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A gas lubricated bearing model is derived which is appropriate for a very small
bearing face separation by including velocity slip boundary conditions and centrifugal
inertia effects. The bearing dynamics is examined when an external harmonic force
is imposed on the bearing due to the bearing being situated within a larger complex
dynamical system. A compressible Reynolds equation is formulated for the gas film
which is coupled to the bearing structure through an axial force balance where the
rotor and stator correspond to spring–mass–damper systems. Surface slip boundary
conditions are derived on the bearing faces, characterised by the slip length parameter.
The coupled bearing system is analysed using a stroboscopic map solver with the
modified Reynolds equation and structural equations solved simultaneously. For a
sufficiently large forcing amplitude a flapping motion of the bearing faces is induced
when the rotor and stator are in close proximity. The minimum bearing gap over the
time period of the external forcing is examined for a range of bearing parameters.

Key words: computational methods, flow–structure interactions, micro-/nano-fluid dynamics

1. Introduction

Fluid lubricated bearings utilise a thin fluid film to maintain a clearance between
two structural components, a rotor and stator, when experiencing an axial load,
typically through a hydrodynamic force generated by the dynamic motion of the
bearing faces to enhance the local fluid film pressure. Current bearing technology
provides a significant improvement in bearing efficiency for applications characterised
by higher operating speeds and maintenance of smaller clearances.

An early theoretical study by Taylor & Saffman (1957) examined the axial motion
and air flow through a coaxial parallel rotor and stator separated by a thin air film.
A bearing model was derived from the compressible Navier–Stokes equations on
neglecting rotational inertia and considering small amplitude disturbances. Predictions
accurately simulated experimental results, confirming the existence of a squeeze film
force due to air compressibility.

† Email address for correspondence: henry.power@nottingham.ac.uk
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Dynamics of gas lubricated bearing with slip conditions 69

To capture the dynamics of a coupled bearing model, the fluid flow needs to
be appropriately coupled to the bearing structure. Three-dimensional motion of a
fluid lubricated device was modelled by Etison (1980), and the hydrodynamic and
hydrostatic components of the air film pressure were identified; the squeeze film
pressure was incorporated into the hydrostatic component. Results show the squeeze
film behaviour can potentially be used to maintain the air film between the rotor
and stator. For highly vibrating operational environments, Salbu (1964) examined the
possibility of significant disturbances in the axial direction through theoretical analysis
and associated experimental investigations. The rotor–stator clearance corresponds to
an oscillatory motion and results confirm a load carrying capacity for squeeze films
with the pressure and force in the air film increasing with the amplitude of the axial
oscillations.

More recently, Garratt et al. (2012) examined the dynamics of the coupled
fluid–structure interaction of a high-speed air lubricated bearing (compressible flow)
with parallel faces where the effect of centrifugal inertia, which is typically neglected
in bearing configurations, was included. The bearing dynamics was investigated in
the case of the lower face (rotor) undergoing prescribed periodic axial oscillations
with an amplitude smaller than the equilibrium fluid film thickness. The upper
face (stator) can have axial motion as a rigid displacement in response to the
induced film motion by the moving rotor, with the stator dynamics modelled as a
spring–mass–damper system. Following the approach of Garratt et al. (2012), Bailey
et al. (2013) considered the case of a liquid lubricated bearing (incompressible flow)
with a coned rotor shape, usually designed to increase the lubrication forces between
the faces (stability studies by Etison (1980) identify optimal coning angles for a range
of practical bearing configurations). Analysis by Bailey et al. (2013) included the
possibility of rotor axial disturbances having an amplitude larger than the equilibrium
film thickness. Under these conditions, results indicate that the lubrication force
can always prevent the possibility of contact. Although, in both cases (parallel and
coned bearing) the fluid gap can become very small, even of the order of nano-scale,
leading to the possible invalidation of the classical no-slip velocity condition. A slip
boundary condition of the Navier type is incorporated in the analysis by Bailey et al.
(2014, 2015) in cases of parallel and coned liquid lubricated bearings, respectively.
The obtained results indicate that face contact does not occur in parallel bearings;
however, the bearing gap can become very small. On the other hand, possible face
contact can occur in the case of a coned bearing for some critical values of the
magnitude of the rotor oscillation, conical angle and slip length. In this last case, the
desired effect of the conical angle on the lubrication force is mitigated by the slip
flow and classical design criteria are debatable.

Due to efficiency and environmental considerations, modern bearing and sealing
designs have been characterised by extremely small gaps, even of the order of several
microns (almost contact designs). Of significant importance is the analysis of the
fluid structure coupling dynamics of such bearings working under extreme conditions,
where possible disturbances can displace the rotor to magnitudes larger than the initial
equilibrium film thickness. In this work, air bearings with a small face clearance are
analysed to examine their dynamical behaviour, extending the study of incompressible
flow bearings with a slip condition by Bailey et al. (2014, 2015) to compressible
flow. In the case of incompressible flow, it is possible to obtain an analytical solution
of the corresponding linear Reynolds equation for the pressure field, enabling the
coupled bearing problem to be formulated as a single second-order non-autonomous
ordinary differential equation for the bearing gap. Also the asymptotic solution at
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70 N. Y. Bailey, S. Hibberd and H. Power

a small gap condition can be found and used to verify the numerical results of
the complete dynamic behaviour of the bearing when near contact conditions are
predicted (for more details see Bailey et al. (2013, 2014, 2015)). Unfortunately in
the present case of compressible flow, due to the nonlinear form of the resulting
Reynolds equation, this approach is not easy to implement. For this reason in the
present work only numerical solutions of the corresponding nonlinear problem are
considered and the proposed numerical scheme is verified in the limit when the flow
field tends to behave as incompressible flow.

A study by Taylor & Saffman (1957) indicated compressibility effects may be of
importance when a fluid is forced into a narrow space and confirmed a compressible
flow model gives the best correspondence with experimental work for an air lubricated
bearing. Parkins & Stanley (1982) examined the effects of compressibility on the
bearing dynamics by comparing experimental results with a coupled model for an
oil squeeze film bearing. Although their model agreed reasonably with experimental
results for some cases, examination over a range of cases revealed limitations due
to neglecting compressibility effects. Conditions for compressibility effects to be
neglected for bearing flow have previously been derived by Bailey et al. (2014);
the conservation of mass reduces to the statement of solenoidal velocity field and
the compressible flow in the bearing behaves as if it were incompressible flow for
sufficiently small radial and azimuthal speeds.

In this study, we extend the work of Garratt et al. (2012) on air lubricating bearings
by incorporating an analysis for a very small face clearance (at the micro-scale), where
the classical no-slip boundary condition may be invalidated and instead boundary slip
needs to be taken into account. The importance of this type of analysis for bearing/seal
dynamics has been highlighted by Sayma et al. (2002) in a numerical study on the
seal mechanics. It was observed that for gaps of the order of 10 µm, typical of some
hydrodynamic seals, steady-state solutions of the Navier–Stokes system of equations
with no-slip boundary conditions are not possible to find. In such cases, the flow has
a high Knudsen number and the mathematical formulation used for the problem may
no longer be valid, requiring rarefied gas dynamics to be considered.

The surface-to-volume ratio increases dramatically when flow geometries are
scaled down to micro-/nano-scales. In these conditions, surface related phenomena
become increasingly dominant, and new flow features can arise from the interactions
between the fluid flow constituents and the solid surfaces that contain them. A
phenomenon known as the slip flow condition could emerge as a consequence of an
insufficient number of molecules in the sampling region, see Gad-el-Hak (2006). The
characteristics of the flow is determined by the Knudsen number, Kn = λ̃/h, with
λ̃ as the mean free molecular path (collision distance between molecules; for air at
atmospheric conditions λ̃ = 68 nm) and h as the characteristic fluid thickness. For
small Knudsen number (Kn < 10−3), the fluid is considered as a continuum with
no-slip boundary conditions. For a larger Knudsen number between 10−3 and 10−1,
a continuum model with a slip boundary condition is usually employed (slip flow
regime); this is the flow regime of interest in the present work. For Knudsen number
between 10−1 and 10, the flow is in a transition region and a modified continuum
model needs to be considered. Finally for larger values (Kn> 10), molecular dynamics
can be employed to describe the free molecular flow, for more details see Karniadakis,
Beskok & Aluru (2005). Under specified ambient condition, i.e. for a given value of
λ̃, the value of the Knudsen number is determined by the characteristic length scale
of the gas flow.
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Dynamics of gas lubricated bearing with slip conditions 71

Navier (1829) was the first to propose a slip model based on a linear relationship
between the tangential shear rate and the fluid–wall velocity difference, i.e. a jump
velocity at the wall is linearly proportional to the first-order derivatives of the fluid
velocity with a proportionality constant given by the slip length (first-order model).
This type of first-order slip model has been implemented for many different types of
slip flow successfully reproducing flow characteristics in the slip regime, see Gad-el-
Hak (2006), Wei & Yogendra (2007), Nieto, Giraldo & Power (2011). Higher-order
slip models, where the jump velocity at the walls is also proportional to higher-order
derivatives of the fluid velocity, have been proposed in the literature to extend slip
flow predictions into the transition regime (for more details see Zhang, Meng & Wei
(2012)).

Slip flow has been incorporated in a variety of bearing geometries and the
corresponding Reynolds equations for compressible flow. A gas lubricated inclined
plane slider bearing has been examined by Burgdofer (1959) in the slip flow regime
using a first-order slip model with the boundary slip velocity given at a mean free
path distance from the wall. Hsia & Domoto (1983) incorporated a second-order slip
model and Mitsuya (1993) developed a modified second-order slip model through
additional physical considerations, referred to as a 1.5-order slip model.

Slip effects in a journal bearing were investigated using a first-order model for
compressible flow by Malik (1984) and for incompressible flow by Maureau et al.
(1997). Predictions for compressible flow at low journal speeds give the bearing
performance being impaired for increasing slip, however increasing the journal speed
reduces the slip effect leading to the author indicating slip could have a beneficial
effect for sufficiently high journal speeds. In the case of incompressible flow with
negligible inertia effects, the force and torque on the load bearing inner cylinder
decreases with increasing slip. Aurelian, Patrick & Mohamed (2011) experimented
with regions of slip and no-slip on journal bearing faces. Results show well-chosen
no-slip and slip regions can considerably improve the dynamical bearing predictions
whilst an inadequate no-slip and slip pattern can lead to a deterioration in the bearing
behaviour.

A non-axisymmetric thrust bearing with slip flow and foil pads on the rotor face is
considered by Park et al. (2008) using a classical Reynolds equation for the gas flow
coupled to the bearing structure. Predictions of the bearing dynamics are examined
for small amplitude rotor displacements using a perturbation analysis, with results
presented for both no-slip and slip conditions. A slip condition is associated with
a smaller load carrying capacity due to a decrease in the linear velocity, causing a
reduction in the hydrodynamic pressure, as well as a decrease in the fluid stiffness
and damping coefficients for axial perturbations compared to a no-slip condition. A
coupled gas journal bearing incorporating a second-order slip boundary condition was
evaluated by Huang (2007) with results showing an increase in slip corresponds to an
increase in the gas flow rate but decrease in the gas film pressure and load carrying
capacity. A decrease in the bearing stability is reported through a reduction in the
dynamic (stiffness and damping) coefficients, leading to possible rotor contact with
the housing in the case of a small axial disturbance. A corresponding study by Zhang
et al. (2008) reported similar outcomes when using modified slip coefficients in the
second-order slip velocity boundary condition.

In contrast with the work by Garratt et al. (2012) and our previous works in this
topic, here we consider the case when the rotor is supporting a periodic axial force
instead of prescribing the axial motion of the rotor. The rotor motion is induced by an
external force imposed on the bearing and it can result in a rotor displacement larger
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72 N. Y. Bailey, S. Hibberd and H. Power

than the initial equilibrium fluid film thickness, i.e. the bearing is considered in a
non-ideal operating environment where external disturbances could act to destabilise
the bearing operation. This is a more realistic physical condition than the one
considered in the previous works, where the fluid interacts simultaneously with the
rotor and stator instead of the stator alone. The dynamics of the coupled rotor fluid
stator interaction is examined where the rotor and stator are each modelled by a
spring–mass–damper system.

In § 2 the formulation of the coupled governing equations is presented, where the
Reynolds equation for compressible flow incorporating the effect of centrifugal inertia
for high-speed operation and a slip boundary condition characterised by a slip length
parameter is described. The axial stator and rotor displacement equations are modelled
as spring–mass–damper systems, driven by an external harmonic force on the rotor.
Solving the coupled model of a compressible flow bearing requires the modified
Reynolds equation to be solved simultaneously with the structural dynamic equations
(rotor and stator equations). Details of the numerical scheme are given in § 3 where a
mapping solver, implemented to find periodic solutions of the face clearance and rotor
height, is coupled with a finite-difference approximation of the nonlinear Reynolds
equation and a Newton solver. Results are presented in § 4, including an evaluation
of the numerical method and full parametric analysis of the bearing dynamics to
explore the influence of bearing design parameters and operational conditions.

2. Mathematical model
In this work we consider the fluid flow between two annular surfaces (see figure 1),

where one surface, the rotor, is mounted to a rotating shaft and the other surface, the
stator, is flexibly mounted to a stationary housing. The rotor experiences an external
periodic axial force, due to the dynamics from the larger system that the bearing
is placed within and can result in an axial rotor displacement of larger magnitude
than the initial equilibrium fluid film thickness. The stator can move axially with a
rigid displacement in response to the induced film dynamics from the rotor motion,
where the axial displacement of the rotor and stator are each modelled as a spring–
mass–damper system. The equilibrium position of the bearing refers to the case where
there are no effects from an external force, the rotor has rotational motion and the
hydrodynamic force due to the flow dynamics causes the rotor and stator to settle at
a fixed position (equilibrium position), resulting in a film thickness ĥ0. In our analysis
we consider two cases, the first where both the rotor and stator surfaces are flat, giving
parallel faces, and the second where the stator surface is flat but the rotor surface has
a conical shape. In the latter case the coning angle is very small to ensure that the
lubrication theory developed in this work is valid.

A simplified mathematical model of a gas lubricated bearing with compressible flow
and a slip boundary condition imposed on the bearing faces is derived. The coaxial
axisymmetric annular rotor and stator can have axial displacements, with respective
heights ĥr and ĥs; the rotor also has rotational speed Ω̂ . A given pressure is imposed
at the inner and outer radii.

The governing system of Navier–Stokes equations and boundary conditions for
the gas flow in the bearing are expressed in dimensionless variables in terms of
the exterior bearing radius r̂0, equilibrium film thickness ĥ0, rotor velocity Ω̂ r̂,
unperturbed air density ρ̂0 and time scale T̂ . The dimensionless velocities are taken
as û/Û, v̂/(Ω̂ r̂0) and ŵ/(ĥ0T̂−1), where (û, v̂, ŵ) are the speeds. The dimensionless
radius and height are given by r = r̂/r̂0 and z = ẑ/ĥ0, respectively, density by
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1

a
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r

Stator

Rotor

FIGURE 1. Geometry and notation of a non-dimensional fluid lubricated bearing
comprising a pair of parallel coaxial axisymmetric annuli with inner radius a and outer
radius scaled to 1. The inner pressure is denoted by pI and outer pressure pO, and the
rotor has rotational speed Ω . The film thickness is given by h(t) = hs(t) − hr(t) for a
parallel bearing and an external harmonic force N(t) is imposed on the rotor.

ρ = ρ̂/ρ̂0 and slip length by ls = l̂s/ĥ0. A notable feature of this work is the detailed
consideration of thin film dynamics of air lubricating bearings in the slip flow
regime, as characterised by values of 10−3 6 Kn = λ̃/ĥ 6 10−1. For an equilibrium
film thickness, ĥ0, of the order of O(10−1 mm) and at atmospheric conditions, our
characteristic film thickness in the dimensionless formulation corresponds to a value
of Kn0 = λ̃/ĥ0 ∼O(10−3).

The geometry in figure 1 represents a parallel fluid lubricated bearing in the
dimensionless axisymmetric coordinate system (r, θ, z), where the rotor experiences
an imposed axial periodic force N(t). The inner and outer radii have been rescaled as
a = r̂I/r̂O and 1, respectively, with imposed pressures pI and pO. The dimensionless
rotor and stator heights are denoted by hr and hs and the axisymmetric rotor–stator
clearance is defined by h = hs − hr. Figure 2 gives notations for a positively coned
bearing (PCB) and negatively coned bearing (NCB), where the coning angle is
assumed small, i.e. sin β̂ =O(δ0) and cos β̂ = 1+O(δ0) leading to the scaling β̂ =βδ0
with β =O(1), giving consistency with the lubrication condition. The rotor height is
given as

hr(r, β, t)
{

hr(t)− (r− a)β for β > 0, or
hr(t)− (r− 1)β for β < 0,

(2.1)

with ∂hr/∂r = −β. Although it is possible to have a single formulation for positive
and negative conical angles, the given definition of the rotor height in (2.1) is chosen
to have the same definition of the minimum gap, g(t), in both cases (see figure 2).
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z

r r

z(a) (b)

FIGURE 2. Cross-sectional view of a coned bearing with (a) positive and (b) negative
coning angle due to over pressurisation of the bearing, with coning angle β. The rotor–
stator face clearance is now dependent on the coning angle and radial position with the
minimum gap of the bearing given at the inner or outer radius.

Separation of positive and negative coning angles is due to consideration of coning
arising from possible deformation of the rotor due to over pressurisation of the
bearing. Therefore, internal pressurisation (pI > pO) will result in a PCB and external
pressurisation (pI < pO) a NCB; in both cases the pressure gradient corresponds to a
diverging channel. As the bearing dynamics is investigated to examine the minimum
rotor–stator clearance, the time-dependent minimum face clearance (MFC) is defined
as g(t) = hs(t) − hr(t), given at the inner radius for a PCB and outer radius for a
NCB. For a parallel bearing the MFC g(t)= h(t) is equal to the rotor–stator clearance.
If the MFC remains positive g> 0 the bearing faces do not have contact.

2.1. Air flow model
The air flow model is derived from the compressible Navier–Stokes momentum
equations and the conservation of mass equation for a compressible flow in
axisymmetric coordinates. The flow is assumed to be an isothermal ideal gas.

The governing system of Navier–Stokes equations and boundary conditions for the
gas flow are expressed in dimensionless variables. The associated radial and azimuthal
Reynolds numbers and a Reynolds number ratio Re∗ are given respectively as

ReU = Ûĥ0

ν
, ReΩ = r̂2

0Ω̂

ν
and Re∗ = Ω̂ r̂0

Û
δ0
−1. (2.2a−c)

The aspect ratio δ0 and Froude number Fr are defined as

δ0 = ĥ0

r̂0
and Fr= Û√

g̃ĥ0

, (2.3a,b)

respectively, where ν=µ/ρ̂0 is the kinematic viscosity and g̃ denotes the acceleration
due to gravity. For thin film bearings δ0 � 1, a lubrication approximation is
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used and the effects of viscosity are retained at leading order with the pressure
scaled as P = µr̂0Û/ĥ2

0. The Froude number Fr parametrises the importance of the
gravitational effects relative to the radial inertia, although gravity can be neglected
with ReUδ0Fr−2 � 1, which is consistent with the lubrication theory provided the
Froude number is O(1). Classical lubrication theory neglects inertia due to the
reduced Reynolds number ReUδ0� 1, but in the case of high-speed bearing operation
an additional term corresponding to the ratio of the Reynolds numbers (Re∗)2 must
be considered as it is not always negligible.

Applying a lubrication condition, and the assumptions noted above, to the
compressible Navier–Stokes momentum equations results in the leading-order
momentum equations

−λρ v
2

r
=−∂p

∂r
+ ∂

2u
∂z2

, 0= ∂
2v

∂z2
, 0= ∂p

∂z
, (2.4a−c)

with speed parameter λ=ReUδ0(Re∗)2= r̂0ĥ2
0Ω̂

2/(νÛ). If λ=0 the standard lubrication
equations for compressible flow in axisymmetric cylindrical coordinates are retained.

Similarly, the conservation of mass equation and equation of state become

∂ρ

∂t
+ 1
σ r

∂

∂r
(rρu)+ ∂

∂z
(ρw)= 0 and P=Ksρ. (2.5a,b)

Taking σ = ĥ2
0/(νT̂ReUδ0) of O(1), implies in our formulation that (ĥ2

0/ν)/T̂ has to be
of O(δ0). Therefore, the flow field time scale T̂ needs to be much slower than the time
scale τ = ĥ2

0/ν, the time taken for vorticity to diffuse over the film thickness ĥ0. This
is consistent with the quasi-static approximation of the lubrication theory where the
local acceleration is of the O(ReUδ0). The dimensionless ideal gas constant is given
by Ks = RT0ĥ2

0/ν r̂0ÛM, which relates the pressure field to the density field, where R,
T0 and M are the ideal gas constant, fluid temperature and molar mass, respectively.

A first-order Navier slip model, as considered by Bailey et al. (2014, 2015),
is implemented, where the velocity boundary conditions comprise of tangential
components where continuity of the velocity across the fluid–solid boundary is
modified by a slip condition induced by the wall shear, together with a normal
component of a no-flux condition. The dimensionless velocity boundary conditions to
leading order are

u= ls
∂u
∂z
, v = r+ ls

∂v

∂z
, w= ∂hr

∂t
− ReUδ0

κ
uβ at z= hr,

u=−ls
∂u
∂z
, v =−ls

∂v

∂z
, w= dhs

dt
at z= hs,

 (2.6)

see Bailey et al. (2015) for full derivation. The fluid velocity components tangential to
the wall in (2.6) are proportional to the wall shear stress with proportionality constant
ls, a dimensionless slip length in the above expressions. The limit ls = 0 corresponds
to no-slip conditions and ls→∞ to a total slip model, defined by a zero tangential
wall fluid shear rate.

Within the kinetic theory of gas–solid interaction, a fluid molecule will transfer
some of its tangential momentum to the solid with a collision frequency not high
enough to ensure thermodynamic equilibrium, and a certain degree of tangential
velocity slip occurs. Some fraction f of the molecules colliding with the wall are
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diffusely reflected (the momentum accommodation coefficient), where f = 1 represents
diffuse reflection (gas molecule tangential momentum not conserved) and f = 0
represents specular reflection (gas molecule tangential momentum conserved).

The classical theory to estimate the slip coefficient for atomically smooth walls is
due to Maxwell (1879), where the slip length l̂s is characterised by the tangential
momentum accommodation coefficient f , and the mean free molecular path λ̃, given
by the following expression:

l̂s = αsλ̃
(2− f )

f
. (2.7)

In terms of our dimensionless variables, the Maxwell slip length model is written
as

ls = αsKn0
(2− f )

f
, (2.8)

where Kn0 = λ̃/ĥ0, corresponding to the value of the Knudsen number at the
equilibrium position, which is considered to be of the order of 10−3. According to
the first-order Navier slip condition the value of l̂s, and therefore ls, remains constant
in the slip flow regime, 10−3 6 Kn 6 10−1. Therefore, the value of the dimensionless
slip length, ls, in the slip regime is determined by the value of the Knudsen number
at the equilibrium position, Kn0, and the accommodation coefficient f .

Maxwell estimated the coefficient αs by considering that the incident gas molecules
have the same distributions as those of the bulk gas, and obtained αs=√π/2, which
is typically approximated by unity. However, more rigorous kinetic analyses of the
Boltzmann equation for planar flows (Cercignani & Daneri 1963) have shown that
αs = 1.1466, (for more details see Barber & Emerson (2006)).

Following Maxwell’s original work, many other slip models have been proposed
in the literature including results for atomically rough walls, for more details see the
review article by Zhang et al. (2012). In addition, Lilley & Sader (2008) studied the
Knudsen layer, which is a rarefaction effect that extends to a distance of the order
of one mean free path from the solid wall, by using existing linearised Boltzmann
equation solutions of Kramer’s problem for hard spherical molecules with partial
thermal accommodation. Results obtained were verified by accurate direct Monte
Carlo simulations of the Boltzmann equation. Lilley and Sader’s slip model written
in our dimensionless form is given by:

ls =Kn0

(
2.01

f
− 0.73− 0.16f

)
. (2.9)

The functional dependencies on the above expression was determined empirically from
their results using several trial functions and nonlinear regression.

The slip condition of air flow can be determined experimentally by the use of
an atomic force microscopy (AFM) cantilever. This approach is able to confine
the air to very small length scales and to accurately measure very small forces
due to the air flow. Honig et al. (2010) and Bowles & Ducker (2011) used a
thermal-driven oscillation of a sphere glued to an AFM cantilever to measure
the damping force versus gas film gap between the sphere and the substrate and
compared the force obtained to the theoretical force obtained for a specific slip
boundary condition; reported values of slip length ranged from 100 to 600 nm. Pan,
Bhushan & Maali (2013) used a similar device where the sphere was forced to
oscillate periodically with a prescribed amplitude where the aim was to demonstrate
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the slip length was independent of the oscillation amplitude of the cantilever, i.e.
constant slip length. Equation (2.9) was used to determine the corresponding values
of the accommodation coefficient f , where imperfect accommodation was consistently
observed with values within the range of 0.4–0.9. Experiments concluded that the slip
length, and consequently f , are highly dependent on the nature of the solid surface,
composition of the gas and the temperature.

In addition, the slip condition for gas flows at the solid–gas interface can
be significantly modified by the adsorption of the thin film into the solid. Seo
& Ducker (2013) reported an increase in the slip length of a monolayer of
ocatadecyltrichlorosilane from 290 to 590 nm by increasing the temperature
from 18 to 40 ◦C, which was associated with an adsorption of the gas into the
ocatadecyltrichlorosilane layer.

Taking into account the slip conditions (2.6), the flow velocities can be readily
found from the leading-order Navier–Stokes equations (2.4). The radial, azimuthal and
axial velocities are given by

u = 1
2
∂p
∂r
(z2 − (hs + hr)z+ hshr − lsh)

− λpr
12Ks(h+ 2ls)2

((z− hr)(z− hs)(z2 + (hr − 3hs)z+ 3h2
s − 3hshr + h2

r )

+ ls((z− hs)(−4(z− hs)
2 + 6h2)− h3)

+ l2
s (6(z− hs)(z− hr)− 6h)− 6hl3

s ), (2.10)

v =− r
(h+ 2ls)

(z− hs − ls), (2.11)

w = −1
p
∂

∂t
((z− hr)p)− 1

12σpr
∂

∂r

(
pr
∂p
∂r
(2(z− hr)

3 − 3(z− hr)
2h− 6(z− hr)hls)

)
+ λ

120σKspr
∂

∂r

(
p2r2

(h+ 2ls)2
( 2(z− hr)

5

− 10(z− hr)
4h+ 20(z− hr)

3h2 − 15(z− hr)
2h3 )

+ 10ls(−(z− hr)
4 + 4(z− hr)

3h− 3(z− hr)
2h2 − 3(z− hr)h3)

+ 10l2
s (2(z− hr)

3 − 3(z− hr)
2h− 6(z− hr)h2)+ 10l3

s (−6(z− hr)h)
)
. (2.12)

Dependence on the coning angle appears implicitly in expressions the rotor height hr
and rotor–stator clearance h.

Integrating the conservation of mass (2.5) between the rotor and stator, applying the
Leibniz integral rule and the velocity boundary conditions (2.6), gives the modified
Reynolds equation for compressible flow as

∂

∂t
(ph)− 1

12σ r
∂

∂r

(
pr
∂p
∂r

h2(h+ 6ls)

)
+ λ

12Ksσ r
∂

∂r

(
p2r2 h2

(
3

10 h3 + 3h2ls + 7hls
2 + 6ls

3)
(h+ 2ls)2

)
= 0, (2.13)

expressing the relationship between the pressure p and film thickness h. Dependence
on the coning angle is given implicitly in the rotor–stator clearance h. For speed
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parameter λ = 0, the centrifugal effects are neglected but the rotor and stator still
experience relative rotational motion due to the velocity boundary conditions.

The pressure boundary conditions in dimensionless variables are given by

p= pI at r= a, and p= pO at r= 1. (2.14a,b)

In contrast to the case of incompressible flow, an analytical solution of the above
Reynolds equation (2.13) subject to the boundary condition (2.14a,b) is not easily
obtained and it is usually necessary to resort to numerical techniques.

2.2. Structural dynamics
The axial displacement of the stator and rotor are modelled using a standard
spring–mass–damper model incorporating the bearing pressure variation. An external
periodic force is imposed on the rotor in dimensionless form N(t)= ε sin t, where ε
is a measure of the amplitude of the forcing. In dimensionless variables the stator
displacement equation is given by

d2hs

dt2
+Das

dhs

dt
+Kzs(hs − 1)= αsF(t), (2.15)

and the rotor displacement equation by

d2hr

dt2
+Dar

dhr

dt
+Kzrhr =−αr(F(t)−N(t)) for β > 0,

or
d2hr

dt2
+Dar

dhr

dt
+Kzr(hr − (1− a)β)=−αr(F(t)−N(t)) for β < 0.

 (2.16)

The axial force of the fluid on the bearing faces is given by

F(t)= 2π

∫ 1

a
(p− pa)r dr. (2.17)

The dimensionless reference pressure is given by pa = p̂a/P̂ and the dimensionless
force coupling parameter by αi = νÛReU

2ν2T̂2/m̂iĥ4
0δ0 where i = s, r represents

the stator and rotor, respectively, and mi is the mass of the respective plate.
The dimensionless damping and effective restoring force parameters are given by
Dai = D̂aiReUδ0/m̂iκ and Kzi = K̂ziReU

2δ0
2ν2T̂2/m̂iĥ4

0, respectively.

3. Numerical methods
To solve the coupled model of a compressible flow bearing requires the modified

Reynolds equation (2.13) to be solved simultaneously with the structural equations
(2.15)–(2.16) via numerical simulation. This is in contrast to the case of incompressible
flow, where an analytical solution of the corresponding Reynolds equation can be
formulated.

Rewriting the above set of equations in terms of the MFC and rotor displacement
enables investigations into operational conditions to maintain safe and reliable
behaviour, in the presence of an external force on the rotor. The Reynolds equation
is discretised in the spatial variable and approximated by a second-order central
finite-difference scheme.
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For a fixed bearing configuration, solutions to the coupled modified Reynolds
equation (2.13) and structural equations (2.15)–(2.16) are denoted by the vector
g(g(t), hr(t), Z(t), Y(t), p(t)). Initial conditions are given by

g(t0)= g0, hr(t0)= hr0, Z(t0)= Z0, Y(t0)= Y0

p(t0)= pO(r− a)+ pI(1− r)
1− a

, a 6 r 6 1.

 (3.1)

As we are looking at periodic solutions of the bearing dynamics, the above initial
conditions are used to start the computational algorithm and the stroboscopic map will
converge to the corresponding period solution including the pressure field, if it exists.
The above initial and boundary conditions in terms of a transient formulation of the
problem correspond to a stationary bearing that at t0 has the rotor suddenly rotating
with angular velocity Ω and a periodic axial force imposed. The problem is allowed
to evolve in time until a periodic behaviour is attained (for more details about this
transient approach see § 4).

The system of coupled differential equations of the second order can be reduced to
the following system of first-order ordinary differential equations

dg
dt
= Z, (3.2)

dhr

dt
= Y, (3.3)

dZ
dt
=−DasZ −Kzs(g− 1)− (Das −Dar)Y − (Kzs −Kzr)hr + (αs + αr)F− αrN(t),

(3.4)
dY
dt
=−DarY −Kzrhr − αrF+ αrN(t), (3.5)

dpi

dt
= (g+ (ri − a)β)(g+ (ri − a)β + 6ls)

12σ

(
pi+1

2 − pi−1
2

4riδr
+ pi+1

2 − 2pi
2 + pi−1

2

2δr2

)
− piZ
(g+ (ri − a)β)

+ pi(pi+1 − pi−1)

24σδr
3β(g+ (ri − a)β + 4ls)

− λ

12σKs

(g+ (ri − a)β)
(g+ (ri − a)β + 2ls)2

[(
pi+1

2ri+1
2 − pi−1

2ri−1
2

2riδr

)
×
(

3
10
(g+ (ri − a)β)3 + 3(g+ (ri − a)β)2ls + 7(g+ (ri − a)β)ls

2 + 6ls
3

)]
− λ

12σKs

pi
2riβ

(g+ (ri − a)β + 2ls)3

(
9
10
(g+ (ri − a)β)4 + 9(g+ (ri − a)β)3ls

+ 31(g+ (ri − a)β)2ls
2 + 42(g+ (ri − a)β)ls

3 + 24ls
4) . (3.6)

The right-hand side of the last expression in (3.6) corresponds to the finite-difference
(FD) approximation of the spatial derivatives of the Reynolds equation (2.13), with
i = 2 : (M − 1) the FD collocation points and M the total number of discretisation
points. From the numerical point of view, this represents the main contribution of the
work where the first-order differential forms of (2.15)–(2.16) are coupled with the FD
approximation of the spatial derivatives of the Reynolds equation to form an extended
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system of first-order ordinary differential equations to be solved with the stroboscopic
map algorithm. The boundary conditions for the pressure give p1 = pI and pM = pO.
By numerical quadrature, the force of the fluid on the faces given by (2.17) can be
approximated by F= 2π(

∑M
i=1 wi(pi − pa)ri), where wi is a weighting function.

As the rotor experiences a periodic force with period T , it is expected the system
of (3.6)/(A 6) will have periodic solutions. Therefore a <2→<2 map is formulated,
advancing an initial condition g0 at time t0 by a time T , defining a stroboscopic map
φ(T; g0, t0). This map integrates the system of (3.6)/(A 6) forward through one period
of the forcing. Periodic solutions are identified via the fixed points of the stroboscopic
map g(t)= g(t+ T) and found iteratively, corresponding to the condition

g(T)− g(t0)= φ(T; g0, t0)− g0 =G(φ(T; g0, tt), g0)= 0, (3.7)

giving periodic solutions g(g(t), hr(t), Z(t), Y(t), pi(t)). A similar approach was used
by Bailey et al. (2015), where the pressure field was given by its analytical solution
instead of its finite-difference numerical approximation as required in the present case.

An iterative Newton’s method is used to find solutions numerically, given an initial
guess value g̃0. Successively improved iterates of the initial guess g0 are computed by
the numerical iterative scheme

g0n+1
= g̃0n

− J(T)−1(g(T)− g̃0n
), (3.8)

with the Jacobian matrix

J(T) = ∂G(φ, g0)

∂g0

=



∂g(T)
∂g0

− 1
∂g(T)
∂hr0

∂g(T)
∂z0

∂g(T)
∂Y0

∂g(T)
∂pi0

∂hr(T)
∂g0

∂hr(T)
∂hr0

− 1
∂hr(T)
∂z0

∂hr(T)
∂Y0

∂hr(T)
∂pi0

∂Z(T)
∂g0

∂Z(T)
∂hr0

∂Z(T)
∂z0

− 1
∂Z(T)
∂Y0

∂Z(T)
∂pi0

∂Y(T)
∂g0

∂Y(T)
∂hr0

∂Y(T)
∂z0

∂Y(T)
∂Y0

− 1
∂Y(T)
∂pi0

∂pi(T)
∂g0

∂pi(T)
∂hr0

∂pi(T)
∂z0

∂pi(T)
∂Y0

∂pi(T)
∂pi0

− Ii



. (3.9)

To find the elements of the Jacobian matrix J(T), an auxiliary system of first-order
differential equations is defined and given in the appendix, § A.1, system (A 1) with
the corresponding initial conditions of the system given by (A 2).

Thus for any given initial condition, a solution of the system of (3.6)/(A 6) and
(A 1)/(A 7) for t0 6 t 6 T can be found using the Matlab ode15s routine for the
solution of a system of first-order ordinary differential equations. The procedure is
repeated recursively, each time using an improved initial guess g0 for the system
of (3.6)/(A 6), until a prescribed tolerance, tol, is achieved, i.e. |g(T) − g0(t0)| 6 tol
resulting in a periodic solution.

To find a periodic solution for increasing amplitude of rotor forcing ε + 1ε, a
new initial condition is needed. Therefore an Euler scheme (parameter continuation) is
formulated for which the solution is now defined with the amplitude of rotor forcing
as a variable parameter; g(T) = φ(T; g0, t0, ε0). To compute a new initial condition
g0 for ε +1ε, the derivative G(φ(T; g0, t0), g0)= φ(T; g0, t0)− g0 = 0 is taken with
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respect to the amplitude of rotor forcing ε:

∂G
∂g0

∂g0

∂ε
+ ∂φ
∂ε
= J(T)

∂g0

∂ε
+ ∂g(T)

∂ε
= 0. (3.10)

An Euler predictor step is then executed

g0(ε +1ε)= g0(ε)+
∂g0

∂ε
1ε = g0(ε)− J(T)−1 ∂g(T)

∂ε
1ε. (3.11)

The inverse of the Jacobian matrix is as found previously, with the value of ε
corresponding to the periodic solution obtained.

To achieve the values of ∂g(T)/∂ε, an auxiliary system of first-order differential
equations is defined as given in the appendix, § A.1, system (A 3), with the
corresponding initial conditions (A 4). This additional system of equations is coupled
to the previous augmented system of equations and solved using the same Matlab
routine.

The above Newton procedure is iterated until convergence is achieved and a periodic
solution for ε + 1ε is found. To ensure convergence, an initial value of 1ε was
successively halved until a converged solution was found.

A major advantage of the above Euler formulation is that it can be directly extended
to compute the threshold values of the amplitude of rotor forcing ε corresponding
to any specified minimum value of the MFC over a period cycle, gmin, with the
limiting case of contact, gmin = 0. This type of analysis is of significant importance
in bearing design in order to determine acceptable maximum force and amplitude of
external disturbances when defining an operational minimum gap. It is important to
mention that the prediction of contact is only speculative since in such a limit only
molecular dynamics is representative of the gas flow before contact; however, this
type of analysis can be used to indicate possible contact.

In the case of a specified minimum value of the face clearance over the period gmin,
it is necessary to consider the amplitude of the rotor forcing ε as a new dependent
variable in the Newton scheme, giving the unknown vector to be determined as g=
(g(T), z(T), ε) with initial guess value g0 = (g0, z0, ε0). A corresponding additional
constraint equation gmin − g∗ = 0 is added, with g∗ as the prescribed gmin and the
corresponding Jacobian matrix given by

J =



∂g(T)
∂g0

− 1
∂g(T)
∂hr0

∂g(T)
∂z0

∂g(T)
∂Y0

∂g(T)
∂pi0

∂g(T)
∂ε0

∂hr(T)
∂g0

∂hr(T)
∂hr0

− 1
∂hr(T)
∂z0

∂hr(T)
∂Y0

∂hr(T)
∂pi0

∂hr(T)
∂ε0

∂Z(T)
∂g0

∂Z(T)
∂hr0

∂Z(T)
∂z0

− 1
∂Z(T)
∂Y0

∂Z(T)
∂pi0

∂Z(T)
∂ε0

∂Y(T)
∂g0

∂Y(T)
∂hr0

∂Y(T)
∂z0

∂Y(T)
∂Y0

− 1
∂Y(T)
∂pi0

∂Y(T)
∂ε0

∂pi(T)
∂g0

∂pi(T)
∂hr0

∂pi(T)
∂z0

∂pi(T)
∂Y0

∂pi(T)
∂pi0

− Ii
∂pi(T)
∂ε0

∂gmin

∂g0

∂gmin

∂hr0

∂gmin

∂z0

∂gmin

∂Y0

∂gmin

∂pi0

∂gmin

∂ε0



.

(3.12)
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The extra terms in the Jacobian matrix (3.12) compared to (3.9), i.e. the last column
and row in (3.12), are obtained from the augmented system of first-order differential
equations (A 1) and (A 3). The values in the last row are determined at the time when
gmin is achieved. The threshold value of the amplitude of rotor forcing, at the specified
gmin, can be successively decreased to contact, g∗= 0. Continuation is used for a new
value of the specified g∗ to give

g0(g
∗ +1g∗)= g0(g

∗)− J−1 ∂g
∂g∗

1g∗, (3.13)

with 1g∗ < 0 and using Jacobian (3.12). A first-order forward finite-difference
approximation is used to numerically evaluate the value of ∂g/∂g∗ in terms of
the obtained solution g(g∗) and a new auxiliary solution g(g̃∗), corresponding to a
specified gmin, g̃∗ = g∗ + η1g∗, with η � 1. This results in a new initial condition
being defined and a periodic solution for a decreased gmin value g∗ + 1g∗ can be
computed.

4. Results
4.1. Comparison between compressible and incompressible models

The numerical results obtained via the stroboscopic map numerical algorithm for
the fluid structure interaction of a gas lubricating bearing (compressible flow) are
compared to those obtained for a liquid bearing (incompressible flow), previously
considered by Bailey et al. (2014), including the limit when bearing configurations
are such that a compressible flow can be dynamically represented as an incompressible
flow. This last case is used as confirmation of the modified stroboscopic map
algorithm proposed in this work.

In Bailey et al. (2014, 2015), for incompressible flow bearings, a prescribed
periodic harmonic displacement of the rotor is considered instead of an external
harmonic force imposed upon it. Therefore, the mathematical model for a fluid
lubricated bearing with incompressible flow in the references needs to be reformulated
and the stroboscopic map solver described previously is adapted, in order to consider
the effect of an external periodic harmonic force imposed on the rotor in both cases
(compressible and incompressible). Using the scalings and assumptions, as for the
compressible case in § 2, a governing equation for bearing flow is readily obtained
from the leading-order thin film approximation of the Navier–Stokes continuity
equation, where formally terms of O(δ0) are neglected. A parallel faced bearing
is considered and the rotor and stator are considered to have identical structural
parameters (Das=Dar=Da and Kzs=Kzr=Kz). Thus, the modified Reynolds equation
for incompressible flow bearing is given as

dg
dt
− g2(g+ 6ls)

12σ r
∂

∂r

(
r
∂p
∂r

)
+ λ

40σ r

(
g5 + 10g4ls + 70

3
g3l2

s + 20g2l3
s

)
(g+ 2ls)2

∂

∂r
(r2)= 0,

(4.1)

which gives the relationship between the internal bearing flow pressure p and MFC g.
Solving the coupled model of a bearing with incompressible flow requires the

modified Reynolds equation (4.1) to be solved simultaneously with the structural
(2.15)/(2.16). Integrating the modified Reynolds equation (4.1) and imposing the
pressure boundary conditions (2.14a,b) gives an explicit analytical expression for
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the pressure. Integrating the pressure field using integral (2.17) gives the force on
the bearing faces, and substituting into the structural (2.15)/(2.16) gives a system of
nonlinear second-order non-autonomous ordinary differential equations for the face
clearance and rotor height, of the form

d2g
dt2
+ (Da − 2αB(g, ls))

dg
dt
+Kz(g− 1)− 2αA(g, λ, ls)+ αN(t)= 0,

d2hr

dt2
+Da

dhr

dt
+Kzhr + α

(
A(g, λ, ls)+ B(g, ls)

dg
dt

)
− αN(t)= 0.

 (4.2)

Expressions for A(g, λ, ls) and B(g, ls) are given by

A(g, λ, ls) = π

(
(1− a2)(pI − pa)+ (pO − pI)

(
(1− a2)

2 ln a
+ 1
)

− λg3 + 10g2ls + 70
3 gls

2 + 20ls
3

4(g+ 6ls)(g+ 2ls)2

(
1− a4 + (1− a2)2

ln a

))
, (4.3)

B(g, ls) = − πσ

8g2(g+ 6ls)

(
1− a4 + (1− a2)2

ln a

)
. (4.4)

Equation (4.4) identifies that for a steady bearing with negligible inertial effects,
λ = 0, the pressure field and force on the stator is independent of the slip length.
For more details on the above analytical integration of the incompressible Reynolds
equation see Bailey et al. (2015). In terms of the numerical scheme, this is the main
difference between the cases of incompressible and compressible flows, where the
lack of an analytical solution of the nonlinear Reynolds equation for compressible
flows is replaced by a finite-difference approximation.

Solutions to (4.2) are denoted by the vector g(g(t), hr(t), Z(t), Y(t)), for a given
initial conditions g(t0) = g0, Z(t0) = Z0, hr(t0) = hr0, Y(t0) = Y0 and are sought from
an equivalent system of four first-order differential equations. Periodic solutions are
identified via the fixed points of the stroboscopic map, found iteratively by (3.7)
giving periodic solutions g. To find solutions numerically, an iterative Newton’s
method is implemented with successively improved initial conditions computed by
(3.8) using the Jacobian matrix as in (3.9) with the last column and row removed.
To find the elements of the Jacobian matrix J(T), an auxiliary system of first-order
differential equations are derived as given in § A.1, system (A 5).

Alternatively, the case of incompressible flow can be computed fully numerically
by solving the modified Reynolds equation (4.1) simultaneously with the system of
structural equations (2.15)/(2.16), as in the case of compressible flow. In this case
the system of first-order differential equations to be solved is given by the first four
equations in (3.6) with the algebraic constraint

Z = g2(g+ 6ls)

12σ

(
pi+1 − pi−1

2riδr
+ pi+1 − 2pi + pi−1

δr2

)
− λ

20σ

(
g5 + 10g4ls + 70

3 g3l2
s + 20g2l3

s

)
(g+ 2ls)2

, (4.5)
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f Kn0 (×10−3) ĥ0 (10−4 m) l̂s (10−9 m)

0.4 2.30 0.30 300
0.5 3.12 0.22 220
0.6 3.90 0.17 170
0.7 4.90 0.14 140
0.8 6.00 0.11 110
0.9 7.35 0.09 90

TABLE 1. Values of the Knudsen number at the equilibrium position Kn0, characteristic
film thickness ĥ0 and dimensional slip length l̂s corresponding to the non-dimensional
slip length ls = 0.01 with increasing values of the accommodation coefficient f for air at
atmospheric conditions.

which is a finite-difference approximation for the Reynolds equation. The above
system of differential algebraic equations is solved in Matlab incorporating the
ordinary differential solver ode15s. Numerical results obtained by this technique
were equivalent to those achieved using the analytical solution for the Reynolds
equation.

Our analysis of bearing dynamics corresponds to cases of very smooth and
hard rotor and stator surfaces corresponding to small values of the accommodation
coefficient and consequently large values of the slip length.

In our results, we use as a referent value of the dimensionless slip length of
ls = 0.01. Table 1, reports values of Knudsen number at the equilibrium position
Kn0, characteristic film thickness ĥ0 and dimensional slip length l̂s corresponding to
the referent non-dimensional slip length ls = 1 × 10−2 and increasing values of the
accommodation coefficient f , in the case of air at atmospheric conditions. In the
table, the reported values of the Knudsen number at equilibrium, Kn0, are always of
O(10−3) and the values of the dimensional slip length l̂s are consistent with those
reported from cantilever experiments at the slip flow regime, see Honig et al. (2010)
and Bowles & Ducker (2011).

By considering the values of the Knudsen number at equilibrium Kn0 = 2.3× 10−3

and characteristic height ĥ0=0.3×10−4 m, used here as the referent values, the results
reported in figure 3 correspond to a range of Knudsen number, 1.47× 10−3 6 Kn 6
4.82× 10−3, and in figure 4 to 1.10× 10−3 6 Kn 6 1.85× 10−2, both within the slip
flow regime. Also for these referent values, it is found that during the time evolution
of the gap gmin > 0.0227 such that the Knudsen number Kn6O(10−1), giving the flow
in slip flow regime.

A comparison between predictions using compressible or incompressible flow
conditions is considered for an amplitude of rotor forcing ε = 5; corresponding to a
bearing configuration near the limiting condition where a compressible flow can be
dynamically represented as an incompressible one. The fluid force on the bearing
faces, MFC and rotor and stator heights for the compressible and incompressible
cases are given in figure 3. Results for compressible and incompressible flow are
almost identical; the rotor displacement is similar to a sinusoidal path due to the
imposed harmonic force and the stator has no axial displacement from its equilibrium
position. The force on the bearing faces has small magnitude with a maximum when
the rotor is forced towards the stator and minimum when the rotor moves away; there
is a small difference in the force for compressible and incompressible flow. The MFC
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FIGURE 3. (a) Force, (b) MFC and the rotor and stator height for (c) compressible and
(d) incompressible flow under ambient pressure in the case of a narrow radius for small
amplitude of forcing ε=5 with gmin=0.4670 in both cases; a=0.8, λ=0.0029, σ =0.821,
αr = αs = 1.22, ls = 0.01, Ks = 1, Kzs =Kzr = 12.2, Das =Dar = 1.5 and pI = pO = 1.
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FIGURE 4. (a) Force, (b) MFC and the rotor and stator height for (c) compressible and
(d) incompressible flow under ambient pressure in the case of a narrow radius for medium
amplitude of forcing ε = 10 with gmin = 0.1426 for compressible flow and gmin = 0.1227
for incompressible flow; a= 0.8, λ= 0.0029, σ = 0.821, αr = αs = 1.22, ls = 0.01, Ks = 1,
Kzs =Kzr = 12.2, Das =Dar = 1.5 and pI = pO = 1.

follows the path of a negative sine curve and overall gives useful verification of the
stroboscopic map solver for compressible flow.

The effect on the bearing dynamics when the amplitude of the external force
imposed on the rotor is increased to ε = 10 for both cases shown in figure 4,
with a small difference between the bearing dynamics for the compressible and
incompressible flow. As the rotor is forced into close proximity of the stator, the
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FIGURE 5. (a) Force, (b) MFC and the rotor and stator height for (c) compressible and
(d) incompressible flow under ambient pressure in the case of a narrow radius for large
amplitude of forcing ε= 20 with gmin= 0.006683 for compressible flow and gmin= 0.03255
for incompressible flow; a= 0.8, λ= 0.0029, σ = 0.821, αr = αs = 1.22, ls = 0.01, Ks = 1,
Kzs =Kzr = 12.2, Das =Dar = 1.5 and pI = pO = 1.

stator has a small displacement, maintaining a fluid film of approximately constant
thickness before the rotor pulls away from the stator. This results in an almost
constant, very small face clearance between t = 1.2 and t = 2.2 with gmin = 0.1426
in the case of compressible flow and between t= 1.1 and t= 2.7 with gmin = 0.1227
for incompressible flow. The force on the bearing faces is of small magnitude
and effectively constant when the face clearance is larger than the equilibrium
value. Otherwise a maximum occurs when the rotor is forced towards the stator,
maintaining the fluid film with a maximum value of F= 0.994 for compressible flow
and F = 0.789 for incompressible flow. As the rotor moves away from the stator a
minimum in the fluid force occurs with larger magnitude for incompressible flow.

The effects on the bearing dynamics for a larger amplitude of external force
imposed on the rotor ε=20 are shown in figure 5 for compressible and incompressible
flows. In this case compressible and incompressible bearings have significantly
different dynamics; the rotor is forced towards the stator with the faces become very
close, at approximately t= 0.66 for compressible flow and t= 0.76 for incompressible
flow, where there is a sharp increase in the fluid force, maintaining a face clearance.
In the case of compressible flow the faces move slightly apart before becoming close
together again, as the rotor is still being forced upwards by the external force, causing
a sharp increase in the fluid force to maintain a face separation. This trend continues,
with a total of five instances when the faces become very close together, inducing a
flapping motion of the bearing faces when they are in very close proximity to one and
other. Considering incompressible flow conditions gives the stator following the path
of the forced rotor, without any flapping motion, maintaining an effectively constant
film thickness until the rotor pulls away from the stator at approximately t = 3.9. A
compressible flow has a smaller MFC, gmin = 0.006683, compared to gmin = 0.03255
for incompressible flow. Additionally the MFC in the case of compressible flow,
gmin = 0.006683, is below the lower limit value of gmin = 0.0227 for the slip flow
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regime in the case of ĥ0 = 0.3× 10−4 m. However as observed from figure 5, values
of gmin < 0.0227 are only attained at very small fraction of the time evolution (a
periodic cycle) and most of the time the solution is within the corresponding slip
flow regime.

To verify the observed flapping motion in the case of compressible flow at very
small fluid gaps, an alternative numerical approach based on a time stepping algorithm
(initial boundary value solver) with methodology similar to that in Garratt et al.
(2012) was also implemented. The modified Reynolds equation is solved via a
finite-difference-based numerical scheme, resulting in a nonlinear system of algebraic
equations with the time derivatives expressed in terms of the pressure values by a
finite-difference approximation. The resulting system of linear algebraic equations
is solved at discrete time points over the radius of the bearing, using Matlab’s
bvp5c routine, with a finite-difference scheme producing sets of discrete numerical
approximations to the derivative. The rotor and stator equations are discretised using a
backwards finite-difference approximation and are coupled to the gas flow at the future
time step for the rotor and stator height in the finite-difference scheme. Results from
this transient solver also predict the flapping motion in the bearing dynamics when
the rotor and stator are in close proximity, however, its numerical implementation
is more computationally expensive and less robust than the stroboscopic map used
in this work. This results was not seen in the study by Garratt et al. (2012) as the
bearing faces did not come into close enough proximity.

We were not able to find any previous experimental or numerical studies for the
limit of very small face clearances to provide direct validation of the observed flapping
motion at almost contact condition. However, there are some documented similarities,
and also differences, between the previously cited AFM cantilever experiments and the
dynamic interaction between the bearing surfaces and the gas motion considered in
this work. The motion of the cantilever is described by spring–mass–damper equation
with the driving force given by the lubrication approximation of the flow around a
sphere with a slip boundary condition. The equation is mathematically equivalent to
the rotor displacement (2.16), see for example equation (2) in Pan et al. (2013), where
in (2.16) the force F can be rewritten as the fluid, spring and damper components.
However, in the cantilever problem the substrate is kept fixed while in the present
case the stator is allowed to react to the motion of the rotor. On the other hand,
in the cantilever problem only small oscillations are permitted while in the present
case we are interested in very large rotor displacement motions. Although these
two problems are not equivalent, the cantilever experiments experienced significant
difficulties in regions of very small fluid gap. This was mainly because the probe
becomes overdamped near probe–plate contact, has a very large lubrication force and
there is broadening of the observed resonance that increases the range of frequencies
examined, which is probably related to the appearance of a new mode of oscillations
due to a flapping motion. We cannot directly relate these experimental difficulties
with the existence of a flapping motion, however they can be an indicator of its
existence as a consequence of the compressibility effect at very small gaps.

It is important to emphasise that the current problem and those of the cantilever
are not identically similar, however some of the observed behaviour in the cantilever
experiments near contact, i.e. at very small film gap, appear to have some similarities
with the numerical predictions reported here for the bearing dynamic when approaching
very small film gaps.

Figure 6 gives the values of gmin for increasing amplitude of rotor oscillations in
the case of incompressible and compressible flow. For amplitude of rotor forcing
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FIGURE 6. gmin against amplitude of rotor forcing for incompressible and compressible
flow; a= 0.8, λ= 0.0029, σ = 0.821, αr = αs = 1.22, ls = 0.01, Ks = 1, Kzs = Kzr = 12.2,
Das =Dar = 1.5 and pI = pO = 1.

oscillations ε 6 6 incompressible and compressible flow have effectively the same
value of gmin, whereas increasing the amplitude of rotor forcing oscillations until
ε = 11 shows compressible flow has a larger value of gmin than incompressible flow.
Increasing the amplitude of rotor forcing oscillations further gives the reverse situation.
The non-smooth behaviour exhibited in the compressible flow curve has been further
numerically verified predicting this is a characteristic of the bearing dynamics and
appears to be due to the flapping motion occurring at high amplitude of rotor forcing.

4.2. Parametric study of bearing model dynamics
The compressible flow configurations are examined to investigate the dynamic
behaviour of the bearing for various bearing designs and operating conditions.
Post-processing calculations allow the force exerted by the fluid film on the bearing
faces F and the stator height hs to be computed using (2.17) and hs = g + hr,
respectively. The standard configuration investigated is a narrow bearing with
parameters a = 0.8 and ambient pressure pO = pI = pa = 1 and σ = 0.821. The
force coupling parameter is taken as α = 1.22 with structural parameters Kz = 12.2,
Da= 1.5 and speed parameter λ= 0.0029. The dimensionless slip length is considered
to be ls = 0.01 and amplitude of the rotor forcing oscillations is taken to be ε = 15
as operation is examined under extreme conditions. These parameter choices refer to
a bearing with characteristic rotor–stator clearance ĥ0 = 0.3 × 10−4 m, characteristic
radius r̂0 = 0.01 m, typical pressure P̂= 5× 103 Pa, mass of bearing face 1 kg and
fluid properties ρ̂0 = 1.2922 kg m−1, µ= 2.026× 10−5 kg m−1 s−1. The dimensional
structural stiffness is given as K̂z = 5 × 105 Nm−1 and damping D̂a = 300 Ns m−1,
rotational speed of the rotor is 6000 r.p.m. and dimensional slip length 300 nm.

The effect of increasing the amplitude of rotor forcing oscillations on the fluid force
and MFC over a period of rotor forcing are shown in figure 7. For amplitude of rotor
forcing oscillations ε = 5 the MFC has a path similar to a negative sinusoidal curve
and the force on the bearing faces has a maximum when the rotor height increases
and minimum when the rotor height decreases. For amplitude ε = 10, the MFC and
fluid force have a similar trend to ε = 5, but with larger amplitudes. In the case of
ε = 15 and 20 the rotor is forced towards the stator and the faces become very close,
giving a sharp increase in the fluid force causing the faces to move apart slightly. As
the rotor continues to move upwards the faces again become close together causing
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FIGURE 7. Force and MFC for ambient pressure in the case of a narrow radius with
increasing amplitude of forcing 06 ε 6 20 and gmin against amplitude of rotor oscillation;
a= 0.8 ls = 0.01, λ= 0.0029, Ks = 1, σ = 0.821, αr = αs = 1.22, Kzs = Kzr = 12.2, Das =
Dar = 1.5 and pI = pO = 1.

ε 5 10 15 20
gmin 0.4711 0.1426 0.03062 0.006683

TABLE 2. Values of gmin for increasing amplitude of rotor forcing oscillations; λ= 0.0029,
a = 0.8, ls = 0.01, Ks = 1, σ = 0.821, αr = αs = 1.22, Kzr = Kzs = 12.2, Dar = 1.5 and
pI = pO = 1.

another sharp increase in the force, separating the bearing faces. This trend continues
until the rotor moves away from the stator where there is a minimum in the fluid force.
The bearings faces have a flapping motion when they are in close proximity; ε = 15
has three instances of very close proximity and ε= 20 has five sharp peaks generated
in the fluid force each time the faces become close together. The corresponding values
of gmin are given in table 2, showing gmin decreases for increasing amplitude of rotor
forcing such that gmin = 0.006683 for ε = 20. This value of the MFC is below the
limit value for slip flow regime, but occurs at a very short interval of time of the
overall periodic cycle. Consequently the maximum in the fluid force increases as the
amplitude of rotor forcing increases to maintain a fluid film.

Figure 8 shows the force and MFC over a period of rotor forcing in the case of
increasing slip length on the bearing faces, for amplitude of rotor forcing oscillations
ε= 15. There is a significant difference between the no-slip case and a slip condition
on the bearing faces; for a no-slip condition there are three instances of the faces
becoming very close, whereas introducing a slip condition ls = 0.01 gives four
instances of very close proximity. It is important to observe that the flapping behaviour
of the bearing faces is due to the compressibility of the fluid and not to the slip
condition, however the slip length has a significant effect on the bearing dynamics,
including in the magnitude of gmin. The effect of increasing the slip length on gmin is
given in table 3, showing that as the slip length increases gmin reduces in magnitude.
As gmin reduces, the force on the bearing faces increases when the plates are in close
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FIGURE 8. Force and MFC for ambient pressure in the case of a narrow radius with
increasing slip length 06 ls 6 0.05 and gmin against slip length; a= 0.8, ε= 15, λ= 0.0029,
σ = 0.821, Ks = 1, αr = αs = 1.22, Kzs =Kzr = 12.2, Das =Dar = 1.5 and pI = pO = 1.

ls 0 0.01 0.025 0.05
gmin 0.03713 0.03062 0.02362 0.01627

TABLE 3. Values of gmin for increasing slip length; ε = 15, λ= 0.0029, a= 0.8, Ks = 1,
σ = 0.821, αr = αs = 1.22, Kzr =Kzs = 12.2, Dar = 1.5 and pI = pO = 1.

a 0.2 0.4 0.6 0.8
gmin 0.3012 0.2220 0.1290 0.03062

TABLE 4. Values of gmin for decreasing bearing width; ε = 15, λ= 0.0029, ls = 0.01,
Ks = 1, σ = 0.821, αr = αs = 1.22, Kzr =Kzs = 12.2, Dar = 1.5 and pI = pO = 1.

proximity to ensure a fluid film is maintained. In all cases there is a minimum in the
fluid force when the rotor pulls away from the stator.

Figure 9 shows the effect of the bearing width on the force and MFC over a period
of external forcing. Decreasing the bearing width (increasing a) results in a smaller
MFC. In the case of a wide annulus (a= 0.2) for small MFC the flapping motion of
the plates does not occur, but decreasing the bearing width causes the flapping motion
of the plates to arise with an increased number of instances of very close rotor and
stator. The peak in the force increases as the bearing width decreases to maintain a
fluid film. The corresponding values of gmin are given in table 4, showing a decrease
in the bearing width gives a decrease in the value of gmin.

Other key parameters of interest are the speed parameter, internal pressure and
the stator stiffness and damping parameters where the corresponding values for gmin

are reported in table 5. The speed parameters examined correspond to negligible
centrifugal effect (Ω̂ = 0) and rotational speeds 6000 r.p.m., 15 000 r.p.m. and
35 400 r.p.m. resulting in values of lambda of 0, 0.0029, 0.0179 and 0.1. Results
show the speed parameter has little effect on the bearing dynamics and for practical
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FIGURE 9. Force and MFC for ambient pressure in the case of a narrow radius with
decreasing bearing width 0.2 6 a 6 0.8 and gmin against position of inner radius; ε = 15,
ls = 0.01, λ= 0.0029, σ = 0.821, Ks = 1, αr = αs = 1.22, Kzs =Kzr = 12.2, Das =Dar = 1.5
and pI = pO = 1.

λ 0 0.0029 0.0179 0.1
gmin 0.03062 0.03062 0.03061 0.03060

pI 0.5 1.0 1.5
gmin 0.02396 0.03062 0.03883

Kzs 2.4 6.1 12.2 24.4
gmin 0.07330 0.04355 0.03062 0.02736

Das 0.5 1.5 2.5 5.0
gmin 0.02770 0.03062 0.03446 0.04028

TABLE 5. Values of gmin for increasing speed parameter; pI = 1, Kzs = 12.2, Das = 1.5,
internal pressure; λ= 0.0029, Kzs = 12.2, Das = 1.5, stator stiffness parameter; λ= 0.0029,
pI = 1, Das = 1.5 and stator damping parameter; λ = 0.0029, pI = 1, Kzs = 12.2; ε = 15,
a= 0.8, ls = 0.01, Ks = 1, σ = 0.821, αr = αs = 1.22, Kzr = 12.2, Dar = 1.5 and pO = 1.

operating conditions the inertia effects can be neglected. Imposing pressure pI 6= 1
at the inner radius results in a pressure gradient across the bearing which can be
used to drive a radial flow. Increasing the internal pressure gives an effectively linear
increase in gmin. An internally pressurised bearing, pI > pO, has a larger value of gmin
than when pI = pO, while externally pressurised bearing, pI < pO, has a smaller value
of gmin. On investigating the effect of the stator stiffness and damping parameters on
gmin, results show a decrease in gmin with increasing stiffness parameter but increase
in gmin for increasing damping parameter.

Finally, the effect of the bearing coning angle on the dynamics is shown in
figure 10 for both a NCB and PCB. The pressure gradient is selected such that
overpressurisation in the bearing has occurred, corresponding to (pI < pO) for NCB
and (pI > pO) for a PCB, with pO = 1 in both cases; internal pressure of pI = 0.5
gives a smaller value of gmin than pI = 1.5. In both cases increasing the magnitude of
the coning angle causes gmin to decrease, as shown in table 6. A NCB has a larger
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FIGURE 10. Force and MFC over a period of the external force in the case of a narrow
radius for various coning angles for (a) PCB and (b) NCB and gmin against coning angle;
ε = 14, ls = 0.01, a= 0.8, λ= 0.0029, σ = 0.821, Ks = 1, αr = αs = 1.22, Kzs =Kzr = 12.2,
Dar = 1.5, pO = 1 and (a) pI = 0.5, (b) pI = 1.5.

NCB β 0 −0.1 −0.2 −0.3
gmin 0.05052 0.03961 0.02938 0.01991

PCB β 0 0.1 0.2 0.3
gmin 0.04808 0.03844 0.02942 0.02103

TABLE 6. Values of gmin for various coning angles with pI = 0.5 for a NCB and pI = 1.5
for a PCB; ε = 14, λ = 0.0029, ls = 0.01, a = 0.8, Ks = 1, σ = 0.821, αr = αs = 1.22,
Kzr =Kzs = 12.2, Dar = 1.5 and pO = 1.

value of gmin for an angle of magnitude 0.1 than a PCB, whereas the situation is
reversed for angles of magnitude 0.2 and 0.3. Even though the bearing faces are in
very close proximity for a coned bearing, there is no significant change in the fluid
force as in the case of a parallel bearing, indicating face contact may be possible for
significantly large coning angles.

As an extension of our solutions, the possibility of bearing contact is examined
as shown in figure 11 for both a PCB and NCB. In this case, we use the extension
of the parameter continuation scheme in the stroboscopic map algorithm to compute
threshold values of the slip length and amplitude of rotor forcing corresponding to
a value of gmin = 0. As previously mentioned, in this case the fluid film is in the
molecular regime and our current model is not formally valid, but it is of interest
to give an indication of possible face contact. The pressure gradient is chosen such
that overpressuriation has led to bearing deformation for both a PCB and NCB. For
parameter choices of slip length and amplitude of forcing in the regions above the
curve, results indicate face contact will occur, whereas a fluid film is maintained
between the bearing faces for parameter choices in the regions below the curve. In
the cases considered, for increasing magnitude of coning angle, face contact first
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FIGURE 11. Contact region boundary with plots of slip length and amplitude of rotor
forcing oscillations in the case of (a) PCB (pI = 1.5) and (b) NCB (pI = 0.5); a = 0.8,
λ= 0.0029, σ = 0.821, Ks = 1, αr = αs = 1.22, Kzs =Kzr = 12.2, Dar = 1.5 and pO = 1.

occurs at smaller values of the amplitude of forcing for a given slip length. Results
indicate that a NCB has contact occurring at smaller values of amplitude of rotor
forcing and slip length than a PCB. From a bearing design aspect, if the fluid gap
becomes very small the tapered surfaces need to be limited to a small angle.

5. Conclusions
A model for a gas lubricated bearing appropriate for very small bearing gap is

derived using a modified compressible Reynolds equation to model the gas film
and is coupled to the bearing structure through the axial force imposed on the
bearing faces by the gas. An external harmonic force with an amplitude larger than
the equilibrium face clearance is imposed on the rotor, used to simulate possible
destabilising excitations. The reduction of the compressible Navier–Stokes equations
for this configuration uses an axisymmetric lubrication approximation, but retains the
leading-order effects of centrifugal inertia relevant for high-speed rotational flows.
A slip length formulation for a modified surface boundary condition is imposed on
the faces of the bearing. The axial position of the rotor and stator are modelled as
spring–mass–damper systems.

A stroboscopic map solver is implemented, solving the modified Reynolds equation
and structural equations simultaneously, giving periodic solutions for the bearing face
clearance and rotor height. Post-processing calculations are used to give the force
on the bearing faces from the gas flow and axial displacement of the stator. The
numerical results are confirmed using a previously developed numerical technique
for an incompressible flow bearing given in Bailey et al. (2014), under restricted
conditions for which a compressible flow bearing can be dynamically represented as
an incompressible flow. Results are given for extreme operating conditions, where
for a large amplitude of the rotor forcing predictions of the bearing dynamics for
compressible and incompressible flow differ significantly. A compressible flow bearing
has the faces undergoing a flapping motion when the external force on the rotor is
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sufficiently large, which was not predicted in previous studies of an incompressible
flow bearing.

A bearing with a slip condition on the bearing faces has different dynamics to
a bearing with a no-slip condition as an increased value of the slip length gives a
reduced value of gmin. Reducing the bearing width gives a decrease in the value of
gmin and increase in the peaks of the force to maintain the fluid film. The speed
parameter has negligible effect on the bearing characteristics, despite a large azimuthal
velocity being studied, which pushes the limit of practical applications. Imposing a
pressure gradient across the bearing, which can be used to drive radial flow, gives
pI > pO having a larger gmin than for pI < pO and increasing the structural parameters
of the stator, (stiffness and damping parameters), gives a decrease and increase in
gmin, respectively. Incorporating a coning angle in the bearing model gives significantly
different dynamics to a parallel face bearing. A coned bearing has gmin becoming
small for large magnitudes of coning angles, however the fluid force has no significant
increase, whereas a parallel bearing generates a large fluid force to maintain a fluid
film when the faces become close together. Results indicate face contact may occur
for a PCB and NCB in the case of sufficiently large amplitude of rotor forcing and
slip length.
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Appendix A. Supplementary equations
A.1. Supplementary equations for a PCB

The system of equations required to find ∂g(T)/∂ε in the case of a PCB is given by

∂

∂t

(
∂g
∂ζ0

)
= ∂Z
∂ζ0

, (A 1a)

∂

∂t

(
∂hr

∂ζ0

)
= ∂Y
∂ζ0

, (A 1b)

∂

∂t

(
∂Z
∂ζ0

)
=−Das

∂Z
∂ζ0
−Kzs

∂g
∂ζ0
+ (Dar −Das)

∂Y
∂ζ0
+ (Kzr −Kzs)

∂hr

∂ζ0
+ (αs + αr)

Ff

∂ζ0
,

(A 1c)

∂

∂t

(
∂Y
∂ζ0

)
=−Dar

∂Y
∂ζ0
−Kzr

∂hr

∂ζ0
− αr

Ff

∂ζ0
, (A 1d)

∂

∂t

(
∂pi

∂ζ0

)
=− ∂pi

∂ζ0

Z
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+ 1
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(
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2 − pi−1
2

4riδr
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2

2δr
2

)
+ 1

12σ
(g+ (ri − a)β)(g+ (ri − a)β + 6ls)
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(
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)
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+ 1
δr2

(
pi+1

∂pi+1
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3 + 12ls
4

)
, (A 1e)

with ∂Ff /∂ζ0 = 2π(
∑M

i=1 wi(∂pi/∂ζ0)ri) for ζ0 = [g0; hr0; Z0; Y0; p0i]. Initial conditions
are given as

∂g
∂g0
= 1,

∂hr

∂g0
= 0,

∂Z
∂g0
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∂Y
∂g0
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∂pi

∂g0
= 0,
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∂Z
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∂pi
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∂pi
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∂Y
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∂pi
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∂hr

∂pi0
= 0,

∂Z
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∂Y
∂pi0
= 0,

∂pi

∂pi0
= Ii.



(A 2)

The elements of the Jacobian matrix are given by the values of the auxiliary variables
at the end of the forcing period, t= T , corresponding to the time at which periodicity
is tested for.

The system of equations for a NCB required to compute ∂g(T)/∂ε is given by

∂

∂t

(
∂g
∂ε0

)
= ∂Z
∂ε0

, (A 3a)
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∂

∂t

(
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= ∂Y
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, (A 3b)
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=−Dar
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∂ε0
−Kzr

∂hr

∂ε0
− αr

Ff

∂ε0
− αr sin t, (A 3d)

with ∂/∂t(∂pi/∂ε0) taken from (A 1) when ζ0 = ε0. Initial conditions are taken as

∂g
∂ε0
= 0,

∂hr

∂ε0
= 0,

∂Z
∂ε0
= 0,

∂Y
∂ε0
= 0,

∂pi

∂ε0
= 0. (A 4a−e)

The following auxiliary system of first-order differential equations is used to find
the elements of the Jacobian matrix for incompressible flow

∂

∂t

(
∂g
∂ζ0

)
= ∂Z
∂ζ0

, (A 5a)

∂

∂t

(
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, (A 5b)
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, (A 5c)

∂

∂t

(
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∂ζ0

)
=−Da

∂Y
∂ζ0
−Kz

∂hr

∂ζ0
− α

(
∂B
∂g

∂g
∂ζ0

Z + B
∂Z
∂ζ0

)
, (A 5d)

for ζ0 = [g0; hr0; Z0; Y0] with initial conditions taken as the first four rows in (A 2).

A.2. Equations for a NCB
Governing equations for a NCB are given by system of first-order differential
equations

dg
dt
= Z, (A 6a)

dhr

dt
= Y, (A 6b)

dZ
dt
= −DasZ −Kzs(g− 1)− (Das −Dar)Y − (Kzs −Kzr)hr

+Kzr(1− a)β + (αs + αr)Ff − αrN(t), (A 6c)

dY
dt
=−DarY −Kzr(hr − (1− a)β)− αrFf + αrN(t), (A 6d)

dpi

dt
= − piZ

(g+ (ri − 1)β)
+ (g+ (ri − 1)β)(g+ (ri − 1)β + 6ls)
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The elements of the Jacobian matrix for a NCB, are found through solving the
following auxiliary system of first-order differential equations
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