study are light yellow to colourless and
transparent to translucent. The grains exhibit a wide
range of sizes and morphology. Representative CL im-
ages for the zircons from each sample are shown in
Figure 3. The grains range in size from 50 to 200 μm,
and mostly show a euhedral to subhedral morphology
with clear oscillatory zoning. Most zircon grains from
both the older and younger groups have Th/U ratios
greater than 0.4, implying that a majority of them
are of magmatic origin (Belousova et al. 2012). Two
zircons (AH06-20, AH06-70) exhibited low Th/U ra-
tios (< 0.1) (online Supplementary Material Table S1
available at http://journals.cambridge.org/geo) and one
of them (AH06-20) showed a prominent metamorphic
edge, indicating metamorphism (Fig. 3).

4.b. Zircon U–Pb geochronology

A total of 327 U–Pb analyses were acquired from the
detrital zircon grains, and most analyses were located
in the oscillatory core part of grains owing to the nar-
row width of the rim or mantle. Uncertainties on in-
dividual analyses in the data table and concordia plots
are presented at 1σ. The U–Pb data are plotted in con-
cordia diagrams in Figure 4 and the age histograms are
also shown in Figure 4. In the following discussion,
206Pb–238U ages are used for zircon grains with ages
less than 1000 Ma, whereas 207Pb–206Pb ages are used
for zircons older than 1000 Ma, and the mean ages for
pooled 206Pb–238U and 207Pb–206Pb results are quoted
at the 90 % confidence level.

4.b.1. The Gucheng Formation (AH06)

Detrital zircon U–Pb ages were determined on 100
zircon grains from the tillite sample, AH06. All ana-

lyses on separated zircon grains are within 10 %
of concordance and have Th/U ratios of 0.03–2.13,
yielding ages ranging from 675 Ma to 2727 Ma (on-
line Supplementary Material Table S1 available at
http://journals.cambridge.org/geo). The Th/U ratios of
AH06-20 and AH06-70 are 0.06 and 0.03, respect-
ively. From the zircon isotope (Fig. 5, online Supple-
mentary Material Table S3 available at http://journals.
cambridge.org/geo) and CL image (Fig. 3) analyses,
AH06-20 was determined to be a metamorphic zir-
con. Crystallization ages of the magmatic zircons
are mainly grouped into two major age ranges: 675–
687 Ma (n = 5) with an age peak at c. 683 Ma;
and 721–899 Ma (n = 52) with two age peaks of c.
776 Ma and c. 816 Ma. These groups account for c.
5 % and 52 % of the total analyses. Two subordin-
ate groups were observed in older age populations
belonging to the Palaeoproterozoic (1939–2118 Ma,
n = 24) and late Neoarchaean to early Palaeoprotero-
zoic (2381–2619 Ma, n = 7) periods, with age peaks
at c. 2033 Ma and c. 2497 Ma, respectively (Fig. 4).
In addition, three Archaean zircons were identified in
the sample with an age of c. 2727 Ma. The young-
est group was defined using the weighted average age
of 679.2 ± 6.2 Ma (MSWD = 0.52, n = 5), which
served to constrain the maximum depositional age for
the upper part of the Gucheng Formation in the Anhua
region.

4.b.2. The Datangpo Formation (AH14)

A total of 111 analyses were conducted on the mag-
matic zones of zircon grains from the Datangpo sand-
stone (AH14). These zircons are mainly light yellow
to colourless and translucent with Th/U ratios of 0.11–
2.02. All of the analyses are concordant, yielding ages
from 662 Ma to 2918 Ma. Age spectra can be classi-
fied into six groups: 662–685 Ma (n = 8), 701–799 Ma
(n = 27), 805–879 Ma (n = 39), 923–944 Ma (n = 7),
1936– 2099 Ma (n = 15) and 2205–2637 Ma (n = 12),
with six main age peaks at c. 663 Ma, c. 769 Ma,
c. 847 Ma, c. 938 Ma, c. 2018 Ma and c. 2491 Ma,
respectively (online Supplementary Material Table
S1 available at http://journals.cambridge.org/geo). The
corresponding proportions of these six main age
clusters to the total analyses are 7.2 %, 24.3 %, 35.2 %,
6.3 %, 13.5 % and 10.8 %. In addition, three Archaean
zircons of c. 2887 Ma, 2889 Ma and 2918 Ma could
be identified in the sample (Fig. 4). Considering the
weighted average age, the youngest group has a 206Pb–
238U age of 665.1 ± 7.4 Ma (MSWD = 0.082, n = 6),
which implies an upper age limit for the deposition of
the bottom of the Datangpo Formation.

4.b.3. The Niuguping Formation (AH09)

Detrital zircon U–Pb ages were determined for 116 zir-
con grains from sample AH09. All analyses on separ-
ated zircon grains are within 10 % of concordance and
have Th/U ratios of 0.29–2.22, yielding ages ranging
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Figure 3. (Colour online) Typical cathodoluminescence (CL) images of zircon grains from samples AH06, AH14 and AH09. The
circles show LA-ICP-MS dating spots. The zircon U–Pb ages with 1 σ uncertainties are listed next to the circles.

from 704 Ma to 3318 Ma (online Supplementary Ma-
terial Table S1 available at http://journals.cambridge.
org/geo). Crystallization ages of the magmatic zircons
are mainly grouped into two major age ranges: 704–
725 Ma (n = 3) with an age peak at c. 712 Ma; and
731–925 Ma (n = 78) with two age peaks of c. 770 Ma
and c. 871 Ma, accounting for c. 3 % and 67 % of the
total analyses. Two subordinate groups are in older age
populations of the Palaeoproterozoic (1816–2076 Ma,

n = 19) and late Neoarchaean to early Palaeoprotero-
zoic (2345–2655 Ma, n = 13) (Fig. 4). In addition, two
Mesoproterozoic zircons with ages of c. 1342 Ma and
c. 1387 Ma were identified in the sample along with
one Archaean zircon (c. 3318 Ma). From the weighted
average age, the youngest group was defined to be
712 ± 24 Ma (MSWD = 2.3, n = 3), constraining the
maximum depositional age for the upper part of the
Niuguping Formation in the Anhua region.
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Figure 4. (Colour online) Diagrams of U–Pb ages, concordia plots of zircons and weighted mean ages from the samples in Anhua,
Hunan.

4.c. In situ Hf isotope composition

A total of 85 zircon grains showing concordant U–Pb
ages were selected for in situ Hf isotopic analyses from
two sedimentary rocks. The results are given in online
Supplementary Material Table S2 (available at http://
journals.cambridge.org/geo).

AH06 showed age patterns similar to those of the
four main U–Pb age groups of 675–687 Ma, 721–
899 Ma, 1939–2118 Ma and 2381–2619 Ma. Neo-
proterozoic grains have variable ɛHf(t) values (−41.4
to 16.6) and TDM2 ages (727–3807 Ma), indicating
mixing between a Neoproterozoic juvenile component
and crustal material. In addition, the youngest group
of Neoproterozoic grains have variable ɛHf(t) values

(−0.36 to 2.61) and TDM2 ages (1349–1053 Ma), but
only one zircon ɛHf(t) value was negative. Palaeo-
proterozoic zircon grains also showed a wide range
of ɛHf(t) values from −24.5 to 12.1 and Hf model
ages (TDM2) from 1850 Ma to 3859 Ma, and all of
them showed negative ɛHf(t) values, except for one. The
late Archaean zircon grains have variable ɛHf(t) val-
ues (−11.98 to 3.12) and TDM2 ages (2771–3563 Ma).
In addition, one zircon (2727 Ma) displayed an ɛHf(t)
value of −2.5 and TDM2 of 3253 Ma.

AH14 also showed a similar age pattern with the
five main U–Pb age groups of 662–685 Ma, 701–
799 Ma, 805–879 Ma, 923–944 Ma, 1936–2099 Ma
and 2205–2637 Ma. Neoproterozoic grains have vari-
able ɛHf(t) values (−16.2 to 13.55) and TDM2 ages
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Figure 5. (Colour online) Chondrite-normalized rare earth ele-
ment patterns of zircons in sample AH06 (online Supplement-
ary Material Table S3 available at http://journals.cambridge.org/
geo).

(933–2481 Ma), indicating mixing between a Neo-
proterozoic juvenile component and crustal material.
The youngest group of Neoproterozoic grains have
variable ɛHf(t) values (−1.32 to 7.02) and TDM2 ages
(933–1546 Ma), but only one zircon ɛHf(t) value is neg-
ative. Palaeoproterozoic zircon grains also showed a
wide range of ɛHf (t) values from −11.6 to −4.1 and
Hf model ages (TDM2) from 2805 Ma to 3527 Ma; all
of them showed negative ɛHf(t) values, except for one.
The two Archaean zircon grains have ɛHf(t) values of
−1.2 and −3.9, as well as TDM2 ages of 3113 Ma and
3451 Ma.

5. Discussion

5.a. Provenance analysis of samples

This study analysed one sample from the Banxi Group
and two others from the Nanhua strata. As shown in
Figure 4, the detrital zircon age patterns of the sed-
imentary rocks straddling the unconformity between
the Banxi Group and the Nanhua strata are similar
to each other. Both of the age spectra have two older
age peaks (c. 2.0 Ga and c. 2.5 Ga), and two younger
age peaks (c. 780 Ma and c. 820 Ma). However, the
younger strata has one additional age peak (c. 680 Ma)
compared to the older one. The southeastern margin of
the YGD has no record of 680 Ma magmatic events,
indicating that it is not the original source.

The distribution of detrital zircons in samples
from different sedimentary rocks can provide clues
for provenance characteristics (Rainbird, Hamilton &
Young, 2001; Fonneland et al. 2004). The provenance
characteristics could be analysed using the detrital zir-
con age spectra for the two middle–upper Nanhua Sys-
tem sedimentary samples from western Hunan.

Six main peak ages were obtained from three sed-
imentary samples in Anhua, Hunan: c. 680 Ma, c.
780 Ma, c. 820 Ma, c. 940 Ma, c. 2000 Ma and c.
2500 Ma. Furthermore, some magmatic zircon ages

of c. 2900 Ma and c. 3300 Ma were obtained. Dur-
ing Neoproterozoic time, the southeastern YGD ex-
perienced two evolutionary stages, including a 1.0–
0.82 Ga period of subduction collision and a 800–
635 Ma period of stretching tension (Charvet, 2013
and references therein). Unlike the southeast, the
north YGD experienced a long-term accretionary oro-
geny caused by the 1.0–0.7 Ga continuous collision
and accretion (Dong & Santosh, 2016 and references
therein). In contrast to the different magmatic evolu-
tion histories in the north and southeast margin of the
YGD, recent studies have revealed similar zircon age
spectra for upper Neoproterozoic sequences from these
two areas (Ling et al. 2010; Wang, W. et al. 2013; Dong
& Santosh, 2016; Yang et al. 2018; Xia et al. 2018).

At present, few studies on the c. 680 Ma magmatic
events in South China have been carried out. Source
rocks of c. 680 Ma are represented by Neoproterozoic
igneous rocks mainly in South Qinling on the northern
margin of the YGD; this magmatic event may be
related to the break-up of Rodinia (Fig. 6; Niu et al.
2006; Ling et al. 2008; Zhang et al. 2013; Hu, F.
Y. et al. 2016). Neoproterozoic magmatic rocks and
detrital zircons, especially of 860–720 Ma age, are
extensively distributed around the YGD (Zhang &
Zheng, 2013). The two large-scale magmatic events
of the Neoproterozoic (c. 750 Ma and c. 820 Ma)
recorded the evolution of the Earth’s crust during Neo-
proterozoic time, which is an important characteristic
of South China (Wang et al. 2006; Zhang et al. 2006a;
Zheng & Zhang, 2007). These activities may be related
to the splitting of the Rodinia supercontinent. The peak
detrital zircon ages obtained in this study (c. 776 Ma
and c. 820 Ma; Fig. 4) confirm that the source of the
study area rocks was the YGD and its provenance was
related to the evolution of the Rodinia supercontinent
during middle–late Neoproterozoic time. At present,
a few igneous rocks of c. 924 Ma age exist in the
YGD. Nevertheless, the Yanbian and Bikou groups
(Fig. 6c), located in the western margin of the YGD
and South Qinling, respectively, have a prominent age
peak at c. 920 Ma. In this study, the Datangpo Form-
ation (AH14) was found to have a zircon age peak
of c. 938 Ma, which does not appear in the Gucheng
Formation (AH06) (Fig. 4), indicating the likelihood
of an event that led to the addition of material from
new sources. Magmatic activities of Palaeoproterozoic
age (c. 2.0 Ga) are distributed in the northern areas
of the YGD, such as the areas of Kongling, Jinshan,
Liantuo and South Qinling (Zhang et al. 2006c; Sun
et al. 2008; Wu, Y. B. et al. 2012; Yin et al. 2013;
Nie et al. 2016; Wang, W. et al. 2016), which records
the tectonic heating events of the Kongling Complex
and the crustal reconstruction event in the north of the
YGD (Zheng & Zhang, 2007 and references therein).
Archaean zircons (c. 2500 Ma) are from the Yichang
Kongling trondhjemitic gneiss and migmatite (Wu
et al. 2014), and the Hu Yang Po Group and intrusion
of potassium granite in Zhongxiang (Wang, L. J. et al.
2013). Furthermore, a current study reported large
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Figure 7. (Colour online) Plots of ɛHf(t) values versus crystallization ages of zircons from South Qinling and the eastern JNO (data
from Yang et al. 2018 and references therein; samples in this study). DM – depleted mantle; CHUR – chondritic uniform reservoir.

magmatic rocks of c. 2.5 Ga as observed in the Doul-
ing Group, South Qinling (Hu et al. 2013; Wu et al.
2014). The 2.5 Ga age peak is characteristic of the
YGD (Wu et al. 2002; Li, Li & He, 2012). Although
Archaean magmatic activity has rarely been reported
in the YGD at present, magmatic activity should have
taken place during this period, as it is an important
period of crustal growth in South China. Among the
samples, the ages of the oldest populations range from
2.4 Ga to 2.6 Ga, reflecting the magmatic event. Zir-
cons aged c. 2.9 Ga are widespread within the YGD,
such as in TTG gneiss and other rocks of the Kongling
Complex in the north of the YGD (Qiu et al. 2000;
Zhang et al. 2006b). The existence of a small amount
of zircon of c. 2.9 Ga in the study area indicates that
the southeastern margin of the YGD received small
quantities of input from the north YGD.

In this study, a total of 6767 U–Pb ages for
detrital zircons from Precambrian metasedimentary
strata around the YGD were collected for compar-
ison (Fig. 6a–q). All detrital zircons exhibited the age
peak characteristics of the Precambrian basement in
the YGD (Fig. 6). The Nanhua strata in the study area
appears to have the features of a mix of former se-
quences with age peaks at c. 0.68 Ga, c. 0.8 Ga, c.
0.9 Ga, c. 2.0 Ga and c. 2.5 Ga (Fig. 6o). Compared
with the detrital zircon age data in the Precambrian
basement in the periphery of the YGD, the Wudang
Group, Xiuning Formation, Banxi Group and Xiajing
Group developed along the Exi Strait show the same

age peak characteristics with age peaks at c. 0.8 Ga,
c. 2.0 Ga and c. 2.5 Ga (Fig. 6e, j, l–n, p). A prom-
inent c. 1.8 Ga age peak (Fig. 6a–c) was observed in
the western and northwestern YGD, and a prominent
age peak of c. 2.6 Ga was obtained in the Huangling
granite, which are not found in the study area (Fig. 6f,
q). It is unlikely that these two regions are sources of
the study area. At present, the source composition of
the study area is consistent with the eastern JNO and
South Qinling, although there is a lack of c. 680 Ma
sources in the eastern JNO (Fig. 6).

We determined the zircon ɛHf(t) values of South
Qinling and the eastern JNO to distinguish the differ-
ences between the two regions. As shown in Figure 7,
the two regions exhibited distinct ɛHf(t) value charac-
teristics. In South Qinling (Fig. 7), a significant change
occurred at c. 850 Ma, as marked by an increase in
negative ɛHf(t) values of the <850 Ma detrital zircons
relative to those at 950–850 Ma. Another change oc-
curred at c. 700 Ma, as characterized by a reduction in
negative ɛHf(t) values of the <700 Ma detrital zircons
relative to those at 850–700 Ma. Furthermore, the
negative and positive values were relatively uniform
for the age range of 850–700 Ma. In the eastern JNO
(Fig. 7), zircons show mostly positive ɛHf(t) values at
>870 Ma, both negative and positive ɛHf(t) values at
870–810 Ma, and dominantly negative ɛHf(t) values
at <810 Ma. In this study, the ɛHf(t) values of 13
detrital zircons from our samples of c. 680 Ma age are
generally positive except for two magmatic zircons,
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and the characteristics are generally in line with the
characteristics of c. 680 Ma age zircons in South Qin-
ling; however, this source is lacking in the eastern JNO
(Fig. 7). Another difference is that zircons show mostly
negative ɛHf(t) values at 850–700 Ma in the eastern
JNO and show both negative and positive ɛHf(t) values
at 850–700 Ma in South Qinling. The characteristics
of the values at 850–700 Ma are the same as those
of South Qinling (Fig. 7). In addition, the character-
istics of the values at >850 Ma in our samples show
similarities to those of South Qinling.

A metamorphic zircon (AH06-20) aged
2017.59 ± 37 Ma was also found (Figs 3, 5). Cur-
rent research suggests that the main source of meta-
morphic zircons of c. 2.0 Ga age is the Kongling
Complex (Zhang et al. 2006c; Wu et al. 2009; Yin
et al. 2013), and metamorphic zircons of the same
period are also found in the Douling Group of South
Qinling (Nie et al. 2016). As mentioned above, the
source of the study area is more likely to be the South
Qinling than the Kongling area.

In summary, the provenance characteristics of the
end of the Sturtian ice age (c. 660 Ma) in western
Hunan are reflected in the crust formed by episodic ac-
cretion, which is related to supercontinent growth and
cracking in the Archaean, Palaeoproterozoic and Neo-
proterozoic. We believe that at the end of the Sturtian
ice age as early as c. 680 Ma, South Qinling was the
main source area for western Hunan.

5.b. Migration process of sedimentary provenance

As mentioned earlier, source rocks of c. 680 Ma are
represented by Neoproterozoic igneous rocks mainly
in the South Qinling area on the northern rim of the
YGD, and the source of the study area rocks is South
Qinling. The characteristic age peak of c. 680 Ma can
be used to determine the transport of source materials
from South Qinling to western Hunan.

In addition to the geological section investigated
in this study, details of the regional stratigraphy and
sampling lithology for the following other sections are
available in the published literature: Wudang section,
Yichang section, Changyang section, Shimen section,
Guzhang section, Songtao section and Guibei section
(Figs 8, 9).

Considering that the source of the study area rocks
is South Qinling and not the EZOL, source materials
may have been transported along the Exi Strait to the
study area. A total of 2640 U–Pb ages for detrital zir-
cons from eight sections along the Exi Strait were com-
piled (Figs 8, 9). As show in Figure 8, the main peaks
of each profile are at c. 0.8 Ga, c. 2.0 Ga and c. 2.5 Ga,
except for the Guzhang and Songtao sections (Fig. 8e,
f: only counting tuff age). The Yichang and Changy-
ang sections have an age peak of c. 2.6 Ga, which dif-
fers from the others, indicating that the source ma-
terial from the Kongling area was transported to the
Changyang area and was blocked from reaching west-
ern Hunan (Fig. 8b, c). Furthermore, the c. 680 Ma

source material appeared to reach the Changyang area
but not the Yichang area, which implies that the source
material carrying the c. 680 Ma zircons (South Qin-
ling) could not have been transported to the Changy-
ang area through the EZOL, and could only have
been transported along the Exi Strait (Fig. 8b′, c′). The
c. 680 Ma age peak was found within the Exi Strait
(Fig. 8a′, c′–g′), further indicating that the source ma-
terial from South Qinling was transported through the
Exi Strait, depositing material along the way. Never-
theless, the c. 680 Ma source material disappeared on
the northern edge of the Jiangnan Orogenic Belt in
the Guibei section (Fig. 8h′), suggesting that the JNO
blocked the migration of the source material.

In summary, the transportation of material from the
northern margin of the YGD to the southeast mar-
gin of the YGD occurred as early as c. 680 Ma, and
the source material migrated mainly through the Exi
Strait.

5.c. Reconstruction of the palaeogeography

As mentioned above, the magmatic rocks in the
SQB were emplaced during c. 941 Ma to 667 Ma.
The magmatic rocks recorded four major Neoprotero-
zoic magmatic events: (1) c. 940 Ma, the formation
of arc-related high-Nb titanite-bearing diorites; (2)
c. 885 Ma, the formation of gabbroic to dioritic arc-
related rocks; (3) 785–740 Ma, widespread magmat-
ism with the emplacement of intermediate to felsic
granitoids, showing typical arc-related characteristics;
and (4) c. 667 Ma gabbroic magmatism, formed in an
extensional setting (Hu, F. Y. et al. 2016). Four Neo-
proterozoic magmatic stages were recognized in the
uplift zone of the SQB, corresponding to four mag-
matic stages in the northern margin of the YGD (Hu,
F. Y. et al. 2016 and references therein). The analog-
ous crystallization ages and petrogenesis between the
Neoproterozoic blocks in the western and middle SQB
and the volcanic rocks of the Wudangshan and Yaol-
inghe groups (Ling et al. 2008; Wang, L. J. et al. 2013;
Zhu et al. 2014) and the Tiewadian pluton (Yang et al.
2012), point to a genetic correlation of the Neoprotero-
zoic rocks in the SQB. Based on the evidence presen-
ted above, a large Neoproterozoic continental block
was established in the SQB. In summary, we propose
that there is a Neoproterozoic uplift zone in the SQB
and the Neoproterozoic uplift was part of the north-
ern margin of the YGD during the Neoproterozoic era.
This study suggests that the uplift was a source of the
study area strata (Fig. 9).

During early Neoproterozoic time (1.0–0.9 Ga),
the ancient South China oceanic plate subducted
beneath the southern margin of the YGD, form-
ing an active continental margin. Subsequently, the
ocean was closed, forming the Jiangshan– Shaoxing–
Pingxiang ophiolitic melange belt. At 850–820 Ma,
the Yangtze and Cathaysia domains completed col-
lision and formed the Jiangnan Orogenic Belt (Shu,
2012). The southeast margin of the Jiangnan Orogenic
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Figure 8. (Colour online) The U–Pb age of the Nanhua System (720–635 Ma) distributed in the Yangtze Domain. (a, a′) Wudangshan
section (Ling et al. 2010; Wang, L. J. et al. 2013); (b, b′) Yichang section (Hofmann et al. 2011; Pi & Jiang, 2016; Hu, R. et al. 2016);
(c, c′) Changyang section (Liu, X. M. et al. 2008; Liu et al. 2015); (d, d′) Shimen section (Lan et al. 2015; Wang et al. 2012a); (e, e′)
Guzhang section (Zhang, Jiang & Han, 2008); (f, f′) Songtao section (Yin et al. 2006; Wang et al. 2010; Yu et al. 2016); (g, g′) Anhua
section (the data in this study); (h, h′) Guibei section (Gao et al. 2013; Han et al. 2016; and some unpub. data).

Belt developed S-type granite with an estimated age
of 820 Ma (Shu, 2006 and references therein). The in-
tense collisional orogeny resulted in the formation of
large areas of shallow metamorphic rocks. All of these
suggest that the ancient South China plate formed after
the long tectonic evolution of the Precambrian.

After 820 Ma, the South China Block entered the
intraplate-rifting stage, corresponding to cracking of
the Rodinia supercontinent, forming the Nanhua rift
and Chuandian rift basins. Corresponding rift-type

magmatic activities gave rise to formations, such as
the bimodal volcanic rocks (Tiechuanshan Formation
(817 ± 5 Ma), Suxiong Formation (803 ± 12 Ma) and
the Taoyuan Formation (818 ± 12 Ma)) (Wang & Li,
2003). It also included the earlier basal magmatic
activity (840–790 Ma) along the Zhenghe–Dapu fault
(Shu, 2012). The South China Block, which was com-
posed of the Yangtze and the Cathaysia domains,
cracked and formed the different terranes and rift
basins (Fig. 2).
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6. Conclusions

(1) The U–Pb ages of the youngest detrital zircon
grains from the Niuguping, Gucheng and Datangpo
formations yielded average ages of 712 ± 24 Ma,
679.2 ± 6.2 Ma and 665.1 ± 7.4 Ma, respectively,
which correspond closely to the depositional ages of
each formation.

(2) Samples from western Hunan in the middle–
upper Nanhua System have six main peak ages:
c. 680 Ma, c. 780 Ma, c.820 Ma, c. 940 Ma,
c. 2000 Ma and c. 2500 Ma. In addition, some
magmatic zircons of c. 2900 Ma were also identified.
The characteristics of the U–Pb ages and Hf isotopes
indicate that there was a link between the north and
southeast margins of the YGD as early as c. 680 Ma,
and the provenance of the coeval sedimentary se-
quences of the southeast YGD was South Qinling on
the northern margin of the YGD. Furthermore, the
c. 2.0 Ga metamorphic zircons also indicate that the
source of the study area is South Qinling.

(3) From the analysis of the c. 680 Ma provenance in
the YGD, we surmise that source rock materials were
transported from the north to south to the southeast
edge of the YGD through the Exi Strait and disap-
peared on the northern edge of the Jiangnan Orogenic

Belt. The Exi Strait served as the main channel for the
migration of materials.
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