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Abstract

Knowledge of bio-physicochemical variables is essential to better understand the functioning
of tropical marine ecosystems, which are rich in biodiversity and provide nutrition and liveli-
hoods to billions of people in the developing countries. This study analysed the spatial and
temporal variability of phytoplankton and zooplankton with chlorophyll, primary productiv-
ity, temperature, salinity, oxygen and nutrients in the Bay of Bengal (BoB), collecting data
from the World Ocean, and COPEPOD and Aqua MODIS records. The results indicated a
strong gradient in bio-physicochemical conditions of the BoB, from the coast to the open
sea. Specifically, the spatial variability in chlorophyll was negatively correlated (R2 = 0.59)
with temperature and zooplankton, while a positive correlation (R2 = 0.70) was noted between
chlorophyll and silicate, nitrate, phosphate, dissolved oxygen and salinity. All the variables
exhibited a strong vertical gradient at depths up to 500 m. Temperature, nutrients, zooplank-
ton and to a lesser extent salinity and rainfall had an influence on the annual abundance of
phytoplankton. Over the long term, a significant positive trend in temperature and a signifi-
cant negative trend in primary productivity were observed in the BoB. The findings of this
study will be useful to draw insights on the state of fisheries habitats and the overall environ-
mental conditions of the BoB in response to future climate changes.

Introduction

Oceans are a fundamental component of the Earth’s metabolism and play a key role in global
environmental and socio-economic changes. For example, oceans provide most of the life-
supporting environment on the planet, host a large portion of biodiversity, play a major
role in climate regulation, sustain a vibrant economy and contribute to food security world-
wide (Gattuso et al., 2018). However, ocean ecosystems are experiencing changes in physical,
chemical and biological characteristics due to global warming (IPCC, 2007; Sarker et al.,
2018a, 2018b). Thus, it is important to understand the functioning of marine ecosystems
and how they respond to climate change in order to effectively manage global marine living
resources, such as fisheries (Schwerdtner Máñez et al., 2014).

Tropical marine ecosystems such as mangroves, seagrass, saltmarsh beds and coral reefs are rich
in biodiversity, and provide both goods and services (i.e. food, employment, protection) to billions
of people in Asia each year (Liquete et al., 2016). The complex ecology of these systems is appre-
ciated by scientists but not fully understood. The ecology of tropical marine ecosystems is driven
by a variety of hydrological variables. For example, the relative importance of different factors driv-
ing the ecology of phytoplankton in shallow coastal seas depends on depth, prevailing water cur-
rents and riverine inputs to the system (Wiltshire et al., 2015). All of these factors are subject to
temporal variations (Calijuri et al., 2002). Generally, light availability, temperature, salinity, pH and
the concentration of macronutrients such as nitrate, phosphate and silicate are important regula-
tors of phytoplankton biomass, productivity and community structure (Mutshinda et al., 2013b).
In addition, zooplankton, the most important secondary producers in oceans, depend on phyto-
plankton for food and thereby also influence phytoplankton abundance through top-down control
(Chassot et al., 2010). However, understanding of how phytoplankton community dynamics are
influenced by hydrological conditions remains a major challenge for ecologists (Edwards et al.,
2013). Given the large number of biotic and abiotic parameters with simultaneous fluctuating
states, it is often impossible to extricate the few key parameters driving a system.

The practical way to study the drivers of marine ecosystems is the analysis of detailed time
series of taxonomic and environmental data (Irwin et al., 2012), although very few long-term
datasets exist for tropical waters. In addition, efforts toward greater understanding are being
constantly challenged as tropical marine systems are altered by local anthropogenic pressure
(i.e. fishing, development, extraction of minerals and gas) and global climate change. This
study aims to determine the drivers of tropical marine ecosystems and as a representative
the Bay of Bengal (BoB) was selected. The BoB has received relatively little attention from
the oceanographic community, and remained substantially under-sampled compared with
the Atlantic and Pacific oceans (Hood et al., 2013). Therefore, the biogeochemical, ecological
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and hydrological impacts of the BoB are not fully understood.
Moreover, specific questions and hypotheses emerging from
recent studies are yet to be tested. This study describes the bio-
physicochemical characteristics of the BoB for better understand-
ing of the spatial and vertical distribution of variables, and their
inter- and intra-annual variability.

Materials and methods

Study area

The present study focused on the BoB, located between latitude
5° and 24°N, and longitude 79° and 100°E. The BoB is the north-
eastern part of the Indian Ocean, bounded on the west and north-
west by India, on the north by Bangladesh, and on the east by
Myanmar and the Andaman and Nicobar Islands of India, and
Sri Lanka forms the south-western boundary. As a peripheral coun-
try, the western coastline of Thailand is linked with the BoB
through the Andaman Sea. The northern tip of Indonesia (i.e.
Sumatra Island) forms the south-eastern boundary of the BoB.
This tropical system is the largest deep-sea fan (abyssal fan) of
the Earth, and governed by south-west monsoon winds from
May to October and north-east monsoon winds from November
to April (Schott & McCreary, 2001; Shankar et al., 2002). This is
one of the largest bays in the world and receives large flows of sedi-
ments from several rivers and water bodies from India, Bhutan,
Bangladesh, Myanmar and Indonesia (Mohanty et al., 2008). Due
to deposition of sediments, the northern BoB has the widest shal-
low shelf region of the Indian Ocean (extending >185 km), which is
three to four times wider off the coast of Bangladesh compared
with Myanmar, the eastern coast of India and the global average
of 65 km. The BoB also plays a major role in determining the cli-
matic conditions of India and other south-east Asian countries and
thus, its ecology is of paramount interest (Saraswat et al., 2017).

Data sources and analysis

The present study is a compilation of ecological (i.e. phytoplank-
ton, chlorophyll, primary productivity and zooplankton) and
hydrological (i.e. temperature, salinity, nutrients and oxygen)
datasets from the BoB. The data were obtained from World
Ocean Database 2013 (WOD13) through their website (https://
www.nodc.noaa.gov/OC5/SELECT/dbsearch/dbsearch.html) and
Aqua MODIS via NOAA server (https://coastwatch.pfeg.noaa.
gov). Phytoplankton and zooplankton data were collected from
COPEPOD database (https://www.st.nmfs.noaa.gov/copepod/).

In order to obtain consistent monthly spatial data, at first we
gridded the data points for each variable into a 0°5′ × 0°5′ grid. To
eliminate extreme data, we calculated the mean of all data points
inside the grid and eliminated those exceeding the standard devi-
ation of that respective grid after Sarker (2018). After gridding, the
geospatial tabular data of different ecological and hydrological vari-
ables were interpolated using the kriging method maintaining the
same geographic extent. To understand the drivers of spatial and
temporal variability of ecological variables, a multivariate regression
model was used for identifying the drivers of spatial variability of
chlorophyll concentration in the BoB. We described the chlorophyll
concentration as a linear function of both biotic (i.e. zooplankton)
and abiotic (i.e. temperature, salinity, dissolved oxygen, silicate,
nitrate and phosphate) variables. Letting Ni and Xj,i denote the
chlorophyll concentration at location i and the value of jth explana-
tory variable at location i, respectively. The model equation is:

Ni = a+
∑n

j=1

bjX j,i + 1 (1)

Where α is intercept, βj is the effect of the j
thexplanatory variable on

the chlorophyll concentration and ϵ is the residual term.
To understand the long-term trend in sea surface temperature

(SST) and surface chlorophyll concentration, we performed linear
regression of long-term data on SST and chlorophyll with respect
to time. Similarly, to understand the long-term trend in vertical
profile, we performed linear regression of vertical data on tem-
perature, salinity, nutrients and dissolved oxygen with respect to
time.

In general, the length of time series for each variable differs
depending on the dataset of the sampling period. For the spatial
variability of bio-physicochemical variables, we used annual mean
data from 1997 to 2018. To understand the vertical variability of
bio-physicochemical variables, we used data from March to April
of the years 1976, 1995, 2007 and 2016. SST data from 1950 to
2018, and primary productivity data from 1997 to 2018 were
used for long-term trend analysis. To analyse the long-term
trend in vertical distribution of bio-physicochemical variables,
data from March to April of the years 1978, 1988, 1995, 2007
and 2016 were used. As we considered different datasets for dif-
ferent analyses (i.e. mean data for spatial variability, same season
data for long-term trend in vertical profiles and annual mean data
for long-term trend analysis), they do not have an impact on the
sensitivity of the results.

Results and discussion

The primary goal of this study is to provide an overview of bio-
physicochemical characteristics of the BoB. Spatial and temporal
(i.e. seasonal and long-term) variability in bio-physicochemical
parameters (i.e. SST, salinity, dissolved oxygen, nutrients and
chlorophyll) of the BoB are discussed along with the ecological
features as a function of hydrological variables.

Variability in bio-physicochemical parameters: BoB vs Arabian
Sea (AS)

The annual mean SST in the BoB was relatively higher than the
AS, i.e. 28.80°C vs 27.13°C. SST in the BoB is greatly influenced
by the presence of land masses on its three sides (Shamsad
et al., 2012) and typical water temperature ranged between 25–
30°C. High SST in the BoB is related to stratification, which is
comparatively higher than the AS due to the large amount of
river discharge and precipitation (Da Silva et al., 2017; Li et al.,
2017). Mixing processes in the AS were higher due to persistent
strong winds coming from the mountains of east Africa, while
the winds over the BoB are sluggish in nature (Fine et al.,
2008). Because of less mixing over the surface of the BoB, the
level of SST over the AS is always lower than the BoB. A strong
gradient in SST was observed in the BoB, from the coast to the
open sea (Figure 1). SST distribution revealed a minimum tem-
perature in the north-east Bay and a maximum in the south
Andaman. The northern BoB close to Bangladesh is generally
cooler than the southern BoB. In the central Bay (88°E), SST
was 29°C between 9°N and 15°N that reduced to 28.5°C by 20°N.

The spatial distribution of sea surface salinity was higher in the
AS than the BoB (Figure 1), i.e. 35.16 vs 33.05, although both
basins share the same latitude band and are affected by the semi-
annually reversing monsoonal winds (D’Addezio et al., 2015).
The elevated level of salinity in the AS is due to higher evapor-
ation and lower precipitation regimes, and also attributed to the
influence of high saline waters from the Red Sea and Persian
Gulf (Rao & Sivakumar, 2003). In contrast, the BoB receives
much higher precipitation, which typically overwhelms evapor-
ation and also large amounts of freshwater run-off from the
Ganges-Brahmaputra-Meghna rivers system (Sengupta et al.,
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2006). Sea surface salinity in the central Bay was 33.5 between 9°N
and 15°N and decreased to 28 at 20°N. The salinity gradient in the
upper 50 m was ∼0.02 m−1 at 9°N, while it was ∼0.14 m−1 at 20°
N, indicating a strong signal of freshwater influx in the northern
part of the BoB. In the western Bay, the level of salinity was 34 at
12°N and decreased northwards to 24 at 19°N. The salinity gradi-
ent in the upper 50 m was stronger, i.e. 0.2 m−1 at 19°N and 85°E.
The lowest salinity was observed in the eastern part belonging to
the area characterized by higher SST. Such a low salinity tongue
can be attributed to wind-driven coastal currents leading to an
offshore Ekman transport that pushes the southward migrating
low salinity plume away from the coast (Shetye, 1993).

In the BoB, a strong gradient in dissolved oxygen concentra-
tion was observed with low levels near the coast and high levels
in the open sea (Figure 1). Average surface oxygen concentration
in the BoB was ∼4 ml l−1, classified as the oxygen minimum zone
(OMZ). This is because the ventilation age in both the AS and the
BoB is 30 years or longer due to their closed northern boundaries
(Fine et al., 2008). Though the OMZ in the BoB is strong, it is
rather weaker than the OMZ in the AS. The primary source of
oxygen for both the AS and the BoB originates from the southern
hemisphere (Figure 1). Highly oxygenated, intermediate water is
formed along the northern edge of the Antarctic Circumpolar
Current, and subsequently spreads throughout the Indian
Ocean. In the AS, other sources of oxygenated water include
the Persian Gulf water (PGW) and Red Sea water (RSW), with
PGW entering the AS just beneath the thermocline (Bower

et al., 2000) and RSW at intermediate depths, 300–1000 m (Beal
et al., 2000; Bower et al., 2005). In addition, water from the
Indonesian Throughflow (ITF) influences the upper Indian
Ocean, including properties of thermocline waters in the AS
(Haines et al., 1999; Song et al., 2004). Mixing by mesoscale
eddies can also spread oxygen (and other biological variables)
in both sub-basins. The occurrence of an OMZ was noticed at
depth below 100 m in the BoB (north of the equator) and the
boundary of the OMZ followed the depth of thermocline. The
OMZ was widespread throughout the subsurface depths (100–
1500 m) in the BoB and oxygen levels increased to the south of
the equator (McCreary et al., 2013).

The spatial distribution of nutrients (silicate, nitrate and phos-
phate) showed that coastal areas are rich in nutrients, but their
concentrations are low in open seas (Figure 1). This could be
related to freshwater influx and residual flow from the surround-
ing rivers in the northern BoB. Lower levels of silicate (<2 μmol
l−1), which is typical in the open ocean, was common in the
southern BoB. The major source of nutrients in the BoB is the dis-
charge of surrounding river systems. For example, the Ganges,
Godavari and Irrawaddy rivers account for ∼75–80% of the
total river transport of nitrogen (N) and phosphorus (P) to the
coastal waters of BoB (Pedde et al., 2017). Rivers draining into
the western BoB generally contain higher N and P export com-
pared with the rivers of the eastern BoB. The dominant sources
of different forms of N and P differ across the basins, although
anthropogenic activities contribute higher levels of N and P in

Fig. 1. Spatial variability in monthly mean condition of bio-physicochemical variables in the Indian Ocean. (A) Sea surface temperature (°C), (B) salinity,
(C) dissolved oxygen (ml l−1), (D) zooplankton biomass (mg C m−3), (E) chlorophyll concentration (mg m−3), (F) nitrate (μmol l−1), (G) phosphate (μmol l−1) and
(H) silicate (μmol l−1).
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the western BoB. In addition, Broecker et al. (1980) found that
BoB Fan sediment serves as a major source of nutrient elements.

The zooplankton concentration is less in the BoB compared
with the AS. A strong gradient of high to low zooplankton bio-
mass was observed in the BoB, from the coast to the offshore
area (Figure 1). In the central Bay, zooplankton carbon biomass
is <5 mg Cm−3, while it is much higher in the coastal area
(>10 mg Cm−3). The average biomass in the coastal area and
southern Bay were twice that of the central Bay due to the fre-
quent swarms and higher bio-volumes of pyrosomes (i.e. free-
floating tunicates) in the former (Fernandes & Ramaiah, 2008).

The BoB is traditionally considered to be a region of lesser
biological productivity and this study also corroborates that fact.
The surface chlorophyll-a in the central BoB weakly increased
from 0.06 mg m−3 in the south to 0.28 mg m−3 in the north
(Figure 1). In the AS, the variation ranged from 0.32–1.12mg
m−3, indicating 4–5 times higher chlorophyll-a concentration
than the BoB. The monsoon rainfall and freshwater discharge
from rivers freshen the upper layers of the BoB and during this
time SST was warmer by 1.5–2°C than in the central AS
(Prasanna Kumar et al., 2002). This leads to a strongly stratified
surface layer in the BoB. In addition, the weaker winds over the
Bay are unable to erode that stratified surface layer, thereby
restricting the turbulent wind-driven vertical mixing to a shallow
depth of <20 m (Mahadevan et al., 2016). This inhibits introduc-
tion of nutrients from below, close to the mixed layer bottom, into
the upper layers. Advection of nutrient-rich water into the eupho-
tic zone makes the AS highly productive and this process is
unlikely in the BoB.

In order to understand which parameters drive the spatial
variability in chlorophyll, we analysed chlorophyll concentration
data in relation to biotic (i.e. zooplankton) and abiotic (i.e. tem-
perature, salinity, dissolved oxygen, silicate, nitrate and phos-
phate) variables. The multivariate regression analysis showed
that seven explanatory variables jointly explain 81% chlorophyll
variability in the BoB. SST was the best predictor of spatial vari-
ability in chlorophyll a concentration and explained 27% vari-
ation in primary production. Phosphate, nitrate and silicate
concentrations were also important predictors of primary prod-
uctivity in the BoB that explained 22, 10 and 8% of the variation,
respectively. Zooplankton biomass was another important pre-
dictor of chlorophyll a distribution (i.e. explained 10% vari-
ation), while salinity and dissolved oxygen explained 3% and
2% chlorophyll variability in the BoB. Chlorophyll a had a sig-
nificant negative correlation with temperature (P < 0.001) and
zooplankton (P < 0.05). In addition, there was a significant posi-
tive correlation between chlorophyll and silicate (P < 0.05),
nitrate (P < 0.05), phosphate (P < 0.001), dissolved oxygen (P <
0.05) and salinity (P < 0.05). The variability in phytoplankton
assemblages and their dynamics are the outcome of a complex
interplay between biotic and abiotic factors (Mutshinda et al.,
2013b, 2016; Jamil et al., 2014). For example, Recknagel et al.
(1997) and Kim et al. (2007) found micronutrients (i.e. silicate,
nitrate and phosphate) are important to correctly predict the
variability of phytoplankton abundance. In addition, tempera-
ture and salinity are also found to regulate phytoplankton bio-
mass, productivity and community structure (Mutshinda et al.,
2013a). The grazing pressure of zooplankton also limits the
growth of phytoplankton (Huber & Gaedke, 2006). These facts
are in line with our findings.

Vertical bio-physicochemical variability in the BoB

Vertical distributions of temperature, salinity, silicate, nitrate,
phosphate and dissolved oxygen concentration in the BoB at
20°S are shown in Figure 2. Up to 500 m depth, all these variables

exhibited strong vertical gradients. As for vertical chlorophyll pro-
file, there was a maximum concentration of chlorophyll below the
surface water (Figure 2), which is known as deep chlorophyll
maximum (DCM) (Anderson, 1969; Jochem et al., 1993). A typ-
ical vertical profile of temperature, salinity, nutrients and dis-
solved oxygen focusing DCM along with the vertical
distribution of phytoplankton is shown in Figure 3. A DCM
was found at the depth range 45–55 m in the coastal region and
at depths 55–100 m in the open sea. This is further supported
by the highest occurrence of subsurface biogenic silica (diatoms)
in the BoB, as observed by Gupta & Sarma (1997).

The DCM was located underneath the surface mixed layer, in
the oxycline and nutricline zones, and above the seasonal thermo-
cline/pycnocline. The subsurface maximum of chlorophyll was
within the depth range of the nitracline, which is a sharp transi-
tion between the nutrient-free mixed layer and the nutrient-rich
deep regime. Thus, the subsurface chlorophyll maximum appears
to develop after exhaustion of surface nitrate, while the growth of
plankters is merely limited within and below the nitracline (Sarma
& Aswanikumar, 1991). The nitracline and chlorophyll maxima
stay with the seasonal thermocline (Fasham et al., 1985). The
mechanisms involved in the formation and maintenance of
the DCM include higher in-situ growth at the nutricline than in
the upper mixed layer, physiological acclimation to low irradiance
and high nutrient concentrations, accumulation of sinking phyto-
plankton at density gradients, behavioural aggregation of phyto-
plankton groups, and differential grazing on phytoplankton
(Cullen, 1982; Pérez et al., 2006).

The distribution of phytoplankton indicates diatoms as the
dominant group in the DCM (Figure 4). Species of
Bacteriastrum comosum, Cerataulina pelagica, Chaetoceros affinis,
Chaetoceros, Coscinodiscus, Dactyliosolen, Navicula, Nitzschia
closterium and N. delicatissima showed peak abundance at
DCM. The chlorophyll concentration changed substantially with
increasing depth, with a surface value of ∼0.10 μg l−1 that
increased to a maximum of >0.45 μg l−1 at the DCM and then
decreased to <0.02 μg l−1 at a depth of 150 m. The magnitude of
the chlorophyll maximum at the DCM layer is ∼5 times higher
than the level at the surface. The depth-integrated chlorophyll
concentration up to 150 m ranged between 1.00–1.50 μg l−1.

There was a positive relationship (r = 0.84, P < 0.001) between
the MLD (mixed layer depth) and the DCM (Figure 5), suggest-
ing that the DCM increases with the increase of the MLD. The
MLD represents the influence of turbulent wind mixing and the
nature of vertical thermal diffusion. The mixed layer depth is an
important predictor of the DCM which corresponds to a change
in the MLD, the thickness and depth of the DCM therefore
would be changed greatly (Coon et al., 1987; Murty et al.,
2000). The factors (i.e. wind stress curl, associated Ekman
pumping and heat flux at the sea surface) that are affecting
the surface mixed layer, seasonal thermocline and hence the
meso-scale circulation could also influence the DCM in the
BoB (Murty et al., 2000). A positive relationship was also
observed between the DCM and the depth of the stability max-
imum (Figure 5; r = 0.89, P < 0.001). This finding is consistent
with previous studies in the tropical Indian Ocean (Brock
et al., 1993) and in the subtropical Azores front (Fasham
et al., 1985).Thermocline depth and DCM were positively related
(Figure 5; r = 0.91, P < 0.001), while a significant negative rela-
tionship was observed between the chlorophyll maximum and
the depth of the DCM (Figure 5; r = −0.82, P < 0.001).
According to Murty et al. (2000), chlorophyll a concentration
was higher when the DCM was associated with the thermocline.
This means surface stratification due to the halocline has no
influence on the DCM, but there is an influence of vertical ther-
mal diffusion on the DCM. This is in line with the coupled
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model study of Varela et al. (1992). A significant correlation was
noted between the depth of subsurface chlorophyll maxima and
the depth of the nitrocline (Figure 6; r = 0.83; P < 0.001). This
suggests that regenerated nutrients may exert an important
influence on the subsurface chlorophyll maxima (Sarma &
Aswanikumar, 1991).

Seasonal bio-physicochemical variability in the BoB

The intra-annual course (seasonal cycle) of all selected variables
for the BoB, including the inherent variability, are shown
in Figure 7. Maximum silicate concentration was 9.67 μmol l−1

in August and the level was at a minimum 1.86 μmol l−1 in
December. The concentrations of nitrate and phosphate were
maximum in July and minimum in February and April, respect-
ively. The seasonal distribution of temperature was bi-modal in
the BoB, with the primary peak during May to June and a second-
ary peak in October. Mean annual temperature was 28.49°C, and
maximum salinity was 29.2 in February and a minimum of 9.1
during July. Maximum rainfall occurred during May to August,
while the rainfall was lower in winter months. Using a time lag
of one month for the high rainfall and freshening of seawater, a
significantly (R2 = 0.53 at P < 0.01) negative relationship between
rainfall and salinity was noted. The salinity was decreased after
March due to input from riverine sources. The occurrence of
higher salinity (weekly mean concentration >28.5) in the BoB
was mostly restricted in the months of December to March.
Transport from the north direction into the BoB was lower during
October to April and the salinity shifts were related to run-off
rates of the river systems. Although the run-offs of rivers were
largely a proxy for freshwater influence in the BoB, it does indi-
cate that increased run-off is likely to dominate the system during
April to late September and decrease the salinity. Moreover, the
drop in temperature after May was related to high rainfall events
over the BoB. The biomass of phytoplankton and zooplankton

was at a maximum during October and January, and a minimum
during June and October.

So, how do different biotic and abiotic variables control the
seasonal dynamics of phytoplankton in the BoB? Phytoplankton
abundance, as the main food source, governs the abundance of
herbivorous zooplankton, which in turn regulates the level of
planktivorous organisms (Sarker & Wiltshire, 2017). In the
oceanic ecosystem, phytoplankton dynamics are regulated by
both ‘bottom-up’ factors (e.g. light, temperature and nutrients)
and ‘top down’ mechanisms (e.g. zooplankton grazing)
(Wiltshire et al., 2015).We found that higher temperatures are
responsible for lower growth rates in phytoplankton and zoo-
plankton. In addition, low nutrient conditions result in low
growth rates and conversely, high nutrient conditions result in
high algal growth rates. Analysis of the monthly data showed
that there was a time lag of up to one month between the phyto-
plankton and silicate peak during the south-west monsoon. The
abundance of phytoplankton increases in response to increased
silicate concentration. How early and how steep the abundance
curves were during this period depended on the availability of
nutrients. Silicate and phosphate were found to decline by the
end of May, whereas the level of nitrate declined more slowly,
at the end of August. This is evidence of timing differences for
uptake of nutrients, for example, phosphate and silicate decrease
most rapidly. Due to uptake by phytoplankton, nutrients remain
at low levels during September to April. By then, the level of
phytoplankton (diatoms) increased in biomass to their typical
winter concentrations. Copepods and larval fish are the dominant
grazers of phytoplankton (Nair et al., 1981; Baliarsingh et al.,
2018), especially from May to September. In the months of
March to August, phytoplankton growth is limited due to zoo-
plankton grazing. During this time zooplankton densities were
higher and high grazing leads to lower numbers of phytoplankton
(Mieruch et al., 2010). At the end of August, zooplankton tend to
decrease in density and phytoplankton start to grow. This results

Fig. 2. Vertical variation of (A) temperature, (B) salinity, (C) dissolved oxygen, (D) silicate, (E) nitrate and (F) phosphate in the Bay of Bengal.
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in higher phytoplankton abundance in late August and as phyto-
plankton start to grow, nutrients start to decrease rapidly from
August onwards.

We highlight the importance of temperature, nutrients, zoo-
plankton, and to a lesser extent salinity and rainfall, in the abun-
dance of phytoplankton in the BoB on an annual basis. High
zooplankton abundances were associated with high phytoplankton
abundances. Nutrient patterns were found to be governed by the
growth patterns of phytoplankton. The rate at which nutrients
were used up by phytoplankton, particularly in stoichiometric

terms, indicates the relative requirement of different nutrients by
phytoplankton. When phytoplankton abundance started to
increase, nutrients such as phosphate, nitrate and silicate are
taken up at a greater rate.

Long-term trend of bio-physicochemical variables in the BoB

The time series data of different environmental variables in the
BoB with respect to inter-annual variability is shown in
Figure 8. A significant positive trend in temperature was observed

Fig. 3. Vertical profiles of bio-physicochemical variables focusing on the deep chlorophyll maximum (DCM) in the Bay of Bengal.
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in the BoB. Temperature is one of the fundamental factors gov-
erning the oceanic water masses and a key indicator of climate
change (Roemmich et al., 2012). About 90% of the excess heat
added to the Earth’s climate system has been stored in the oceans

since the 1960s (Levitus et al., 2001). Studies found that the entire
Indian Ocean has been warming over the past half-century
(Chambers et al., 1999; Alory et al., 2007; Du & Xie, 2008; Rao
et al., 2012; Dong et al., 2014). A significant increase of water

Fig. 4. Vertical profiles of phytoplankton distributions focusing on the deep chlorophyll maximum (DCM) in the Bay of Bengal.
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temperature in the BoB, as noted in this study, is supported by the
findings of D’Mello & Prasanna Kumar (2016), who claimed an
increase in SST at a rate of 0.014°C per year over the period of
1960–2011. Adding to that, the sunspot cycle was partially con-
trolling the rising trend of temperature in the BoB (White et al.,
1997). Moreover, the ocean-atmospheric coupling climatic
mode, likewise the negative phase of Indian Ocean Dipole,
which results in comparatively higher SST in the eastern Indian
ocean could also be responsible for temperature rise in the
basin (Ng et al., 2014). We found a significant linear increase of
temperature at the rate of 0.01°C year−1 in the BoB, but there
was a significant decreasing trend in primary productivity in
that area. The spatial distribution of chlorophyll computed from
the observations and historical simulations indicate a decreasing
trend in the western Indian Ocean (Roxy et al., 2016). This nega-
tive trend in primary productivity is in line with a global decrease
in primary productivity (Boyce et al., 2010; Gregg & Rousseaux,
2014) and related to the warming trend in the BoB (Roxy et al.,

2016). The warming will unquestionably influence marine plank-
ton as it directly impacts both the availability of growth-limiting
resources and the ecological processes governing the biomass dis-
tributions and annual cycles (Behrenfeld, 2014). Apart from tem-
perature, light, nutrients and grazing of zooplankton, diseases due
to infectious microorganisms may also play a role in the declining
primary productivity (Behrenfeld, 2014; Sarker & Wiltshire, 2017;
Sarker et al., 2018b). However, due to the lack of continuous data
for these variables their long-term causal relationship with pri-
mary productivity was beyond the scope of this study.

The vertical structure of different environmental variables in
the BoB also showed a change over the long-term period
(Figure 9). A linear regression analysis yielded a significant posi-
tive trend for temperature (P < 0.01) and nitrate (P < 0.01), and a
significant negative trend for salinity (P < 0.001), oxygen (P <
0.01), silicate (P < 0.001) and phosphate (P < 0.01). We found a
significant increase of temperature at the rate of 0.4°C per decade.
In contrast, a significantly negative trend of salinity (0.6 per dec-
ade) was recorded. Oxygen also showed a significantly negative
trend, 0.67 ml l−1 per decade. The declining trend of oxygen indi-
cates the possibility of hypoxia in the BoB in the long term
(Matear & Hirst, 2003; Sturdivant et al., 2013). Silicate, nitrate
and phosphate also showed a significantly decreasing trend. The
correlation coefficient between nitrate and phosphate is 0.81, sug-
gesting that nitrate and phosphate varied together with a mean
molar ratio of 16:1. The salinity distribution in the BoB was
mostly governed by the amount of freshwater run-off from the
rivers (Sengupta et al., 2006), the precipitation linked to the mon-
soon that is still unpredictable as well as the entrance of high
saline water from the AS during the summer. There was a linearly
decreasing trend in surface salinity over the last 50-year period in
the northern BoB (Aretxabaleta et al., 2015). The salinity of the
BoB is mostly influenced by the amount of freshwater input
and precipitation. In addition, the increased atmospheric tem-
perature might have caused a higher melting rate of Himalayan

Fig. 5. Relationship of deep chlorophyll maximum (DCM) with chlorophyll maximum (CMAX), mixed layer depth (MLD), depth of stability maximum (DSM) and
thermocline depth.

Fig. 6. Relationship of deep chlorophyll maximum (DCM) to nitracline depth in the
Bay of Bengal.
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ice that also decreased the salinity in the mouth of the Ganges
river system (Mitra et al., 2009). Thus, the hydrological cycle
(i.e. rainfall and evaporation) and the freshwater discharge
would be the correct explanation of the decreasing ascending pat-
tern. Trends in the concentration of dissolved oxygen in the BoB
over the last several decades remained consistent according to the
findings of Joos et al. (2003). The positive trend in nitrate might
be related to an increase in remineralization as a consequence of
the OMZ development in relation to long-term decrease in oxy-
gen. Moreover, atmospheric nitrogen might be an additional
source of N. Human activities contribute substantially to the
reactive N load in the atmosphere over the continents (Duce
et al., 2008). Global models estimate that the anthropogenic com-
ponent of atmospheric N deposition into the ocean accounts for
up to one third of the ocean’s external N supply (Altieri et al.,
2016). In addition, diatoms such as Rhizosolenia can contribute
N from the deep waters to the euphotic zone by means of vertical
migration and thereby contribute to the fresh supply of N in the
ecosystem (Singler & Villareal, 2005). It is evident that the phyto-
plankton community in the BoB is dominated by diatoms

(Sampathkumar et al., 2015; Biswas et al., 2017). Thus, reduction
of silicate and phosphate might be the result of an abundance of
diatoms, which require silicate and phosphate for their growth.
The declining trend of silicate and phosphate may also be related
to elevated levels of nutrients discharging from the river systems
into the BoB (Pedde et al., 2017).

Conclusion

This study described the bio-physicochemical characteristics of
the BoB and the results have wider implications for understanding
the ecology of tropical seas. First, we showed the spatial variation
in the bio-physicochemical parameters of the BoB along with the
drivers of spatial variability of ecology, i.e. chlorophyll. Second,
the vertical profile of bio-physicochemical parameters was ana-
lysed. To elucidate the vertical profile, we explained the DCM,
which is a typical feature in the tropical marine ecosystem.
Third, we showed both inter-annual and intra-annual variation
of bio-physicochemical parameters. This study thus identified
the important explanatory variables associated with the changes

Fig. 7. Seasonal variability in bio-physicochemical parameters in the Bay of Bengal.

Fig. 8. Long-term trend in SST (A) and primary productivity (B) in the Bay of Bengal.
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in spatial and temporal characteristics of bio-physicochemical
parameters in the BoB. The findings indicate that changes in
biotic and abiotic factors are expected to have a consequence on
the abundance of phytoplankton, which might ultimately affect
the higher trophic levels, for example fish, and be useful to eluci-
date the ecology of tropical seas under climate change scenarios.
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