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Convection in a horizontal duct aligned with a uniform magnetic field is analysed
computationally. The motivation of the study is the concept of a liquid metal blanket
for a tokamak fusion reactor, in which ducts are oriented toroidally, i.e. parallel to the
main component of the magnetic field. Computations of two-dimensional (streamwise-
uniform) flows appearing at very strong magnetic fields and of three-dimensional flows
in long domains are conducted. Non-uniform volumetric internal heating is applied,
while the walls are maintained at a constant temperature. Two-dimensional or nearly
two-dimensional turbulent convection is found at high Grashof and Hartmann numbers
typical for fusion reactor conditions. The turbulence results in stronger mixing and
more uniform distribution of wall heat flux, indicating promising potential of this
concept of the blanket.
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1. Introduction
A blanket is an indispensable component of a tokamak fusion reactor. It surrounds

the reaction chamber and serves the triple purpose of shielding the magnets from
the neutrons generated by the reaction, converting the neutrons’ energy into heat to
be diverted into an external power cycle and breeding tritium fuel via interaction of
neutrons with lithium atoms in the blanket. The most promising concept is that of
a liquid metal blanket, in which a Li-containing fluid (most likely alloy PbLi) flows
continuously through a network of ducts. The flow is affected by a very strong (up
to 10–12 T) steady magnetic field and very strong internal heating due to absorption
of neutrons (tens of MW m−3 near the wall facing the reaction chamber).

The first of these effects has been a subject of rather extensive studies guided
primarily by two considerations: that laminarization of the flow by the strong magnetic
field results in poor mixing and transport properties and that the Lorentz force and
magnetohydrodynamic (MHD) boundary layers lead to the flow resistance being
much stronger than the resistance in analogous flows without magnetic fields (see,
e.g., Molokov, Moreau & Moffatt 2007).

Curiously, the effect of non-uniform internal heating on the flow was, for long
time, largely ignored. This changed in recent laboratory experiments, such as those
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on mercury flows in pipes and ducts (see, e.g., Belyaev et al. 2011, 2013; Genin
et al. 2011a,b; Melnikov et al. 2014; Poddubnyi et al. 2014), and computations
(Mistrangelo & Bühler 2013; Vetcha et al. 2013; Zikanov, Listratov & Sviridov
2013; Lv & Zikanov 2014; Zhang & Zikanov 2014; Liu & Zikanov 2015). While
limited to moderately high values of Hartmann and Grashof numbers (experiments
and accurate computations at the parameters of a real fusion reactor are as of yet
unfeasible) and, therefore, not amounting to an unambiguous proof, the studies
produced convincing data indicating that the structure and transport properties of
blanket flows are changed profoundly by thermal convection. In many configurations,
in particular in flows through vertical (Vetcha et al. 2013; Melnikov et al. 2014;
Poddubnyi et al. 2014; Liu & Zikanov 2015) and horizontal (Genin et al. 2011a;
Lv & Zikanov 2014; Zhang & Zikanov 2014) ducts and in boxes with conducting
walls (Mistrangelo & Bühler 2013), convection leads to large-amplitude fluctuations
of temperature or to the formation of hot and cold spots in the walls. Should similar
effects appear in an actual blanket, they would result in strong and possibly unsteady
thermal stresses in the walls causing rapid deterioration of wall material and even
loss of the structural integrity of the blanket. In this sense, the convection effect is
highly undesirable and may even invalidate the currently pursued blanket designs,
such as dual coolant lead lithium (DCLL; Smolentsev, Moreau & Abdou 2008) or
helium cooled lead lithium (HCLL; Mistrangelo & Bühler 2009).

In this paper, we argue and illustrate by numerical simulations that the effect
of convection is not necessarily detrimental, but can, in fact, be exploited as an
efficient mechanism of mixing and heat transfer within a blanket. A flow in a long
duct aligned with a strong uniform magnetic field is analysed. The system can be
considered as an idealized model of a toroidal (parallel to the main component of
the magnetic field) duct of a blanket. Such designs were considered in the early
days of fusion technology (Hunt & Hancox 1971; Smith et al. 1985) for self-cooled
(both breeding and cooling carried out by liquid metal) blankets. The concept was,
probably prematurely, abandoned in the 1990s, after theoretical and numerical analysis
of laminar steady-state flows showed complexity and poor predictability related to
strong sensitivity to variations of the magnetic field and wall material properties,
details of the design, etc. (see, for example, the chapter by Bühler in Molokov et al.
2007).

The focus of this work is on the theoretical possibility of a blanket with toroidal
separately cooled (heat transfer is mostly carried out by external heat exchangers)
ducts. Apart from their importance for fusion technology, the results are, in our view,
of general interest and beauty. A rare example of two-dimensional turbulence in a
realistic system is presented.

2. Physical model and numerical method
A flow of an incompressible electrically conducting fluid (a liquid metal) in

a horizontal duct of square cross-section is considered (see figure 1a). There is
non-uniform internal heating of volumetric rate q0q(x), while the walls of the duct
are maintained at constant temperature T0. There is no mean flow along the duct.
The system can be considered as a model of a blanket, where cooling is carried out
primarily by an auxiliary (e.g. pressurized He) circuit built into walls and the flow
of liquid metal along the duct is only needed for tritium extraction and, therefore, is
negligibly slow (1 mm s−1 or less).

As an approximation, we neglect the poloidal component of the magnetic field
(approximately 5 % of the total field strength in actual reactors) and curvature effects.
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FIGURE 1. (a) Geometry of the flow and coordinate system. For the three-dimensional
flows considered in § 3.2, the sketch represents a cross-section of the flow domain that
has the form of a long duct. (b) The non-dimensional internal heating rate q(x) (solid
line) and the temperature distribution (dashed line) that would develop in response to this
heating in a purely conductive regime without the influence of the walls at y=±1.

The magnetic field is assumed to be uniform, horizontal and perfectly aligned with the
axis of the duct. We also assume that the duct is long (tens of hydraulic diameters),
so that the effects of its ends can be neglected and an asymptotic model with periodic
inlet–exit conditions can be considered in three-dimensional simulations. Furthermore,
in such a system, a sufficiently strong magnetic field completely suppresses axial
velocity gradients and makes the flow two-dimensional (see, e.g., Davidson 2001). The
electric currents and Lorentz force become zero in such a flow. The two-dimensional
state is stable or unstable to three-dimensional perturbations depending on the strength
of the magnetic field, as measured by the Stuart number, N = Ha2Re−1, where Ha
and Re are properly defined Hartmann and Reynolds numbers (see the discussion
below for the definition relevant to our case), and on the axial wavelength of the
perturbations (see, e.g., Thess & Zikanov 2007). The Stuart number corresponding
to the typical blanket condition is of the order of 102, which indicates stability. We
assume stability at first and perform tests of the robustness of this assumption later.

As typical scales, we use the duct half-width d for length, typical magnitude q0

for internal heating rate, 1T = q0d2κ−1 for temperature, free-fall speed U=√βg1Td
for velocity, d/U for time and ρU2 for pressure, and obtain, with the Boussinesq
approximation,

∂u
∂t
+ (u · ∇)u=−∇p+ 1√

Gr
∇2u+ Tey + FL, (2.1)

∇ · u= 0, (2.2)
∂T
∂t
+ u · ∇T = 1

Pr
√

Gr
(∇2T + q), (2.3)

u= T = 0 at x=±1, y=±1, (2.4)

where u= (u, v,w) and T are the non-dimensional velocity and temperature deviation
from T0, and

q= exp−(x+ 1) (2.5)

is an approximation of the non-dimensional rate of internal heating due to absorption
of neutrons proposed by Smolentsev, Morley & Abdou (2006) and shown in
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figure 1(b) (the wall at x = −1 is nearest to the reaction chamber). The Lorentz
force FL is zero in two-dimensional (z-independent) flow. In three-dimensional flows,
it is determined as

FL =Ha2Re−1 j × ez. (2.6)

The electric current j is determined by Ohm’s law,

j =−∇φ + u× ez, (2.7)

where the electric potential φ is a solution of the Poisson equation expressing the
instantaneous electric neutrality of the fluid assumed in the quasistatic approximation:

∇2φ =∇ · (u× ez). (2.8)

The boundary conditions for φ are those of perfect electric insulation,

∂φ

∂n
= 0 at x=±1, y=±1. (2.9)

Periodicity of the electric potential φ, velocity u, temperature fluctuations T and
pressure fluctuations p at z= 0, L, where L is the length of the computation domain,
is assumed in the case of three-dimensional flows. The non-dimensional parameters
are the Prandtl number Pr= ν/χ , the Grashof number

Gr= gβq0d5

κν2
, (2.10)

which is a square of the Reynolds number Re=Ud/ν, and the Hartmann number

Ha= Bd
(
σ

ρν

)1/2

. (2.11)

In the formulae above, κ , β, ν, χ and σ are respectively the thermal conductivity,
thermal expansion coefficient, kinematic viscosity, temperature diffusivity and electric
conductivity of the fluid. Applicability of the Boussinesq approximation to convection
flows within fusion reactor blankets is, generally, questionable because temperature
variations can be large (see Gray & Giorgini 1976 for a discussion of application
limits). Nevertheless, the Boussinesq approximation is typically used in blanket studies
(see, e.g., Vetcha, Smolentsev & Abdou 2009; Mistrangelo & Bühler 2011; Belyaev
et al. 2013; Lv & Zikanov 2014; Zhang & Zikanov 2014). As indicated by Ni et al.
(2012), the non-Boussinesq effects can be significant quantitatively, but are unlikely to
have profound qualitative effects on the flow. Our approach in this study is to use the
approximation, partially justifying it by the fact that the particularly interesting flows
for us are turbulent and, thus, temperature non-uniformity is reduced, and postpone
considering its accuracy for the future.

The problem is solved numerically in primitive variables using the finite-difference
scheme developed by Krasnov, Zikanov & Boeck (2011) and modified to include
thermal convection and implicit treatment of viscosity and conduction terms
by Zikanov et al. (2013) and Zhang & Zikanov (2014). The spatial and time
discretizations are of the second order. The grid is uniform in the axial direction
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(in three-dimensional computations) and clustered towards walls according to the
coordinate transformation

x= Ax sin(πξ/2)+ (1− Ax)ξ , y= Ay sin(πη/2)+ (1− Ay)η, (2.12a,b)

where −16 ξ 6 1 and −16 η6 1 are the transformed coordinates in which the grid is
uniform and the blending coefficients Ax=Ay= 0.96 are used. The same combination
of clustering and finite-difference discretization was successfully used by Krasnov,
Zikanov & Boeck (2012) for simulations of MHD duct flows at high Reynolds and
Hartmann numbers. Each simulation is conducted for a long time to obtain a fully
developed state and then accumulate data over an interval sufficient for accurate time
averaging. The Nusselt number is defined as

Nu= Q
T
, (2.13)

where Q = ∫
A q dA is the total heating rate per unit length of the duct and

T = A−1
∫

A T dA is the mean temperature. In addition to that, the following integral
characteristics are computed in the two-dimensional flows (see, e.g., Clercx & van
Heijst 2009, for a discussion of their meaning): kinetic energy, enstrophy and angular
momentum with respect to the centre of the duct,

E= 1
A

∫
A
|u|2 dA, (2.14)

Ω = 1
2A

∫
A
ω2 dA, (2.15)

L= 1
A

∫
A
(xv − yu) dA=− 1

2A

∫
A

r2ω dA. (2.16)

We also compute, for the purpose of code verification, the average vorticity W =
(1/A)

∫
A ω dA, where ω = ∂v/∂x − ∂u/∂y. It is easy to verify by direct integration

of ω and use of velocity boundary conditions that W should be zero for all flows.
In the simulations of three-dimensional flows, our main attention is given to the

perturbations with respect to the two-dimensional solutions:

u′ = u− u, T ′ = T − T, (2.17a,b)

where u and T are the instantaneous averages in the axial direction. In particular, we
follow the deviation from two-dimensionality using the perturbation energies

E′ = 〈 f ′2〉, (2.18)

where 〈· · ·〉 stands for volume averaging and f stands for perturbations of a velocity
component or temperature.

A grid sensitivity study has been performed to identify, for every value of Gr,
the size of the grid such that further increase does not significantly change the
integral characteristics of the two-dimensional flow (see table 1). We also require that
the average vorticity W obtained by the finite-difference differentiation of velocity
components and the Simpson-rule integration of ω on the non-uniform grid is
sufficiently close to zero. Table 1 shows that the error is small in comparison to
the r.m.s. vorticity, which is approximately one in all the cases. In three-dimensional
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TABLE 1. Grid sensitivity study: the parameters of the computational grids and the integral
characteristics of the two-dimensional solutions are shown. The characteristics are obtained
by time averaging at Gr> 107. The grids used in the simulations of two-dimensional flows
are underlined.

analysis, the grid step in the axial direction 1z is always kept as approximately
0.1, which is 100 times smaller than the typical wavelength of the unstable modes
observed.

Results are presented for 106 6 Gr 6 1011 (see table 1), Pr= 0.0321 (PbLi alloy at
approximately 570 K) and 800 6 Ha 6 104. This can be compared with the typical
values expected in full-scale fusion reactors: Gr up to 1012 and Ha up to 104 (see
Molokov et al. 2007). The axial length of the computational domain in the three-
dimensional simulation is 4π6 Lz 6 30π.

3. Results
3.1. Two-dimensional flows

The non-uniform temperature distribution produced by internal heating causes
thermal convection flows in all of our cases. The structure and behaviour of the
developed flows are illustrated in figures 2–4. We show instantaneous distributions
of the streamfunction, temperature and amplitude of the velocity in figure 2, time
evolution of the Nusselt number and average kinetic energy in figure 3 and spectral
decompositions of the average kinetic energy signal E(t) in figure 4. At Gr = 106,
the flow is steady state and consists of two circulation rolls (see figure 2a–c).
Topologically similar but unsteady flows are obtained at Gr = 107 and 108 (see
figure 2d–f ). At Gr = 107, the unsteady fluctuations have three isolated frequencies
and low amplitudes in comparison to the mean (see figure 4a). At Gr = 108 (see
figures 2d–f and 4b), the amplitude is higher, and the Fourier analysis of the signal
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FIGURE 2. (Colour online) Instantaneous distributions of the streamfunction Ψ (solid
lines indicate counterclockwise motion while dashed lines indicate clockwise motion),
temperature T and amplitude of the velocity |u| in two-dimensional flows at Gr = 106

(a–c), Gr= 108 (d–f ) and Gr= 1011 (g–i). Note that the isolevels are different at different
values of Gr.
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FIGURE 3. The Nusselt number (a) and average kinetic energy (b) in two-dimensional
flows at Gr = 108 (dashed lines) and Gr = 1011 (solid lines). Only parts of actual
simulations are shown. Note that different scales are used at Gr= 108 and Gr= 1011.

gives one strong frequency and weaker frequencies distributed continuously over a
small interval.

In the most interesting cases for us of high Gr (at 109 6 Gr 6 1011), the flow is
turbulent (see figure 2g–i and the curves for Gr=1011 in figures 3 and 4). The Fourier
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FIGURE 4. Spectral decompositions of the average kinetic energy signal E(t) in
two-dimensional flows at Gr= 107 (a), Gr= 108 (b) and Gr= 1011 (c) (in log scale).

analysis produces continuous spectra in wide ranges of frequencies (see figure 4c).
The flow fields show features typical for forced two-dimensional turbulence in a
confined domain (see, e.g., Clercx & van Heijst 2009): continuous instability and
breakdown of large-scale structures, their recreation by forcing, thin shear layers and
vorticity filaments at the walls. We note that an inverse energy cascade is not to be
expected in our system, since the convection forcing acts on a length scale of the
same order as the size of the flow domain.

The integral properties (2.13)–(2.16) are listed in table 1. We see that the average
enstrophy Ω changes little with Gr. With the kinetic energy balance in a statistically
steady state being −2Gr−1/2Ω + (1/A) ∫A Tv dA ≈ 0, this implies that the energy
production by convection forcing satisfies∫

A
Tv dA∼Gr−1/2. (3.1)

As illustrated in figure 5, the other integral properties change significantly with Gr.
The Nusselt number grows as

Nu∼Gr0.2 (3.2)
in turbulent regimes. Similar scaling was recently observed by Goluskin & Spiegel
(2012) in simulations of two-dimensional convection in a horizontal layer with
uniform internal heating. The average kinetic energy E and the amplitude of the
average angular momentum −L decrease by orders of magnitude apparently as a result
of redistribution of kinetic energy from large to small length scales. Interestingly, the
scaling coefficients at large Gr are nearly the same for the two quantities and are
equal to the negative of the scaling coefficient for the Nusselt number. In all of our
flows, L< 0, which reflects the asymmetry introduced by the forcing.

For the design of a liquid metal blanket with toroidal ducts imitated by our model
(with very low flow rate and cooling by heat exchangers built into the walls), it is
important to know how the heat flux from the interior is distributed over the walls.
The non-dimensional heat flux

qw = −dT
dn

∣∣∣∣
wall

, (3.3)

where n is an outward-facing normal, is shown in figure 6 for the three flow states of
figure 2. We do not see potentially dangerous localized zones of particularly strong or
particularly weak flux. At Gr= 106 and 108, the walls at x=−1 and y= 1 are heated
somewhat more strongly than the other two walls. In the turbulent flow at Gr= 1011,
intense mixing results in a more uniform heat flux distribution.
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FIGURE 5. Integral time-averaged (at Gr > 107) characteristics of the two-dimensional
flows listed in table 1. Approximate slopes at 109 6 Gr 6 1011 are indicated.
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FIGURE 6. (Colour online) Distributions of the time-averaged wall heat flux corresponding
to the two-dimensional flow states in figure 2. The averaging is performed at the stage of
fully developed flow over 200 time units. At Gr= 1011, this corresponds to approximately
eight convective time units (E/2)−1/2. Note that different scales are used for qw at Gr=
106 (a), Gr= 108 (b) and Gr= 1011 (c).

3.2. Stability of two-dimensional flow regimes to three-dimensional perturbations
Three-dimensional transient analysis is performed to test the robustness of the
two-dimensionality assumption. We take a two-dimensional flow as an initial state,
add small-amplitude three-dimensional random perturbations and compute the flow
evolution for at least 200 time units. The two-dimensional state is considered to be
stable or unstable if the perturbation energies (2.18) behave as illustrated in figure 7(a)
or (b) respectively, i.e. show continuous nearly exponential decay or grow and then
saturate at a higher amplitude. The flows are computed in a domain with periodic
inlet/exit conditions, length Lz= 4π, 10π or 30π and at 8006Ha6 104. The domain
length Lz is an important parameter of the analysis. It determines the maximum
of the axial wavelength λz of the perturbations allowed by the model. This affects
the strength of suppression of perturbations by the magnetic field, since the rate of
Joule dissipation of the electric currents induced by a flow structure is proportional
to Ha2Re−1λ−2

z . At any strength of the magnetic field one can, therefore, select a
sufficiently long domain such that perturbations with λz ∼ Lz survive the suppression.
Our choice Lz 6 30π can be related to existing designs of liquid metal blankets
for fusion reactors, where duct widths tend to be of the order of a few cm and
duct lengths rarely exceed 2 m. The non-dimensional length Lz is, thus, not larger
than 100. The parameters of the three-dimensional simulations conducted are listed
in table 2. The most extensive computations have been conducted at Gr= 109, while
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FIGURE 7. (Colour online) The evolution of the three-dimensional perturbation energy
E′ is shown for Ha= 800, Gr= 109, Lz = 4π (a) and Ha= 2000, Gr= 109, Lz = 4π (b).

Gr Ha Lz Nx Ny Nz E′ E′/E2D

109 500 4π 64 64 96 3.5× 10−4 4.4 %
109 800 4π 64 64 96 5.0× 10−5 0.6 %
109 900 4π 64 64 96 1.0× 10−6 0.01 %
109 1000 4π 64 64 96 Stable Stable
109 1050 10π 64 64 256 2.4× 10−4 3.0 %
109 1500 10π 64 64 256 8.0× 10−5 1.0 %
109 1700 10π 64 64 256 2.5× 10−6 0.03 %
109 1750 10π 64 64 256 Stable Stable
109 2000 20π 64 64 512 3.5× 10−4 4.4 %
109 2500 20π 64 64 512 2.0× 10−8 0.0003 %
109 2700 20π 64 64 512 Stable Stable
109 3700 30π 64 64 1024 6.0× 10−8 0.0008 %
109 4000 30π 64 64 1024 Stable Stable
1010 2000 10π 128 128 256 3.0× 10−4 6.0 %
1010 4000 10π 128 128 256 8.0× 10−5 1.6 %
1011 104 4π 256 256 96 3.0× 10−6 0.1 %
1011 2× 104 4π 256 256 96 Stable Stable
1011 104 10π 256 256 256 6.0× 10−5 2.0 %

TABLE 2. Results of the three-dimensional simulations. The computational parameters, the
energy of the three-dimensional perturbations E′ and the ratio between E′ and the kinetic
energy of the corresponding two-dimensional flows E2D are shown.

at Gr= 1010 and Gr= 1011 just a few runs have been performed to confirm that the
situation is qualitatively the same. In order to make three-dimensional computations
feasible, the size of the computational grid in the x–y-plane has been reduced in
comparison to the two-dimensional simulations (see tables 1 and 2).

The main results are illustrated by the case Gr = 109 in figure 8. For every Lz,
there is a critical Ha above which the perturbation energies decrease and the flow
maintains two-dimensionality. When Ha is lower than the critical value, transition to
three-dimensionality occurs. Calculations conducted at Gr = 1010 and 1011 produce
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FIGURE 8. (Colour online) Stability diagram for the two-dimensional solutions at
Gr= 109. Crosses indicate the stability thresholds determined in the computations.

qualitatively similar results and show that the two-dimensional states become less
stable at higher Gr – the stability requires larger Ha or smaller Lz. An example of
a developed three-dimensional flow is illustrated in figure 9 by the case Ha = 104,
Gr = 1011, Lz = 10π. The Hartmann number in this case is smaller than the critical
value, and the perturbation energies increase in a manner similar to figure 7(b). The
magnitude of the perturbation energies at the saturation level is small, of the order
of 10−5. We can estimate that the perturbation velocity is only approximately 2 %
of the velocity of the two-dimensional flow (see table 2). This indicates that the
flow at Ha = 104, Gr = 1011 and Lz = 10π remains nearly two-dimensional. This is
confirmed by the two-point correlation coefficient shown in figure 9(e). The coefficient
is calculated using the vertical velocity component as

R(L)= 〈v(x, t)v(x+ Lez, t)〉
〈v2(x, t)〉 , (3.4)

where x is the point (0, 0, z) and the averaging is performed over the streamwise
direction. No time averaging is applied in (3.4). We see that, although there are
some three-dimensional structures, the flow does not vary much in the axial direction,
with the flow coefficient remaining above 0.99. Apart from weak three-dimensional
perturbations, the flow remains very similar both qualitatively and quantitatively to
the flow obtained in the two-dimensional computations (compare figures 9d and 2g–i).
It can also be observed in figure 9 that the three-dimensional structures are located
near the bottom of the duct and have a typical axial wavelength of approximately 12
unit lengths. The bottom location suggests that the transition to three-dimensionality
in this flow may be caused by instabilities forming in the thin shear layers near the
duct bottom in the two-dimensional solution (see figure 9d).

The strength of the three-dimensional structures is largely dependent on how
far away the parameters are from the critical line. For example, at Ha = 104,
Gr = 1011 and Lz = 4π, which can be compared with the Lz = 10π in figure 9,
we still observe a transition to three-dimensionality, but visual inspection of the plots
analogous to figure 9(a–c) yields only a slight tilt of the isolines. The energies of
the three-dimensional velocity perturbations saturate at approximately 10−6, i.e. at a
level significantly lower than for Lz = 10π (see table 2).
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FIGURE 9. (Colour online) Results of the three-dimensional simulations. Instantaneous
distributions of the vertical velocity uy, temperature T and spanwise velocity ux at
Ha= 104, Gr= 1011, Lz = 10π are shown in the cross-section x= 0 (a–c), and of T and
the velocity vectors in the transverse cross-section z= Lz/2 (d). The two-point correlation
coefficient R is shown in (e). The scales of the y and z coordinates in (a–c) are related
as 1:3.

On the contrary, at parameters far from the critical line, the three-dimensionality
becomes clearly visible. This is illustrated in figure 10 by the case Gr = 1010,
Ha = 2000, Lz = 10π. The correlation coefficient drops to approximately 0.5 in this
case. The three-dimensional flow structures are clearly visible, have a range of active
wavelengths and occupy the entire duct.

We have explored the effect of three-dimensionality on heat transfer and found
that the Nusselt number is increased as a result of the transition. As an illustration,
figure 11 shows Nu in the three-dimensional flow at Gr= 109, Ha= 800 and Lz= 4π
approximately 8 % higher than in its two-dimensional counterpart.

One can see a certain analogy between our flow and the inertial (flywheel)
convection found in low-Prandtl Rayleigh–Bénard or Marangoni systems, often with
periodic or free-slip boundaries (see, e.g., Jones, Moore & Weiss 1976; Clever &
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FIGURE 10. (Colour online) Results of the three-dimensional simulations. Instantaneous
distributions of the vertical velocity uy, temperature T and spanwise velocity ux at Ha=
2000, Gr = 1010, Lz = 10π are shown in the cross-section x = 0 (a–c), and of T and
the velocity vectors in the transverse cross-section z= Lz/2 (d). The two-point correlation
coefficient R is shown in (e). The scales of the y and z coordinates in (a–c) are related
as 1:3.

Busse 1981; Boeck & Thess 1997). The inertial convection has the form of strong and
nearly circular two-dimensional rolls with nearly uniform vorticity and weak viscous
dissipation in the core. Considering the structure of our flows in figure 2, we see that
the analogy is, to some degree, valid at low Gr. At high Gr, the vorticity filaments
generated at the solid walls penetrate into the core flow leading to breakdown of
large rolls and two-dimensional turbulence. The analogy becomes invalid.

Our last point of concern is the phenomenon of large-scale intermittency discovered
in the MHD flow in a channel with a spanwise magnetic field by Boeck et al. (2008)
and further explored by Dey & Zikanov (2012). It has been found for this flow that
in a substantial range of Ha, the magnetic field is not strong enough to prevent three-
dimensional secondary instability of the spanwise Tollmien–Schlichting rolls, but is
sufficiently strong to suppress the turbulence after it develops. As a result, the flow
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FIGURE 11. (Colour online) The Nusselt number Nu at Gr = 109 as computed for the
two-dimensional regime (black, solid) and the three-dimensional regime at Ha= 800, Lz=
4π (red, dashed).

experiences nearly periodic evolution through cycles of growth of two-dimensional
rolls, their three-dimensional instability leading to a turbulent burst and decay to nearly
a laminar Poiseuille flow.

There appears to be no evident reason why a similar intermittent behaviour cannot
exist in our case or in the case of inertial convection, the Tollmien–Schlichting
rolls being replaced by the two-dimensional convection structures described in
§ 3.1. Our computations at Gr = 109, Gr = 1010 and Gr = 1011 conducted near the
three-dimensional instability thresholds for long times (up to 3000 time units) have
not produced a clear intermittent behaviour. In all runs at supercritical parameters,
the flows remain three-dimensional indefinitely after the initial growth and saturation
of perturbations. A possible explanation is that, unlike the channel flow case of
Boeck et al. (2008) and Dey & Zikanov (2012), the three-dimensional perturbations
remain weak in our case and do not destroy the underlying two-dimensional flow
structures, and thus do not remove the mechanisms leading to the three-dimensional
instability. At the same time, we have observed fluctuations of E′ by nearly an order
of magnitude in several simulations at parameters very close to the threshold (for
example at Gr = 109, Ha = 2500, Lz = 20π and Gr = 109, Ha = 3700, Lz = 30π).
Furthermore, intermittent behaviour may occur at lower Gr. These questions deserve
future consideration.

4. Concluding remarks
We have considered convection caused by internal heating in a horizontal duct

with a longitudinal magnetic field. The flow can be considered as a model of liquid
metal flows in a conceptual blanket for a tokamak fusion reactor. In such a blanket,
liquid metal moves slowly through toroidal ducts. Cooling and transport of heat to
an external power generation facility is carried out by a conventional (e.g. water or
compressed helium) heat exchanger built into the walls, while the liquid metal serves
the breeding and shielding purposes.

It has been first assumed in our analysis that the magnetic field is sufficiently strong
to make the flow two-dimensional and reduce the problem to that of natural convection
in a square.
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Using, as an example, the duct half-width d= 5 cm and physical properties of LiPb
at 570 K (Schulz 1991), we can evaluate the combination gβd5/κν2 as approximately
536 m3 W−1. This means that the range 109 6Gr61011, in which we have found two-
dimensional turbulence, corresponds to a typical heating rate q0 from approximately
1.9 to 190 MW m−3. This range entirely covers the variety of heating rates expected
in both experimental (such as ITER) and future production fusion reactors.

Three-dimensional computations have shown that the flow maintains its two-
dimensional form at Ha ∼ 104 and 109 6 Gr 6 1011 typical for reactor conditions
in ducts of fairly large length. Even when transition to three-dimensionality occurs,
the energy of the three-dimensional perturbations is small in comparison to the
energy of the two-dimensional flow components and is limited to large wavelengths
(see figures 7b and 9 for an example of such a flow at typical values of Gr and
Ha). The three-dimensionality has little impact on the flow structure and little to
moderate impact on the heat transfer, so the key flow parameters can be reasonably
accurately evaluated in a two-dimensional analysis. The situation may change when
realistic inlet and exit conditions and accompanying three-dimensional MHD effects
are included. This deserves to be addressed in future studies.

Accepting that the flow of liquid metal in the ducts of our hypothetical blanket
is turbulent and has structure and properties similar to those obtained for Gr = 1011

in this work, we immediately arrive at the conclusion that the concept is promising.
Turbulent two-dimensional convection provides an effective mechanism of mixing and
transport resulting in a reasonably uniform heat transfer into cooled walls. Unlike
the currently pursued blanket designs (Smolentsev et al. 2008; Mistrangelo & Bühler
2009), the effect of convection is not detrimental, but is, in fact, exploited as a
beneficial mechanism of the blanket’s operation.

Although the results are theoretical at this point, they show potential new advantages
of the old concept of a blanket with toroidal ducts. This inspires us to conclude that
further studies are necessary, in which one would consider real-life complexities, such
as the finite length of the duct and deviations from two-dimensionality, as well as
features of a specific design of the blanket.
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