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Abstract

Let X�t be a multivariate process of the form Xt = Yt − Zt, X0 = x, killed at some terminal
time T , where Yt is a Markov process having only jumps of length smaller than δ, and
Zt is a compound Poisson process with jumps of length bigger than δ, for some fixed
δ > 0. Under the assumptions that the summands in Zt are subexponential, we investigate

the asymptotic behaviour of the potential function u(x) =E
x
∫∞

0 �
(

X�s
)

ds. The case of

heavy-tailed entries in Zt corresponds to the case of ‘big claims’ in insurance models
and is of practical interest. The main approach is based on the fact that u(x) satisfies a
certain renewal equation.
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1. Introduction

Let (Xt)t≥0 be a càdlàg strong Markov process with values in Rd, defined on the probability
space

(
�,F , (Ft)t≥0,

(
P

x
)

x∈Rd

)
, where P

x(X0 = x) = 1, (Ft)t≥0 is a right-continuous natural
filtration satisfying the usual conditions, and F := σ

(⋃
t≥0 Ft

)
.

In this note we study the behaviour of the potential u(x) of the process X, killed at some
terminal time, when the starting point x ∈Rd tends to infinity in the sense that x0 → ∞, where
x0 := min1≤i≤d xi. A particular case of this model is the behaviour of the ruin probability if the
initial capital x is big. In the case when the claims are heavy-tailed, this probability can still
be quite large. The other example where the function u(x) appears comes from mathematical
finance, where u(x) describes the discounted utility of consumption; see [2, 31, 36] and refer-
ences therein. We show that in some cases one can still calculate the asymptotic behaviour of
u(x) for large x, and discuss some practical examples.

Let us introduce some necessary notions and notation. Assume that X is of the form

Xt := Yt − Zt, (1)
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Wyspiańskiego 27, 50-370 Wrocław, Poland. Email address: zbigniew.palmowski@pwr.edu.pl

© The Author(s), 2022. Published by Cambridge University Press on behalf of Applied Probability Trust.

783

https://doi.org/10.1017/apr.2021.49 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2021.49
https://orcid.org/0000-0001-9257-1115
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/apr.2021.49&domain=pdf
https://doi.org/10.1017/apr.2021.49


784 V. KNOPOVA AND Z. PALMOWSKI

where Yt is a càdlàg Rd-valued strong Markov process with jumps of size strictly smaller than
some δ > 0, and Zt is a compound Poisson process independent of Yt with jumps of size bigger
than δ. That is,

Zt :=
Nt∑

k=1

Uk, (2)

where {Uk} is a sequence of independent and identically distributed (i.i.d.) random variables
with a distribution function F,

|Uk| ≥ δ, k ≥ 1, (3)

and Nt is an independent Poisson process with intensity λ. In this set-up we have
P

x(Y0 = x) = 1.
Let T be an Ft-terminal time; i.e. for any Ft-stopping time S it satisfies the relation

S + T ◦ θS = T on {S< T}; (4)

see [38, Section 12] or [4, Section 22.1]. Among the examples of terminal times are the
following:

• The first exit time τD from a Borel set D: τD := inf{t> 0 : Xt /∈ D}.
• The exponential (with some parameter μ) random variable independent of X.

• T := inf
{
t> 0 :

∫ t
0 f (Xs) ds ≥ 1

}
, where f is a nonnegative function.

See [38] for more examples.
For t ≥ 0 we define the killed process

X�t :=
{

Xt, t< T,

∂, t ≥ T,
(5)

where ∂ is a fixed cemetery state. Note that the killed process
(
X�t ,Ft

)
is still strongly Markov

(cf. [4, Proposition 22.1]).
Denote by Bb

(
Rd

) (
resp., B+

b

(
Rd

))
the class of bounded

(
resp., bounded such that the

infimum is nonnegative on Rd and it is strictly positive on Rd+
)

Borel functions on Rd.
We investigate the asymptotic properties of the potential of X�:

u(x) := E
x
∫ ∞

0
�
(
X�s
)
ds =

∫ ∞

0
E

x[�(Xs)1T>s
]
ds, x ∈Rd, (6)

where � ∈B+
b

(
Rd

)
and throughout the paper we assume that �(∂) = 0. From the assumption

�(∂) = 0 we have u(∂) = 0. This function u(x) is a particular example of a Gerber–Shiu function
(see [2]), which relates the ruin time and the penalty function and appears often in insurance
mathematics when one needs to calculate the risk of a ruin. We assume that the function u(x)
is well-defined and bounded. For example this is true if ExT = ∫∞

0 P
x(T > s)ds<∞, because

� ∈B+
b

(
Rd

)
.

Having appropriate upper and lower bounds on the transition probability density of Xt

makes it possible to estimate u(x). However, in some cases one can get the asymptotic
behaviour of u(x). In fact, using the strong Markov property, one can show that u(x) satisfies
the following renewal-type equation:

u(x) = h(x) +
∫
Rd

u(x − z)G(x, dz), (7)
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Subexponential potential asymptotics 785

with some h ∈B+
b

(
Rd

)
and a (sub-)probability measure G(x, dz) on Rd that can be identified

explicitly. Note that under the assumptions made above, this equation has a unique bounded
solution (cf. Remark 1). In the case when Yt has independent increments, this is a typical
renewal equation, i.e. (7) becomes

u(x) = h(x) +
∫
Rd

u(x − z)G(dz), (8)

for some (sub-)probability measure G(dz).
In the case when T is an independent killing, the measure G(x, dz) is a sub-probability

measure with ρ := G
(
x,Rd

)
< 1 (note that ρ does not depend on x; see (27) below). This

makes it possible to give precisely the asymptotic behaviour of u if F is
(
Rd

)
-subexponential.

The case when F is subexponential corresponds to the situation when the impact of the claim
is rather big, e.g., Ui does not have finite variance. Such a situation appears in many insurance
models; see, for example, Mikosch [31], as well as the monographs of Asmussen [1] and
Asmussen and Albrecher [2]. We discuss several practical examples in Section 5.

The case when the time T depends on the process may be different, however. We discuss
this problem in Example 4, where X is a one-dimensional risk process with Yt = at, a> 0,
and T is a ruin time, that is, the first time at which the process goes below zero. In this
case we suggest rewriting Equation (8) in a different way in order to deduce the asymptotic
of u(x).

The asymptotic behaviour of the solution to the renewal equation of type (7) has been stud-
ied quite a lot; see the monograph of Feller [21], and also Çinlar [12] and Asmussen [1]. The
behaviour of the solution depends heavily on the integrability of h and the behaviour of the
tails of G. We refer to [21] for the classical situation, where the Cramér–Lundberg condition
holds, i.e. where there exists a solution α= α(ρ,G) to the equation ρ

∫
eαxG(dx) = 1; see also

Stone [39] for a moment condition. In the multidimensional case under the generalization of
the Cramér–Lundberg or moment assumptions, the asymptotic behaviour of the solution is
studied in Chung [10], Doney [16], Nagaev [32], Carlsson and Wainger [6, 7], and Höglund
[25] (see also the reference therein for the multidimensional renewal theorem). In Chover, Nei,
and Wainger [8, 9] and Embrecht and Goldie [19, 20] the asymptotic behaviour of the tails
of the measure

∑∞
j=1 cjG∗j on R is investigated under the subexponentiality condition on the

tails of G, e.g. when the moment condition is not necessarily satisfied. These results are further
extended in the works of Cline [13, 14], Cline and Resnik [15], Omey [33], Omey, Mallor, and
Santos [34], and Yin and Zhao [41]; see also the monographs of Embrechts, Klüppelberg, and
Mikosh [18], and of Foss, Korshunov, and Zahary [23].

The main tools used in this paper to derive the above-mentioned asymptotics of the potential
u(x) given in (6) are based on the properties of subexponential distributions in Rd introduced
and discussed in [33, 34].

The paper is organized as follows. In Section 2 we construct the renewal equation for the
potential function u. In Section 3 we give the main results. Some particular examples and
extensions are described in Section 4. Finally, in Section 5 we give some possible applications
of the results proved.

We use the following notation. We write f (x) 	 g(x) when C1g(x) ≤ f (x) ≤ C2g(x) for some
constants C1,C2 > 0. We write y< x for x, y ∈Rd, if all components of y are less than the
respective components of x.
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786 V. KNOPOVA AND Z. PALMOWSKI

2. Renewal-type equation: general case

Let ζ ∼ Exp (λ) be the moment of the first big jump of size ≥ δ of the process Zt. Define

h(x) := E
x
∫ ζ

0
�
(
X�s
)
ds =

∫ ∞

0
e−λr

E
x[�(Yr)1T>r

]
dr. (9)

For a Borel-measurable set A ⊂Rd,

G(x, A) := E
x[F(A + Yζ − x

)
1T>ζ

]
. (10)

In the case when Ys is not a deterministic function of s, the kernel G(x, dz) can be rewritten in
the following way:

G(x, dz) :=
∫ ∞

0

∫
Rd
λe−λsF(dz + w)Px(Ys ∈ dw + x, T > s)ds. (11)

In the theorem below we derive the renewal(-type) equation for u.
For the kernels Hi(x, dy), i = 1, 2, define the convolution

(H1 ∗ H2)(x, dz) :=
∫
Rd

H1(x − y, dz − y)H2(x, dy). (12)

Note that if the Hi are of the type Hi(x, dy) = hi(y)dy, i = 1, 2, then this convolution reduces to
the ordinary convolution of the functions h1 and h2:

(H1 ∗ H2)(x, dz) :=
(∫

Rd
h1(z − y)h2(y)dy

)
dz.

Similarly, if only H1(x, dy) is of the form H1(x, dy) = h1(y)dy, then by
(
h1 ∗ H2

)
(z, x) we

understand

(h1 ∗ H2)(z, x) =
∫
Rd

h1(z − y)H2(x, dy).

Theorem 1. Assume that the terminal time T satisfies ET <∞. Then the function u(x) given
by (6) is a solution to the equation (7) and admits the representation

u(x) =
(

h ∗
∞∑

n=0

G∗n(x, ·)
)

(x, x), (13)

where G∗0(x, dz) = δ0(dz) and G∗n(x, dz) := ∫
Rd G∗(n−1)(x, dy)G(x − y, dz − y) for n ≥ 1.

If Yt has independent increments, then

G(x, dz) ≡ G(dz) =
∫ ∞

0
λe−λs

∫
Rd

F(dz + w)P0(Ys ∈ dw, T > s
)
ds (14)

and

u(x) =
(

h ∗
∞∑

n=0

G∗n

)
(x, x). (15)
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Remark 1. Recall that u(x) is assumed to be bounded. Then, since � ∈B+
b (R), u(x) is the

unique bounded solution to (7). The proof of this fact is similar to that in Feller [21, XI.1,
Lemma 1]. Indeed, suppose that v(x) is another bounded solution to (7). Take x ∈Rd\∂ . Then
w(x) := u(x) − v(x) satisfies the equation

w(x) = (
w ∗G(x, ·))(x, x) = (

w ∗G∗2(x, ·))(x, x) = · · · = (
w ∗G∗n(x, ·))(x, x), n ≥ 1.

Note that for any Borel-measurable A ⊂Rd we have G(x, A)< 1 by (10). Then

max
y∈A

|w(y)| ≤ max
y∈A

|w(y)|G∗n(x, A) → 0, as n → ∞.

Hence, w(x) ≡ 0 for x ∈ A for any A as above.

Before we proceed to the proof of Theorem 2, recall the definition of the strong Markov prop-
erty, which is crucial for the proof. Recall (cf. [11, Section 2.3]) that the process

(
Xt,Ft

)
is called strongly Markov if, for any optional time S and any real-valued function f that is
continuous on Rd := Rd ∪ {∞} and such that sup

x∈Rd

|f (x)|<∞,

E
xf
(
XS+r|FS

)=E
XS f (Xr), r ≥ 0. (16)

Here FS := {A ∈F | A ∩ {S ≤ t} ∈Ft+ ≡Ft ∀t ≥ 0}, and since Ft is assumed to be right-
continuous, the notions of the stopping and optional times coincide. Sometimes it is convenient
to reformulate the strong Markov property in terms of the shift operator: let θt :�→� be such
that for all r> 0, (Xr ◦ θt)(ω) = Xr+s(ω). This operator naturally extends to θS for an optional
time S as follows: (Xr ◦ θS)(ω) = Xr+S(ω). Then one can rewrite (16) as

E
x[f (Xr ◦ θS

)|FS
]= P

XS f (Xr), (17)

and for any Z ∈F ,

E
x[Z ◦ θS|FS

]=E
XS Z P

x-almost surely on {S<∞}. (18)

The definition (4) of the terminal time T allows us to use the strong Markov property (18) to
‘separate’ the future of the process from its past.

Proof of Theorem 1. Using the strong Markov property we get

u(x) =E
x
[∫ ζ

0
+
∫ ∞

ζ

]
�
(
X�s
)
ds := I1 + I2.

We estimate the two terms I1 and I2 separately. Note that X�s = Y�s for s ≤ ζ . Therefore by the
Fubini theorem we have

I1 =E
x
∫ ∞

0
λe−λs

∫ s

0
�
(
Y�r
)

drds =E
x
∫ ∞

0

(∫ ∞

r
λe−λs ds

)
�
(
Y�r
)

dr

=E
x
∫ ∞

0
e−λr�

(
Y�r
)

dr =
∫
Rd
�(w)

∫ ∞

0
e−λr

P
x(Yr ∈ dw, T > r)dr

= h(x).
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To transform I2, we use the fact that T is the terminal time, the strong Markov property (18) of
X, and the fact that X�ζ = Y�ζ . Let Z = ∫∞

0 �
(
X�r
)

dr. Then by the definition (4) of the terminal
time we get

I2 =E
x
∫ ∞

0
�
(

X�r ◦ θζ
)

dr =E
x
[
E

x
[∫ ∞

0
�
(

X�r ◦ θζ
)

dr
∣∣∣Fζ

]]

=E
x
[
E

x
[
Z ◦ θζ

∣∣∣Fζ ]]=E
x
[
E

X�ζ Z
]
=E

xu
(

X�ζ

)
=E

xu
(

Y�ζ

)

=
∫
Rd

∫
Rd

u(w − y)

[∫ ∞

0
λe−λsF(dy)Px(Ys ∈ dw, T > s)ds

]

=
∫
Rd

∫
Rd

u(v − (y − x))

[∫ ∞

0
λe−λsF(dy)Px(Ys ∈ dv + x, T > s)ds

]

=
∫
Rd

u(x − z)

[∫
Rd

∫ ∞

0
λe−λsF(dz + v)Px(Ys ∈ dv + x, T > s)ds

]
,

where in the third and the last lines we used the Fubini theorem, and in the last two lines we
made the changes of variables w� v + x and y� v + z, respectively. The integral in the square
brackets in the last line is equal to G(x, dz). Thus u satisfies the renewal equation (7). Iterating
this equation we get (13). �

3. Asymptotic behaviour in case of independent killing

In this section we show that under certain conditions one can get the asymptotic behaviour
of u(x) for large x. We begin with a short subsection where we collect the necessary auxiliary
notions.

3.1. Subexponential distributions on Rd+ and Rd

Recall the notation Rd+ = (0,∞)d and x0 = min1≤i≤d xi <∞ for x ∈Rd.

Definition 1.

1. A function f : Rd+ → [0,∞) is called weakly long-tailed
(
notation: f ∈ WL

(
Rd+

))
if

lim
x0→∞

f (x − a)

f (x)
= 1 ∀a> 0. (19)

2. We say that a distribution function F on Rd+ is weakly subexponential
(
notation:

F ∈ WS
(
Rd+

))
if

lim
x0→∞

F∗2(x)

F(x)
= 2. (20)

3. We say that a distribution function F on Rd is weakly subexponential
(
notation:

F ∈ WS
(
Rd

))
if it is long-tailed and (20) holds.
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Remark 2.

1. If F ∈ WS
(
Rd+

)
then F is long-tailed.

2. For F ∈ WS
(
Rd+

)
we have (cf. [33, Corollary 11])

lim
x0→∞

F∗n(x)

F(x)
= n.

3. Rewriting [23, Lemma 2.17, p. 19] in the multivariate set-up, we conclude that any
weakly subexponential distribution function is heavy-tailed; that is, for any ς with
ς0 > 0,

lim
x0→∞

F(x)eςx = +∞, (21)

where ςx := (ς1x1, . . . , ςdxd).

4. We have extended the definition of the whole-line subexponentiality from
[23, Definition 3.5] to the multidimensional case. Note that even on the real line the
assumption (20) alone does not imply that the distribution is long-tailed; see [23,
Section 3.2].

An important property of a long-tailed function f is the existence of an insensitive function.

Definition 2. We say that a function f is φ-insensitive as x0 → ∞, where φ : Rd+ →Rd+ is a
nonnegative function that is increasing in each coordinate, if

lim
x0→∞

f (x + φ(x))

f (x)
= 1.

Remark 3. Suppose that the function φ in Definition 2 is such that x − φ(x)0 → ∞ if and only
if x0 → +∞. Then for a φ-insensitive function f we also have

lim
x0→∞

f (x − φ(x))

f (x)
= 1.

Remark 4. In the one-dimensional case if f is long-tailed then such a function φ exists. If f
is regularly varying, then it is φ-insensitive with respect to any function φ(t) = o(t) as t → ∞.
The observation below shows that this property can be extended to the multidimensional case.

Let φ(x) = (φ1(x1), . . . , φd(xd)), where φi : [0,∞) → [0,∞), 1 ≤ i ≤ d, are increasing
functions, φi(t) = o(t) as t → ∞. If f is regularly varying in each component (and, hence,
long-tailed in each component), then it is φ(x)-insensitive. Indeed,

lim
x0→∞

f (x + φ(x))

f (x)
= lim

x0→∞

{
f (x1 + φ1(x1), . . . , xd + φd(xd))

f (x1 + φ1(x1), . . . , xd−1 + φd−1(xd−1), xd)

· f (x1 + φ1(x1), . . . , xd−1 + φd−1(xd−1), xd)

f (x1 + φ1(x1), . . . , xd−1, xd)
. . .

f (x1 + φ1(x1), x2, . . . , xd)

f (x1, x2, . . . , xd)

}
= 1.

(22)

Remark 5. Note that if a function is regularly varying in each component, it is long-tailed in
the sense of the definition (19), which follows from (22). However, the class of long-tailed
functions is larger than that of multivariate regularly varying functions. There are several
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definitions of multivariate regular variation; see e.g. [3, 33]. According to [33], a function
f : Rd+ → [0,∞) is called regularly varying if, for any x ∈Rd+,

lim
t→∞

f (tx − a)

t−κr(t)
=ψ(x), (23)

where κ ∈R, r(·) is slowly varying at infinity, and ψ(·) ≥ 0 (see [3] for the definition of multi-
variate regular variation of a distribution tail); it is called weakly regularly varying with respect
to h if, for any x, b ∈Rd+,

lim
b0→∞

f (bx − a)

h(b)
=ψ(x), (24)

where bx := (
b1x1, . . . , bdxd

)
. Note that the function of the form f (x1, x2) = c1

(
1 + xα1

1

)−1 +
c2
(
1 + xα2

1

)−1 (where ci, αi > 0, i = 1, 2) is regularly varying in each variable, but is not
regularly varying in the sense of (23) or (24) unless α1 = α2.

3.2. Asymptotic behaviour of u(x)

Let T be an independent exponential killing with parameter μ. We assume that the law
Ps(x, dw) of Ys is absolutely continuous with respect to the Lebesgue measure, and denote the
respective transition probability density function by ps(x,w).

Rewrite G(x, dz) as

G(x, dz) =
∫
Rd

F(dz + w)q(x,w + x)dw, (25)

where

q(x,w) :=
∫ ∞

0
λe−λs

P(T > s)ps(x,w)ds. (26)

Observe that in the case of independent killing we have (cf. (25))

sup
x

G
(
x,Rd)=

∫ ∞

0
λe−λs

P(T > s) ds = ρ := λ

λ+μ
< 1. (27)

For z ∈Rd, define
Gρ(x, z) := ρ−1G(x, (−∞, z]).

Theorem 2. Assume that T is an independent exponential killing with parameter μ and �(x) →
0 as x0 → −∞. Let F ∈ WS

(
Rd+

)
and suppose that the function q(x,w) defined in (25) satisfies

the estimate
q(x,w) ≤ Ce−θ |w−x| (28)

for some θ,C> 0. Suppose the following:

(a) � is long-tailed and φ-insensitive for some φ such that φ(x)0 → +∞ and (x − φ(x))0 →
+∞ as x0 → ∞;

(b) for any c> 0,
lim

x0→∞
min

(
F(x), �(x)

)
ec|φ(x)| = ∞; (29)
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(c) there exists B ∈ [0,∞] such that

lim
x0→∞

�(x)

F(x)
= B; (30)

(d) if B = ∞, we assume in addition that �(x) is regularly varying in each component.

Then

u(x) =

⎧⎪⎪⎨
⎪⎪⎩

Bρ
1−ρF(x)(1 + o(1)), B ∈ (0,∞),

o(1)F(x), B = 0,
ρ�(x)
1−ρ (1 + o(1)), B = ∞,

as x0 → ∞. (31)

Remark 6. If we consider the one-dimensional case and Yt is a Lévy process, the proof follows
from [17, Corollary 3], [18, Theorem A.3.20], or [23, Corollaries 3.16–3.19].

Remark 7. One can relax the condition of existence of the limit (30) replacing it by the exis-
tence of lim sup

x0→∞
and lim inf

x0→∞
and the assumption that � is regularly varying in each component

by

0< c< lim inf
x0→∞

�(x + w)

�(x)
≤ lim sup

x0→∞
�(x + w)

�(x)
≤ C.

Since this extension is straightforward, we do not go into details.

Remark 8. Note that

h(x) =
∫ ∞

0
e−λr

P(T > r)Ex�(Yr)dr =
∫
Rd

q(x,w + x)�(x + w)dw. (32)

By (28) and the dominated convergence theorem, the assumption �(x) → 0 as x0 → −∞
implies that h(x) → 0 as x0 → −∞.

For the proof of Theorem 2 we need the following auxiliary lemmas.

Lemma 1. Under the assumptions of Theorem 2 we have

lim
x0→∞

sup
z

G∗n
ρ (z, x)

F(x)
= lim

x0→∞
inf

z

G∗n
ρ (z, x)

F(x)
= lim

x0→∞
G∗n
ρ (z, x)

F(x)
= n, n ≥ 1, (33)

and there exists C> 0 such that

lim
x0→∞

sup
z

G∗n
ρ (z, x)

F(x)
≤ Cn(1 + ε)n. (34)

Proof. The proof is similar to that of [23, Theorem 3.34]. The idea is that the parametric
dependence on x is hidden in the function q(x, x + w), which decays much faster than F because
of (21).

Take φ such that F is φ-insensitive and (x − φ(x))0 → +∞ as x0 → ∞.
We split:

Gρ(z, x) = ρ−1
∫
Rd

F(x + w)q(z,w + z)dw

= ρ−1

( ∫
w≤−φ(x)

+
∫

|w|≤|φ(x)|
+
∫

w>φ(x)

)
F(x + w)q(z,w + z)dw

:= K1(z, x) + K2(z, x) + K3(z, x).
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We have by (28)

sup
z

K1(z, x) ≤ ρ−1
∫

w<−φ(x)
q(z,w + z)dw ≤ C1

∫
w<−φ(x)

e−θ |w|dw ≤ C2e−θ |φ(x)| (35)

and

sup
z

K3(z, x) ≤ C3

∫
v≥φ(x)

e−θ |v|dv ≤ C4e−θ |φ(x)|. (36)

From (29) it follows that the left-hand sides of the above inequalities are o
(
F(x)

)
as x0 → ∞.

Note that K2(z, x) ≤ sup|w|≤φ(x) F(x − w). Hence by Definition 2, Remark 4, and
φ-insensitivity of F we can conclude that

lim
x0→∞

sup
z

K2(z, x)

F(x)
= lim

x0→∞
inf

z

K2(z, x)

F(x)
= 1,

Thus, (33) holds for n = 1. By the same argument we get that Gρ(z, x) is long-tailed as
x → ∞, uniformly in z.

Thus, there exist 0<C5 <C6 <∞ such that

C5 ≤ lim inf
x0→∞

Gρ(z, x)

F(x)
≤ lim sup

x0→∞
Gρ(z, x)

F(x)
<C6, (37)

uniformly in z.
Consider the second convolution G∗2

ρ (z, x). By the definition of the convolution given in
Theorem 1 we have

G∗2
ρ (z, x) =

(∫
w<−φ(x)

+
∫

−φ(x)≤w≤φ(x)
+
∫
φ(x)<w≤x−φ(x)

+
∫

w>x−φ(x)

)
Gρ(z − w, x − w)Gρ(z, dw)

:= K21(z, x) + K22(z, x) + K23(z, x) + K24(z, x).

Similarly to the argument for K1(z, x), we get supz K21(z, x) = o
(
F(x)

)
as x0 → ∞.

The relations (37) allow us to derive the bound

K23(z, x) ≤ C7

∫
φ(x)<w≤x−φ(x)

F(x − w)F(dw),

which is o(F(x)) as x0 → ∞ (see [23, Theorem 3.7] for the one-dimensional case; the argument
in the multidimensional case is the same). By the same argument as for K2(z, x), we conclude
that K22(z, x) = F(x)(1 + o(1)), x0 → ∞. Finally, by φ-insensitivity of F, Remark 4, and (37)
we have

K24(z, x) ≤
∫

x−φ(x)<w
Gρ(z, dw) = Gρ(z, x − φ(x)) = F(x)(1 + o(1)),

K24(z, x) ≥
∫

w≥x+φ(x)
Gρ(z − w, x − w)Gρ(z, dw) ≥ inf

y
Gρ(y,−φ(x))Gρ(z, x + φ(x))

= F(x)(1 + o(1)).
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Thus, K24(z, x) = F(x)(1 + o(1)). For general n the proof follows by induction and an
argument similar to that for n = 2.

To prove Kesten’s bound (34) we follow again [23, Chapter 3.10] and [33, p. 5439]. Note
that

G∗n
ρ (z, x) ≤

d∑
i=1

G∗n
ρ,i(z, x),

where G∗n
ρ,i(z, x) := G∗n

ρ (z,R× . . .× (−∞, xi) × . . .×R) are marginals of G∗n
ρ . Now, gener-

alizing [23, Chapter 3.10] to our set-up of G∗n
ρ,i, we can conclude that for each ε > 0 there exists

a constant C such that

G∗n
ρ (z, x) ≤ C(1 + ε)n

d∑
i=1

Gρ,i(z, x),

implying
G∗n
ρ (z, x) ≤ Cd(1 + ε)nGρ(z, x),

and we can use (33) to conclude (34). �
Proof of Theorem 2.1. Case B ∈ [0,∞). Let

G(x, ·) := (1 − ρ)
∞∑

k=0

ρkG∗k
ρ (x, ·).

Applying (34) with ε < 1−ρ
ρ

, we can pass to the limit

lim
z0→∞

G(x, z
)

F
(
z
) = (1 − ρ)

∞∑
k=1

kρk = ρ

1 − ρ
. (38)

We prove that (cf. (32))

lim
x0→∞

h(x)

�(x)
= lim

x0→∞

∫
Rd �(x + w)q(x,w + x)dw

�(x)
= ρ. (39)

We use (28) and the fact that � ∈B+
b

(
Rd

)
and is long-tailed. Indeed, by the same idea as that

used in the proof of Lemma 1, we split the integral as follows:∫
Rd

�(x + w)q(x,w + x)

�(x)
dw =

(∫
|w|≤|φ(x)|

+
∫

|w|>|φ(x)|

)
�(x + w)q(x,w + x)

�(x)
dw

:= I1(x) + I2(x),

where the function φ(x) = (φ1(x), . . . , φd(x)), φi(x)> 0, is such that � is φ-insensitive.
For any ε = ε

(
b0
)
> 0 and large enough x0 ≥ b0 we get

I1(x) ≤ (
1 + ε

(
b0)) ∫

|w|≤|φ(x)|
q(x,w + x)dw ≤ (

1 + ε
(
b0))ρ

and similarly
I1(x) ≥ (

1 − ε
(
b0))ρ.
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Thus, limx0→∞ I1(x) = ρ. By (29) we get

I2(x) ≤ C
∫

|w|≥|φ(x)|
q(x,w + x)

�(x)
dw ≤ Ce−c|φ(x)|

�(x)
→ 0 as x0 → ∞.

Now we investigate the asymptotic behaviour of
∫
Rd h(x − y)G(z, dy) (at the moment we

assume that z ∈Rd is fixed; as we will see, it does not affect the asymptotic behaviour of
the convolution). From now on, φ is such that both � and F are φ-insensitive. Split the
integral: ∫

Rd
h(x − y)G(z, dy) =

(∫
y≤−φ(x)

+
∫

−φ(x)≤y≤φ(x)
+
∫
φ(x)<y<x−φ(x)

+
∫ x+φ(x)

x−φ(x)
+
∫ ∞

x+φ(x)

)
h(x − y)G(z, dy)

:= J1(z, x) + J2(z, x) + J3(z, x) + J4(z, x) + J5(z, x).

Observe that B ∈ [0,∞) implies that �(x) is either comparable with the monotone function
F(x), or �(x) = o

(
F(x)

)
as x0 → ∞. By (39), this allows us to estimate J1 as

J1(z, x) ≤ sup
w≥φ(x)

h(x + w)G(z, (−∞,−φ(x)]) ≤ C1�(x)G(z, (−∞,−φ(x)])

= o(�(x)) = o
(
F(x)

)
, x0 → ∞,

uniformly in z. From (39) we have

J2(z, x) = ρ�(x)(1 + o(1)), x0 → ∞, (40)

uniformly in z. Let us estimate J3(z, x). Under the assumption B ∈ [0,∞) we have

J3(z, x) ≤ C2

∫
φ(x)<y<x−φ(x)

F(x − y)F(dy). (41)

Since F is subexponential, the right-hand side of (41) is o
(
F(x)

)
as x0 → ∞. In the one-

dimensional case this is stated in [23, Theorem 3.7]; the proof in the multidimensional case is
literally the same.

For J4 we have

J4(z, x) ≤ C3 (F(x + φ(x)) − F(x − φ(x)))= C3
(
F(x − φ(x)) − F(x + φ(x))

)
≤ o(F(x)),

(42)

uniformly in z. Finally, for J5 we have

J5(z, x) ≤ C4 sup
w≤−φ(x)

h(w)F(x) = o
(
F(x)

)
.

Thus, in the case B ∈ [0,∞) we get the first and second relations in (31).
2. Case B = ∞. The argument for J1 and J2 remains the same. For J3 we have

J3(z, x) ≤ �(φ(x))
(
F(φ(x)) − F(x − φ(x))

)≤ C5�(φ(x))F(φ(x))

≤ C5�
2(φ(x)).
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By Remark 4 we can chose φ such that |φ(x)| 	 |x| ln−2 |x| as x0 → ∞. Since in the case
when B = ∞ the function � is assumed to be regularly varying, it has a power decay,
J3(z, x) = o(�(x)), x0 → ∞. By the same argument, Ji(z, x) = o(�(x)), i = 4, 5, which proves
the last relation in (31). �

In the next section we provide examples in which (28) is satisfied.

Remark 9. In the case when Y is degenerate, e.g. Yt = x + at, one can derive the asymptotic
behaviour of u(x) by a much simpler procedure. For example, let d = 1, T ∼ Exp (μ), μ> 0,
Yt = at with a> 0, �(x) = F(x), x ≥ 0, and �(x) = 0 for x< 0. This special type of the function
� appears in the multivariate ruin problem; see also (71) below. In this case ρ = λ

λ+μ . Then

G(z) =
∫ ∞

0
λe−(λ+μ)tF(z + at)dt.

Direct calculation gives G(z) = F(x)(1 + o(1)) as x0 → ∞, implying that

u(x) = λ

μ
F(x)(1 + o(1)), x → ∞.

4. Examples

We begin with a simple example which illustrates Theorem 2. Note that in the Lévy case,
ps(x,w) depends on the difference w − x; in order to simplify the notation we write in this case
ps(x,w) = ps(w − x),

q(w) :=
∫ ∞

0
λe−λs

P(T > s)ps(w)ds,

and

G(dz) =
∫
Rd

F(dz + w)q(w)dw. (43)

We prove below a technical lemma, which provides the necessary estimate for ps(x,w) in the
following cases:

(a) Yt = x + at + Zsmall
t , where a ∈Rd and Zsmall is a Lévy process with jump sizes smaller

than δ, i.e. its characteristic exponent is of the form

ψ small(ξ ) :=
∫

|u|≤δ
(
1 − eiξu + iξu

)
ν(du), (44)

where ν is a Lévy measure;

(b) Yt = x + at + Vt, where Vt is an Ornstein–Uhlenbeck process driven by Zsmall
t , i.e. Vt

satisfies the stochastic differential equation

dVt = ϑVtdt + dZsmall
t .

We assume that ϑ < 0 and that Zsmall
t in this model has only positive jumps.

Assume that for some α ∈ (0, 2) and c> 0,

inf
�,j∈Sd

∫
�·u>0

(
1 − cos (Rj · u)

)
ν(du) ≥ cRα, R ≥ 1, (45)
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where S
d is the sphere in Rd. Under this condition, there exists (cf. [26]) the transition

probability density of Yt in both cases. Let

kt(x) := F(
e−ψt(·))(x), (46)

ψt(ξ ) = −ita · ξ +
∫ t

0
ψ small(f (t, s)ξ )ds,

where f (t, s) = 1s≤t in Case (a), and f (t, s) = e(t−s)ϑ10≤s≤t in Case (b). Note that since ϑ < 0
we have 0< f (t, s) ≤ 1. Moreover, in Case (b), pt(0, x) = kt(x).

Observe that we always have

kt(x) ≤ (2π )−d/2
∫
Rd

e− ∫ t
0 Reψsmall(f (t,s)ξ )dsdξ ≤ (2π )−d/2

∫
Rd

e−c|ξ |α ∫ t
0 |f (t,s)|αdsdξ, (47)

where in the second inequality we used (45).

Lemma 2. Suppose that (45) is satisfied. We have

kt(x) ≤
{

Ce−(1−ε)θν |x−at| if t> 0, |x − at| � t ∨ 1,

Ct−d/α if t> 0, x ∈Rd,
(48)

in Case (a), and

kt(x) ≤
{

Ce−(1−ε)θν |x−at| if t> 0, x ∈Rd, |x − at| � 1,

C if t> 0, x ∈Rd,
(49)

in Case (b). Here θν > 0 is a constant depending on the support of ν and ε > 0 is arbitrarily
small.

Proof. For simplicity, we assume that in Case (b) we have ϑ = −1.
Without loss of generality assume that x> 0. Rewrite pt(x) as

kt(x) = (2π )−d
∫
Rd

eH(t,x,ξ )dξ,

where
H(t, x, ξ ) = iξ (x − at) −ψt(−ξ ).

It is shown in Knopova [26, p. 38] that the function ξ �→ H(t, x, iξ ), ξ ∈Rd, is convex;
there exists a solution to ∇ξH(t, x, iξ ) = 0, which we denote by ξ = ξ (t, x); and by the non-
degeneracy condition (45) we have x · ξ > 0 and |ξ (t, x)| → ∞, |x| → ∞. Furthermore, in the
same way as in [26] (see also Knopova and Schilling [28] and Knopova and Kulik [27] for the
one-dimensional version), one can apply the Cauchy–Poincaré theorem and get

kt(x) = (2π )−d
∫

iξ (t,x)+Rd
eH(t,x,z)dz

= (2π )−d
∫
Rd

eH(t,x,iξ (t,x)+η)dη

= (2π )−d
∫
Rd

eRe H(t,x,iξ (t,x)+η) cos
(
Im H(t, x, iξ (t, x) + η)

)
dη

≤ (2π )−d
∫
Rd

eRe H(t,x,iξ (t,x)+η)dη.

(50)
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We have

Re H(t, x, iξ + η) = H(t, x, iξ ) −
∫ t

0

∫
|u|≤δ

ef (t,s)ξ ·u(1 − cos (f (t, s)η · u)
)
ν(du) ds

≤ H(t, x, iξ ) −
∫ t

0

∫
|u|≤δ, ξ ·u>0

(
1 − cos (f (t, s)η · u)

)
ν(du) ds

≤ H(t, x, iξ ) − c|η|α
∫ t

0
|f (t, s)|αds,

where

H(t, x, iξ ) = −(x − at) · ξ +
∫ t

0

∫
|u|≤δ

(
ef (t,s)ξ ·u − 1 − f ((t, s)ξ · u)

)
ν(du)ds,

and in the last inequality we used (45). Hence,

kt(x) ≤ (2π )−deH(t,x,iξ )
∫
Rd

e−c|η|α ∫ t
0 |f (t,s)|αdsdη. (51)

Now we estimate the function H(t, x, iξ ). Differentiating, we get

∂ξH(t, x, iξ ) = −(x − at) · eξ +
∫ t

0

∫
|u|≤δ

(
ef (t,s)ξ ·u − 1

)
f (t, s)u · eξ ν(du)ds

=: − (x − at) · eξ + I(t, x, ξ ),

where eξ = ξ/|ξ |. For large |ξ | we can estimate I(t, x, ξ ) as follows:

I(t, x, ξ ) ≤ C1

∫ t

0

∫
|u|≤δ

|f (t, s)u|2ef (t,s)ξ ·uν(du) ds

≤ C1eδ|ξ | maxs∈[0,t] f (t,s)
∫ t

0
f 2(t, s)ds

for some constant C1. For the lower bound we get

I(t, x, ξ ) ≥ C2

∫ t

(1−ε0)t

∫
|u|≤δ, ξ ·u>|ξ |(δ−ε)

|f (t, s)u|2ef (t,s)ξ ·uν(du) ds

≥ C3e(δ−ε)|ξ | mins∈[(1−ε0)t,t] f (t,s)
∫ t

(1−ε0)t
f 2(t, s)ds,

where C2,C3 > 0 are some constant, ε0, ε ∈ (0, 1). Thus, we get

C3te(δ−ε)|ξ | ≤ I(t, x, ξ ) ≤ C1teδ|ξ | (52)

in Case (a), and
C3e(δ−ε)eε0 |ξ | ≤ I(t, x, ξ ) ≤ C1eδ|ξ | (53)

in Case (b). In particular, this estimate implies that there exists c0 > 0 such that (x − at) · eξ ≥
c0; i.e., eξ is directed towards x − at. Thus, for example, it cannot be orthogonal to x − at.
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We now treat each case separately.
Case (a). If |x − at|/t → ∞, we get for any ζ ∈ (0, 1)

(1 − ζ )θν ln
(|x − at|/t)(1 + o(1)) ≤ ξ (t, x) ≤ (1 + ζ )θν ln

(|x − at|/t)(1 + o(1)),

where the constant θν > 0 depends on the support supp ν. Therefore,

H(t, x, iξ (t, x)) ≤ −(1 − ζ )θν |x − at| ln
(|x − at|/t)+ C4, (54)

for t> 0, |x − at| � t, and some constant C4.
It remains to estimate the integral term in (51). We have

∫ t
0 f α(t, s)ds = t; hence∫

Rd
e−c|η|α ∫ t

0 f α(t,s)dsdη= C5t−d/α . (55)

Thus, we get
kt(x) ≤ C6t−d/αe−(1−ζ )θν |x−at| ln (|x−at|/t). (56)

For t ≥ 1, the first estimate in (48) follows from (56), because t−d/α ≤ 1.
Consider now the case t ∈ (0, 1]. For t ∈ (0, 1] and |x| � 1 (otherwise we do not have

|x − ta| � t) we have for K big enough and some constant C7

e−ζ (1−ζ )θν |x−at| ln (|x−at|/t) ≤ e−ζ (1−ζ )θν (|x|−|a|)| ln (|x−at|/t) ≤ C7e−K ln (|x−at|/t).

Without loss of generality, assume that K > d/α. Then

kt(x) ≤ C8t−d/αe−(1−ζ )2θν |x−at| ln (|x−at|/t)−ζ (1−ζ )θν |x−at| ln (|x−at|/t)

≤ C9t−d/α
(

t

|x − at|
)K

e−(1−ζ )2θν |x−at|

≤ C10e−(1−ζ )3θν |x−at|,

which proves the first estimate of (48) if we take 1 − ε = (1 − ζ )3. For the third estimate in
(48), observe that H(t, x, iξ ) ≤ 0. Then the bound follows from (55).

Case (b). If |x − at| → ∞, we get for any ζ ∈ (0, 1)

(1 − ζ )θνeε0 ln |x − at|(1 + o(1)) ≤ ξ (t, x) ≤ (1 + ζ )θν ln |x − at|(1 + o(1)),

where θν is a constant which depends on the support supp ν.
Now we estimate the right-hand side of (55) in Case (b). Since

∫ t
0 f α(t, s)ds = α−1(1 −

e−αt), we get ∫
Rd

e−c|η|α ∫ t
0 f α(t,s)dsdη≤ C11 (57)

for some constant C11. Thus, there exist C12 > 0 and ε ∈ (0, 1) such that for x ∈Rd and t> 0
satisfying |x − at| � 1,

kt(x) ≤ C12e−(1−ε)θν |x−at|,

which proves (49) for large |x − at|. Finally, the boundedness of κt(x) follows from (47) and
the fact that in Case (b) we have c ≤ ∫ t

0 f α(t, s)ds ≤ C for all t> 0. �
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Remark 10. (a) The same estimates can also be proved for the model Yt = x + at + σBt +
Zsmall

t .
(b) Note that ε > 0 in the exponent in (48) and (49) can be chosen arbitrarily close to 0;

i.e., the estimates are in a sense sharp.

Lemma 3. Let Y be as in Case (a). There exist C> 0 and ε ∈ (0, 1) such that the estimate

q(x) ≤ Ce−(1−ε)θq|x|, |x| � 1,

holds true, where
θq = θν ∧ λ/(2|a|). (58)

Proof. We use Lemma 2. We have

q(x) =
( ∫

{t : |x|>|a|t+(t∨1)}
+
∫

{t : |x|≤|a|t+(t∨1)}

)
e−λtκt(x)dt := I1 + I2.

For I1 we use the triangle inequality:

I1 ≤ C1e−(1−ε)θν |x|
∫

{t : |x|>|a|t}
e−(λ−(1−ε)θν |a|)tdt

≤ C1e−(1−ε)θν |x|

⎧⎪⎨
⎪⎩

C2 if λ> (1 − ε)θν |a|,

C2e
(1−ε)θν |a|−λ

|a| |x| if λ< (1 − ε)θν |a|,
where C1,C2 > 0 are certain constants and we exclude the equality case by choosing
appropriate ε > 0. Hence,

I1 ≤
⎧⎨
⎩

C3e−(1−ε)θν |x|, λ > (1 − ε)θν |a|,
C3e− λ

|a| |x|, λ < (1 − ε)θν |a|,
for some C3 > 0.

For I2 we get, since |x| � 1,

I2 ≤ C4

∫
{t : t>|x|/(2|a|)}

t−d/αλe−λtdt ≤ C5e− (1−ε)λ
2|a| |x|.

Thus, there exist ε > 0 and C> 0 such that

Ik ≤ Ce−(1−ε)(θν∧λ/(2|a|))|x|, k = 1, 2.

This completes the proof. �
Consider now the estimate in Case (b). Recall that we assumed that the process Y has only

positive jumps. This means, in particular, that in the transition probability density pt(x, y) we
only have y ≥ x (in the coordinate sense). Under this assumption, it is possible to show that
q(x,y) (cf. (25)) decays exponentially fast as |y − x| → ∞.

Lemma 4. In Case (b) there exist C> 0 and ε ∈ (0, 1) such that

q(x, y) ≤ Ce−(1−ε)θq|y−x|, |y − x| � 1,

where θq is the same as in Lemma 3.
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Proof. From the representation Yt = e−t
(
x + ∫ t

0 esdZsmall
s

)
and (49) we get

pt(x, y) ≤ Ce−(1−ε)θν |y−xe−t−at|, t> 0, x, y> 0, |y − xe−t − at| � 1.

Similarly to the proof of Lemma 3, we have

q(x, y) ≤ C1

∫
{t : |y−x|>|a|t}

e−λte−(1−ε)θν |y−e−tx−at|dt + C2

∫
{t : |y−x|≤|a|t}

e−λtdt

:= I1 + I2.

Since y> x, we have |y − e−tx| = y − e−tx> y − x> 0 and therefore

M1 ≤ C1

∫
{t : |y−x|>|a|t}

e−(λ−(1−ε)θν |y−e−tx|−(1−ε)θν |a|)tdt

≤ C1e−(1−ε)θν |y−x|
∫

{t : |y−x|>|a|t}
e−(λ−(1−ε)θν |a|)tdt

≤ C1e−(1−ε)θν |y−x|
{

C3, λ > (1 − ε)θν |a|,
C3e

(1−ε)θν |a|−λ
|a| |y−x|

, λ < (1 − ε)θν |a|.
Hence,

I1 ≤
⎧⎨
⎩

Ce−(1−ε)θν |y−x| if λ> (1 − ε)θν |a|,
Ce− λ

|a| |y−x| if λ< (1 − ε)θν |a|.
Clearly,

I2 ≤ Ce− (1−ε)λ
|a| |y−x|

,

which completes the proof. �
Remark 11. Direct calculation shows that the estimate (28) is not satisfied for the Ornstein–
Uhlenbeck process driven by a Brownian motion, unless λ> θ .

Consider an example in R2, which illustrates how one can get the asymptotic of u(x) along
curves.

Example 1. Let d = 2 and x = (x1(t), x2(t)). We assume that xi = xi(t) → ∞ as t → ∞ in such
a way that x(t) ∈R

2\∂ . Suppose that F ∈ WS
(
R2+

)
and factors as F(x) = F1(x1)F2(x2). Suppose

also that the assumptions of Theorem 2 are satisfied with B ∈ (0,∞). Since

F(x) = 1 − F1(x1)F2(x2) = F1(x1)F(x2) + F2(x2),

we get in Theorem 2 for B ∈ (0,∞) the relations

u(x) = Bρ

1 − ρ
F(x)(1 + o(1)) = Bρ

1 − ρ

(
F1(x1(t)) + F2(x2(t))

)
(1 + o(1)) as t → ∞.

Thus, taking different (admissible) xi(t), i = 1, 2, we can achieve different effects in the
asymptotic of u(x). For example, assume that for z ≥ 1

Fi(z) = ciz
−1−αi , i = 1, 2,
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where ci, αi > 0, are suitable constants. Direct calculation shows that the Fi(x) are subexponen-
tial and the relations in (20) hold true. Note that the behaviour of F depends on the constants
αi and on the coordinates of x. We have

F(x(t)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1(1+o(1))
(x1(t))1+α1

if limt→∞
x

1+α1
1 (t)

x
1+α2
2 (t)

= 0,

c2(1+o(1))
(x2(t))1+α2

if limt→∞
x

1+α1
1 (t)

x
1+α2
2 (t)

= ∞,

(1 + o(1))
(

c1
x1(t)1+α1

+ c2
x2(t)1+α2

)
if limt→∞

x
1+α1
1 (t)

x
1+α2
2 (t)

= c ∈ (0,∞).

(59)

Taking, for example, x = (t, t) or x = (
t, t2

)
, we get the behaviour of u(x) along the line y = x

or along the parabola y = x2, respectively.

Example 2. Let d = 2 and suppose that the generic jump is of the form U = (��, (1 − �)�),
where � ∈ (0, 1) and the distribution function H of the random variable � is subexponential on

[0,∞). Then F(x) = H
(

x1
�

∧ x2
1−�

)
, F ∈ WS

(
R2+

)
, and

F(x(t)) =

⎧⎪⎨
⎪⎩

H
(

x1(t)
�

)
(1 + o(1)) if limt→∞ x1(t)(1−ρ)

x2(t)� ≤ 1,

H
(

x2(t)
1−�

)
(1 + o(1)) if limt→∞ x1(t)(1−ρ)

x2(t)� > 1.

Thus, one can get the asymptotic behaviour of u(x) provided that the assumptions of Theorem 2
are satisfied with B ∈ (0,∞).

Example 3. Let x ∈Rd, and assume that the stopping time T ∼ Exp (μ) is independent of X
and that Y is as in Case (a) or (b). Recall that in this case ρ = λ

λ+μ . Let �(x) = 1|x|≤r. Then

u(x) =
∫ ∞

0
P

x(|X�t | ≤ r
)
dt =

∫ ∞

0
μe−μt

P
x(|Xt| ≤ r)dt.

Then the assumptions of Theorem 2 are satisfied with B = 0; therefore,

u(x) = o(1)F(x) as x0 → ∞.

If �(x) = 1min xi≥r then

u(x) =
∫ ∞

0
P

x(X�t ≥ r
)
dt =

∫ ∞

0
μe−μt

P
x
(

min
1≤i≤d

Xi
t ≥ r

)
dt.

Then we are in the situation of Theorem 2 with B = ∞, so

u(x) = λ

μ
(1 + o(1)), as x0 → ∞.

Example 4. At the end of this section we consider a simple example where T is not inde-
pendent of X. We consider the well-known one-dimensional case Xt = x + at − Zt with a> 0,
EU1 =μ, Nt ∼ Pois (λ), and T = inf{t ≥ 0 : Xt < 0} being a ruin time. We put

�(x) = λF(x). (60)
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Then the renewal equation (7) for u(x) is

u(x) =
∫ ∞

0
λe−λtF(x + at)dt +

∫ ∞

0
λe−λt

∫ x+at

0
u(x + at − y)F(dy) dt. (61)

Changing variables we get

u(x) = h(x) +
∫ x

−∞
u(x − z)G(dz)

with h(x) = ∫∞
0 λe−λtF(x + at)dt and

G(dz) = 1z≥0

∫ ∞

0
λe−λtF(dz + at) dt + 1z<0

∫ ∞

−z/a
λe−λtF(dz + at) dt.

Note that supp G =R and G(R) = 1; hence, the result of Theorem 2 cannot be applied directly.
In this situation the well-known approach is more suitable; below we recall this approach.

Taking
v(x) = 1 − u(x) (62)

and starting from (61), we end up with

v(x) = −
∫ ∞

0
λe−λtF(x + at)dt

+
∫ ∞

0
λe−λt

(∫ x+at

0
F(dy) + F(x + at) −

∫ x+at

0
u(x + at − y)F(dy)

)
dt

=
∫ ∞

0
λe−λt

∫ x+at

0
v(x + at − y)F(dy) dt,

where we used the equality
∫ x+at

0 F(dy) + F(x + at) = 1. Hence, v satisfies the equation

v(x) =
∫ ∞

0
λe−λt

∫ x+at

0
v(x + at − y)F(dy) dt, (63)

which coincides with [18, (1.19)]. On the other hand, (63) can be written in the form
[18, (1.22)]

v(x) = θ

1 + θ
+ 1

1 + θ

∫ x

0
v(x − y) FI(dy), (64)

where FI(x) = 1
μ

∫ x
0 F(y)dy is the integrated tail of F, θ := a

λμ
− 1. Equivalently,

u(x) = ρFI(x) + ρ

∫ x

0
u(x − y)FI(dy), (65)

where ρ = 1
1+θ . Note that we can apply to the above equation Theorem 2 with FI instead of F.

Note also that this model is defined for x> 0; i.e., we restrict h(x) = ρFI(x) to [0,∞). Under
the stronger assumption that FI is subexponential, the asymptotic behaviour of the solution to
this equation is well known (cf. [2, Theorem 2.1, p. 302]):

u(x) = ρ

1 − ρ
FI(x)(1 + o(1)), x → ∞. (66)
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5. Applications

Properties of potentials of type (6) are important in many applied probability models,
such as branching processes, queueing theory, insurance ruin theory, reliability theory, and
demography.

The renewal equation (8) and the one-dimensional random walk. Most applications con-
cern the renewal function u(x) =E

0Lx where L is a renewal process with the distribution G
of inter-arrival times. In this case, the renewal equation (8) holds true with h(x) = G(x). For
example, in demographic models used in branching theory, Lx corresponds to the number of
organisms/particles alive at time x; see for example [40, 41].

Other applications use the distribution of the all-time supremum S = maxn≥1 Sn of a one-
dimensional random walk Sn =∑n

k=1 ηk (and S0 = 0) with ηk ≥ 0 and

ρ =
∫ ∞

0
P(η1 ∈ dz)< 1. (67)

In this case the function v(x) = P
0(S ≤ x) for x ≥ 0 satisfies the following equation (cf. [1,

Proposition 2.9, p. 149]):

v(x) = 1 − ρ + ρ

∫ x

0
v(x − y)Gρ(dy)

with G(dy) = P(η1 ∈ dy) and the proper distribution function Gρ(dy) = G(dy)/ρ. Hence u(x) =
1 − v(x) = P

0(S> x) satisfies the equation

u(x) = ρGρ(x) + ρ

∫ x

0
u(x − y)Gρ(dy),

which is (8) with h(x) = ρGρ(x). As is proved in [1, Theorem 2.2, p. 224], in the case of a
general non-defective random walk with negative drift, one can take the first ascending ladder
height for the distribution of η1. In particular, in the case of a single-server GI/GI/1 queue,
the quantity S corresponds to the steady-state workload; see [1, Equation (1.5), p. 268]. Then
ηk is the kth ascending ladder height of the random walk

∑n
k=1 χk for χk being the differ-

ence between successive i.i.d. service times Uk and i.i.d. inter-arrival times Ek. In the case of
an M/G/1 queue we have χk = Uk − Ek, where Ek is exponentially distributed with intensity,
say, λ. Then

G(dx) = P(η1 ∈ dx) = λP(U1 ≤ x)dx; (68)

see [1, Theorem 5.7, p. 237]. Note that by (67), in this case ρ = λEU1. By duality (see e.g. [1,
Theorem 4.2, p. 261]), in risk theory the tail distribution of S corresponds to the ruin probability
of a classical Cramér–Lundberg process defined by

Xt = x + t − Zt, (69)

where Zt =∑Nt
i=1 Uk is given in (2) and describes the cumulative amount of the claims up to

time t, Nt is a Poisson process with intensity λ, and Uk is the claim size reached at the kth
epoch of the Poisson process N. Here x describes the initial capital of the insurance company
and a is a premium intensity. Indeed, taking χk = Uk − Ek with exponentially distributed Ek

with intensity λ, one can prove that for the ruin time

T = inf{t ≥ 0 : Xt < 0}
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we have
u(x) = P

x(T <+∞) = P
0(S> x). (70)

Note that, by duality, the service times Uk in the GI/GI/1 queue correspond to the claim sizes,
and therefore we use the same letter to denote them. Similarly, the inter-arrival times Ek in
the single-server queue correspond to the times between Poisson epochs of the process Nt in
the risk process (69). Assume that δ= 0 in (3) and that Ys = s, that is, a = 1 in Example 4.
If the net profit condition ρ < 1 holds true (under which the above ruin probability is strictly
less than one), we can conclude that the ruin probability satisfies (65). From [23, Theorem 5.2,
p. 106], under the assumption that FI ∈ S (which is equivalent to the assumption that G ∈ S),
we derive the asymptotic of the ruin probability given in (66).

Multivariate risk process. There is an obvious need to understand the heavy-tailed asymp-
totic for the ruin probability in the multidimensional set-up. Consider the multivariate risk
process Xt = (

X1
t , . . . , Xd

t

)
with possibly dependent components Xi

t describing the reserves of
the ith insurance company which covers incoming claims. We assume that the claims arrive
simultaneously to all companies, that is, Xt is a multivariate Lévy risk process with a ∈R

d,
and Zt is a compound Poisson process as given in (2) with arrival intensity λ and the generic
claim size U ∈R

d. We assume that δ = 0 and Ys = as. Each company can have its own claims
process as well. Indeed, to do so, it suffices to merge the separate independent Poisson arrival
processes with the simultaneous arrival process (hence constructing a new Poisson arrival pro-
cess) and allow the claim size to have atoms in one of the axis directions. Consider now the
ruin time

T = inf
{
t ≥ 0 : Xt /∈ [0,∞)d},

which is the first exit time of X from a nonnegative quadrant; that is, T is the first time at which
at least one company is ruined. Assume the net profit condition λEU(k) < 1 (k = 1, 2, . . . , d)
for the kth coordinate U(k) of the generic claim size U1. Then from the compensation formula
given in [29, Theorem 3.4, p. 18] (see also [29, Equation (5.5), p. 42]) it follows that

P
x(τ <∞) = u(x) =E

x
∫ ∞

0
l
(
X�s
)
ds

with x = (x1, . . . , xd) ∈Rd+ and

l(x) = λ

∫
[x,∞)

F(dz) = λF(x), (71)

where F is the claim size distribution. In fact, a more general Gerber–Shiu function

u(x) =E
x[e−qτw(XT−, |XT |), τ <∞]

(72)

can be represented as a potential function with

l(z) = λ

∫ ∞

z
w(z, u − z)F(du);

see [22]. The so-called penalty function w in (72) is applied to the deficit XT at the ruin moment
and position XT− prior to the ruin time.

If d = 1, then by (60) and (71) we recover the heavy-tailed asymptotic of u from
Example 4.
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If d = 2 (we have two companies), then using arguments similar to those in Example 4 for
v(x) = 1 − u(x) and x = (x1, x2) ∈R

2+ we get

v(x) =
∫ ∞

0
λe−λt

∫
y1≤x1+a1t,y2≤x2+a2t

v(x + at − y)F(dy) dt, (73)

where a = (a1, a2) and y = (y1, y2).
Assume now that the claims coming simultaneously to both companies are independent of

each other; that is, U1 = (
U(1),U(2)

)
and U(k) ∼ Fk, k = 1, 2, are mutually independent. Then

(73) is equivalent to

v(x) =
∫ ∞

0
λe−λt

∫ x1+a1t

0

∫ x2+a2t

0
v(x + at − y)F2(dy2) F1(dy1) dt.

Following Foss et al. [24], we can also consider the proportional reinsurance where the generic
claim U is divided into fixed proportions between the two companies; that is, U(1) = βZ and
U(2) = (1 − β)Z for some random variable with distribution FZ and β ∈ (0, 1). In this case,

v(x) =
∫ ∞

0
λe−λt

∫ (x1+a1t)∧(x2+a2t)

0
v (x + at − (β, 1 − β)z) FZ(dz) dt.

Let a1 > a2 and x1 < x2. In this case, by [24, Corollaries 2.1 and 2.2], we have

v(x) ∼
∫ ∞

0
FZ

(
min

{
x1 +

(a1

λ
− βEZ

)
t, x2 +

(a2

λ
− (1 − β)EZ

)
t
})

dt

as x0 → ∞, where Z is strong subexponential, that is, FZ ∈ S and∫ b

0
FZ(b − y)FZ(y) dy ∼ 2EZFZ(b) as b → ∞.

Mathematical finance. Other applications of the potential function (6) come from mathemati-
cal finance. For example, the renewal equation (7) can be used in pricing a perpetual put option;
see Yin and Zhao [41, Ex. 4.2] for details.

The potential function also appears in a consumption–investment problem initiated by
Merton [30]. Consider a very simple model where on the market we have d assets Si

t = e−Xi
t ,

1 ≤ i ≤ d, governed by exponential Lévy processes Xi
t (which may depend on each other). In

fact, take Xt = x + Wt − Zt with Wt being a d-dimensional Wiener process and Z as defined
in (2). Let

(
π1, π2, . . . , πd

)
be the strictly positive proportions of the total wealth that are

invested in each of the d stocks. Then the wealth process equals
∑d

i=1 πiSi
t. Assume that the

investor withdraws the proportion � of his funds for consumption. The discounted utility of
consumption is measured by the function

u(x) =E
x
∫ ∞

0
e−qt�(Xt)dt =E

x
∫ ∞

0
�
(
X�s
)
ds,

where q> 0, T is an independent killing time exponentially distributed with parameter q, and

�(x1, x2, . . . , xd) = L

(
�

d∑
i=1

πie
−xi

)
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for some utility function L; see [5] for details. We take the power utility L(z) = zα for α ∈
(0, 1) and z> 0. Assume that F ∈ WS

(
Rd

)
. Since �(bx) ≤ C

∑d
i=1 e−αbixi for a sufficiently

large constant C, we have

lim
x0→∞

�(x)

F(x)
= 0,

and since Yt is a Wiener process,

lim
x0→∞

Gρ(x)

F(x)
= 1.

Hence by Theorem 2 the asymptotic behaviour of the discounted utility consumption is u(x) =
o(1)F(x) as x0 → ∞ (that is, as the initial asset prices go to zero).

We have chosen only a few examples where the subexponential asymptotic can be used; the
set of possible applications is much wider.
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