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Metainduction over Unboundedly Many
Prediction Methods: A Reply to

Arnold and Sterkenburg
Gerhard Schurz*y

The universal optimality theorem formetainductionworks for epistemic agents facedwith
a choice among finitely many prediction methods. Eckhart Arnold and Tom Sterkenburg
objected that it breaks down for infinite or unboundedly growing sets of methods. In this
article the metainductive approach is defended against this challenge by extending the op-
timality theorem (i) to unboundedly growing sets of methods whose number grows less
than exponentially in time, (ii) to sequences of methods with an application to Goodman’s
problem, and (iii) to infinite sets of methods whose number of predictive equivalence
classes grows less than linearly in time.
1. Introduction. In Schurz (2008) a new account to the problem of induc-
tion has been developed that is based on the optimality of metainduction.
The account agrees with Hume’s skeptical insight that it is impossible to
demonstrate in a noncircular way that induction is reliable, in the sense of
being predictivelymore successful than random guessing. Amodern version
of Hume’s insight is the (in)famous no-free-lunch theorem (Wolpert 1996)
demonstrating that under a uniform prior distribution over possible worlds
all nonclairvoyant methods of prediction have the same expected success
(Schurz 2017).

Reichenbach (1949, sec. 91) argued that it is at least possible to demon-
strate a priori that induction is optimal, that is, is the best that we can do
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for the purpose of predictive success. Results in formal learning show, how-
ever, that it is not possible to demonstrate universal optimality at the level of
object induction, that is, of induction applied to the task of predicting events
(Kelly 1996, 263). In contrast, what the account of metainduction attempts
to show is that induction is optimal if it is applied at the metalevel of compet-
ing prediction methods (which comprise functions mapping observed input
information into a prediction of the next event). A metainductive strategy
tracks the success rate of all predictionmethods whose predictions are acces-
sible to the given epistemic agent and predicts an optimal weighted average
of the predictions of those methods that were most successful so far. Using
results in the theory of regret-based online learning (Cesa-Bianchi and Lu-
gosi 2006), Schurz (2008; andmore extensively in [2019], chaps. 6–7) proves
that there exists a particular weighting method, called attractivity weighting,
which grants the metainductivist a predictive long-run success rate at least
as high as that of every other accessible predictionmethod. Schurz and Thorn
(2016) call this kind of optimality access optimality. Within the short run, the
metainductivist may suffer a loss compared to the best method because her
choice ofmethods for future predictions is based on themethods’ past success
rates; thus, there is an unavoidable delay. However, attractivity-weighted
metainduction is designed in such away that this short-run loss has tight upper
bounds that quickly approximate zero if the number of roundsof theprediction
game exceeds the number of competing methods.

Note that by itself, this justification of metainduction does not entail
anything about the rationality of object-level induction. Which prediction
method is metainductively evaluated as optimal is relative to the given em-
pirical track record of the accessible methods and, thus, an a posteriori mat-
ter. It may well be that we live in a world in which a method different from
object induction is predictively superior. However, the a priori justification
of metainduction gives us the following a posteriori justification of object
induction: to the extent that so far object-inductive prediction methods were
more successful than all accessible noninductive (object-level) prediction
methods, we are metainductively justified to continue favoring object-inductive
prediction methods in the future. This argument is no longer circular be-
cause a noncircular justification of metainduction has been independently
established. In conclusion, the ‘full package’ of Schurz’ account has two
parts: (i) the analytic (or a priori) justification of metainduction and (ii) the
empirical (a posteriori) justification of object induction based on i. This is
nicely worked out by Sterkenburg (2019), although in some passages he
seems to consider this fact as a deficit, while I see it as a virtue. Since it is
impossible, by Hume’s skeptical insight, to demonstrate the superiority of ob-
ject induction (or of any other method) in an a priori manner, such a demon-
stration can only be given in an a posteriori manner, based on the a priori
justification of metainduction.
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Remarkably, the access optimality of metainduction holds in all possible
worlds, even in ‘chaotic’ worlds in which the event frequencies and success
rates do not converge against limits but are permanently changing in irregular
ways or in ‘paranormal’ worlds that host perfect clairvoyants or demonic de-
ceivers. In this sense, the optimality result is universal. Its only restriction is
the assumption that the class of accessible prediction methods is finite. Pre-
cisely this restriction is the point of the critique of Arnold (2010) and, more
recently, Sterkenburg (2019). Schurz (2008) justifies this restriction by the
fact that real agents have onlyfinitely bounded cognitive resources; thus, they
can have simultaneous access only to a finite set of prediction methods, the
so-called pool of candidate methods. Neither for Arnold nor for Sterkenburg
is this argument satisfactory.

Arnold emphasizes that since from a logical viewpoint there are infinitely
many methods, metainduction cannot establish absolute optimality but only
optimality relative to an empirically given pool of methods. This is surely
right and agrees with what is said in Schurz (2008): metainduction provides
a noncircular justification of the preference for one method against a finite
set of competitors. Without a solution to this basic problem, we would not
even be able to justify induction against a single competitor, such as coun-
terinduction, random guessing, or religious prophecy.

Sterkenburg respects the argument from cognitive finiteness, but he ob-
jects that there are infinitely many methods that could be selected for meta-
inductive evaluation, so the question remains to which finite pool of candi-
date methods metainduction should be applied? Sterkenburg suggests that
the answer to this problem should be the pool of methods that have been ac-
tually proposed for prediction. However, as Sterkenburg points out, new
methods may be invented and proposed in the midst of a prediction compe-
tition; thus, a dynamically expanding candidate pool is needed, to which my
account of metainduction does not apply. In this article I propose a solution
to this problem.

In the remainder of this article the metainductive approach is defended
against the challenges of Arnold and Sterkenburg as follows. In section 2,
the fundamental theorems about metainduction in the framework of predic-
tion games are briefly recapitulated. It is argued that the optimality result for
finitely many methods solves the most important part of the problem of in-
duction. In section 3 it is shown that the optimality theorem can be extended
to an unboundedly growing set of prediction methods, provided their num-
ber grows less than exponentially in time. The optimality result even extends
to all piecewise combinations of prediction methods, which provides an el-
egant solution to a variant of Goodman’s problem (sec. 4). Section 5 shows
how for cognitively infinite beings the metainductive optimality result can
even be extended to infinite sets of methods, provided the number of predic-
tive equivalence classes grows less than linearly in time.
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2. Metainduction over Finite Pools of Methods and Cognitive Finite-
ness. The account of metainduction is formally developed in the frame-
work of sequential prediction games. A prediction game is a pair ((e), P)
consisting of:

1. An infinite sequence (e) ≔ (e1, e2, :::) of events en coded by real num-
bers between 0 and 1, for example, a sequence of daily weather con-
ditions or stock values. Each time n corresponds to one round of the
game. The space of possible event values v1, v2, ... ∈Val is denoted by
Val ⊆ ½0, 1�, and en denotes the true event value at time n (thus,
‘en 5 vi’ says ‘the true event value at time n was vi’).

2. A finite set of prediction methods or playersP 5 fP1, ::: , Pm, MIg. In
what follows we identify ‘methods’ with ‘players’. In each round it is
the task of each player to predict the next event of the event sequence.
The metainductivist is signified by ‘MI’, and the other players are the
‘non-MI players’ or ‘candidate methods’. They may be real-life ex-
perts, computational algorithms, or even ‘clairvoyants’ who can see
the future in ‘paranormal’ possible worlds. Moreover, they may in-
clude independent methods (based on individual learning) as well
as other metamethods (basing their predictions on those of indepen-
dent methods). MI has simultaneous access to all non-MI methods,
which means that MI can monitor and score their predictions.

In real-valued games, the events need not be real-valued but may also be
binary (Val 5 f0, 1g); a characteristic of these games is that players are al-
lowed to predict real numbers, in the form of weighted averages of events
in Val, for example, 0:4 � v1 1 0:6 � v2. This is important for Bayesian predic-
tion games in which predictions are probability distributions over Val (Schurz
2019, sec. 7.1; Sterkenburg 2019, sec. 2.1). Thus, formally, the space of pos-
sible predictions Valpred may extend the event space: Val ⊆Valpred ⊆ ½0, 1�. In
contrast, in discrete prediction games this is forbidden; here, mixtures of
events are not possible, and Valpred 5 Val. Finally, note that all results about
prediction games transfer to action games, by equating choices of actions
with predictions about the action’s payoffs (Schurz 2019, sec. 7.5).

The predictive success of a method P is evaluated in terms of the fol-
lowing notions: (i) predn(P) is the prediction of player P for time n de-
livered at time n 2 1, (ii) the deviation of the prediction predn from the
event en is measured by a normalized loss function, loss(predn, en) ∈ ½0, 1�,
(iii) score(predn, en)5def 1 2 loss(predn, en) is the score obtained by predic-
tion predn of event en, (iv) Sucn(P)5def∑1≤i≤nscore(predi(P), ei) is the abso-
lute success achieved by player P until time n, (v) sucn(P)5def Sucn(P)=n
is the success rate of player P at time n, and (vi) maxsucn 5def the maximal
success rate of all players at time n.
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The natural (or absolute) loss function is defined as Fpredn 2 enF. The
optimality theorem for real-valued games holds for all convex loss functions,
which means that the loss of a weighted average of two predictions is not
greater than the weighted average of the losses of two predictions. Convex
loss functions comprise a large variety including all linear, polynomial, or
exponential functions of the natural loss function. The optimality theorem
for discrete prediction games with randomized or collective metainduction
holds even for all loss functions, though on some additional costs.

The simplest metainductive strategy is called ‘Imitate the best’ and pre-
dicts what the currently best non-MI player predicts. It is easy to see that this
metainductive method cannot be universally access optimal: its success rate
breaks down when it plays against non-MI methods that are deceivers, which
means that they lower their success rate as soon as their predictions are imi-
tated by the metainductivist (Schurz 2008, sec. 4). Nevertheless, there exists
a metainductive strategy that is provably universally optimal. This strategy is
called attractivity-weighted metainduction, abbreviated as wMI, and is de-
fined as follows:
7 Publ
Definition 1. The predictions of attractivity-weighted metainduction, ab-
breviated as wMI, are defined as

predn11 wMIð Þ5def
o1≤i≤mwn(Pi) � predn11(Pi)

o1≤i≤mwn(Pi)
,

where the weight of method P at time n, wn(P), is a positive monotone
function of the difference between P’s success and wMI’s success at time
n. This difference is called P’s attractivity for wMI at time n, defined as
follows: Atn(P) 5 Sucn(P) 2 Sucn(wMI) is P’s absolute attractivity (for
wMI) at time n, and atn(P) 5 sucn(P) 2 sucn(wMI) is P’s attractivity rate
at time n.
P’s attractivity for wMI is also called wMI’s regret in comparison with P, and
attractivity-weighted metainduction is a case of regret-based learning.
Attractivity-based weights can be defined in different ways. Schurz (2008,
sec. 7) used a simple definition that identified the methods’ weights with
the positive part of attractivity rates: wn(P) 5 max(atn(P), 0). This method
grants long-run optimality but does not yield the best short-run bounds
one can achieve. This article uses the exponential version of attractivity-
weighted metainduction, abbreviated as eMI, whose weights are defined
as exponentials of absolute attractivities:
Definition 2. wn(P)5def eh�Atn(P), with h 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 � ln(m)=(n 1 1)

p
.
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With these weights, the following optimality theorem can be proved:1
1. Se
and L
boun
pend

86/7115
Theorem 1 (short-run regret and universal access optimality of eMI). For
every real-valued prediction game ((e){P1, ..., Pm, eMI}) with convex loss
function,
e Sch
ugo
d
p

s is f

87 Pu
1.1. Short run: maxsucn2 sucn(eMI) ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � ln(m)=n

p
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln(m)=8 � n2

p
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � ln(m)=n

p � ½1 1 (1=4 � ffiffiffi
n

p
)� ≤ 1:78 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln(m)=n
p

.
1.2. Long run: lim supn→∞(maxsucn 2 sucn(eMI)) ≤ 0.
Compared to the regret bound
ffiffiffiffiffiffiffiffiffi
m=n

p
obtained with the simple weight def-

inition used in Schurz (2008, sec. 7), the bound of theorem 1 has log(m) in
place of m, which is a significant improvement. Different from the simple
weight definition, eMI does not disregard players with negative attrac-
tivities, but since exponential weights with negative attractivities decrease
exponentially with increasing n, eMI ‘gradually forgets’ nonattractive non-
MI players.

By using the logarithmic loss function that is preferred by Sterkenburg
(2019, sec. 2.1), one obtains the even tighter bound of the metainductive
regret of ln(m)/n (Cesa-Bianchi and Lugosi 2006, theorem 3.2 and propo-
sition 3.1). However, the logarithmic loss function has rather special fea-
tures: it tends to ignore small deviations between prediction and event
but grows over all bounds if the absolute deviation converges to 1. For this
reason we do not confine the central theorems to this loss function but state
theorems holding for classes of loss functions as broad as possible.

Theorem 1 does not directly apply to discrete prediction games in which
Valpred 5 Val 5 fv1, ::: , vqg must hold (thus, if the events are binary, the
predictions must be binary, too). There are two methods by which the op-
timality result of theorem 1 can be transferred to discrete prediction games.

Method 1: Randomization, rMI (Cesa-Bianchi and Lugosi 2006,
sec. 4.1).—Here rMI predicts each possible event value vr ∈ Val with a prob-
ability P equaling the weight sum of those non-MI players who predict this
value:
Definition 3.

P predn11 rMIð Þ 5 vrð Þ 5 o wn(Pj) : predn11(Pj) 5 vr, 1 ≤ j ≤ mf g
o wn(Pj) : 1 ≤ j ≤ mf g :
urz (2019, app. 12.24); the proof is based on theorems 2.2 and 2.3 of Cesa-Bianchi
si (2006) and holds for arbitrary prediction horizons. A simpler proof of theffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � ln(m)=h with a fixed prediction horizon h on which the weight definition de-
ound in Shalev-Shwartz and Ben-David (2014, 253–54, theorem 21.11).
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The optimality theorem for rMI is defined in terms of rMI’s cumulative ex-
pected success rate, sucn(rMI), which is the sum of the probabilistically
expected scores of rMI until time n, divided by n. Or formally,
7 Publ
Definition 4. sucn(rMI)5def (1=n) � o1≤i≤nExp(scorei(rMI)), with
Exp(scorei(rMI))5def o1≤r≤qP(predi(rMI) 5 vr) � loss(vr, ei)).
Let beMI
n be the regret bound for eMI in stated in theorem 1. Then we obtain

(see Schurz 2019, app. 12.25):
Theorem 2 (universal access optimality of rMI). For every discrete pre-
diction game ((e),{P1, ... , Pm, rMI}) with a randomized metainductivist
rMI who satisfies the following probabilistic independence assumption
ished o
(PIA)
P(predn11(rMI)jen11, Inputn(rMI)) 5 P(predn11(rMI)jInputn(rMI)),
where Inputn(rMI) 5 f(predn11(Pj), wn(Pj)) : 1 ≤ j ≤ mg,
the following statements hold:
2.1. maxsucn 2 sucn(rMI) ≤ beMI
n .

2.2. lim supn→∞(maxsucn 2 sucn(rMI)) ≤ 0.
Theorem 2 applies to all discrete prediction games with an arbitrary loss
function over Val � Val, as the values of Val need not have any numerical
structure. The proof of theorem 2 rests on the observation that even if the
loss function of a discrete prediction game is arbitrary, the expected loss
of rMI’s prediction probabilities, loss(P(predn), en), is linear and thus convex
in the argument P(predn). Therefore, the proof of theorem 1 can be transferred
from eMI to rMI.

A substantial restriction of theorem 2 is the probabilistic independence
assumption (PIA). It requires that rMI’s random choice of prediction is in-
dependent of the predicted event conditional on the input information of
rMI’s algorithm. This excludes the possibility that the environment reacts
‘demonically’ to eMI’s choice of prediction, in the sense of displaying the
opposite event of rMI’s predictions (Cesa-Bianchi and Lugosi 2006, 68).
Since for a solution to Hume’s problem this restriction is inacceptable, Schurz
(2008, sec. 8) introduced an alternative solution for discrete prediction games
that works without this restriction and is truly access universal, namely, col-
lective metainduction.

Method 2: Collective metainduction, cMI.—Here a collective of meta-
inductivists approximates the predictive probabilities of rMI by the frequen-
cies of their discrete predictions as close as possible, with the result that
nline by Cambridge University Press
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their average predictive success rate, denoted as dsucn(cMI), is guaran-
teed to be approximately access optimal. Assume there are k collective
metainductivists, abbreviated as cMI1, ... , cMIk. With a slight variation of
the rounding method described in section 6.7.2 of Schurz (2019), the fol-
lowing optimality theorem can be proved:2
2. In
lines
(resp
in lin

3. M
regre

86/7115
Theorem 3 (universal access optimality of cMI). For every discrete pre-
diction game with k collective metainductivists ((en), {P1, ... , Pm, cMI1, ... ,
cMIk}) and q discrete event values:
the
8, 1
. “1”
es 1

any
ssion

87 Pu
3.1. maxsucn 2 sucn(cMI) ≤ beMI
n 1 (q 2 1)=(2 � k).

3.2. lim supn→∞(maxsucn 2 sucn(cMI)) ≤ (q 2 1)=(2 � k).
One might object that theorem 3 grants access optimality only for the aver-
age success of the metainductive collective but not to every individual
metainductivist. However, if the cMI’s form a cooperative collective and
share their success equally, then every individual cMI is guaranteed to earn
cMI’s mean success and, thus, to be access optimal. In this way the game-
theoretic requirement of cooperation achieves fundamental importance for a
problem of epistemological justification.

Let us finally point out that theorems 1–3 assert the (access) optimality of
eMI (or rMI or cMI) but not its (access) dominance in the sense that eMI
beats every alternative method M* in at least one prediction game. There
exist different variants of attractivity-based metainduction that are likewise
optimal. Thus, no particular version of metainduction can be universally
dominant. However, a variety of restricted dominance theorems can be
proved. For example, eMI dominates all independent methods and all
metamethods that are not access optimal.3 These dominance results provide
a partial solution to Wolpert’s no-free-lunch theorem (Schurz 2017; Schurz
and Thorn 2017).

This article, however, is focused on the optimality of eMI and its defense
against Arnold’s and Sterkenburg’s challenge of infinitely many methods.
To model such a situation, we abbreviate the set of non-MI methods as
P; thus, P 5 P [ fMIg, where P may be infinite and MI is some kind
of metainductivist. It is easy to see that no kind of metastrategy, however
it is defined, can be universally optimal if it is confronted with an at least
countably infinite pool of candidate methods. Assuming a finite value space
proof on p. 154 of Schurz (2019), we simply have to replace “1” by “0.5” in
1, 12, and 17. In the continuation of this proof on p. 334, we replace “one”
) by “0.5” in lines 5 and 6, “≤ 1” by “≤ 0.5” in line 7, and “1/k” by “1/2 k”
5 and 17.

well-known metamethods fail to be access optimal, e.g., take-the-best, linear
or success-based weighting (Schurz 2019, sec. 8.3.1–2).

blished online by Cambridge University Press

https://doi.org/10.1086/711587


328 GERHARD SCHURZ

https://doi.org/10.1086/71158
Val 5 fv1, ::: , vqg with v1 5 0 < v2 < ::: < vq 5 1 and natural loss, we
can demonstrate this by a slight extension of the counterexample of Arnold
(2010, 588–89). In the first round of the prediction game, P is split into q
disjoint subsets P1,i (1 ≤ i ≤ q) of infinite cardinality, where all players in
P1,i predict event value vi. In each of the following rounds n > 1, the infinite
subset of players that predicted correctly is again split into q infinite disjoint
subsets Pn,i (1 ≤ i ≤ q), where all players in Pn,i predict event value vi. It
follows that at every time n there remains an infinite subset of players that
have a perfect success rate of 1, independently of the chosen event sequence.
Yet, by choosing an MI-‘demonic’ event sequence satisfying en 5 1 if
predn(MI) < 0:5 (else en 5 0), the metainductivist’s success rate is driven
down to 0.5 or lower. A slight modification of this proof applies to an infi-
nite value space.4

In conclusion, a metastrategy that is universally access optimal among
infinitely many prediction methods is impossible. Let us now investigate
the philosophical relevance of this problem. Its relevance may be doubted
in the light of the following fact:
4. If
finite
an in
subin
be in
cess

5. Th
gorith
the la
Thom
fined
comp

7 Publ
Fact of cognitive finiteness (FCF). All real epistemic agents (whether hu-
man or nonhuman) have finitely bounded computational powers. Thus,
they can have simultaneous access only to finite candidate sets whose suc-
cess evaluation remains within a given complexity bound.
Mathematicians often argue that humans can represent infinite sets. But if
they do this, they represent infinities by finite strings of symbols that do
not exceed a certain complexity bound. Let us denote this complexity bound
as ‘b’. FCF entails that real agents can have simultaneous access only to a
finite class P of candidate methods, whose success evaluation for a given
data stream (i.e., computing Sucn(P) for all P ∈ P) does not exceed their
complexity bound b.5 Of course, the size of b is an empirical fact, depending
on the stage of technical development.
Val is countably infinite, the same proof applies, since q can be partitioned into in-
ly many subsets of infinite cardinality (e.g., into {fmn : n > 1g : m ∈ q}). If Val is
terval, ½a, b� ⊆ ½0, 1�, then we partition it (for a small ε > 0) into q5def (b 2 a)=ε
tervals of ‘finest accuracy’ ε. Then (assuming a proper loss function) there will
every round one subset of players with a success rate of ≥ 12 ε while MI’s suc-
rate is ≤ 0.5.

e notion of complexity of a method M, K(M), is understood in the sense of the al-
mic or Kolmogorov complexity (K): K(M) is the length of the shortest program in
nguage of a universal computer that produces a description of M (Cover and
as 1991, chap. 7). The complexity of a computation performed by M can be de-
as K(M) plus the maximal length of temporarily stored descriptions during the
utation.
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It seems to follow that for a real agent the a priori justification of meta-
induction remains intact: the best that she can do is to apply attractivity
weighting to the finite pool of candidate methods that are simultaneously ac-
cessible to her. However, there arises a successor problem: that of selecting
one’s candidate set. The problem stems from the fact that there are many
more methods that a b-bounded cognitive agent can access individually than
she can access and evaluate simultaneously. Thus, a selection is needed, as in
the Olympic games in which not all but only a limited number of top athletes
may participate. I call this the problem of selecting one’s candidate set. The
problem achieves significant importance at the intersubjective level, when
metainductive methods are used as a rational means of resolving disagree-
ments between adherents of radically different ‘epistemic cultures’. Meta-
induction will fail to achieve this goal if members of different cultures choose
different candidate sets.

One may respond that in order to arrive at an intersubjective consensus
one should simply apply metainduction to the union of all candidate sets of
the disagreeing persons or parties. In most practical cases, this strategy will
be feasible. Yet the situation may arise that more methods are proposed than
can be simultaneously compared within a prediction game. In this situation a
selection is needed. The theoretical need of selection mechanisms is obvious
from the fact that one may define not only reasonable but also arbitrarily bi-
zarre methods, including the infamous Goodman-type methods that will be
treated in section 4. Moreover, as Sterkenburg (2019) points out, the develop-
ment of methods is a historical process: new methods may be invented and
proposed ‘on the fly’, in the midst of a prediction competition. Thus, we need
an extension of the metainductive approach to prediction games with dynam-
ically expanding candidate sets.

If we had an extension of the metainductive account to an expanding
candidate set of proposed methods, we could use it for a solution to the
problem of an unmanageably large candidate set by the following strategy:
we ignore the class of methods of lowest attractivity whose weight sum is ε.
This will change the metainductive predictions and success rate only mar-
ginally, by a small additional loss term whose worst case size depends on ε
and the loss function. Since typically most methods in a hyperlarge candidate
set P are unsuccessful, this will reduce the size of the hitherto candidate set
significantly and give room for adding new so far unexplored methods to
the candidate set. Since the metainductive account avoids inductive a priori
assumptions, the historical backlog of unsuccessful methods should not be
ignored forever; periodically these methods should be given a new chance
by adding them again to the candidate pool. In this way, an extension of
metainduction to an expanding candidate set would allow an elegant han-
dling of the problem of selecting a candidate set. In the next section I pro-
pose such an extension.
86/711587 Published online by Cambridge University Press
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3. Metainduction over Unboundedly Growing Sets of Players. Predic-
tion games with unboundedly growing numbers of players have the form
((e), P(n) [ fMIg), whereP(n)5def fP1, ::: , Pm(n)g is a set of non-MI players
increasing with time and m(n) is the number of non-MI players at time n. The
growth function m(n) never decreases and increases unboundedly with n→
∞, although it need not increase at every time step. We assume that each non-
MI player P predicts persistently after the first time at which P was added to
P(n); we call this time P’s entrance time and denote it as t(P).

We cannot directly apply the results of theorems 1–3 because these the-
orems presuppose that the success of all non-MI players—including those
added at later times of the game—is evaluated right from the start. Therefore,
all plausible methods of embedding new players into a prediction game’s
success evaluation have to assume some way of attributing a default success
to the new players before they were participating in the game, that is, default
values Suct(P)(P) and suct(P)(P) 5 Suct(P)(P)=t(P) for the given event sequence
e1, ... , et(P).Without an attribution of past default successes, it is impossible to
establish access optimality, because the future may give the new players an
unproportional advantage. As an example, suppose the present time is 1,100
and at time n 5 1, 000 a couple of new players have been added, and assume
that for all players predictive success was much harder to attain in the first
1,000 rounds than in the last 100 rounds. In that case, the ‘lucky’ new players
have the advantage of only being evaluated in the easy part of the game, and
eMI’s success as evaluated from t 5 0 will be much lower than the success
of lucky new players. As time goes on, the ‘lucky advantage’ of the new
players will diminish, but with unboundedly growing player sets this situa-
tion may recur at any time when a new player enters. Thus, metainduction
over expanding sets of players cannot be universally access optimal without
some method of attributing default past success.

Let Sucnjt(P)5def ot(P)<i≤nscore(P, ei) be the actual absolute success player P ac-
quired since P was participating in the game, and likewise for sucnjt(P)(P) 5
Sucnjt(P)(P)=(n 2 t(P)). Then P’s success evaluation uses the success measure
Sucn(P) 5 Suct(P)(P) 1 Sucnjt(P)(P) and sucn(P) 5 Sucn(P)=n.The question is,
which default success shouldwe attribute to a new player?One possibility would
be to attribute to a new player P the average success of a random guess. But since
one’s candidate methods are typically much better than random guesses, this
would amount to a strong negative prejudice against newly added players: by
default their hypothetical success, had they participated from the start, is con-
jectured to be low. We need a better and unbiased method of attributing a de-
fault success to new players. A better method, first implemented by Chernov
and Vovk (2009), consists in attributing to a new player by default the same
track record as themetainductivist.We call this themethod of self-completion.

Let eMIg denote the version of strategy eMI applied to growing sets of
methods (and likewise for rMIg and cMIg). The method of self-completion
7 Published online by Cambridge University Press
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is philosophically satisfying because it guarantees that the new player P has a
nonnegligible weight at its entrance time t(P) (since eMIg’s success is typi-
cally close to the success of the best player). If P predicts better than the other
players, eMIg will quickly recognize this by increasing P’s weight. The price
coming with this advantage is that if a new player P predicts badly, eMIg
needs some time to degrade P’s weight. But we think this price is worth its
cost. The technical advantage of the method of self-completion is that by set-
ting the default prediction and score of an absent player P equal to that of the
metainductivist, it follows that the hypothetical inclusion of P’s default pre-
dictions in eMIg’s weighted average prediction would not change eMIg’s pre-
diction, which is de facto only based on the actually present players. Summa-
rizing, the weights of eMIg are defined as follows:
6. M
sibly

86/7115
Definition 5 (default evaluation and weighting method of eMIg [rMIg, cMIg]).
ourta
non

87 Pu
For every player P:

5.1.1. For eMIg, predn(P) 5 predn(eMIg) for all times n ≤ t(P); thus,
scoren(P) 5 scoren(eMIg) for all n ≤ t(P), and Suct(P)(P) 5
Suct(P)(eMIg).

5.1.2. For rMIg and cMIg, P(predn(P) 5 x) 5 P(predn(rMIg) 5 x)
for n ≤ t(P); thus, scoren(P) 5 scoren(P) 5 scoren(rMIg), and
Suct(P)(P) 5 Suct(P)(P) 5 Suct(P)(rMIg) (i.e., absent players are
default evaluated like randomizing players).

The metainductive algorithm is applied only to present players. The
other notions are defined as before.
5.1.
da a
unifo

blish
5.2.
With these assumptions we can prove the following result:
Theorem 4 (access optimality of eMIg, rMIg, and cMIg for growing player
sets).6 Let xMIg be one of eMIg, rMIg, and cMIg (thus x varies over {e, r,
c}) and bxMIg

n be the regret bound of xMI established in theorems 1–3, but
with ‘m’ replaced by the growth function ‘m(n)’. Then:
For every prediction game ((e), {P1, ... , Pm(n), xMIg}), (a) maxsucn2
sucn(eMIg) ≤ beMIg

n , (b) maxsucn 2 sucn(rMIg) ≤ brMIg
n , and (c)

maxsucn 2 dsucn(cMIg) ≤ bcMIg
n .

If m(n) grows slower than exponentially with n, that is, limn→∞

m(n)=en 5 0, then (a) lim supn→∞(maxsucn2sucn(eMIg)) ≤ 0,
4.1.

4.2.
nd Maillard (2017, 7) develop a variant of this algorithm based on a pos-
rm prior distribution and using an exp-concave loss function.
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(b) lim supn→∞(maxsucn 2 sucn(rMIg)) ≤ 0, and (c) lim supn→∞

(maxsucn 2 dsucn(cMIg)) ≤ (q 2 1)=(2 � k).
Proof. We first consider eMIg. We choose a variable time horizon n and de-
note by eMIg* the virtualmetainductivemethod that applies themethod eMIg
to all players in P(n) from the start, attributing predictions to absent players
by the self-completion method. The players present at time t ≤ n are P1, ... ,
Pm(t), and Pt11, ... , Pm(n) are the players absent at time t; wt(Pi) is the weight of
player i at time t (which for absent players, as we will see, need not be
known). We abbreviate as follows: Wpres,t 5 o1≤i≤m(t)wt(Pi) is the weight
sum of players present at t, attributed by eMI*g ; Wabs,t 5 om(t)<i≤m(n)wt(Pi) is
the weight sum of players absent at t; and wpres,t 5Wpres,t=(Wpres,t 1 Wabs,t)
and wabs,t 5 Wabs,t=(Wpres,t 1 Wabs,t) are the relative weights of the classes
of present and absent players at time t, respectively.
We now prove that suct(eMI*g ) 5 suct(eMIg), by showing that

predt(eMI*g ) 5 predt(eMIg) holds for all t ≤ n. We have

predt11 eMI*g
� �

5 o1≤i≤m tð Þwt Pið Þ � predt11 Pið Þ 1om tð Þ<i≤m nð Þwt Pið Þ � predt11 Pið Þ
Wpres,t 1 Wabs,t

5 o1≤i≤m tð Þwt Pið Þ � predt11 Pið Þ
Wpres,t

� wpres,t 1 predt11 eMI*g
� � � wabs,t

5 predt11 eMIgð Þ � wpres,t 1 predt11 eMI*g
� � � wabs,t:

(1)

Since wpres,t 1 wabs,t 5 1, equation (1) has the mathematical form y 5
x � w 1 y � (1 2 w), whose only nontrivial solution is y 5 x; that is,
predt(eMIg) 5 predt(eMI*g ). Thus, eMIg predicts identically to eMIg*. So
we can apply theorem 1 to eMIg*, which proves theorem 4 for eMIg.To prove
theorem 4 for rMIg (and likewise for cMIg), we identify the absent players’
default weights with the probabilities of rMIg’s predictions. Thus, instead
of equation (1) we have, abbreviating ‘predt11(rMI*g )5x’ as ‘pred*t115x’,

P pred*t11 5 x
� �
5

∑ wt Pið Þ : 1 ≤ i ≤ m tð Þ, predt11 Pið Þ 5 xf g 1 Wabs,t � P pred*t11 5 x
� �

Wpres,t 1 Wabs,t

where Wabs,t 5 m nð Þ 2 m tð Þð Þ
5 P predt11 rMIgð Þ 5 xð Þ � wpres,t 1 P pred*t11 5 x

� � � wabs,t,

which implies P(predt11(rMIg) 5 x) 5 P(pred*t11 5 x), as above. QED
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4. A Solution to Goodman’s Problem for Prediction Methods. Asmen-
tioned in section 2, the ‘hard side’ of the selection problem consists in
the fact that one may propose arbitrary bizarre ‘methods’, including the in-
famous Goodman-type methods. In Goodman’s (1946) original example, the
projection of the complex predicate ‘grue’ over emeralds’ amounts to the in-
ductive projection of their observed color green until a future time point k and
the counterinductive prediction of their color being blue after time k.7 Apply-
ing this idea to methods, a Goodman method Gk with switch point k predicts
by an object-inductive method M until time k, and afterward it predicts the
opposite of M (i.e., 1 2 pred(M)). Generalizing this idea, the class of Good-
man combinations over a given class of base methods {M1, ..., Mm} consists
in all arbitrary concatenations of these base methods along the discrete time:
‘between time 1 and n1 applyMi1 , between time n1 1 1 and n2 applyMi2’, and
so on. Since the number of Goodman methods increases exponentially with
time and the number of admissible switches, it is impossible to include all
of them in the candidate set, because by theorem 4P has to grow slower than
exponentially in time. Nevertheless, there is an elegant solution to this prob-
lem, based on results in online learning about player sequences. I explain this
solution for the metainductive strategy eMI in real-valued prediction games.

Let the variable sn,k range over player sequences of length n over a given
set of base players (or methods, experts) {P1, ... , Pm} with at most k (≤n)
switches between players. Thus, sn 5 (Pi0 , ::: , Pin21

) ∈ fP1, ::: , Pmgn such
that Pir ≠ Pir11

holds for at most k distinct r’s. These player sequences are
now treated as ‘complex players’. The prediction and score of a player se-
quence sn,k for a time t 1 1 ≤ n is identified with the prediction and score
of its player at time t, Pit . The metainductivist’s regret is defined with respect
to the success rates of all player sequences of length n in a given set Sk

n of
such sequences. Since the number of all possible player sequences grows
with n, metainduction applied to player sequences is a variant of metainduc-
tion with unboundedly growing player sets, with the advantage that all player
sequences reach backward toward time 0 and are success evaluable from the
start. The application of metainduction to a set of possible sequences Sk

n of
length n is straightforward: the regret bounds are obtained by inserting the
number of these sequences FSk

nF for the time-dependent number m(n) in
the regret bounds of theorem 4. The only problem is that the set of all possible
player sequences grows exponentially with n and k and is, thus, unfeasible.
7. Goodman showed that by a linguistic redefinition of the primitive symbols of one’s
language one may translate a positional predicate that refers to a location in time into a
simple qualitative predicate and vice versa. The search for a language-independent dis-
tinction between qualitative and positional predicates is a separate problem for which
solutions are possible (Schurz 2019, sec. 4.2). Here we focus on the selection problem
for candidate methods described in a language with a given distinction between quali-
tative and positional predicates.
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Fortunately, there exists a version of the metainductive algorithm that only
tracks the base players and is yet access optimal with respect to all player
sequences in Sk

n: the fixed share variant of eMI, abbreviated as feMI. The
feMI algorithm is defined as follows, where H(x) 5 2x � ln(x) 2 (1 2 x) �
ln(1 2 x) denotes x’s binary entropy:
8. A

7 Publ
Definition 6 (weighting method of feMI [fixed share eMI]). The un-
normalized weight wn(Pi) of player Pi at time n is given as wn(Pi) 5
a � (W0

n=m)1 (1 2 a) � w0
n(Pi), with w0

n(Pi) 5 eh�An(Pi), W0
n 5 o1≤j≤mw0

n(Pj),
a ∈ ½0, 1�, the constants set to

h 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 � (k 1 1) � ln(m)

n
1 (n 2 1) � H( k

n 2 1
)

r
,

and for k > 0, a 5 k/(n 2 1); k 5 0, a 5 0.
The weights w0
n(Pi) are eMI’s standard weights; feMI adds to them a uni-

formly distributed a-share that guarantees the weight of all base players
stays above some minimal level, and feMI can access the best player sequence.
Remarkably, feMI has provably the same upper regret bound as eMI applied
to the exponentially many player sequences in Sk

n (Cesa-Bianchi and Lugosi
2006, 103–4, theorem 5.1). Thus, feMI achieves a kind of access superoptim-
ality: it tracks only base players but is access optimal for all sequences of them
with a bounded number of switches.

When applying the strategy feMI to the problem of Goodman methods,
we are interested in feMI’s regret in regard to combinations of methods that
reach into the future, that is, much later than the present time n. Let f > n be
an arbitrary future time. It is easy to see that Sk

n (the set of length-n sequences
with at most k switches) equals Sk

f ↑ n, that is, the set of initial subsequences
of sequences in Sk

f of length n. Since the success rate of a sequence sf,k
(reaching to future time f ) at time n depends only on sf,k’s initial subsequence
until time n, feMI’s regret bound also holds for all player sequences of length
greater than n, provided the maximal number of their switches is still equal
to k. In a final extension we allow also m (the number of base players) and
k (the number of allowed switches) to grow with n; that is, m 5 m(n) and
k 5 k(n). The resulting strategy feMIg (feMI over growing base sets) is
characterized by the following theorem:
Theorem 5 (access superoptimality of fxMIg over sequences of methods).8

For every prediction game ((e), {P1, ... , Pm(n), feMIg}), where Sk(n)
≥n denotes

the set of all admissible player sequences of length ≥ n with at most k(n)
switches,
similar result is obtained by Mourtada and Maillard (2017, 5).
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maxsucn(Sk(n)
≥n ) 2 sucn(feMIg) ≤ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � (k(n) 1 1) � ln(m(n))

n
1 H

k(n)

n 2 1

� �s
� 1 1

1

4 � ffiffiffi
n

p
� �

:

feMIg is access optimal over Sk(n)
≥n if k(n) ⋅ ln m(n) grows slower than

linearly with n.
Results 5.1 and 5.2 apply to frMIg (with ‘sucn’ replacing ‘sucn’) and
to crMIg (with ‘dsucn’ replacing ‘sucn’ and adding the regret term
(q 2 1)=(2 � k)).
5.1.

5.2.
Proof. Result 5.1 follows from theorem 5.1 and corollary 5.1 of Cesa-
Bianchi and Lugosi (2006, 105). The bound for feMIg is obtained from the
bound for the number M of sequences in Sk

n, M ≤ mk11 � e(n21)�m�H(k=(n21))

(2006, 101), by replacing ‘m’ in theorem 1 by this bound and outfactoring
(1 1 ½1=(4 � ffiffiffi

n
p

)�). Note that Cesa-Bianchi and Lugosi’s m is our k(n), and
their N our m(n). While Cesa-Bianchi and Lugosi insert the upper M bound
into their result for a variant of eMI with a fixed prediction horizon, we in-
sert it into eMI’s bound stated in theorem 1, which gives result 1 of theo-
rem 5; moreover, we state our bound in terms of regret rates by dividing
through n. Result 5.2 follows, since if limn→∞k(n) � ln m(n)=n 5 0, the ex-
pression under the square root in 5.2 converges to zero for n→ 0. Result 5.3
is an obvious consequence. QED
Theorem 5 offers a beautiful solution to Goodman’s problem for prediction
methods. It entails that feMIg is access optimal in regard to all Goodman-
type combinations over a fixed set of m basic prediction methods whose
switch number k(n) grows sublinearly with n. If m is allowed to grow, the
sublinear growth condition applies to the product k(n) � ln(m).
5. Metainduction over Infinite Sets of Players. In this section we show
how our results can be extended to prediction games with infinite sets of can-
didate methods, under the counterfactual assumption that the metainduc-
tivist has infinite cognitive powers allowing him to simultaneously access
an infinite pool of methodsP. There are two ways of generalizing the notion
of a weighted sum o1≤i≤mwn(Pi) � sucn(Pi) to an infinite class of players P.
One way is explained in section 4.2 of Sterkenburg (2019); this method is
restricted to a countably infiniteP 5 fP i : i ∈ qg and assigns a countably ad-
ditive prior weight function w0(Pi) to all Pi (i ∈ q). Thus,oi∈qw0(Pi) 5 1, and
wn(Pi) 5 w0(Pi) � eh�Atn(P) (recall definition 2). The problem with this method,
as explained in section 4.2 of Sterkenburg (2019), is that it fails to achieve
access optimality, because on reasons of mathematical necessity w0(Pi) must
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decrease rapidly with increasing n, implying that at any time n of the predic-
tion game therewill be k such that theweight sumof all players with index≥ k
will still be negligibly small, so that eMI’s success rate cannot approximate
the maximal success rate of all players (although it can approximate the suc-
cess rate of every individual player, but not simultaneously).

In this section we propose a different method that generalizes eMI to ar-
bitrary infinite classes P that is based on splitting the infinite set P at any
given time point n into a finite partition P1, ... , Pm(n) of predictive equiva-
lence classes; thus, each player in Pi (1 ≤ i ≤ m(n)) has delivered the same
predictions and has the same success up to time n. The assumption of finitely
many predictive equivalence classes is strictly justified only for finite predic-
tive value spaces: if jValpredj 5 c, then in round n there are at most cn predic-
tive equivalence classes. For real-valued predictions Valpred is not finite.
However, we assume that every cognitive representation of a real number r
has a maximal accuracy interval, a, by which r is approximated. Given a,
there are only c5def 1=a possible distinct events and predictions and, thus,
at most cn predictive equivalence classes in round n.

At any time n we identify every equivalence class Pi with one virtual
player and let the sum in the definition of predn11(eMI) run over the elements
of {P1, ... ,Pm(n)}.We denote the version of eMI that applies the definition of
attractivities and weights to the finitely many predictive equivalence classes
of an infinite P as eMIinf. Since m(n) is a nondecreasing function of n and in
each new round new ‘splittings’ of equivalence classes may occur (i.e., hith-
erto equivalently predicting players may predict differently), eMIinf looks
like a version of eMI for growing player sets. However, we cannot apply
the method of attributing a default success, because all new equivalence
classes that arise from a splitting of the same old equivalence classes share
their actual success history. We can only reduce an infinite eMIinf-prediction
game to a success-equivalent game with an ordinary eMI metainductivist,
for a given time point n, if we assume that there are as many individual
players already at the start as predictive equivalence classes of players have
been formed until round n in the infinite eMIinf game. In what follows, let
m(n) be a function of n that returns the number of equivalence classes (vir-
tual players) P1(n), ... , Pm(n)(n) that emerged by round n. Let P1, ... , Pm(n) be
the corresponding ordinary players in the corresponding eMI game. Each ordi-
nary player Pi corresponds to one branch of the tree of branching equivalence
classes until time n. Thus, in each earlier round t < n with fewer equivalence
classes P1(t), ... , Pm(t)(t), m(t) < m(n), some of the equivalence classes cor-
respond to more than one player of the eMI game with m(n) players. This
implies that eMI will assign different weights to the predictions of the
players corresponding to one equivalence class than the weights assigned
by eMIinf to these predictions, except when in every round each equivalence
class corresponds to the same number of players in the eMI game. If this is
7 Published online by Cambridge University Press
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the case, we speak of a symmetric splitting process: in such a process, at
any time point t at which a split occurs, every cell of the partition
P1(t 2 1), ::: ,Pm(t21)(t 2 1) produced until time t 2 1 splits into the same
number of new cells. In a symmetric split process, the predictions of eMIinf
and that of eMI are identical in every round, since if p(t) is the number of
players that each equivalence class contains at time t ≤ n, the following
equation holds:

predt11 eMIinfð Þ 5
o

1≤i≤m tð Þ
wt(P i) � predt11(P i)

o
1≤i≤m tð Þ

wt(P i)

5
o

1≤i≤m tð Þ
p tð Þ � wt(Pi) � predt11(Pi)

o
1≤i≤m tð Þ

p tð Þ � wt(Pi)
5 predt11 eMIð Þ:

(2)

Thus, for every time point n, an infinite eMIinf game with a symmetric split
process can be reduced to an ordinary eMI game with m(n) players.

If the split process is asymmetric (as in Arnold’s counterexample
sketched in sec. 2), this simple method of transferring our theorems about
eMI to infinitely many players is impossible. However, we can obtain an
analogous result by constructing the symmetric completion of an arbitrary
splitting process as follows: we add to the game a sufficient number of
pseudoequivalence classes that agree in their predictions and produce a sym-
metric split process. Thus, now the equivalence classes (virtual players) con-
sist of proper equivalence classes (each having a different prediction history)
and pseudoequivalence classes (agreeing in their prediction history with one
of the proper equivalence classes).

The equivalence classes are recursively defined as follows. Let m(n) be
the number of proper equivalence classes and s(n) > m(n) the number of
equivalence classes (including ‘pseudos’) constructed in the symmetric
completion of this game until round n. (Initially, m(0) 5 s(0) 5 1; i.e., be-
fore making a prediction all players are predictively equivalent.) Assume in
round n1 1 that only one of the s(n) equivalence classesP1(n), ... ,Ps(n)(n) of
round n, say Pk(n), splits into D new proper equivalence classes, while the
players in all other s(n) 2 1 equivalence classes predict identically—this
is the most asymmetric case. Then we add to each old equivalence class
Pi(n) of round n (i ≠ k) D 2 1 new pseudoequivalence classes that predict
identically as Pi(n), which means that we multiply the number of equiva-
lence classes of round n by D, to extend the asymmetric splitting in round
n1 1 to a symmetric splitting.
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Note that D ≤ c (c being the number of possible predictions); thus, an
equivalence class can split into at most c new classes. Therefore, if we add
in each round n 1 1 as many new pseudoequivalence classes as are needed
such that number of equivalence classes m(n) is multiplied with c, we are
guaranteed to have added sufficiently many equivalence classes to obtain a
symmetric extension of the game. Thus, if m(n) is the growth function of
proper equivalence classes in an asymmetric game, the corresponding growth
function of equivalence classes that guarantees the construction of a symmet-
ric extension is s(n) 5 cm(n). For this growth function every infinite eMIinf
game can be extended to an infinite game with a symmetric split process
and identical success profile, which allows its reduction to an ordinary eMI
game with s(n) players at the start. This gives us the following theorem:
7 Publ
Theorem 6 (eMIinf in prediction games with infinitely many players). For
every infinite prediction game ((e), P [ feMIinfg) in which eMIinf has in-
finite cognitive resources, ‘c’ is the number of possible predictions and
‘m(n)’ the number of predictive equivalence classes produced until time n:
6.2.

6.3.

ished 
maxsucn 2 sucn(eMIinf ) ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � (ln c) � m(n)=n

p � (1 1 1
4� ffiffi

n
p ).

If m(n) grows slower than linearly with n, that is, limn→∞m(n)=n 5 0,
then lim supn→∞maxsucn 2 sucn(eMIinf ) ≤ 0.
Results 6.1 and 6.2 apply to rMIinf (with ‘sucn’ replacing ‘sucn’) and
to cMIinf (with ‘dsucn’ replacing ‘sucn’ and adding the regret term
(q 2 1)=(2 � k)).
6.1.
Proof. By equation (2) and because the symmetric completion of the infi-
nite game with prediction horizon n produces at most cm(n) equivalence
classes, an infinite eMIinf game is reducible to a finite eMI game with
cm(n) players. This yields result 6.1 by applying theorem 1. Results 6.2
and 6.3 are obvious consequences. QED
Theorem 6 tells us that our infinite versions of metainduction are access op-
timal if the number of predictive equivalence classes increases less than lin-
early. This restriction is stronger than that for unboundedly growing num-
bers of players (sec. 3), which was less than exponential growth.

6. Conclusion and Outlook. In this article the optimality results for meta-
induction (Schurz 2008) are developed further, in reply to the challenges of
Arnold (2010) and Sterkenburg (2019). According to these challenges the
universal optimality theorem is restricted to metainduction over finite sets
of prediction methods but does not apply to infinite or unboundedly growing
sets of methods. The metainductive approach is defended against this chal-
lenge in four steps:
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1. Epistemologically, the optimality argument for finitely many methods
solves the most important part of the problem of induction, since hu-
mans are cognitively finite beings (sec. 2). However, under slight re-
strictions optimality theorems can even be proved for metainduction
over unbounded sets of prediction methods. In this regard three further
results are established:

2. It is shown that universal optimality can even be granted if the number
of candidate methods grows unboundedly, provided it does not grow
too fast, that is, slower than exponentially (sec. 3). This is a strongly
encouraging result for metainduction in view of the unlimited creativ-
ity of the human mind.

3. Moreover, the optimality result for metainduction can be extended to
arbitrary sequences of methods (sec. 4). This extension does not only
give as a new solution to Goodman’s problem for methods; it also has
interesting application to realistic cases of epistemic agents who switch
between radically different (e.g., scientific and esoteric) methods in the
course of history.9

4. For an agent with infinite cognitive resources, metainduction is even
optimal over infinite classes of methods, provided the number of pre-
dictive equivalence classes increases less than linearly (sec. 5). This
restriction is quite strong; still, the result is impressive. Together with
the lesson of Arnold’s counterexample, it gives us a sufficient and
necessary condition for the infinite access optimality of eMIinf, since
in Arnold’s counterexample the number of predictive equivalence
classes increases linearly (every round by one).
REFERENCES

Arnold, Eckhart. 2010. “Can the Best-Alternative-Justification Solve Hume’s Problem?” Philoso-
phy of Science 77:584–93.

Cesa-Bianchi, Nicolo, and Gabor Lugosi. 2006. Prediction, Learning, and Games. Cambridge:
Cambridge University Press.

Chernov, Alexey, and Vladimir Vovk. 2009. “Prediction with Expert Evaluator’s Advice.” In Algo-
rithmic Learning Theory: 20th International Conference, ALT 2009, Porto, Portugal, Octo-
ber 3–5, 2009, ed. Ricard Gavaldà, Sandra Zilles, Gábor Lugosi, and Thomas Zeugmann,
8–22. Berlin: Springer.

Cover, Thomas M., and Joy A. Thomas. 1991. Elements of Information Theory. New York: Wiley.
Goodman, Nelson. 1946. “A Query on Confirmation.” Journal of Philosophy 44:383–85.
Kelly, Kevin T. 1996. The Logic of Reliable Inquiry. New York: Oxford University Press.
Mourtada, Jaouad, and Odalric-AmbrymMaillard. 2017. “Efficient Tracking of a Growing Number

of Experts.” Journal of Machine Learning Research 76:1–23.
Reichenbach, Hans. 1949. The Theory of Probability. Berkeley: University of California Press.
This possibility was raised as a problem for metainduction by J. Brian Pitts in the
7 conference Quo Vadis Selective Scientific Realism? at Durham University.

11587 Published online by Cambridge University Press

https://doi.org/10.1086/711587


340 GERHARD SCHURZ

https://doi.org/10.1086/71158
Schurz, Gerhard. 2008. “The Meta-inductivist’s Winning Strategy in the Prediction Game: A New
Approach to Hume’s Problem.”Philosophy of Science 75:278–305.

———. 2017. “No Free Lunch Theorem, Inductive Skepticism, and the Optimality of Meta-
induction.” Philosophy of Science 84:825–39.

———. 2019. Hume’s Problem Solved: The Optimality of Meta-induction. Cambridge, MA: MIT
Press.

Schurz, Gerhard, and Paul Thorn. 2016. “The Revenge of Ecological Rationality: Strategy-
Selection by Meta-induction.” Minds and Machines 26 (1): 31–59.

———. 2017. “A Priori Advantages of Meta-induction and the No Free Lunch Theorem: A Con-
tradiction?” In Advances in Artificial Intelligence, 236–48. Lecture Notes in Computer Sci-
ence 10505. Cham: Springer.

Shalev-Shwartz, Shai, and Shai Ben-David. 2014.Understanding Machine Learning: From Theory
to Algorithms. New York: Cambridge University Press.

Sterkenburg, Tom F. 2019. “The Meta-inductive Justification of Induction: The Pool of Strategies.”
Philosophy of Science 86:981–92.

Wolpert, David H. 1996. “The Lack of A Priori Distinctions between Learning Algorithms.” Neu-
ral Computation 8:1341–90.
7 Published online by Cambridge University Press

https://doi.org/10.1086/711587

