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SUMMARY

Trophically transmitted parasites may use multiple intermediate hosts, some of whichmay be ‘key-hosts’, i.e. contributing
significantly more to the completion of the parasite life cycle, while others may be ‘sink hosts’ with a poor contribution to
parasite transmission. Gammarus fossarum and Gammarus roeseli are sympatric crustaceans used as intermediate hosts by
the acanthocephalan Pomphorhynchus laevis. Gammarus roeseli suffers higher field prevalence and is less sensitive to parasite
behavioural manipulation and to predation by definitive hosts. However, no data are available on between-host differences
in susceptibility to P. laevis infection, making it difficult to untangle the relative contributions of these hosts to parasite
transmission. Based on results from estimates of prevalence in gammarids exposed or protected from predation and labora-
tory infections, G. fossarum specimens were found to be more susceptible to P. laevis infection. As it is more susceptible to
both parasite infection and manipulation, G. fossarum is therefore a key host for P. laevis transmission.
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INTRODUCTION

While the majority of parasites are known to exploit
multiple host species, either sequentially or because
they have a range of suitable hosts for the same
stage of their cycle (Ruiz-González et al. 2012),
host-parasite interactions are usually studied in sim-
plified one-to-one relations, disconnected from the
real-life complex systems (Rigaud et al. 2010).
Multi-host parasites may use host species differing
in abundance, exposure and susceptibility, and thus
unlikely to contribute equally to parasite transmission
and fitness. The ‘key hosts’ are those contributing
significantly more to the completion of the parasite
life cycle (Streicker et al. 2013). Three non-exclusive
processes serve to identify a host as a key species, con-
tributing disproportionately to parasite transmission:
high host abundance, high exposure and/or suscepti-
bility to infection, and/or large number of infective
stages produced per infected individual (Streicker
et al. 2013).
Parasites with complex life cycles are, by defini-

tion, multi-host parasites because they require at
least two successive host species to achieve their de-
velopment. However, they may also use several
different host species at any stage of their cycle.
Such parasites may show weak specificity when
infecting the intermediate host, or sometimes even
the definitive host, although there is great inter-
specific variation in these traits (Combes, 2001).

Numerous parasites with a complex life cycle have
evolved the ability to modify several aspects of the
phenotype of their intermediate hosts, concomitant-
ly increasing the probability of transmission to their
definitive hosts (reviewed in Poulin, 2010). Many
trophically transmitted parasites can even modify
certain behaviours of their intermediate hosts
(Thomas et al. 2005; Perrot-Minnot et al. 2014).
Modification of a number of anti-predatory
behaviours is directly linked to the modulation of
predation rates in intermediate hosts, either increas-
ing for infected vs non-infected hosts (Kaldonski
et al. 2007; Lagrue et al. 2007), or decreasing when
the parasites are not yet infective for the definitive
host (Dianne et al. 2011; Weinreich et al. 2013).
These behavioural changes have been referred to as
‘host manipulation’ because parasites alter the
phenotype of their hosts in ways that enhance their
own fitness at the expense of that of infected hosts
(Thomas et al. 2005; Cézilly et al. 2010). For these
parasites, the sensitivity of the host to manipulation
should be included to determine key host species,
because of its implication in parasite transmission.
Acanthocephala are trophically transmitted parasites

for which the ability to modify host phenotype is ubi-
quitous, possibly having evolved in the common an-
cestor of the group (Moore, 1984). They all use at
least two hosts to complete their cycle, whether for
intermediate, definitive or paratenic hosts, with
different degrees of fitness depending on the hosts
and/or spatial distribution of these hosts (see
Kennedy, 2006 for an overview). Pomphorhynchus
laevis have been extensively studied in the contexts
of host manipulation and ecology (Kennedy, 2006).
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They infect several freshwater gammarid amphipod
species as intermediate hosts, and several freshwater
fish species as definitive or paratenic hosts (Kennedy,
2006; Médoc et al. 2011). In central and eastern
France, the cryptic Gammarus pulex and Gammarus
fossarum species (Lagrue et al. 2014) are resident inter-
mediate host species, while Gammarus roeseli is a rela-
tively recent colonizer from Southern Central Europe
(Jazdzewski, 1980). These gammarids are often
found in sympatry (Chovet and Lécureuil, 1994) and
infected by P. laevis in these sympatric sites (e.g.
Bauer et al. 2000; Rigaud and Moret, 2003; Lagrue
et al. 2007). Prevalence and infection intensity are
usually higher in G. roeseli than in G. pulex (Lagrue
et al. 2007, Lagrue, unpublished data), despite the
fact that the latter is generally more abundant than
the former when present in sympatry (e.g. Lagrue
et al. 2007). It would therefore seem logical for P.
laevis to rely more on G. roeseli than on G. pulex for
its transmission. However, several elements indicate
that exactly the opposite situation could be the rule.
Crude prevalence is not an accurate measure to quan-
tify the abundance of a manipulative parasite, since
observed prevalence diminishes as infected intermedi-
ate hosts are preferentially preyed upon by the next
host(s), rather than uninfected hosts (Lafferty, 1992;
Rousset et al. 1996). Lagrue et al. (2007) showed that
the prevalence of P. laevis in G. pulex was low in the
river benthos but high in the definitive host’s
stomach, whereas prevalence in G. roeseli was higher
in the field and lower in the stomach of the definitive
host. In addition, by analysing the distribution of para-
site intensity, they showed that parasites accumulate in
olderG. roeseli, but not in olderG. pulex, confirming a
higher death rate of infected G. pulex compared with
infected G. roeseli. This result is consistent with the
fact that infectedG. roeseli is known to be less strongly
manipulated than G. pulex by P. laevis (Bauer et al.
2000). Furthermore, uninfected G. roeseli has been
found to be less sensitive to predation by trout
(Bollache et al. 2006) or bullhead (Kaldonski et al.
2008) than uninfected G. pulex, because of more
efficient anti-predatory defences. The combination of
all these factors provides reasonable evidence of a pre-
dation differential between infected animals of each
species, and so G. roeseli can reasonably be considered
a lower quality host for P. laevis transmission.
However, the relative susceptibility of the two

amphipod species to infection by P. laevis remains
undetermined. Yet this information is crucial to
assess the relative importance of the two concurrent
hosts in theP. laevis life cycle. IfG. pulex is more sus-
ceptible to infection thanG. roeseli, then both suscep-
tibility and behavioural manipulation would act in
synergy, making this host a true key host for trans-
mission. If, conversely, G. roeseli is more susceptible
than G. pulex, then P. laevis transmission would be
‘diluted’ by the presence of this host, because of its
inefficiency in transmitting the parasite, and could

potentially impact the epidemiology of the infection
(see Hall et al. 2009; Johnson et al. 2009, for exam-
ples). We conducted a laboratory infection experi-
ment by submitting both species to the same dose
of P. laevis eggs to measure the susceptibility of
these sympatric gammarid species to P. laevis. To
assess the impact of predation, we compared preva-
lence in two contrasted amphipod collections from
the field: animals directly collected from rivers (i.e.
previously exposed to natural predation), and
animals collected from the same rivers, but then
maintained for several weeks in the laboratory (i.e.
in the absence of any fish predation pressure).

METHODS

Amphipod collection and prevalence in the field

Since field prevalence may be variable between popu-
lations, two rivers were chosen, where G. fossarum
and G. roeseli live in sympatry and are naturally
infected by P. laevis. Amphipods from the Albane
River, in Trochères (47°20′34″N, 5°18′21·8″E), and
the Meuzin River, near Villy-le-Moutier (47°2′7·71″
N, 4°59′53·87″E), were sampled between September
and October 2013.
Amphipods (G. roeseli and G. fossarum) were cap-

tured using kick nets. All potential habitats present
at each site were sampled, and the collected
animals were randomly divided into three groups,
each maintained in a container with aerated water
from the river.
The first group was used to estimate the ‘field/

direct’ prevalence. Animals from this group were
kept in well aerated aquaria at 15 °C and all
checked for parasite presence within 2 days after
capture. Infected individuals were dissected to
confirm parasite species. Larval parasites can be
detected through the host cuticle, either at the late
acanthella stage of their development (translucent
light orange, shapeless larval stage) or at cystacanth
stage (bright yellow-orange, spherical larval stage).
Earlier acanthella stages (where parasites are small
and translucent) can only be detected after dissec-
tion. Preliminary investigation showed that
acanthella detection could only be certified after 40
days (without microscope and staining), so that all
prevalence reported in the following experiments is
prevalence for P. laevis of more than 40 days old
(Labaude et al. submitted).
Gammarids from the second group were kept indi-

vidually in the laboratory, in cups of c.a. 50 mL at
15 °C for 96 days. All gammarids where infection was
detectable by eye were removed from this group so
that, at the beginning of this survey, the remaining
animals were classified as ‘uninfected’. However, as
previously stated, younger acanthella stages are too
small to be detected through host cuticule, so some
of these isolated gammarids may have already been
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infected in the field in the days preceding their capture.
It is the prevalence of these undetected infections that
was recorded during this survey. Animals dying
during this period were dissected the day after their
death, and all living animalswere checked anddissected
96 days post isolation, a delay long enough to ensure
that all parasites could be detected. This survey there-
fore allowed prevalence to be estimated in gammarids
not exposed to predation during parasite development
(hereafter called ‘field/protected’ prevalence). All
infected G. fossarum were kept in ethanol for genetic
analysis (see above).
A third group of gammarids was used for experi-

mental infections (see below).

Experimental infection

Before being isolated for the experiment, all gam-
marids were inspected under a dissecting microscope
to remove naturally infected animals. The remaining
gammarids were kept in quarantine for 30 days, to
distinguish any further natural infection (by para-
sites too young to be detected) from experimental in-
fection. Some additional G. pulex were also collected
in a small tributary of the Suzon River at Val-Suzon
(47°4′12·6″N; 4°52′58·2″E). Given that the G. pulex
from Val-Suzon are particularly sensitive to experi-
mental infection by P. laevis (Franceschi et al.
2010), they were used to confirm the success and
timing of experimental infection.
Gravid P. laevis females were collected from the

intestines of chubs (Leuciscus cephalus), from natural-
ly infected fish caught in September 2013 in the
Vouge River (Burgundy, Eastern France: 47°9′
34·36″N; 5°9′2·50″E). A foreign parasite population
was chosen to avoid potential local adaptation in our
two gammarid populations (Franceschi et al. 2010),
so that it was possible to estimate gammarid sensitiv-
ity to parasite strains with which they had not
evolved. Molecular identification of parasites and ex-
posure of gammarids to parasite eggs followed the
procedure described in Franceschi et al. (2008).
Gammarus, in cups filled with c.a. 50 mL of aerated
water, were allowed to feed for 48 h on a 1 cm2

piece of elm leaf, on which a suspension of 100
mature eggs per gammarid had been deposited (see
detailed procedure in Franceschi et al. 2008). Food
was then removed, and gammarids were maintained
at 15 °C for 3 months. The field/protected group
described above was used as control. Individuals
from this group were treated and maintained under
the same conditions as exposed gammarids but were
unexposed to parasite eggs. A total of 615G. fossarum
(162 males and 109 females from Albane, 214 males
and 130 females from Meuzin) and 440 G. roeseli
(157 males and 102 females from Albane, 121 males
and 60 females from Meuzin) were exposed to para-
site eggs, as were the G. pulex (155 males from Val-
Suzon). 308 G. fossarum (104 males and 61 females

from Albane, 89 males and 54 females from
Meuzin) and 324 G. roeseli (102 males and 67
females from Albane, 104 males and 51 females
from Meuzin) were used as control individuals. All
infected G. fossarum, along with 100 individuals
from the control group, were kept in ethanol for
genetic investigation (see below).
The water of each dish was completely renewed

every 2 weeks with aerated water from the river,
and water levels were restored to original levels
twice a week. The amphipods were fed ad libitum
with elm leaves, and their diet was enriched with a
chironomid larva twice a month. A daily mortality
survey was carried out, and animals were dissected
the day after their death to detect young acanthella
stages. From the sixth week post-exposure, living
gammarids were inspected every week under a dis-
secting microscope to detect the presence of parasites.
Infected animals were examined every 2 days after de-
tection to estimate the date when the cystacanth stage
was reached. Gammarids from Val-Suzon (where P.
laevis is absent) were a control group for the timing
and success of experimental infection. Previous
studies revealed that P. laevis reaches cystacanth
stage in about 80–120 days in laboratory conditions
(Franceschi et al. 2008, 2010). In gammarids from
theMeuzin and Albane rivers, even after a quarantine
of 30 days before exposure, parasites from the wild
can develop. Therefore, if P. laevis were detected
before the first signs of infection in animals from
Val-Suzon, individuals were removed from the ana-
lysis to avoid any potential confounding effect.

Gammarid genotyping

Because of the recently discovered cryptic genetic di-
versity within the G. fossarum-pulex species com-
plexes (e.g. Lagrue et al. 2014), there is a need to
examine the patterns of infection in the light of
this diversity (see Westram et al. 2011a, b). Such a
study is not necessary for G. roeseli because no
cryptic diversity has been detected in Western and
Central Europe (Moret et al. 2007). Genetic diver-
sity was assessed in these two rivers using the
amplification of part of the mtDNA cytochrome
c oxidase subunit 1 (CO1) by polymerase chain reac-
tions (PCR) and a subsequent restriction fragment
length polymorphism (RFLP) procedure (Lagrue
et al. 2014). Only G. fossarum belonging to one
group were known to occur at the Meuzin site
(GfI, see Lagrue et al. 2014), while genetic diversity
for the Albane River had not previously been esti-
mated. All infected G. fossarum and G. pulex from
each river were preserved in pure ethanol after
death, for subsequent DNA extraction. In addition,
100 uninfected animals randomly sampled from each
site were also preserved. Gammarid DNA was
extracted from two pereopods (‘walking legs’ in
amphipods), following the standard chelex method
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(Lagrue et al. 2014). The DNA was then amplified
for CO1 using universal primers (LCO1490 and
HCO2198; Folmer et al. 1994). The PCR were per-
formed using Qiagen Multiplex DNA polymerase
kits (Qiagen Inc, Düsseldorf, Germany), as in
Lagrue et al. (2014). The PCR-amplified DNA pro-
ducts were then digested overnight using the appro-
priate reaction buffer and restriction endonuclease
(s), following manufacturer’s instructions (New
England Biolabs, Ipswich, Massachusetts, USA).
The resulting fragments were separated by gel elec-
trophoresis in a 1·5% agarose gel. Restriction enzyme
profiles were used to assign each individual amphi-
pod to its respective genetic group (see Lagrue
et al. (2014) for the detailed procedure and the
specific digestion enzymes for each gammarid
genetic group).

Statistical analyses

All statistical analyses were performed using R soft-
ware or JMP software (version 10·0·0).
For natural infections, a binomial logistic regres-

sion was performed to analyse prevalence, with the
following potential explanatory factors: site
(Albane River vs Meuzin River), Gammarus species
(G. roeseli vs G. fossarum), Gammarus sex (males vs
females), experiment (field/direct: natural infection
from the field sample vs field/protected: natural in-
fection after maintenance in the laboratory), and
their second-order interactions.
For experimental infections, a binomial logistic

regression was performed to analyse prevalence,
with site, species and sex, and their second-order
interactions, as potential explanatory factors.
All possible models were compared using the

Akaike Information Criterion (AICc). The models
presented are those minimizing the AICc.

RESULTS

Genetic diversity among G. fossarum-like gammarids

For the gammarids from the Albane River, PCR-
RFLP revealed 87% of G. fossarum and 13% of
G. pulex in the 50 randomly sampled, uninfected

animals, with 82% of G. fossarum and 18% G. pulex
in the 68 infected animals. The species ratios in
infected and uninfected groups were not signifi-
cantly different (χ2 = 0·2438, P= 0·6215). As we
detected no difference in sensitivity to infection
between G. pulex and G. fossarum, and since the ma-
jority of the gammarids, even at the Albane site, are
G. fossarum, this term is used to encompass all
G. fossarum-like gammarids.

Natural infection: direct field prevalence vs field
prevalence protected from predation

Prevalence of P. laevis was higher in G. roeseli than
in G. fossarum in direct field prevalence, at both
sites, whereas reverse relative prevalence was
observed when measured after keeping putative un-
infected animals in the laboratory, where they were
preserved from predation (Table 1, Fig. 1).

Experimental infection

The first observations of acanthellae through the
host cuticle occurred 60 days post-exposure for the
control Val-Suzon gammarids, as was the case for
gammarids of both species from the Albane and
Meuzin rivers. The cystacanth stage was achieved
82 ± 10 days post-exposure of the control Val-
Suzon group, after 80 ± 6 days for G. fossarum, and
after 83 ± 3 days for G. roeseli.
We found a strong effect of river origin on infec-

tion (Table 2, Fig. 1), with gammarids from the
Albane River being three times more sensitive to in-
fection. The difference in prevalence between
species, with G. fossarum being approximately
twice as infected as G. roeseli, was nevertheless not
strong enough to be fully supported statistically
(Table 2, Fig. 1).

DISCUSSION

Our data initially showed that the crude P. laevis
prevalence is higher inG. roeseli than inG. fossarum,
confirming results of Lagrue et al. (2007) for another
site. In the ‘field/protected’ experiment, the

Table 1. Logistic regression testing for the effects of site (river), Gammarus species and experiment (direct
field prevalence or protected field prevalence) on the field prevalence of P. laevis

Source of variation D.F. Likelihood-Ratio (LR) χ2 P

Site 1 1·2999 0·2542
Species 1 0·8110 0·3678
Experiment 1 0·1877 0·6648
Species × experiment 1 7·7271 0·0054
Site × experiment 1 2·3673 0·1239

The model initially included sex of gammarids, and other interactions. After removing these non-significant factors, the
model presented now minimizes the Akaike Information Criterion (AICc).
Global model: LR χ2 = 15·4448, 5 D.F., P= 0·0086; n= 1787.
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prevalence was reversed, and was higher in G. fos-
sarum for the two populations investigated. In add-
ition, prevalence in G. fossarum was approximately
twice that in G. roeseli in both populations after ex-
perimental infection by a non-coevolved parasite
population, even though this result was not fully
supported statistically (probably due to the stronger
population effect). Prevalence observed in the field is
therefore not a reliable measure of the actual parasite
burden for this manipulative trophically transmitted
parasite. Differences in the duration of parasite de-
velopment could possibly have explained the differ-
ences in prevalence observed between the two
Gammarus species. However, parasite growth was
synchronous for all hosts during the laboratory in-
fection experiment.
As the two hosts have similar lifespans, parasites

developing in G. roeseli have a lower probability of
completing their life cycle, both due to reduced
natural predation by fish compared with G. pulex
(Bollache et al. 2006; Kaldonski et al. 2008) and
lower manipulation levels for infected individuals
(Bauer et al. 2000). Therefore, G. roeseli seems to
‘dilute’ P. laevis transmission when this host is sym-
patric with G. fossarum. However, as shown here, G.
roeseli is not more susceptible thanG. fossarum to in-
fection by P. laevis, so the dilution effect is not as
strong as previously thought when natural

prevalence alone was considered. Lower infection
success in G. roeseli counterbalances the low preda-
tion rate, limiting the ‘sink effect’ for the parasite.
As G. fossarum is first more susceptible to infection
and then more predated, our data confirm this
species as a key host for P. laevis.
Our results also have implications in explaining

the role of parasites in the success of biological inva-
sions. Gammarus roeseli is a species that colonized
Western Europe during the 20th century (Chovet
and Lécureuil, 1994). Parasitism may play a role in
the coexistence of native and introduced (or inva-
sive) host species. Some studies support the
‘enemy release’ hypothesis, in which invaders are
no longer exposed to their original parasites, but
also less susceptible to infection by native parasites,
providing invasive hosts with a competitive advan-
tage (Dunn and Dick, 1998; Kopp and Jokela,
2007). In contrast, other studies show a decrease in
prevalence in native species by the dilution effect,
both experimentally (Kopp and Jokela, 2007) and
in natura (Telfer et al. 2005). The invader acts in
that case as a dead-end sink for the parasite.
G. roeseli being less susceptible to both infection
(this study) and to behavioural changes induced by
P. laevis (Bauer et al. 2000; Moret et al. 2007), our
results are in line with the ennemy realese
hypothesis.

Fig. 1. Prevalence levels forGammarus fossarum (Gf) and G. roeseli (Gr) in the two populations, for all experiments (field/
direct: prevalence in natura; field/protected: prevalence in gammarids kept in the laboratory, i.e. protected from predation;
experiment: experimental infection). Number in bars are sample size.

Table 2. Logistic regression testing for the effects of site (river) andGammarus species on the prevalence of P.
laevis after experimental infection by parasites from the Ouche River

Source of variation D.F. Likelihood-Ratio (LR) χ2 P

Site 1 16·9051 <0·0001
Species 1 3·3303 0·0680

The model initially included sex of gammarids and interactions. After removing these non-significant factors, the model
presented now minimizes the Akaike Information Criterion (AICc).
Global model: LR χ2 = 19·9606, 2 D.F., P< 0·0001; n= 807.
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Our results completely strengthen the hypothesis
that sympatric G. roeseli and G. fossarum are not
hosts of the same quality for acanthocephalan para-
sites. Should this assumption be extended to all
gammarid hosts of freshwater acanthocephalans?
Because of the high level of cryptic speciation in the
G. pulex/fossarum group (e.g. Westram et al. 2011b;
Lagrue et al. 2014), the situation will probably be
quite complex to study. Westram et al. (2011a),
coupling natural prevalence estimations and field
infection experiments, also showed differences in sus-
ceptibility between Gammarus species to infection by
the acanthocephalan Pomphorhynchus tereticollis, with
G. pulex being less infected than G. fossarum.
Differences within the G. fossarum group, while less
marked, were also detected. However, in
Switzerland, where the study was carried out,
different species (and/or cryptic species) are rarely
found in sympatry, each stream or river harbouring
a single gammarid species, so there is confusion
between host species and the sites where the host-
parasite couple is living, with the potential for local
adaptation confounding the results of host specificity
(Franceschi et al. 2010). Apart from our case-study of
the G. roeseli/G. fossarum system, no clear data are
available yet on infectivity and behavioural changes
induced by the same local parasite strains on two
sympatric species. In the present study, we found
no significant difference in prevalence between
sympatric G. pulex and G. fossarum from the Albane
River. However, this result should be replicated in
other rivers, with more individuals and more species
tested. Behavioural modifications should also be mea-
sured to confirm this apparent lack of specificity.

ACKNOWLEDGEMENTS

We thank Aude Balourdet, Sophie Labaude and Sébastien
Motreuil for their valuable field and experimental assistance,
and Carmela Chateau for English corrections. We thank the
anonymous referee for valuable suggestions and comments.

FINANCIAL SUPPORT

This study was supported by a grant from the Agence
Nationale de la Recherche (grant # ANR-13-BSV7-0004-01).

REFERENCES

Bauer, A., Trouvé, S., Grégoire, A., Bollache, L. and Cézilly, F.
(2000). Differential influence of Pomphorhynchus laevis (Acanthocephala)
on the behaviour of native and invader gammarid species. International
Journal for Parasitology 30, 1453–1457.
Bollache, L., Kaldonski, N., Troussard, J.-P., Lagrue, C. and
Rigaud, T. (2006). Spines and behaviour as defences against fish predators
in an invasive freshwater amphipod. Animal Behaviour 72, 627–633.
Cézilly, F., Thomas, F., Médoc, V. and Perrot-Minnot, M.-J. (2010).
Host-manipulation by parasites with complex life cycles: adaptive or not?
Trends in Parasitology 26, 311–317.

Chovet, M. and Lécureuil, J. (1994). Répartition des Gammaridae épigés
(Crustacés, Amphipodes) dans la Loire et les rivières de la Région Centre
(France). Annales de Limnologie 30, 11–23.
Combes, C. (2001). Parasitism: The Ecology and Evolution of Intimate
Interactions. The University of Chicago Press, Chicago.
Dianne, L., Perrot-Minnot, M.-J., Bauer, A., Gaillard, M., Léger, E.
and Rigaud, T. (2011). Protection first then facilitation: a manipulative
parasite modulates the vulnerability to predation of its intermediate host
according to its own developmental stage. Evolution 65, 2692–2698.
Dunn, A.M. and Dick, J. T. A. (1998). Parasitism and epibiosis in native
and non-native gammarids in freshwater in Ireland.Ecography 21, 593–598.
Folmer, O., Black, M., Hoeh, W., Lutz, R. and Vrijenhoek, R. (1994).
DNA primers for amplification of mitochondrial cytochrome c oxidase
subunit I from diverse metazoan invertebrates. Molecular Marine Biology
and Biotechnology 3, 294–299.
Franceschi, N., Bauer, A., Bollache, L. and Rigaud, T. (2008). The
effects of parasite age and intensity on variability in acanthocephalan-
induced behavioural manipulation. International Journal for Parasitology
38, 1161–1170.
Franceschi, N., Cornet, S., Bollache, L., Dechaume-
Moncharmont, F.-X., Bauer, A., Motreuil, S. and Rigaud, T. (2010).
Variation between populations and local adaptation in acanthocephalan-
induced parasite manipulation. Evolution 64, 2417–2430.
Hall, S., Becker, C., Simonis, J. and Duffy, M. (2009). Friendly compe-
tition: evidence for a dilution effect among competitors in a planktonic
host-parasite system. Ecology 90, 791–801.
Jazdzewski, K. (1980). Range extensions of some gammaridean species in
European inland waters caused by human activity. Crustaceana (Suppl. 6),
84–107.
Johnson, P. T. J., Lund, P. J., Hartson, R. B. and Yoshino, T. P. (2009).
Community diversity reduces Schistosoma mansoni transmission, host
pathology and human infection risk. Proceedings of the Royal Society,
Series B, Biological Sciences 276, 1657–1663.
Kaldonski, N., Perrot-Minnot, M.-J. and Cézilly, F. (2007).
Differential influence of two acanthocephalan parasites on the antipredator
behaviour of their common intermediate host. Animal Behaviour 74,
1311–1317.
Kaldonski, N., Lagrue, C., Motreuil, S., Rigaud, T. and Bollache, L.
(2008). Habitat segregationmediates predation by the benthic fishCottus gobio
on the exotic amphipod species Gammarus roeseli. Naturwissenschaften 95,
839–844.
Kennedy, C. R. (2006). Ecology of the Acanthocephala. 1st Edn.
Cambridge University Press, New York.
Kopp, K. and Jokela, J. (2007). Resistant invaders can convey benefits to
native species. Oikos 116, 295–301.
Lafferty, K. D. (1992). Foraging on prey that are modified by parasites.
The American Naturalist 140, 854–867.
Lagrue, C., Kaldonski, N., Perrot-Minnot, M. J., Motreuil, S. and
Bollache, L. (2007). Modification of hosts’ behavior by a parasite: field
evidence for adaptive manipulation. Ecology 88, 2839–2847.
Lagrue, C., Wattier, R., Galipaud, M., Gauthey, Z., Rullmann, J.-P.,
Dubreuil, C., Rigaud, T. and Bollache, L. (2014). Confrontation
of cryptic diversity and mate discrimination within Gammarus pulex
and Gammarus fossarum species complexes. Freshwater Biology 59,
2555–2570.
Médoc, V., Rigaud, T., Motreuil, S., Perrot-Minnot, M.-J. and
Bollache, L. (2011). Paratenic hosts as regular transmission route in the
acanthocephalan Pomphorhynchus laevis: potential implications for food
webs. Naturwissenschaften 98, 825–825.
Moore, J. K. (1984). Altered behavioural responses in intermediate hosts –
An acanthocephalan parasite strategy. The American Naturalist 123,
572–577.
Moret, Y., Bollache, L., Wattier, R. and Rigaud, T. (2007). Is the host
or the parasite the most locally adapted in an amphipod-acanthocephalan
relationship? A case study in a biological invasion context. International
Journal for Parasitology 37, 637–644.
Perrot-Minnot, M.-J., Sanchez-Thirion, K. and Cézilly, F. (2014).
Multidimensionality in host manipulation mimicked by serotonin injec-
tion. Proceedings of the Royal Society, Series B, Biological Sciences 281,
20141915. doi:10.1098/rspb.2014.1915
Poulin, R. (2010). Parasitemanipulation ofhost behavior: anupdate and fre-
quently asked questions. InAdvances in the Study of Behavior (ed.Mitani, J.,
Brockmann, H. J., Roper, T., Naguib, M. and Wynne-Edwards, K.), pp.
151–186. Elsevier, Burlington. doi:10.1016/S0065-3454(10)41005-0

1593Identifying a key host in an acanthocephalan-amphipod system

https://doi.org/10.1017/S0031182015001067 Published online by Cambridge University Press

https://doi.org/10.1017/S0031182015001067


Rigaud, T. and Moret, Y. (2003). Differential phenoloxidase activity
between native and invasive gammarids infected by local acanthocephalans:
differential immunosuppression? Parasitology 127, 571–577.
Rigaud, T., Perrot-Minnot, M.-J. and Brown, M. J. F. (2010). Parasite
and host assemblages: embracing the reality will improve our knowledge
of parasite transmission and virulence. Proceedings of the Royal Society,
Series B, Biological Sciences 277, 3693–3702.
Rousset, F., Thomas, F., De Meeûs, T. and Renaud, F. (1996).
Inference of parasite-induced host mortality from distributions of parasite
loads. Ecology 77, 2203–2211.
Ruiz-González, M., Bryden, J., Moret, Y., Reber-Funk, C., Schmid-
Hempel, P. and Brown, M. J. F. (2012). Dynamic transmission, host
quality, and population structure in a multihost parasite of bumblebees.
Evolution 66, 3053–3066.
Streicker, D. G., Fenton, A. and Pedersen, A. B. (2013). Differential
sources of host species heterogeneity influence the transmission and
control of multihost parasites. Ecology Letters 16, 975–984.

Telfer, S., Bown, K. J., Sekules, R., Begon, M., Hayden, T. and
Birtles, R. (2005). Disruption of a host-parasite system following the
introduction of an exotic host species. Parasitology 130, 661–668.
Thomas, F., Adamo, S. and Moore, J. (2005). Parasitic manipulation:
where are we and where should we go? Behavioural Processes 68,
1851–1899.
Weinreich, F., Benesh, D. P. and Milinski, M. (2013). Suppression of
predation on the intermediate host by two trophically-transmitted parasites
when uninfective. Parasitology 140, 129–135.
Westram, A.M., Baumgartner, C., Keller, I. and Jokela, J. (2011a).
Are cryptic host species also cryptic to parasites? Host specificity and geo-
graphical distribution of acanthocephalan parasites infecting freshwater
Gammarus. Infection, Genetics and Evolution 11, 1083–1090.
Westram, A.M., Jokela, J., Baumgartner, C. and Keller, I. (2011b).
Spatial distribution of cryptic species diversity in European freshwater
Amphipods (Gammarus fossarum) as revealed by pyrosequencing. PLoS
ONE 6, 1–6.

1594A. Bauer and T. Rigaud

https://doi.org/10.1017/S0031182015001067 Published online by Cambridge University Press

https://doi.org/10.1017/S0031182015001067

	Identifying a key host in an acanthocephalan-amphipod system
	INTRODUCTION
	METHODS
	Amphipod collection and prevalence in the field
	Experimental infection
	Gammarid genotyping
	Statistical analyses

	RESULTS
	Genetic diversity among G. fossarum-like gammarids
	Natural infection: direct field prevalence vs field prevalence protected from predation
	Experimental infection

	DISCUSSION
	ACKNOWLEDGEMENTS
	FINANCIAL SUPPORT
	References


